EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION <u>1st</u> HALF <u>1988</u>

- 1. Regulatory Limits
 - a. Fission and Activation Gases:

Instantaneous - Nuclide Dependant (all release points)

Shield Building Exhaust Auxiliary Building Exhaust Condenser Vacuum Exhaust Service Building Exhaust

NOTE: Istal plant release rate limits per nuclide are established by TVA's Radiological Control, Radiation Protection Branch (RCRPB). These limits are further evaluated for each vent based on design flowrate. Technical Specification will not be exceeded until the sum of individual isotope release rate per release rate limit exceeds 1.0.

b. & c. Iodines and particulates, half-lives ≥8 Days

- Instantaneous Nuclide Dependant
 - NOTE: Total plant release rate limits per nuclide are established by TVA's Radiological Control, Radiation Protection Branch (RCRPB). These limits are further evaluated for each vent based on design flowrate. Technical Specification will not be exceeded until the sum of individual isotope release rate per release rate limit exceeds 1.0.

IE48

- d. Liquid effluent: ∑ MPC≤1.0 (reference 10CFR20, Appendix B, note 3C, Table II, column 2).
- e. Tritium

09090154 8808

ADOCK 05000

PDR

- Liquid ≤3.0E-3 µCi/ml (ref. 10CFR20, Table 11, column 2)
- (2) Airborne (reference 10CFR20, Table 11, column 1)

Shield Building Exhaust	≦3.138E+03 µCi/sec
Auxiliary Building Exhaust	≤2.555E+04 µCi/sec
Service Building Exhaust	≤1.165E+03 µCi/sec
Condenser Vacuum Exhaust	≦5.043E+00 µCi/sec

NOTE: These limits are established by TVA based on each vent's design flowrate.

-1-

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1st HALF 1988

2. Maximum Permissible Concentrations

- a. Fission and Activation Gases: Not Applicable
 - b. lodines: Not Applicable

and the second second

ALL DESCRIPTION OF

11.811

- c. Particulates, half-lives ≥8 days: Not Applicable
 - d. Liquid effluents: sum of indv. MPC ratios ≤1.0 (ref. 10CFR20, Appendix B, Note 1)
 - 3. Average Energy Not Applicable
 - 4. Measurements and Approximations of Total Radioactivity
 - NOTE: Every effort is made to ensure that all effluents from Sequoyah are conducted such that all Technical Specification LLDs are met. Whenever an analysis does not identify a radioisotope, a "0.00E-01 Ci" is recorded for the release. This does not necessarily mean that no activity was released for that particular radioisotope but that the concentration was below the Technical Specification and analysis capability. Refer to Tables A and B for estimates of these typical values.
 - a. Fission and Activation Gases

Airborne effluent gaseous activity is continuously monitored and recorded. Additional grab samples from the shield building, auxiliary building, service building, and condenser vacuum exhausts are taken and analyzed at least monthly to determine the quantity of noble gas activity released for the month based on the average vent flowrates recorded for the sample period. Also, noble gas samples are collected and evaluated for the shield and auxiliary buildings following startup, shutdown, or rated thermal power change exceeding 15 percent within one hour (sampling only required if dose equivalent 1-131 concentration in the primary coolant has increased more than a factor of 3 and the noble gas activity monitor shows that the containment activity has increased more than a factor of 3). The vent flowrates for the shield building, auxiliary building, service building, and condenser vacuum exhausts are determined and recorded once a shift.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION <u>1st</u> HALF <u>1988</u>

4. Measurements and Approximation of Total Radioactivity (continued)

a. Fission and Activation Gases (continued)

The quantity of noble gases released through the shield and auxiliary building exhausts due to purging or venting of containment and releases of waste gas decay tanks are also determined.

The total noble gas activity released for the month is then determined by summing all of the activity released from each vent for all sampling periods, the activity released from purging or venting of containment, and the activity released from waste gas decay tank(s).

b. & c. lodines and Particulates

ALCONG NO.

March Street .

AND 100 100 11

100

Section of

pro-

lodine and particulate activity is continuously monitored and recorded. Charcoal and particulate samples are taken from the shield and auxiliary building exhausts and analyzed at least weekly to determine the total activity released from the plant based on the average vent flowrates recorded for sampling period.

Also, particulate and charcoal samples are taken from the auxiliary and shield building exhausts once per 24 hours for 2 days following startup, shutdown, or a rated thermal power change exceeding 15 percent within one hour. The quantity of iodine and particulate released from each vent during each sampling period is then determined using the average vent flowrates recorded for the sampling period and activity concentration.

