NUREG/CR-4502

Virginia Regional Seismic Network

Final Report (1977-1985)

Prepared by G. A. Bollinger, J. A. Snoke, M. S. Sibol, M. C. Chapman

Virginia Polytechnic Institute and State University

Prepared for U.S. Nuclear Regulatory Commission

> 8602280757 860228 PDR NUREG CR-4502 R PDR

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources

- The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda, NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices, Licensce Event Reports; vendor reports and corruspondence; Commission papers; and applicant and licensee cocuments and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC sponsored conference proceedings, and NRC booklets ind brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-4502 RA

Virginia Regional Seismic Network

Final Report (1977-1985)

Manuscript Completed: December 1985 Date Published: February 1986

Prepared by G. A. Bollinger, J. A. Snoke, M. S. Sibol, M. C. Chapman

Seismological Observatory Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Prepared for Division of Radiation Programs and Earth Sciences Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B6249 Under Contract No. NRC-04-77-134

ABSTRACT

Eight years of monitoring with a 20-station regional network hap produced epicenters ($M \leq 4$), focal depths and mechanisms of adequate number and quality to reveal considerable differences between the two seismically active portions of Virginia. Those two areas (southwestern (Giles County) and central parts of the state) are separated by only some 200 km. Despite their proximity, the two zones exhibit remarkable differences in geometrical/mechanical characteristics. In Giles County, seismic energy is released by predominately strike-slip faulting in a near vertical, tabular zone (~40 km long) that is below the Appalachian decollement. In central Virginia, the seismicity is derived from mixed dip-slip and strike-slip faulting in a large, coin shaped volume (~100 km diameter; ~10 km vertical thickness), above the major detachment faulting. Stress estimates, as derived from single- and composite-focal mechanism solutions P-axes, are NE to ENE in Giles County and NW to NE in central Virginia.

The causes for the observed variability are unknown. The two zones are in different tectonostratigraphic (suspect) terranes and that difference could be relevant. The recently proposed Hydroseismicity model (Costain and Bollinger, 1985) ascribes the observed seismicity variations in Virginia and throughout the Southeast to different drainage basin hydrologic characteristics plus differences in upper crustal fracturing.

TABLE OF CONTENTS

Title		Pag	<u>ze</u>
Abstract			111
Executive Summary		· · · · · · · · · · · · · · · · · · ·	111
Introduction			1
Project Task 1.	Operation of Network	a 20-Station Telemetered Seismic	2
Project Task 2.	Monitoring Se Velocity Stud	ismic Activity and Conducting	12
Project Task 3 and Objective 1.	Determination Mechanisms an for Each of t	of Hypocenters and Composite Focal d Development of Geologic Models he Active Areas	17
	FOR MACH OF V		
Project Task 4 and Objective 2.	Correlation o Regional Geol Seismically A - Principal R	f Seismic Results with Local and ogic Features and Delineation of the ctive Areas in Virginia and Environs esults.	26
Project Task 5.	Southeastern	f a Seismicity Bulletin for the United States	33
Project Objective 3.	Evaluation of Area	the Seismic Hazard in the Study	34
Discussion of Princip	1 Repults		37
erosecon or risherb	A RODIELODIEI		31
References (see Appen	lix A)		40
Figure Credits	*****		41
Appendix A. Studies	completed and	Published Under this Contract	42
Appe	dix A1 Princ Journ	ipal Publications in Refereed als and NUREG Monographs	43
Appe	idix A2 Other Seism	Publications Including	44
Appe	dix A3 Publi Prese	shed Abstracts of Papers nted at Meetings	47
Appendix B. List of	Instrumentally	Located Earthquakes in Virginia	50

LIST OF TABLES

Table	1.	Local and Regional Crustal Velocity Models for Virginia	14
Table	2.	Giles County, Virginia, Focal Mechanism Solution Farameters	22
Table	3.	Central Virginia Focal Mechanism Solution Parameters	23
Table	4.	Eastern Tennessee Focal Mechanism Solution Parameters	24

LIST OF FIGURES

Figure	1.	The Virginia Tech Seismic Network	3
Figure	2.	Historical and Modern Seismicity in Virginia	3
Figure	3.	Two Different, Short-Period Vertical Seismograms for the Same Microearthquake Near Narrows, Virginia, on January 28, 1978	4
Figure	ц.,	Magnification Curves for the Giles County Subnetwork of the Virginia Tech Seismic Network	5
Figure	5.	Plot and Data Listing for Recent (1984) Calibration of Station NAV at Narrows, Virginia	6
Figure	٤.	Plot and Data Listing for Recent (1984) Calibration of Station GRV at Goochland, Virginia	7
Figure	7.	Detection and Location Capability by any Five Stations of the Virginia Tech Seismic Network	9
Figure	8.	Ninety-Fercent Confidence Location Ellipses for mb = 2 and mb = 3 Events Detected by Five or More Virginia Tech Seismin Network Stations	10
Figure	9.	Comparison of Actual and Network Computed Blast Locations in Giles County, Virginia	15
Figure	10.	Comparison of Actual and Network Computed Blast Locations in Central Virginia	16
Figure	11.	Instrumental Epicenter Map for Virginia	18
Figure	12.	Epicenter Maps and Vertical Sections for Giles County, Virginia	19
Figure	13.	Epicenter Maps and Vertical Sections for Central Virginia	20
Figure	14.	Focal Mechanism Solutions for Giles County and Central Virginia	21
Figure	15.	Distribution of Earthquake Focal Depths in the Southeastern United States	31

EXECUTIVE SUMMARY

This is the final report for U.S. Nuclear Regulatory Commission Contract No. NRC-04-77-134 with the Seismological Observatory of the Virginia Polytechnic Institute and State University entitled "Virginia Regional Seismic Network." The contract period was from May 1, 1977, to July 31, 1985. During the contract period, a seismic network of 20 stations was established and operated in Virginia and environs. The data gathered by that network were analyzed to investigate the causes of the seismicity in the state and to assess the earthquake hazard of the region. This report describes the operation and data acquisition of the network, the analysis of that data and the major research accomplishments during the contract period. A summary of those accomplishments is as follows:

The eight years of monitoring with a 20-station regional network developed epicenters (M \leq 4), focal depths and mechanisms of adequate number and quality to reveal considerable differences between the two seismically active portions of Virginia. Those two areas are in the southwestern (Giles County) and central parts of the state and are separated by only some 200 km. Despite their spatial proximity, the two zones exhibit remarkable differences in geological and mechanical characteristics. In Giles County, seismic energy is released by predominately strike-slip faulting in a near vertical, northeastly-trending tabular zone (~40 km long) that is below the Appalachian decollement. In central Virginia, the seismicity is derived from mixed dip-slip and strike-slip faulting in a large coin shaped volume (~100 km dia; ~10 km vertical thickness), above the major detachment faulting. Stress estimates, as derived from single- and composite-focal mechanism solutions P-axes, are NE to ENE in Giles County while they vary from NW to NE in central Virginia.

The causes for the observed variability are unknown. The two zones are in different geologic/topographic provinces (Giles County: Valley and Ridge, central Virginia: Piedmont) but, because the Giles County activity is sub-detachment, that aspect does not appear to be a controlling one. They may also be in different tectonostratigraphic (suspect) terranes and that difference could be relevant. The recently proposed Hydroseismicity model (Costain and Bollinger, 1985) ascribes the observed seismicity variations in Virginia and throughout the Southeast to different drainage basin (Giles County: New River; central Virginia: James River) hydrologic characteristics plus differences in upper crustal fracturing due primarily to an ancestral period of extensional tectonics.