The vent flowrates from the shield and auxiliary building exhausts are recorded once a shift.

The total particulate and iodine activity released for the month is then determined by summing all of the activity released from the shield and auxiliary building exhausts for all sampling periods.

- d. Liquid Effluents
 - <u>Batch</u> (Radwaste and condensate regenerants to cooling tower blowdown)

Total gamma isotopic activity concentrations are determined on each batch of liquid effluent prior to release. The total curie content of a released batch is determined by summing each nuclide's concentration and multiplying by the total volume discharged. The total activity released during a month is then determined by summing the activity content of each batch discharged during the month.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1st HALF 1988

4. Measurements and Approximation of Total Radioactivity (continued)

(2)

Continuous Releases and Periodic Continuous Releases (Condensate regenerants, turbine building sump and steam generator blowdown)

Total gamma isotopic activity concentration is determined daily on a composite sample from the condensate system and turbine building sump and weekly for steam generator blowdown. The total curie content of the continuous release is determined by summing each nuclide's concentration and multiplying by the total volume discharged. The total activity released during the month is then determined by summing the activity content of each daily and weekly composite for month.

5. Batch

		Va	lue	Units
ľ	1 danied	Quarter 1st	Quarter 2nd	
d.	Liquid			
1.	Number of batches released (Radwaste only)	70	94	Each
2.	Total time period for batch releases	9.635	12,797	Minutes
3.	Maximum time period for a batch release	170	195	Minutes
4.	Average time period for batch releases	138	136	Minutes
5.	Minimum stream flow during periods of			
36	effluent into a flowing stream:	(a)	(a)	
	 See RCRPB's annual Radiological Impact Assessment Report. 			
b.	Gaseous			
1	Number of batches released	59	74	Each
2	Total time period for batch releases	4071	7657	Minutes
3	Maximum time period for a batch release	420	1428	Minutes
4	Average time period for batch releases	69	103	Minutes
5	Minimum time period for a batch release	15	28	Minutes

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1st HALF 1988

: '

			Va	lue	Units
6.	Abnormal	Releases	Quarter lst	Quarter 2nd	
	а.	Liquid			
	(1) (2)	Number of Releases Total Activity Released	0 0.00E-01	2 1.07E-06	Ci
	ь.	Gaseous			
	(1) (2)	Number of Releases Total Activity Released	0 0.00E-01	1 4.30E-01	Ci
7.	Offsite I	Dose Calculation Manual (ODCM)			

Were any changes made to the ODCM during the reporting period? X Yes No If yes, add an attachment at the end of report. (Attachment 3)

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

Α.	Fission and Activation Products	Unit	<u>lst</u> Qtr	<u>Total</u> %Error	Qtr	<u>Total</u> %Error
	1. Total Releases 2. Average Diluted Cor	Curies	1.33E-01	±1.8 E+01	2.11E-01	±1.8 + 01
	Identified Isotopes	uCi/ml	1.85E-07		2.30E-07	
	Limit (∑MPC≤1)	*	7.14E-01		8.83E-01	
	NOTE: Percent of concentrat MPC concer compared t	f applicabl tion after ntration an to 1.0.	e limit is dilution, r nd sum of al	based on ide elated to th l the isotop	ntified isot eir appropri e fractions	ope ate
Β.	Tritium					
	 Total Release Average Diluted Conc. During Period 	Curies µCi/ml	1.52E+01 2.12E-05	<u>+</u> 1.8E+01	1.56E+01 1.70E-05	±1.8E+01
	3. Percent of Applicat Limit (3.0E-03 μCi/	/ml) %	7.07E-01		5.66E-01	
с.	Dissolved and Entrained	Gases				
	 Total Release Average Diluted Copc. During Period 	Curies µCi/ml	0.00E-01 0.00E-01	<u>+</u> 3.9E+01	8.88E-03 9.66E-09	<u>+</u> 3.9E+01
	3. Percent of Applicat Limit (2.0E-04 µCi)	ole (ml) %	0.00E-01		4.83E-03	
D.	Gross Alpha Radioactivit	LY.				
	1. Total Release	Curies	0.00E-01	±2.0E+01	0.00E-01	±2.0E+01
Ε.	Volume of Waste Release					
	(Before Dilution)	Liters	2.26E+08	±4.0E+00	2.51E+08	±4.0E+00
F.	Volume of Dilution Water for Period	Liters	4.91E+08	±1.1E+01	6.68E+08	±1.1E+01

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE

G. <u>Isotope Summary</u> (Note: Refer to Table A for values reported as 0.00E-01) Required by Technical Specification/Others Fission and Activation Products

٠

			Continuous	Mode	Batch	Mode
Nu	clide	Unit	Quarter 1s ⁺	Quarter 2nd	Quarter 1st	Quarter 2nd
1.	Strontium-89	Ci	0.00E-01	<u>0.00E-01</u>	0.000-01	0.00E-01
2.	Strontium-90	Ci	<u>0.00E-01</u>	<u>0.00E-01</u>	0.00E-01	0.00E-01
3.	Iron-55	Ci	0.00E-01	<u>0.00E-01</u>	2.50E-02	4.828-02
4.	Manganese-54	Ci	1.62E-05	<u>1.:3E-05</u>	1.62E-04	<u>1.06E-03</u>
5.	Cobalt-58	Ci	0.00E-01	4.98E-05	1.51E-05	1.25E-05
6.	Iron-59	Ci	<u>0.00E-01</u>	<u>0.00E-01</u>	0.00E-01	0.008-01
7.	Cobalt-60	Ci	1.96E-04	<u>6.81E-04</u>	4.69E-02	<u>1.08E-01</u>
8.	Zinc-65	Ci	<u>0.00E-01</u>	<u>0.00E-01</u>	<u>0.00E-01</u>	0.00E-01
9.	Molybdenum-99	Ci	<u>0.00E-01</u>	0.00E-01	0.00E-01	0.00E-01
10.	Iodine-131	Ci	<u>0,00E-01</u>	<u>3,20E-06</u>	<u>0.00E-01</u>	<u>4.87E-04</u>
11.	Cesium-134	Ci	1.01E-03	<u>1.93E-03</u>	1.338-02	<u>8.47E-03</u>
12.	Cesium-137	Ci	2.38E-03	<u>6.08E-03</u>	3.42E-02	<u>2.34E-02</u>
13.	Cerium-141	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
14.	Cerium-144 Others (Specify	ci ()	0.00E-01	<u>0.00E-01</u>	<u>0.00E-01</u>	<u>0.00E-01</u>
15.	Antimony-125	Ci	0.00E-01	<u>0.00E-01</u>	<u>9.75E-03</u>	<u>1.21E-02</u>
16.	Cobalt-57	Ci	4.87E-07	0.00E-01	<u>1.13E-05</u>	<u>1.36E-05</u>
17.	Silver-110m	Ci	0.00E-01	0.008-01	0.008-01	<u>1.88E-04</u>
18.	Technetium-99m	Ci	<u>0.00E-01</u>	3.90E-06	0.001-01	1.03E-04
19.	Zirconium-97	Ci	0.00E-01	0.008-01	0.00E-01	6.83E-05

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE (CONTINUED)

		Continuo	us Mode	Batch	Mode
Nuclide	Unit	Quarter 1st	Quarter 2nd	Quarter	Quarter 2nd
20. Niobium-95	Ci	0.002-01	0.00E-01	0.00E-01	<u>3.60E-06</u>
21. Barium-139	Ci	0.00E-01	0.00E-01	0.00E-01	1.55E-07
22. Yttrium-91m	Ci	<u>0.00E-01</u>	<u>0.00E-01</u>	<u>0.00E-01</u>	<u>1.88E-08</u>
23. lodine-133	Ci	<u>0.00E-01</u>	5.51E-06	<u>0.00E-01</u>	3.668-06
24. Chromium-51	Ci	<u>0.00E-01</u>	2.878-05	0.00E-01	0.00E-01
25. Tellurium-132	Ci	0.00E-01	2.20E-06	<u>0.00E-01</u>	<u>0.00E-01</u>
Total for Period	Ci	<u>3.60E-03</u>	<u>8.80E-03</u>	1.29E-01	2.02E-01

t

Г

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE (CONTINUEG)

G. <u>Isotope Summary</u> (NOTE: Kefer to Table A for values reported as 0.00E-01) Required by Technical Specification/Others

Dissolved and Entrained Noble Gases

. .