The research results described above were reported by 67 publications (i1 referred journals, 4 NUREC documents, 15 seismicity bulletins, 7 others and 30 abstracts) and 32 quarterly reports (#04-77-134-1 through 32).

VIRGINIA REGIONAL SEISMIC NETWORK

INTRODUCTION

When this project was initiated in 1977, it was known that there was a persistent, low-level release of seismic energy in the southwestern and central portions of Virginia. Historical seismicity studies had also shown that release to be highly variable, with the largest events (mb = 5.8 and 5.0 with MMI = VIII and VII, respectively) occurring just before the turn of the century (1897 and 1875). However, the accuracy of epicentral determinations for the early shocks was very low: ranging from unknown for historical shocks to + 50 km or more for pre-1978 events, because of sparse seismograph density (one seismograph station in Virginia, less than 10 in the entire southeastern U.S.). There was no knowledge of focal depths or focal mechanisms (except for those few results generated by the Virginia Electric and Power Company's North Anna microseismic network at their project site in Louisa County, central Virginia). Thus, the state of knowledge at project initiation was characterized by the absence of any geological or tectonic understanding of the persistent seismic activity in the state as well as the lack of an ability to note spatial or temporal changes at an early stage.

To address these deficiencies, a seismic study employing a multistation, telemetered network of seismographs was initiated under Nuclear Regulatory Commission funding (Contract No. NRC-04-77-134). The proposed eight station network was coarse but considered adequate for an initial evaluation of the problem. With time, the network grew to the present total of 20 stations.

The datum for the proposed research was observational and consisted of five tasks and three objectives. The following chapters report, in turn, on the results obtained and the progress made on each of those project tasks and objectives.

PROJECT TASK 1. OPERATION OF A 20-STATION TELEMETERED SEISMIC NETWORK

Seismic monitoring under this contract consisted of the installation and operation of a conventional 20-station network (Figures 1-3) of shortperiod (1 Hertz) vertical (SPZ) and in two cases, pairs of horizontal (SPH) seismometers. Signals from those sensors were filtered to a 1-10 Hertz pass band, then telemetered to a central recording facility on the Virginia Tech campus. Recording was analog on single-component pen-and-ink visual drums and multi-channel 16 mm film and FM magnetic tape units. Chronology of that process was as follows:

- 1. 5/7 Station Giles County, Virginia, Subnetwork Aperture about 60 km; five SPZ stations (BLA, Blacksburg, VA; NAV, Narrows, VA; PUV, Pulaski, VA; PWV, Princeton, WV; HWV, Hinton, WV) operational by April 1978; SPH sensors (N-S and E-W) added at station PUV in February, 1980; SPZ radio-telemetry stations WMV (Walker Mountain, VA) and VWV (Virginia-West Virginia line) added in November, 1982, and July, 1982, respectively. Additionally, the WWSSN station, BLA, operational since October, 1962, is also located in Blacksburg, VA.
- 2. 5/9 Station Central Virginia Subnetwork Aperture approximately 150 km; five SPZ stations (CVL, Charlottesville, VA; GHV, Goochland, VA; FRV, Farmville, VA; CNV, Corbin, VA; PBV, Petersburg, VA) operational by December, 1978. Horizontals were added at FRV in May, 1980, and then removed in September, 1983, due to construction activity near the site. Four SPZ stations from the previously operational 17 station North Anna network (NA2, NA5, NA11 and NA12) were added in July, 1979.
- 3. 4 Station Bath County, Virginia, Subnetwork This SPZ network was installed by the Virginia Electric and Power Company (Vepco) to monitor pre-filling seismicity at their pumped-storage reservoir project in Bath County. At Vepco's request and with their support, the results from this subnetwork were routinely included in the analysis and reporting of this project beginning in July, 1979.
- 4. Calibration The calibration results for the network have been reported in Quarterly Reports Nos. 14 (#77-134-14, March 15, 1981) and 15 (#77-134-15, June 15, 1981) and in Bollinger and Wheeler (1982). Figures 4-6 show representative sets of these calibrations, begun in 1979 and repeated periodically throughout the contract period.
- 5. Noise Study The levels of microseismic background noise were reported by Sibol (1980; SEUSSN Bull. No. 5) who made 600 amplitude and period measurements at eight network stations. At network sites, the average levels were 5-10 nanometers at 2.3 Hertz. At the BLA WWSSN Observatory, the noise levels were 3-5 nanometers at 0.9-3.5 Hertz. With the initiation of digital recording, this study needs to be updated by application of Fourier analysis.

٠

Figure 1. The Virginia Tech Seismic Network. This network is comprised of the following subnetworks: the 7-station Giles County subnetwork in the western part of the state, the 4-station Bath County subnetwork (stations with "BV-" prefix) in north-central Virginia, the 4-station (North Anna ("NA-" prefixes), and the 5-station central Virginia subnetworks in the central portion of the state. All stations have short-period vertical seismometers, with the exception of BLA (a Worldwide Standard Seismograph Network station) and stations PUV and FRV (which also have short-period horizontal sensors). All stations are telemetered to a central recording facility in Blacksburg, Virginia.

Figure 2. Historical seismicity (A) in Virginia (after Reagor and others, 1980) for the time period 1774-1977. Modern seismicity (B)(after Bollinger and Mathema, 1983; Bollinger and Wheeler, 1982) for the time period 1978-1982. The 48 events shown in central Virginia include 14 selected pre-network instrumental hypocenters.

(A) مر) معرور ام Ant An And

Figure 3. Two different, short-period, vertical seismograms for the same microearthquake that occurred near Narrows, VA (January 28, 1978; Event #32. Magnitude (Md) = 1.6; minute marks every 60 mm on original seismograms. Both transducers located on the same pier at Blacksburg, VA. A) BLA WWSSN: magnification is 50,000 at 1 Hz and 4,500 at 10 Hz. B) BLA network visual: magnification is 28,000 at 1 Hz and 65,000 at 10 Hz. Note the increase in signal-to-noise ratio achieved by the increased magnification of the higher ground frequencies by the network station.

25-MAY-84 14 36 37 for the program CALPLT

The title is NAV - SP2 VR-60 (50mv Qut-10 Hz) 17 Apr 84

Input data from file NAV8404.V60

Input Data.

Calib voltage (P-P, MVOLPP) =	29	00000	(MVolts)
Calib coil resistance (ROHMS) =	688	00000	(Ohms)
Calib. coil motor constant (K)=	0	49550	(Nt/Amp)
Mass in seismometer (MASS)	0	98590	(Kg)
Output:			
Number of frequencies in sweep (N)=	14		
Calib. voltage (O-P; VOLOP)=	0.	01450	(Volts)
Calib. current (CALCUR)	0.000	002108	(Amps)
(NOTE: CALCUR = VOLOP / ROHMS		ms Law	()).

Fred (Hz)	Ampl, (P-P, mm)	Period (Sec)	Magn. (K)	Magnification
0.50	16.0000	2.000	7.45	0.745417E+04
0.75	25.7000	1.333	26.94	0. 26939BE+05
1.00	32.2000	1.000	60.01	0.600061E+05
1.25	31 3000	0.800	91.14	0.911389E+05
1.50	27.7000	0.667	116.15	0.116145E+06
2 00	19.6000	0.500	146 10	0.146102E+06
2 50	15 3000	0.400	178.20	0.178201E+06
3.00	12 2000	0.333	204 62	0. 204617E+06
4.00	7.9000	0.250	235. 55	0. 235552E+06
5.00	5. 9000	0.200	274.87	0.274873E+06
6.67	3.7000	0.150	306.76	0. 306756E+06
8.00	2. 5000	0.125	298.17	0. 298167E+06
10.00	1. 5000	0.100	279.53	0. 279531E+06
12.50	0.8000	0.080	232.94	0.232943E+06

 Period
 Magn.