			Continuo	us Mode	Batch	Mode
Nuc	lide	Unit	Quarter lst	Quarter 2nd	Quarter 1st	Quarter 2nd
۱,	Krypton-87	Ci	0.00E-01	0.00E-01	0.00E-01	<u>0.00E-01</u>
2.	Krypton-88	Ci	0.00E-01	0.008-01	0.00E-01	0.008-01
3.	Xenon-133	Ci	0.00E-01	<u>0.00E-01</u>	0.00E-01	8.75E-03
4.	Xenon-133m	Ci	0.00E-01	0.001-01	0.00E-01	2.24E-05
5.	Xenon-135	Ci	0.00E-01	<u>0.00E-01</u>	0.00E-01	1.03E-04
6.	Xenon-138 Others (Spec)	Ci ifv)	0.00E-01	0.00E-01	<u>0.00E-01</u>	0.008-01
7.	Krypton-85m	Ci	0.00E-01	0.00E-01	0.00E-01	5.17E-07

	Total	for Period	Ci	0.00E-01	0.00E-01	0.00E-01	8.88E-03
--	-------	------------	----	----------	----------	----------	----------

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> TABLE A LIQUID "TYPICAL LLD" EVALUATION (1)

×.

At (2)

Nuclide	Tech. Spec. LLD	15 min	<u>30 min</u>	1 hr	2 hr	<u>3 hr</u>
Manganese-54	5.0E-07	9.128-09	9.128-09	9.128-09	<u>9.12E-09</u>	<u>9.12E-09</u>
Cobalt-58	5.0E-07	8.21E-09	8.216-09	8.21E-09	8.218-09	8.22E-09
Iron-59	5.0E-07	1.628-08	<u>1.62E-08</u>	<u>1.62E-08</u>	1.62E-08	<u>1.62E-08</u>
Cobalt-60	5.0E-07	1.08E-08	<u>1.08E-08</u>	<u>1.08E-08</u>	1.08E-08	1.08E-08
Zinc-65	5.0E-07	2.14E-08	2.14E-08	2.14E-08	2.14E-08	2.14E-08
Molybdenum-99	5.0E-07	5.24E-08	<u>5.25E-08</u>	<u>5.28E-08</u>	5.34E-08	<u>5.39E-08</u>
Cesium-134	5.0E-07	<u>9.82E-09</u>	9.828-09	9.828-09	9.82E-09	9.82E-09
Cesium-137	5.0E-07	<u>9.31E-09</u>	<u>9.31E-09</u>	<u>9.31E-09</u>	9.318-09	<u>9.31E-09</u>
Certum-141	5.0E-07	1.06E-08	<u>1.06E-08</u>	1.07E-08	<u>1.07E-08</u>	1.07E-08
Cerium-144	5.0E-06	4.03E-08	4.03E-08	4.03E-08	4.03E-08	4.03E-08
Iodine-131	<u>1.0E-06</u>	7.28E-09	<u>7.28E-09</u>	7.30E-09	7.328-09	7.35E-09
Krypton-87	<u>1.0E-05</u>	<u>1.62E-08</u>	<u>1.85E-08</u>	2.43E-08	4.20E-08	7.24E-08
Krypton-88	1.0E-05	2.13E-08	2.27E-08	<u>2.562-08</u>	3.27E-08	4.17E-08
Xenon-133	1.0E-05	2.03E-08	2.04E-08	2.048-08	2.05E-08	2.06E-08
Xenon-133m	<u>1.0E-05</u>	5.05E-08	5.07E-08	5.10E-08	5.17E-08	<u>5.24E-08</u>
Xenon-135	1.0E-05	5.60E-09	5.70E-09	5.93E-09	6.40E-09	6.908-09
Xenon-138	1.0E-05	2.828-08	5.97E-08	2.55E-07	4.79E-06	9.01E-05

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> TABLE A LIQUID "TYPICAL LLD" EVALUATION(1) (Continued)

Nuclide Tech. Spec. LLD

(Others)(a)

Gross Alpha 1.0E-07

Strontium-89 5.0E-08

Strontium-90 5.0E-08

1ron-55 1.0E-06

- NOTES: (1) All evaluations are in µCi/ml. All analyses are performed to ensure that Technical Specification LLD limits are met, and these are typical LLD values.
 - (2) At is the time between sample collection and counting time.
 - (*) All of these analyses are required to meet Technical Specification LLD limits, and are individually evaluated to ensure compliance.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF<u>1988</u> GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

Sun	mati	on of All Releases	Unit	lst Qtr	Total <u>%Error</u>	2nd Qtr	Total <u>%Error</u>
Α.	Nob	le Gases					
	1.	Total Releases	Ci	0.00E-01	±1.1E+01	3.49E+01	±1.1E+01
	e. 0	Rate for Period	µCi/sec	0.00E-01		4.44E+00	
	3.	Specification Limit	\$	0.00E-01		1.50E-03	
8.	10d	ines					
	1.	Total lodine-131	Ci	0.00E-01	±1.3E+01	2.53E-05	<u>+</u> 1.3E+01
	2.	Rate for Period	uCi/sec	0.00E-01		3.22E-06	
	3,	Specification Limit (1.60E-01 µCi/sec)	s	0.008-01		2.01E-03	
с.	Par	ticulates					
	1.	Particulates with	Ci	5.10E-05	±1.6E+01	3.08E-05	<u>+</u> 1.6E+01
	2.	Average Release Rate for Period	uCi/sec	6.498-06		3.928-06	
	3.	cal Specification	x	4.898-04		2.228-04	
	4.	Gross Alpha Radio- activity	Ci	0.00E-01	<u>+</u> 2. ³ E+01	0.008-01	<u>+</u> 2.1E+01
D.	Iri	tium					
	1. 2.	Total Release Average Release Rate for Period	Ci µCi/sec	9.31E-01 1.18E-01	<u>+</u> 1.5E+01	2.43E+00 3.09E-01	±1.5E+01
	3,	Percent of Technical Specification Limit	x	3.598-04		9.37E-04	

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

: *

. . .

			Continuo	us Mode	Batch	Mode
		Unit	Quarter 1st	Quarter 2nd	Quarter 1st	Quarter 2nd
Ε.	Noble Gases					
	Required by Techni	cal Sp	ecification/	Others		
	1. Krypton-87	Ci	0.00E-01	0.00E-01	0.008-01	<u>0.00E-01</u>
	2. Krypton-88	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
	3. Xenon-133	Ci	<u>0.00E-01</u>	2.608-01	0.00E-01	3.34E+01
	4. Xenon-133m	Ci	0.00E-01	0.00E-01	0.00E-01	5.428-01
	5. Xenon-135	Ci	0.00E-01	0.00E-01	0.00E-01	4.85E-01
	6. Xenon-138	CI	<u>0,00E-01</u>	0.00E-01	<u>0.00E-01</u>	0.00E-01
	7. Krypton-85	CI	<u>0.00E-01</u>	0.00E-01	0.008-01	<u>1.43E-01</u>
	8. Argon-41	Ci	0.008-01	0.00E-01	0.00E-01	5.778-02
	9. Krypton-85m	Ci	<u>0.00E-01</u>	0.00E-01	<u>0,00E-01</u>	<u>1.56E-02</u>
	Total for Period	Ci	<u>0.00E-01</u>	2.60E-01	0.008-01	3.46E+01
F.,	Indines					
	1. Iodine-131 2. Iodine-133	Ci	0.00E-01	2.53E-05 0.00E-01		
	3. lodine-135	CI	0.00E-01	0.00E-01		
	Total for Period	Ci	0.00E-01	2.538-01		

NOTE: Refer to Table B for values reported as 0.00E-01.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT 1st HALF 1988 GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

G. Particulates

-

Required by Technical Specification/Others

Nuc	lide	Unit	Continuous Quarter 1st	Mode Quarter 2nd	
1.	Strontium-89	Ci	0.00E-01	0.00E-01	
2.	Strontium-90	Ci	0.00E-01	0.008-01	
3.	Iron-59	Ci	<u>0.00E-01</u>	0.00E-01	
4.	Cobalt-60	Ci	4.72E-05	2.96E-05	
5.	Zinc-65	Ci	0.008-01	0.008-01	
б.	Manganese-54	Ci	<u>0.00E-01</u>	0.008-01	
7.	Cobalt-58	Ci	<u>0.00E-01</u>	0.00E-01	
8.	Molybdenum-99	Ci	0.00E-01	0.00E-01	
9.	Cesium-134	Ci	0.008-01	0.00E-01	
10.	Cesium-137	Ci	<u>3.81E-06</u>	0.00E-01	
11.	Cerium-141	Ci	0.00E-01	0.00E-01	
12.	Cerium-144 Others (Specify)	Ci	<u>0.00E-01</u>	<u>0.00E-01</u>	
13.	Cobalt-57	Ci	6.23E-09	3.38E-07	
14.	Technetium-99m	Ci	0.00E-01	8.20E-07	