 200
 7.5

 1.33
 26.9

 1.00
 60.0

 0.80
 91.1

 0.67
 116.1

 0.50
 146.1

 0.40
 178.2

 0.33
 204.6

 0.25
 235.6

 0.20
 274.9

 0.15
 306.8

 0.12
 299.2

 0.08
 232.9

Figure 5. Plot and data listing for recent (1984) calibration of station NAV at Narrows, VA.

20-APR-84 14 52:36 for the program CALPLY

Input data from file..... GHV8403 V60

Input Data:

	Calib.	voltage	(P-P; MVC	LPP).		66.000	OO (MVel	(8)
	Calib.	coil res	istance (ROHMS)		687.000	OO (Dhms)	£
	Calib	coil mot	or consta	int (K)		0.480	00 (Nt/A	(qa
	Mass in	n seismon	eter (MAS	S)		0.983	150 (Kg)	
Outp	ut;							
	Number	of frequ	encies in	sweep	(N)=	14		
	Calib.	voltage	(O-P) VOL	OF)		0.033	100 (Volt	5)
	Calib.	current	(CALCUR).			000048	OG (Amps)	1
	(NO)	TE: CALCU	R = VOLOF	/ ROH	MS	(Ohms	Law)).	

Freg. (Hz)	Ampl. (P-P, mm)	Period (Sec)	Magn. (K)	Magnification
0.50	13 6000	2.000	2.86	0.286276E+04
0.75	21.4000	1.333	10.14	0.101354E+05
1.00	32 2000	1.000	27.11	0.271120E+05
1.25	36.0000	0.800	47.36	0.473618E+05
1.50	33.7000	0.667	63.84	0.638437E+05
2 00	23.8000	0.500	80.16	0.801572E+05
2 50	18 1000	0.400	95.25	0.952498E+05
3.00	13 8000	0.333	104.57	0.104575E+06
4 00	9,1000	0.250	122.59	0. 122593E+06
5.00	6.9000	0.200	145.24	0.145243E+06
6.67	4 0000	0.150	149.84	0.149836E+06
8.00	3.0000	0.125	161.66	0.161662E+06
10.00	1.8000	0.100	151.56	0.151558E+06
12.50	1.0000	0.080	131.56	0. 131561E+06

 Period
 Hagn.

 2.00
 2.9

 1.33
 10.1

 1.00
 27.1

 0.80
 47.4

 0.67
 63.8

 0.50
 80.2

 0.40
 95.2

 0.33
 104.6

 0.25
 122.6

 0.15
 149.8

 0.12
 161.7

 0.10
 151.6

 0.06
 131.6

Figure 6. Plot and data listing for recent (1984) calibration of station GHV at Goochland, VA. 6. Network Detection and Location Capability Study - The theoretical detection and location capabilities of the Virginia Regional Seismic Network were estimated by Tarr (1980; SEUSSN Bulletin No. 5; Bollinger and Sibol, 1985) using the algorithm NETWORK. Figure 7 shows maps of contoured 90% detection threshold magnitudes for detection by five or more stations and of 90% confidence location ellipses for minimum magnitude earthquakes detected by five or more stations. Figure 8 depicts 90% confidence location ellipses, on a ½° latitude and longitude grid, for magnitude 2.0 and 3.0 shocks detected at five or more seismic stations. In these figures, it is assumed that a signal-to-noise ratio of 2.0 was necessary for a detection with a probability of 0.5 and that the noise, assumed to have a mean value of 20 nm for all stations, is the only factor limiting a station's operating magnification. Finally, both signal amplitudes and noise amplitudes are assumed to be lognormally distributed.

Detection appears to be complete down to a magnitude of 2.0 for all of Virginia except at the extreme western tip. Location is good (small error ellipses) for all but the periphery of the state at the 3.0 level magnitude. However, that magnitude level is well-located throughout the entire state when the other stations of the Southeastern U.S. Seismic Network are also considered (Tarr, 1980; SEUSSN Bulletin No. 5).

7. Determination of Earthquake Magnitude - A relationship between earthquake magnitude (mb) and the duration of earthquake vibrations as recorded by the VTSO network was first reported in December, 1980 (#77-134-13). That study analyzed 102 data points (mb-duration pairs) from earthquakes that occurred prior to 1981. Subsequently, in March, 1984 (#77-134-26), 83 new data points were added and the least-squares regression analysis repeated. The initial (1980) equation was:

 $MD = (-3.38 \pm 0.09) + (2.74 \pm 0.06) \log D \text{ for } n = 102,$

and the current (1984) equation is,

 $MD = (-3.42 \pm 0.19) \pm (2.83 \pm 0.11) \log D \text{ for } n = 185,$

where,

- MD = Duration magnitude for VTSO (Virginia Tech Seismological Observatory network
- + = Confidence intervals are 90%
- D = Duration (sec) from onset of P-wave until return to background noise level
- log = Logarithm to the base 10

Figure 7. Detection and location capability by any five stations (solid triangles) of the Virginia Tech Seismic Network. (A) Ninety percent probability threshold (mb) magnitudes for detection by five or more stations. Contour interval = 0.1 mb unit. (B) Ninety percent confidence location ellipses, on a ½° latitude and longitude grid, for events detected by five or more stations. Ellipses are not plotted if their semi-major axes are >100 km or if their 95% confidence interval on the focal depth is >100 km (after Tarr, 1980). Interpolate only between adjacent grid points with plotted ellipses; do not extrapolate to undefined grid points.

Figure 8. Ninety percent confidence location ellipses, on a ½ degree latitude and longitude grid, for magnitude (mb) = 2.0 (upper figure) and mb = 3.0 (lower figure) events detected by 5 or more Virginia Tech Seismic Network Stations (solid triangles). Ellipses not plotted if their semi-major axes are >100 km or if their 95% confidence interval on focal depth is >100 km (after Tarr, 1980). Interpolate only between adjacent grid points with plotted ellipses; do not extrapolate to undefined grid points.

8. Digital Recording - On April 1, 1985, the Virginia Tech Seismological Observatory network digitizing was declared officially on line. Downtime during the first months of operation was less than 5% and caused mainly by power line outages. The digital system was triggering on an average of 13 events/day, most of which are explosions associated with mining in West Virginia and Kentucky. Comparison of the trigger times with continuous analog recordings from stations NAV and GHV in western and central Virginia, respectively, indicate that approximately 70% of the identifiable signals at those stations triggered the system and were digitally recorded. Digitized signals, mostly teleseisms and clearly recorded explosions, were stored on tape for possible further analysis.