Total for Period Ci <u>5.10E-05</u> <u>3.08E-05</u>

NOTE: Refer to Table B for values reported as 0.00E-01.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> TABLE B GASEOUS "TYPICAL LLD" EVALUATION(1)

Noble Gas

At (2)

Nuclide Tech	n. Spec. LLD	15 min	30 min	1 hr	2 hr	3 hr
Krypton-87	1.0E-04	2.91E-07	3.34E-07	1,39E-07	7.56E-07	<u>1.30E-06</u>
Krypton-88	1.0E-04	3.59E-07	3.82E-07	4.31E-07	<u>5.51E-07</u>	<u>7.03E-07</u>
Xenon-133	1.0E-04	1.97E-07	1.98E-07	<u>1.98E-07</u>	1.99E-07	2.00E-07
Xenon-133M	1.0E-04	8.75E-07	8.78E-07	8.841-07	8.95E-07	<u>9.07E-07</u>
Xenon-135	1.0E-04	9.76E-08	<u>9.95E-08</u>	1.03E-07	1.12E-07	<u>1.20E-07</u>
Xenon-138	1.0E-04	4.93E-07	<u>1.03E-06</u>	4.468-06	<u>8.38E-05</u>	<u>1.58E-03</u>
Particulate Sam	nple					
Manganese-54	1.0E-10	3.88E-14	<u>3.88E-14</u>	3.88E-14	3.88E-14	<u>3.88E-14</u>
Cobalt-58	1.0E-10	3.49E-14	3.49E-14	3.49E-14	3.50E-14	3.50E-14
Iron-59	1.0E-10	7.25E-14	1.25E-14	7.25E-14	<u>7.26E-14</u>	7.26E-14
Cobalt-60	1.0E-10	4.95E-14	4.958-14	4.95E-14	<u>4.95E-14</u>	4.95E-14
Zinc-65	1.0E-10	9.54E-14	9.548-14	<u>9.54E-14</u>	<u>9.54E-14</u>	<u>9.54E-14</u>
Molybdenum-99	1.0E-10	2.49E-13	2.49E-13	2.51E-13	2.53E-13	2.56E-13
Cesium-134	1.0E-10	4.15E-14	4.15E-14	4.15E-14	4.15E-14	<u>4.15E-14</u>
Cesium-137	1.0E-10	3.85E-14	3.85E-14	3.85E-14	3.85E-14	<u>3.85E-14</u>
Cerium-141	1.0E-10	3.70E-14	3.70E-14	3.70E-14	3.70E-14	3.71E-14
Cerium-144	1.0E-10	1.32E-13	<u>1.32E-13</u>	<u>1.32E-13</u>	1.328-13	1.32E-13
lodine-131	1.0E-10	3.09E-14	3.09E-14	3.09E-14	3.11E-14	3.126-14
Strontium-89(a)) <u>1.0E-11</u>					
Strontium-90(s) <u>1.0E-11</u>					

Gross Alpha (a) 1.0E-11

EFFILING AN IE DISPOSAL SEMIANNUAL REPORT <u>st</u> HALF <u>1988</u> TABLE B EASEOUS "TYPICAL LLD" EVALUATION(1) (Continued)

At(2)

Charcoal Sample	Tech, Spec, LLD	15 min	30 min	<u>1 hr</u>	2 hr	3 hr
Iodine-131	1.0E-11	4.31E-14	4.32E-14	4.32E-14	4.34E-14	4.36E-14
Othoms						

Others

Tritium (s) 1.0E-06

(1)

NOTES

- All evaluations are in µCi/cc. All analyses are performed to ensure that Technical Specification LLD limits are met, and these are typical LLD values. Alpha emitters are counted for a set time of 20 minutes.
- (2) At for noble gases is the time from sampling to analysis. At for charcoal and particulate samples is the time from filter removal from sampling apparatus to analysis, assuming an average flow of 2 CFM for a 24-hour sampling period.
- (a) These isotopes are individually evaluated to ensure compliance with Technical Specification LLD limits.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1988</u> SOLID WASTE (RADIOACTIVE) SHIPMENTS

A. Solid Waste Shipped Offsite for Burial or Disposal (not Irradiated Fuel)

.