The digital system consists of 20 short period vertical component stations located in Virginia and West Virginia. One of these stations (PUV) also has two horizontal components. With a time channel, this brings the total number of channels currently being digitized to 23. The 20 stations are the same ones used formerly with the analog system. The analog output from each of these stations is either radio telemetered or transmitted by phone line to the central recording facility located in Blacksburg, Virginia. At the recording facility, analog signals are routed to a 48 channel multiplexer/analog-to-digital converter. The multiplexing, digitizing, storage of event files and analysis are all done on one of two PDP-11/34 processors which is dedicated to the digitizing and initial storage process. Event files are subsequently transferred to the other PDP 11/34 system via a direct parallel port for analysis and subsequent archival storage on magnetic tape. PROJECT TASK 2. MONITORING SEISMIC ACTIVITY AND CONDUCTING VELOCITY STUDIES

Network Monitoring As of 1 August 1985 in Terms of Operational Statistics

Station Listing by Subnetwork (Including Components and Locations)	Cumulative Years of Operation	Totals Down- Time
Giles County Subnetwork:		
VWV - SPZ - Potts Mountain, WV	3.13	13.5%
PWV - SPZ - Princeton, WV	7.46	2.1%
HWV - SPZ - H . on, WV	7.38	1.1%
NAV - SPZ - Na 'ows, VA	7.85	2.0%
BLA - SPZ - Bla sburg, VA	7.85	0.7%
PUV - SPZ - Pulaski, VA	7.49	1.3%
PUV - SPNS - Pulaski, VA	5.55	0.8%
PUV - SPEW - Pulaski, VA	5.55	0.8%
WMV - SPZ - Walker Mountain, VA	2.87	5.4%
NETWORK AVERAGE:	6.13	2.2%*
Central Virginia Subnetwork:		
CNV - SPZ - Corbin, VA	7.14	1.1%
CVL - SPZ - Charlottesville, VA	7.14	2.0%
GHV - SPZ - Goochland, VA	6.64	2.0%
FRV - SPZ - Farmville, VA	6.72	4.7%
PBV - SPZ - Petersburg, VA	6.81	2.7%
SUBNETWORK AVERAGE:	6.89	2.5%*
North Anna Subnetwork:		
NA2 - SPZ - Brokenburg, VA	6.83	5.2%
NA5 - SPZ - Buckner, VA	7.02	3.2%
NA11 - SPZ - Beaver Dam, VA	6.30	11.4%
NA12 - SPZ - Mineral, VA	6.95	12.3%
SUBNETWORK AVERAGE:	6.78	7.9%*
Bath County Subnetwork:		
BV1 - SPZ - Burnsville, VA	6.95	12.4%
BV2 - SPZ - Mountain Grove, VA	7.05	25.9%
BV3 - SPZ - Lightner, VA	6.95	25.0%
BV4 - SPZ - Dunsmore, WV	6.47	21.9%
SUBNETWORK AVERAGE:	0.80	21.3%*

*Subnetwork averages for the cumulative downtime percentages are weighted according to the years of operation per station.

NOTES: Giles County, Central Virginia, and North Anna Subnetwork maintenance by the VTSO staff.

Bath County Subnetwork maintenance by VEPCO.

Downtime for the network stations has been very low except at the North Anna subnetwork, especially NA11 and NA12, and the VWV station of the Giles County subnetwork. The North Anna stations are just wearing out. They were initially installed in 1976 and are now scheduled for replacement. Erratic local telephone lines are also a problem in this case. The VWV station is one of the two radio-telemetered stations (the other is WMV). VWV experienced a series of vandalism downtimes following its initial installation, but those apparently have been eliminated; downtime during the most recent quarter was 1.6%.

- 9. Velocity Studies Velocity studies were conducted for the Giles County locale (T. P. Moore), the central Virginia area (M. C. Chapman) and the region (D. A. Carts). These results (Table 1) were reported in NUREG/CR-1217 (Bollinger, Chapman and Moore) and in NUREG/CR-2253 (Bollinger and Carts). The efficacy of these models was tested by:
 - a. Locating quarry blasts (Figure 9; Bollinger and Wheeler, 1982; Figure 10; Bollinger and Sibol, 1985 and Sibol and Bollinger, 1982; NUREG/CR-3080)
 - b. Joint relocation techniques (Viret and others, 1984, 1985)
 - c. Wadati, X^2-T^2 and Pn time-term analyses (Chapman and Bollinger, 1984, 1985).

Our general conclusion from these velocity model tests is that the models are entirely adecuate for the station-spacing present and that our error estimates from well-constrained hypocentral solutions are realistic.

TABLE 1

LOCAL AND REGIONAL CRUSTAL VELOCITY MODELS FOR VIRGINIA

Giles County-Bath County Areas

	P-Velocity	S-Velocity	Vp/Vs	Depth	Crossover <u>P-Wave</u>	Distance S-Wave
	5.63	3.44	1.64	0.0	0	0
VPI1	6.05	3.52	1.72	5.7	60	106
	6.53	3.84	1.70	14.7	115	192
	8.18	4.79	1.71	50.7	260	409
		Central	<u>Virginia</u>	Area		
	6.09	3.53	1.73	0.0	0	0
VPI2	6.50	3.79	1.72	15.0	166	159
	8.18	4.73	1.73	36.0	290	285
		Southeaste	ern United	States		
	6.25	3.65	1.71	0.0	0	0
	8.11	4.59	1.77	40.0	222	237
VPI3	Station	Corrections:	Pn		Sn	
	Coas	stal Plain	+1.68	sec	+2.74 sec	
	P	iedmont	+1.40	sec	+2.28 sec	
	E.	lsewhere	0.00	sec	0.00 sec	
Ur	nits: Velocit:	ies in km/sec;	depths and	t crossov	ver distance	s in km

HYPOELLIPSE EPICENTER LOCATION ERRORS FOR GILES COUNTY, VIRGINIA, BLASTS

Blast ID	Date of Blast	Difference: Actual and Calculated Epicenter (km)	ERH* (km)
A	December 3, 1979	0.5	2.2
В	December 6, 1979	0.9	2.4
С	May 20, 1980	2.0	5.7

HYPOELLIPSE DETERMINATION OF FOCAL DEPTHS FOR GILES COUNTY, VIRGINIA, BLASTS

Blast ID	Date of Blast	Trial Focal Depth (<u>km</u>)	Solution Focal <u>Depth</u> (<u>km</u>)	ERZ* (<u>km</u>)
A	December 3, 1979	4.0	0.5	57.7
		10.0	0.2	99.0
В	December 6, 1979	0.0	0.0	99.0
		5.0	2.5	16.7
С	May 20, 1980	4.0	2.2	14.3

*ERZ = standard error of the solution focal depth (Lahr, 1979)

Figure 9. Actual locations of Blasts A, B and C shown by stars. Computer locations shown by solid circles with 68 percent confidence ellipses. Location of Narrows, VA, seismic station (NAV) shown by open triangle with center dot symbol.

Figure 10. Network accuracy in locating quarry blasts. Quarry locations shown by stars and by letters "a," "b," "g," Seismograph stations indicated by solid triangles and three- or four-character identification codes. Outset maps show the HYPOELLIPSE locations (solid dots for epicenters). Each location has an associated error ellipse, and each represents a separate location for a separate blast at the quarry site, as derived from network recordings of the quarry-blast vibrations. Inset on state map shows study area location and an "R" at the location of Richmond.

PROJECT TASK 3 AND OBJECTIVE 1. DETERMINATION OF EARTHQUAKE HYPOCENTERS AND FOCAL MECHANISMS AND DEVELOPMENT OF GEOLOGIC MODELS FOR EACH OF THE ACTIVE AREAS

For the contract period, August 1977 through July 1985, 90 earthquakes, ranging in magnitude from -0.8 to 4.2, were detected and located in Virginia and West Virginia (Figure 11). The hypocentral parameters for these shocks have been reported routinely in <u>Quarterly</u> <u>Reports (#77-134-1 through 32)</u> and in the semiannual <u>Southeastern United</u> <u>States Seismic network (SEUSSN) Bulletins</u> (see Appendices A and B herein). <u>Additionally, the availability of the entire SEUSSN catalog was announced</u> to the professional community in the <u>Bulletin of the Seismological Society</u> <u>of America</u>, (SEUSSN Contributors, 1985) and at a Geological Society of <u>America meeting (Bollinger and SEUSSN Contributors, 1985)</u>.