Typ	be of Waste	Unit	6 Month Period	Est. Tot. Error %
a.	Spent resins, filter siudges evaporator bottoms, etc.	m ⁹ Ci	5.27E+01 2.43E+01	±1.50E+01 ±1.50E+01
b.	Dry Active Waste, Compressibl Waste, Contaminated equip., etc.	e mª Ci	3.18E+02 5.43E+01	±1.50E+01 ±1.50E+01
с.	Irradiated Components, Control Rods, etc.	m ^ə Ci	None None	N/A N/A
d.	Other (describe) Dewatered Mechanical Filters	mª Ci	3.41E+00 4.81E-01	+1.50E+01 +1.50E+01

2. Estimate of Major Nuclide Composition (by type of waste)

 a. Spent resin, filter sludges, evaporator bottoms, etc. (nuclides determined by measurement)

		curres	reitent
1.	Tritium	8.55E-02	3.528-01
2.	Carbon-14	2.46E-01	1.01E+00
3.	Iron-55	2.21E+00	9.09E+00
4.	Nickel-63	6.02E+00	2.48E+01
5.	Cobalt-60	1.44E+01	5.93E+01
6.	Strontium-90	2.728-01	1.12E+00
7.	Technetium-99	1.40E-03	5.76E-03
8.	Cesium-134	3.22E-01	1.33E+00
9.	Cesium-137	6.92E-01	2.85E+00
10.	Manganese-54	3.97E-02	1.63E-01
11.	Cobalt-57	5.11E-03	2.10E-02
12.	Zinc-65	3.29E-03	1.35E-02
13.	Nickel-59	2.61E-02	1.07E-01
14.	Iodine-129	1.86E-03	7.65E-03
15.	Plutonium-238	6.16E-05	2.53E-04
16.	Plutonium-239	2.248-05	9.228-05
17.	Plutonium-241	2.64E-03	1.09E-02
18.	Antimony-125	2.84E-03	1.17E-02
19.	Potassium-40	2.872-03	1.18E-02

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st HALF 1988</u> SOLID WASTE (RADIOACTIVE) SHIPMENTS

2. Estimate of Major Nuclide Composition (by type of waste) (continued)

b.	Dry Active	Waste, compr	essible waste,	contaminated	equipment,	etc.;
	(nuclides	determined by	estimate)			

			Curies	Percent
	1.	Tritium	5.02E-03	9.23E-03
	2.	Carbon-14	1.29E-01	2.37E-01
	3.	Chromium-51	6.85E-01	1.26E+00
	4.	Iron-55	0.008-01	0.00E-01
	5.	Cobalt-58	4.538+01	8.348+01
	6.	Cobalt-60	4.43E+00	8.16E+00
	7.	Nickel-63	2.23E+00	4.11E+00
	8.	Technetium-99	1.52E+00	2.80E+00
	9.	lodine-129	1.51E-04	2.78E-04
	10.	Other Nuclides	N/A	N/A
e	Irr	adiated Components	N/A	N/A
	Oth	er (describe)	N/A	N/A
	Dew	atered Mechanical Filters		

1. Tritium 2.97E-01 6.18E+01 2. Carbon-14 8.66E-04 1.80E-01 5.85E-03 1.21E+00 3. Manganese-54 4. 1ron-55 8.01E-02 1.66E+01 5. Cobalt-60 7.28E-02 1.51E+01 6. Nickel-63 2.45E-02 5.08E+00 7. Technetium-99 3.57E-09 7.42E-07 3.60E-07 8. lodine-129 1.73E-09

đ

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT 1st HALF 1988 SOLID WASTE (RADIOACTIVE) SHIPMENTS

S.slid Waste Disposition

4.

5.

Number of Shipments	Type Quantity	Mode of Transportation	Destination
a) Spent resin, fil	ter sludges, evapor	rator bottoms, etc.	
11	A-LSA	Major Freight	Barnwell South Carolina
Number of Shipments	Type Guantity	Mode of Transportation	Destination
b) Dry Active Waste	, compressible wast	e, contaminated equipmen	t, etc.
10	A-LSA	Motor Freight	Barnwell South Carolina
Number of Shipments	Type Quantity	Mode of Transportation	Destination
c) Irradiated compo	nents, control rods	, etc.	
Number of Shipments	Type Quantity	Mode of Transportation	Destination
d) 1	Dewatered Mechanical Filters	Motor reight	Barnwell South Carolina
Irradiated Fuel Shipmo	ents (Disposition)		
Number of Shipments	Type Quantity	Mode of Transportation	Destination
None	N/A	NZĂ	N/A
Solidification of Wash	te		
Was solidification per	rformed?	Yes X No	
If yes, solidification	n media:	N/A	

- 6. Were any changes made to the process control program? X Yes No If yes, add as an attachment at the end of report in accordance with Technical Specification Administrative Control 6.13.
- Were any major changes made to the radioactive waste systems (liquid, gaseous or solid)? Yes X No. If yes, add an attachment at the end of report in accordance with Technical Specification administrative control 6.15.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

1st HALF 1988

ATTACHMENT 1

INOPERABLE INSTRUMENTATION

Pursuant to Technical Specification LCO 3.3.3.10, the following information is provided concerning radioactive effluent monitoring instrumentation which was inoperable for greater than 30 consecutive days during the period January 1, 1988, through June 30, 1988.