NUREG/CR-4288 presented focal mechanism analyses for 23 Virginia earthquakes (11 in the Giles County seismic zone and 12 in the central Virginia seismic zone; Figures 12-14; Tables 2-5) and for 37 earthquakes in the southeastern Tennessee seismic zone. These analyses were in the form of 17 single-event focal mechanisms (SEFM) and 12 composite focal mechanisms (CFM) and were based on 280 P-wave polarities and 254 (SV/P)z amplitude ratios.

The computer program, FOCMEC (Snoke and others, 1984), was used to determine families of focal mechanism solutions that are consistent, within pre-defined error allowances, with the input P-wave polarities and the (SV/P)z amplitude ratios. FOCMEC systematically searches the focal sphere for focal mechanisms consistent, within prescribed error limits, with the input data. In FOCMEC, a searching algorithm examines the focal sphere for acceptable focal mechanism solutions by relating the observed data to theoretical data associated with a rotating set of orthogonal B, A, and N axes, where B is the null axis, and A and N are the poles (normals) to the nodal planes. The density of focal sphere coverage is controlled by a preset increment of axes rotation. The 5° increment of focal sphere coverage used for all events herein results in more than 25,000 possible orthogonal nodal plane orientations being tested within the focal sphere.

Figure 11. Instrumental epicenter map for Virginia. Included on this figure are 54 pre-network instrumentally located events. See Appendix B for hypocenter ' listing.

Figure 12: Upper left: Network located and pre-network instrumentally located events in Giles County and vicinity are shown with horizontal error axes. Dark circles are study events and stations are represented by open triangles. Upper right: The events in cross section A-A' of upper left figure are shown with their vertical and horizontal error axes. The larger circles are study events. This cross-section is oriented perpendicular to a strike of N20°E. Lower left: Same map as upper left figure except that events are scaled to magnitude. Again, darkened circles are study events. Lower right: The events in cross section B-B' from lower left figure are shown. This cross section is perpendicular to a trend of N25°W.

Figure 13. Instrumentally located earthquakes in the central Virginia seismic zone (Bollinger and Mathena, 1983). Left-hand figure shows epicenters (circles) scaled according to magnitude. Irregular double line marks course of James River. Right-hand figure shows epicenters (solid dots) with associated error-ellipse axes. Seismograph-station locations indicated by solid triangles with three- or four-character identification codes. Inset state map depicts study area. R = Richmond. Upper pair of figures shows hypocen ters with error-ellipse axes.

The six SEFM preferred nodal planes for Giles County obtained by the layered velocity model are presented. The shaded areas are compressional quadrants and the white areas are dilatational quadrants.

The preferred nodal planes from the five Giles County CFM using the layered velocity model are shown. Quadrant shading is the same as in Figure 9. The HEAVY arrows correspond to the trend of the P axes for each CFM. See Table 3 for the earthquakes that are included in each CFM.

The preferred nodal planes for all central Virginia SEFM and CFM solutions are shown. Smaller mechanisms are SEFM events and CFM have HEAVY arrows showing their P axis trend. Shaded areas are compressional, and white areas are dilatational quadrants. Open circles are event locations. Note that two preferred solutions are shown for CFM F.

Figure 14. Focal mechanism solutions for Giles County and central Virginia. Plots lower hemisphere, equal area, compressional quadrants dark.

TABLE 2						
GILES	COUNTY,	VIRGINIA,	FOCAL	MECHANISM	SOLUTION	PARAMETERS

EVT	STRIKE	DIP	SLIP	P(TREND, PLUNGE)	T(TREND, PLUNGE)	B(TREND, PLUNGE)
63	N20°W S70°W	85°E 88°N	-178° -5°	\$25°W,5°	N65°W,2°	N45°E,85°
90	N20°W N70°E	90°E 55°S	145° 0°	N31°E,24°	N71°W,24°	S20°E,55°
94	S N82°E	30°W 86°S	-171° -60°	N21°E,42°	S33°E,34°	\$80°₩,30°
97	N20°E N70°W	82°E 84°N	-174° -8°	S65°W,10°	N25°W,1°	N70°E,80°
104	S26°W N57°W	64°NW 76°NE	164° 27°	N73°E,7°	S13°E,29°	N30°W,60°
110	S27°W S78°E	66°NW 60°S	-147° -28°	N67°E,40°	N26°W,3°	\$60°₩,50°
A	N20°E S69°E	86°E 75°S	165° 4°	N66°E,7°	N26°W,13°	S5°₩,75°
В	N20°W N70°E	90°E 45°S	135° 0°	N35°E,30°	N75°W,30°	S20°E,45°
С	N25°W N65°E	86°NE 81°SE	171° 4°	N20°E,3°	N70°W,9°	S50°E,80°
D	S29°W N59°W	60°NW 88°NE	177° 30°	N71°E,19°	S11°E,23°	N55°W,60°
E	S30°W S70°E	60°NW 73°S	-161° -31°	N67°E,34°	S17°E,9°	\$85°W,55°

TABLE 3 CENTRAL VIRGINIA FOCAL MECHANISM SOLUTION PARAMETERS

EVT	DIP	STRIKE	SLIP	P(TREND, PLUNG)	T (TREND, PLUNGE)	B(TREND, PLUNGE)
53	41°W 64°S	N19°W S76°E	139° 56°	\$34°W,13°	N32°W,57°	\$60°E,30°
57	82°NW 84°NE	S40°W N50°W	174° 8°	N85°E,1°	\$5°E,10°	N10°W,80°
64A	67°E 35°SW	N14°W S67°E	117° 42°	N56°E,18°	N66°W,58°	\$25°E,25°
64B	35°N 55°S	N82°W S72°E	81° 96°	\$14°W,10°	N41°E,79°	N75°W,5°
78	79°E 47°S	N14°W N86°E	136° 15°	N43°E,21°	N64°W,38°	S25°E,45°
82	61°W 83°N	S22°E S72°W	-8° -151°	S61°E,26°	N22°E,14°	\$85°W,60°
86	42°NE 59°S	N44°W N89°E	129° 60°	\$19°W,9°	N52°W,63°	\$75°E,25°
87	79°NE 74°SE	N33°W S53°W	17° 168°	S81°E,3°	S11°W,20°	N0°,70°
100	45°NE 86°SE	N27°W N66°E	-5° -135°	N60°W, 33°	S11°W,27°	N70°E,45°
111	59°NE 76°NW	N25°W S56°W	16° 148°	N72°W,11°	S11°W,33°	N35°E,55°
113	63°E 78°N	N3°E S87°W	14° 152°	N42°W,10°	S42°W,28°	N65°E,60°
F(1)	35°N 55°S	N82°W S72°E	81° 96°	\$14°%, 10°	N41°E,79°	N75°W,5°
F(2)	58°E 51°S	N9°W S69°E	132° 43°	N52°E,4°	N44°W,55°	S35°E,35°
G	48°E 52°S	N1°W S72°E	141° 49°	\$56°W,8°	N23°W,54°	\$40°E,35°
Н	65°NE 88°N	N24°W \$85°W	2° 155°	N67°W,16°	S17°W,19°	N60°E,65°
I	66°E	N4°W 574°W	26°	N55°W,0°	\$35°W,35°	N35°E,55°