The Turbine Building Station Sump Discharge Monitor, O-RM-90-212, was declared inoperable on January 5, 1988, at 1:05 a.m. and remained inoperable until March 2, 1988, at 8:25 p.m., a total time of 57 days, 19 hours, and 20 minutes. The reason for this period of inoperability was due to the necessity of woo ing a design change which allowed the monitor to discharge dire y to the Turbine Building Sump instead of discharging back the same header from which flow is diverted into the monitor.

Flow indicator 1-FI-30-242, which measures air flow rate through Unit 1 Shield Building Exhaust, was declared inoperable on October 31, 1987, for exhaust flow rates of less than 8000 cubic feet per minute and remains inoperable at this time. 2-FI-30-242, which measures air flow rate through Unit 2 Shield Building Exhaust, was declared inoperable for exhaust flow rates of less than 8000 cubic feet per minute on November 25, 1987, and remains inoperable. It was determined that these two instruments cannot accurately measure exhaust flow rates that are less than 8000 cubic feet per minute; they are considered operable for flows above 8000 cfm. When inoperable, exhaust flow rates are estimated based on the design flow rates of exhaust fars in operation. Current plans are to replace this instrumentation on both shield building exhausts.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

1st HALF 1988

ATTACHMENT 2

Process Control Frogram Changes

At the direction of the solidification vendor, Chem Nuclear System Inc, Barnwell S.C., the sample calculation sheet for oily waste was revised to accurately represent the overall height (in inches) of the solidified mass. The previous revision omitted some of the additives in the sample calculation sheet which prevented an accurate ending volume calculation.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

1st HALF 1988

ATTACHMENT 3

Following are descriptions of changes made to the Sequoyah Offsite Dose Calculation Manual (ODCM) during the period January 1, 1988, to June 30, 1988, and the affected pages. (Revisions 18 and 19)

SQN CDCM Change Description Form

Description of change:

Table 3.1 and Figure 3.6 need to be revised to reflect the environmental radiological monitoring requirements for SQN. Specifically, Rev. 17 of the SQN ODCM contains the environmental monitoring requirements for BFN not SQN. Further, monitoring locations 22 and 23 need to be deleted from Figure 3.6. These locations were, in a previous ODCM revision, deleted from Table 3.2 but inadvertently retained on Figure 3.6

Affected pages: 69 through 72, 85.

Justification for change:

.

The SQN ODCH must reflect the environmental radiological program for SQN.

Effects on setpoints and dose calculations:

This change will have no effect on effluent setpoints or dose calculations.

88 RARC Review: RARC Chairpan

	@Nucleans	
Titie:	Handling of Changes to the SQN Offsite Dose Calculation Manual	RARC OP 8 Revision O Page 5 of 5
	Appendix 1 SQN ODCM Change Description Form	
Ast .	Description of change: (1) Addition of sampling locations and ana to reflect the program currently being conducted and to correct	lysis freque ie
	errors. (2) Change fish type from white crappie to crappie. (3) Revise figures
-	to indicate the additional sampling locations and to identify ma	p references.
	Pages affected: (1) Revise page 35; Table 3,1; Replace Table Figures 3.1,3.2,3.3; Delete Figures 3.4,3.5, 3.6. Justification for change: (1) The program currently being conduct	ed exceeds the
See 1	requirements of the ODCM. This change would reflect the current	program in the
-65	ODCM. (2) Allows the collection of black crappie when white cra	ppie are not
	available. (3) Identify added locations on the figures.	
	Analysis of effect of change on dose calculations, projections, o calculations:	or setpoint
1	These changes will have no impact on dose calculations, projecti	ons, or
	setpoint calculations.	
	,	
j.	Attach marked-up pages from the corrent revision of the SQN CDCM the change. RARC Review: RARC Chairman Da	which show te: $3/38/88$
		06790/COC4