TABLE 4 EASTERN TENNESSEE FOCAL MECHANISM SOLUTION PARAMETERS

EVT	STRIKE	DIP	SLIP P	(TREND, PLUNGE)	T (TREND, PLUNGE) B	(TREND, PLUNGE)
2	N 76E N 16W	78S 81E	9 168	N30E, 3	N60W, 15	N130E, 75
13	N 76W N173W	64N 76W	16 153	N123W, 7	N143E, 29	N20W, 60
14	N 80W N170W	86N 81W	9 176	N55E, 3	N145E, 9	N55W, 80
22	N 78E N172E	74S 79W	- 12 -163	N36E, 20	N56W, 3	N155W, 70
23	N 63E N157E	84SE 56SW	- 35 -173	N14E, 28	N115E, 19	N125W, 55
28	N 42W N138W	78NE 63NW	27 166	N88E, 10	№177₩, 28	N20W, 60
29	N 69E N161E	87SE 70SW	- 20 -176	N23E, 16	N117E, 11	N120W, 70
30	N 71W N 29E	85N 21E	- 70 -166	N143W, 46	N1W, 37	N105E, 20
31	N 83W N 27E	74N 40E	- 53 -154	N134W, 48	N20W, 20	N85E, 35
34	N 67W N 7E	63N 63W	31 149	N60E, 0	N150E, 40	N30W, 50
36	N 56W N 36E	71NE 83SE	- 7 -161	N99W, 18	N169E, 8	N55E, 70
1	N180E N 90E	84W 82S	8 176	N45₩, 1	N45E, 10	N140W, 80
2	N 95E N 5E	86S 87E	3 176	N50E, 1	N40W, 5	N150E, 85
3	N 74W N167W	85N 60W	30 174	N56E, 17	N154E, 24	N65W, 60
4	N176W N173W	57N 79W	13 147	N121W, 14	N140E, 31	N10W, 55
5	N107E N158W	62S 80W	- 11 -151	N68E, 27	N28W, 12	N40W, 60
6	N 93E N173W	61S 83W	- 8 -150	N54E, 26	N43W, 14	N160W, 60
7	N 79E N171E	76S 85W	- 5	N36E, 14	N56W, 6	N170W, 75

In FOCMEC, polarity data are analyzed first to determine if they are consistent with each pair of orthogonal nodal planes. If the number of polarity errors is within a pre-specified number of allowable errors, then the difference between theoretical amplitude ratios and the corresponding observed (SV/P)z amplitude ratios is compared to the preset error allowance. All ratios and ratio error allowances are represented as logarithms to insure linearity of the differences. If the number of acceptable ratio differences (within the preset error allowance) is less than a specified number of allowed ratio errors, a valid solution is declared and its parameters are output. The B, A, and N axes are then incremented for the next iteration. A companion program, FOCPLT, plots the output of FOCMEC in a variety of possible formats on the focal sphere: station distributions, superposed nodal planes from multiple solutions, single solution nodal planes with polarities and ratios, SH and SV nodal surfaces, etc.

PROJECT TASK 4 AND OBJECTIVE 2. CORRELATION OF SEISMIC RESULTS WITH LOCAL AND REGIONAL GEOLOGIC FEATURES AND DELINEATION OF THE SEISMICALLY ACTIVE AREAS IN VIRGINIA AND ENVIRONS -PRINCIPAL RESULTS

The principal results obtained for this project task are summarized in the following lists of conclusions:

I. Giles County, Virginia, Seismic Zone

A well-defined seismic zone has been detected in southwestern Virginia that has an orientation not related to the surrounding geologic structures. Rather, the orientation of the zone appears to be related to features below the Appalachian overthrust belt. A damaging earthquake that is important in evaluating seismic hazard in the southeastern United States occurred in the zone in 1897.

Thus, project results have provided the first, direct instrumental evidence of an active seismic zone in the Southeast that did not parallel the surficial tectonic fabric. Similar results obtained subsequently for southeastern Tennessee suggest that zone is representative of the host southern Appalachians.

We draw the following conclusions from our instrumental studies:

- A. The Giles County seismic zone is centered at Pearisburg, strikes northeast and dips nearly vertically. It is about 40 km long, 10 km wide, and from 5 to 25 km deep.
- B. The seismic zone is in the basement beneath the rocks detached by thrusting. The zone lies some 20° counterclockwise to the trend of the detached structures of the southern Appalachian region and more closely parallels the trend of the Appalachians in the northern part of the state.
- C. Although conclusive evidence is lacking, it is likely that (1) this seismic zone is the same one that produced the 1897, mb = 5.8, shock and that the seismic events felt in the locale during the last two decades suggest an apparent resumption of strain energy release after a seismic quiescence of four to five decades and (2) the northeasttrending seismic zone is most probably the result of reactivation of one or more normal faults formed initially in the Eocambrian.
- D. The focal mechanism study results for 11 earthquakes in the Giles County seismic zone show mainly strike-slip mechanisms on steeply dipping (73°±16°), NNE (right-lateral motion) and ESE (left-lateral motion) trending nodal planes. However, some (4/11) of the solutions show similar movement on nodal planes rotated 45° counterclockwise.

- E. In Giles County, a rather consistent stress regime is present throughout the area. The P axis trend as estimated from eight different sets of focal mechanism solutions has a mean and standard deviation of N46°E+24° and the plunge is 14°+20°. The mean and standard deviation for the T axis trend and plunge are S41°E+24° and 1°+20°, respectively. The Giles County seismic zone as defined originally by Bollinger and Wheeler (1983) is corroborated by these focal mechanism results. However, it is probable that some portions of the zone may be more complex structurally than originally defined.
- F. In Giles County, where the seismic activity is occurring beneath the Appalachian decollement, faulting and inferred stress orientations are much more uniform than in central Virginia, some 200 km away, where the seismicity is occurring near and above the decollement.

II. Central Virginia Seismic Zone

The central Virginia seismic zone is an area of persistent, lowlevel seisnicity in the Piedmont province of that state. Its northsouth dimension is about 120 km, and it extends some 150 km in an east-west direction from Richmond to Lynchburg. The results of instrumental monitoring there by the Virginia Regional Seismic Network during the past five years (34 network-determined hypocenters, 1978-1982; M < 4.0 but mostly smaller, not-felt shocks) were interpreted along with 96 pre-network (pre-1978) earthquakes, (for the most part, larger, felt events with noninstrumental locations). The spatial distribution exhibited by the combined set of 130 hypocenters is diffuse, both vertically and horizontally. Such a pattern favors multiple, rather than singular, seismogenic structures. Seventy-five percent of the focal depths are in the upper one-third of the crust, at depths of 11 km or less. These multiple, shallow sources are interpreted, on the basis of independent reflection seismic results, to be along and above a master detachment fault.

From our studies of the central Virginia seismic zone, we have developed the following initial conclusions:

- A. Approximately 5 years of seismic-network monitoring in central Virginia has corroborated the existence there of a seismic zone that is more active than adjacent areas. That is, both felt- and non-felt earthquakes have been detected instrumentally and have been located in the same area that had been previously identified as seismically active on the basis of historical, primarily noninstrumental data.
- B. There are elements of spatial stationarity and temporal persistence to the seismicity there, at least in terms of decades to centuries.

- C. The spatial pattern exhibited by the hypocenters is diffuse, both horizontally and vertically. That diffuseness has been demonstrated to be real; it is not due to data set incompleteness or to errors in the detection or calculation schemes.
- D. A tendency toward earthquake sequences and a possible temporal periodicity of some type in the occurrence of events in the zone has been observed. An explanation for these intriguing characteristics has not yet been formulated.
- E. The depth distribution of foci in the zone shows the majority to be in the upper third (11 km) of the crust.
- F. An interesting, but probably fortuitous, epicenter pattern is present in the network-located data set. An envelope to those epicenters would define an almost circular curve. It will be interesting to see if the location of future earthquake activity in the zone continues to support this geometry.
- G. There was uncertainty in the epicentral coordinates for the MMI VII, mb 5.0 shock of December 23, 1875. A special archival study has been conducted to establish as accurately as possible the location of this important earthquake (Oaks, Sherry and G. A. Bollinger, <u>Eqke</u>. <u>Notes</u>, accepted for publication).
- H. Focal mechanisms from central Virginia exhibit much more scatter in mechanism types and nodal plane orientations than those determined for Giles County. The P axes in central Virginia are generally northeast trending for shallow earthquakes (<8 km) and northwest trending for deeper ones (>8 km). The focal mechanisms exhibit a mixture of reverse and strike slip faulting on planes that uip 62° ± 16°. There is a tendency for strike-slip to dominate over dip slip as a mode of faulting for the deeper events in central Virginia, a result consistent with the increase in lithostatic pressure with depth interchanging the relative sizes of the three principal stresses.
- I. Despite the spatial proximity of the two seismic zones in Virginia the focal mechanism results are quite different. As previously mentioned, the uniformity of stress axes found in Giles County does not hold for the seismicity in central Virginia. In central Virginia, the trend of the generally sub-horizontal P axis appears to rotate, or perhaps be offset, from northeast to southeast as the events become deeper. The scarcity of data from larger earthquakes ($M \ge 4$) may result in neither of these generalizations being valid for the dominant tectonics of the zone. Clearly, the answer will require additional focal mechanisms from larger shocks.

III. Eastern Tennessee Seismic Zone

To aid our investigation of the neotectonic processes in Virginia, we have also determined 11 SEFM and 7 CFM from 37 events that occurred in the Southern Appalachians of eastern Tennessee between September 1981 and July 1983. Following are the basic conclusions from those investigations (Bollinger and others, 1985, NUREG/CR-4288).

- A. A major proportion of the seismic energy release in the study area has occurred in the basement, below the detached upper sedimentary layers.
- B. Fault motion for SEFM and CFM solutions is predominantly strike-slip along nearly vertical north-south (right-lateral) or east-west (left-lateral) nodal planes. The average P-axis trend is about N50°E, with a nearly horizontal plunge. This orientation is consistent with both the P-axis orientation determined for the nearby Giles County, Virginia region (N46°E from Munsey, 1984) 300 km to the northeast and the inferred trend of the principal compressive stress (ENE sigma-one) for the midcontinent region (Zoback and Zoback, 1980, State of Stress in the Conterminous U.S., J. Geophys. Res., 85, pp. 6113-6156).
- C. Limits placed by the focal mechanism results on the region in which the maximum compressive stress can exist, based on the assumption that it may lie anywhere in the quadrant containing the P-axis, were about N38°E to N63°E, with plunges ranging from about 12° to -30°. The average P-axis orientation for SEFM and CFM solutions lies near the center of these regions of maximum compressive stress. Thus the location of the average P-axis (which may be biased by concentrations in fault plane orientations) suggests that fractures in the region are rather uniformly distributed.
- D. One sub-region of the study area is an exception to the preceding general orientation of nodal planes and/or P-axes. The nodal planes for some events in the southernmost portion of the study area are oriented more clockwise than the regional average. These focal mechanisms are, nevertheless, still generally consistent with the inferred regional stress regime.

IV. The Host Region - The Southeastern U.S.

A. Vertical Distribution of Earthquake Foci

Seven years (1977-84) of seismic network monitoring in the southeastern U. S. has resulted in a catalog of 255 earthquakes ($0 \le M \le 4.2$) with depth error estimates (ERZ) ≤ 5 km. Focal depths from the Valley & Ridge and Blue Ridge provinces (mean depth 12 km) were combined for analysis as were those for the Piedmont and Coastal

Plain provinces (mean depth 8 km). The mean focal depths between these two regions were shown to be statistically different. The 90% depths of earthquakes within the Valley & Ridge-Blue Ridge (20 km) are also significantly deeper than those of earthquakes occurring in the Piedmont and Coastal Plain provinces (13 km; Figure 15).

First order models of crustal rheology using a range of possible strain-rates and rock types for the middle and lower crust can be reconciled with the depth data if, e.g., ductile strain-rates within the Valley & Ridge-Blue Ridge are on the order of 100 times larger than those within the Piedmont and Coastal Plain, whereas a similar strain-rate for the two regions could imply that the crust of the Valley & Ridge-Blue Ridge contains a higher percentage of quartz-poor rocks at middle to lower crustal depths.

The actual situation is virtually certain to be more complex than that just considered. For example, large differences in crustal thickness occur within the southeastern U. S., with those thicknesses decreasing from more than 50 km beneath portions of the Valley & Ridge-Blue Ridge to less than 35 km beneath the Piedmont. Conceivably, this could affect the rheological behavior of the two regions. Also, the thin-skinned structure of the southern Appalachians may play a fundamental role by providing zones of variable strength within the upper crust. The maximum depth of earthquakes in the Piedmont province correlates approximately with the depth of the southern Appalachian decollement. That correlation suggests possible differences in strain-rate due to differences in the mechanical integrity and coupling between the overlying allochthonous rocks and the underlying autochthonous basement.

B. Horizontal Distribution of Earthquake Foci

The distribution of seismicity in the Southeastern United States is not uniform. Neither is it random: seismicity falls mostly into a few patches and belts that have larger and more frequent earthquakes than do surrounding areas. A tenfold increase in the number of seismographs in the Southeast accompanied the advent of network monitoring, with consequent improvements in capability to detect or locate small earthquakes. The results from such monitoring show that, at least on a time scale of decades, the broad seismicity pattern in the Southeast is spatially stationary to a first approximation. In that region, there are three areas for which epicentral locations and hypocentral depths for a sufficient number of earthquakes are known accurately enough to estimate whether the seismicity occurs in detached rocks, in underlying structural basement, or in both.

As discussed previously, in southern Virginia and eastern Tennessee, both of which are located within the Valley and Ridge province, the seismicity occurs primarily below the basal detachment, within cratonic basement at depths of 5 to 25 km, under eastnortheasterly compression, and in subvertical zones that strike generally northwest to northeast. The most probable source structures are compressionally reactivated, Iapetan normal faults that formed in

Figure 15. e 15. Left: Earthquake epicenters in the southeastern U.S. (SEUS: 0.0 < magnitude < 4.2 and ERZ < 5.0 km). Major geologic provinces are also indicated: Valley & Ridge-Blue Ridge (VRBR), Piedmont (PI) and Coastal Plain (CP). Right: Histograms showing focal depth distributions for the various geologic provinces, as well as that for the entire region. Shown over each histogram are the number of earthquakes (N) and a box plot of the distribution (Ott, L., 1984, AN INTRODUCTION TO STATISTICAL METHODS AND DATA ANALYSIS, 2nd Ed., Duxbury Press, Boston, MA, 775 p.

12

the North American craton when the Iapetus Ocean opened in late Precambrian or early Paleozoic time. By analogy with modern, passive continental margins, other such faults should occur elsewhere throughout the craton under and next to the western Appalachians.

As also noted previously, in the Piedmont province of central Virginia, the seismicity defines a diffuse cluster extending from near surface to a depth of 10-15 km. The deeper earthquake hypocenters coincide spatially with a sole detachment that has been interpreted from seismic-reflection profiling to be the southeastward extension of the detachment that underlies the Valley and Ridge province. Only a small percentage (less than 5%) of focal depths have been reliably located below the detachment or a hypothesized root zone.

In the Coastal Plain province of South Carolina near Charleston, seismicity defines several clusters with hypocentral depths from nearsurface to 18 km. The nature of the source structure remains unknown, and hypotheses abound: (1) A deep detachment source for the Charleston area, but that remains controversial; (2) A northwesttrending seismogenic fault zone across South Carolina; (3) Alternative interpretations of seismicity involve steeply dipping inferred single or intersecting sets of faults, mostly at or above the depth of the suggested detachment.

If suspect or tectonostratigraphic terranes exist in the Appalachians, then geologic and mechanical differences between such terranes may provide a foundation for interpreting the spatial distribution of seismicity. For example, a published map of suggested terranes is broadly consistent with spatial characteristics of southeastern seismicity and with structural models of seismicity in central and southwestern Virginia and in southeastern South Carolina. Refinement and revision of the preliminary terrane map of Williams and Hatcher (Suspect Terranes and Accretionary History of the Appalachian Orogen, <u>Geology</u>, 10, pp. 530-536, 1982) will improve the definition of boundaries, compositions, structures, and histories of the various terranes.

The suggested association between this icity and suspect terranes already finds practical application of the seismic hazard. For example, the seismicity of Giles Country of areas to the southwest, of central Virginia, and of the vicinity of Charleston, are separated from each other by inferred terrane boundaries. That observation supports Algermissen et al. (U.S.G.S. Open-File Report 82-1033, 1982) in placing these three locales in different source zones with different hazards.

PROJECT TASK 5. PUBLICATION OF A SEISMICITY BULLETIN FOR THE SOUTHEASTERN UNITED STATES

This publication series began with <u>Seismicity of the Southeastern</u> <u>United States</u>, <u>July 1</u>, <u>1977-December 31</u>, <u>1977</u>, <u>Bulletin No. 1</u>, dated April, <u>1978</u>. Listed were the 12 contributors:

Carolina Power and Light Company E. I. DuPont de Nemours and Company, Inc. (Savannah River Laboratory) University of Florida Georgia Institute of Technology University of North Carolina University of South Carolina Union Carbide Corporation United States Geological Survey Virginia Division of Mineral Resources Virginia Polytechnic Institute and State University (Virginia Tech Seismological Observatory) Washington and Lee University West Virginia University

and four sponsors:

Department of Energy National Science Foundation Nuclear Regulatory Commission United States Geological Survey

Results from 53 seismograph stations on 55 earthquakes were reported to a mailing list of approximately 100 individuals and institutions.

At the end of the contract period, <u>Bulletin No. 15</u> for the July 1, 1984-December 31, 1984, time frame had been compiled and distributed (June, 1985). Listed were 14 contributors:

Baptist College at Charleston Carolina Power and Light Company University of Florida Geological Survey of Alabama Georgia Institute of Technology Georgia Southwestern College Memphis State University (Tennessee Earthquake Information Center) University of South Carolina Tennessee Valley Authority United States Geological Survey Virginia Division of Mineral Resources Virginia Polytechnic Institute and State University (Virginia Tech Seismological Observatory) Washington and Lee University West Virginia University

and six sponsors:

Georgia Power Company National Science Foundation Nuclear Regulatory Commission Tennessee Valley Authority United States Geological Survey Virginia Electric and Power Company

Results from 136 seismograph stations and 49 earthquakes were reported to a mailing list of 204.

Availability of the catalog results was announced formally in the <u>Bulletin</u> of the <u>Seismological</u> <u>Society</u> of <u>America</u>, (SEUSSN Contributors, 1985).

PROJECT OBJECTIVE 3. EVALUATION OF THE SEISMIC HAZARD IN THE STUDY AREA

Contributions toward this objective were made in both written and oral format and are described in the following discussions:

<u>Size</u> Estimates and Hypothetical Intensity Maps for the Giles County, Virginia, Seismic Zone for Emergency Planning Applications

In Bollinger (1981), a scheme was developed to estimate fault plane (zone) area that utilized the 65% confidence ellipses on the estimates of the hypocenters in that zone. The approach was to keep the hypocenters inside their error ellipses but to move them toward the centroid of the zone to obtain a minimum estimate of fault area and to move them away from the centroid for a maximum area estimate. In both cases, the areas were determined by connecting the outernost hypocenter plots by straight lines and measuring the area enclosed. The areas obtained for the Giles County zone by this procedure were 80 sq km and 800 sq km. Published magnitude-fault plane area relationships yield estimates of Ms = 6 or 7 for these areas. It was noted that the 1897 shock on the zone was at an Ms = 5.8 level and this was taken as general support for the overall approach.

A hypothetical intensity map for the Giles County seismic zone was also presented in Bollinger, 1981. A study of the relationships between the trend of meizoseismal zones and the strike of surface faulting associated with western U.S. earthquakes showed the data base to favor an increasing tendency, with increasing earthquake magnitude, for there to be a parallelism between causal faults and the dominant trend of the <u>innermost</u> isoseismals. With a strongly developed tectonic fabric, e.g., as in the San Andreas fault system in California or the Appalachian mountains in the eastern U.S., the trend of the <u>outermost</u> (lowest level) isoseismals can be expected to be elongated in a direction subparallel with that fabric. Those geometric constraints were applied to magnitude-intensity and intensity attenuation with distance considerations to develop the subject map. It was noted that this was not a seismic risk study for engineering purposes.

End of Seismic Quiescence in the Bath County and North Anna Locales in Virginia

A Special Report (#77-134-12A) was issued on October 15, 1980, that dealt with the above topic. On August 21, 1980, a microearthquake sequence (magnitudes less than 2) of at least eight events occurred 30 km WSW of the Bath County, Virginia, dam site. That sequence was followed by an additional microearthquake on October 16, 1980. At North Anna, between August 4, 1980, and October 11, 1980, three microearthquakes occurred some 3-6 km NE of the power plant site.

The Special Re ort reviewed the past and current monitoring results for both sites, presented seismograms and epicenter maps for the recent microshocks and discussed the impact of this apparent resumption of microseismicity. It was concluded that, while the microearthquakes being considered did constitute an initiation of seismicity for the current monitoring program, they were not particularly anomalous when viewed from the perspective of a longer time frame. That is, sporadic periods of increased microearthquake activity are expectable on the basis of previous reconnaissance surveys in the respective areas (Bollinger and Gilbert, <u>Bull. Seism.</u> Soc. <u>Am.</u>, 1974, pp. 1715-1720 and Bollinger, <u>Eqke</u>. Notes, 1975, pp. 3-13).

The ability of network monitoring to detect such seismicity changes serves to focus attention on the subject area at an early stage. In this instance, subsequent monitoring confirmed the ambientlevel nature of the observed microseismicity by the absence of its continuation or increase.

Preliminary Results of Combined Seismic Monitoring and Reflection Seismic Surveys in the Central Virginia Seismic Zone

At the 54th Annual Meeting of the Eastern Section, Seismological Society of America, September 27-29, 1982, in Warrenton, Virginia, Dr. Lynn Glover, III presented the above subject results. His presentation was as the featured banquet speaker and he discussed the initial data that showed the seismicity in the zone to be at and above the Appalachian decollement. That very important result has been supported by subsequent monitoring in the area. Glover also speculated on the seismogenic nature of the decollement itself as well as its associated ramp faulting. Focal mechanisms determined later did not support that speculation. As mentioned elsewhere herein, the dip of focal mechanism nodal planes are much steeper than those seen in the Vibroseis results (supported mostly by NRC-04-75-237 and NSF-EAR8009549).

Increased Seismic Activity in Southeastern Tennessee

The above increase i activity was presented in writing (November 29. 1984) as well as orally (early December) by Drs. G. A. Bollinger and A. C. Johnston (Tennessee Earthquake Information Center) to the NRC staff. For the preceding 21 years, the southeastern Tennessee area had been the most seismically active in the region, both in terms of numbers and sizes of earthquakes. The activity was reported because it represented a change. That is, for the three year period prior to the first half of 1982, the southeastern Tennessee area was much less active than currently and it was not the most active area in the region. This was true for both larger and smaller magnitude events, so the increase was not due to a changing detection threshold as more seismic stations have been added. The change was not interpreted as a cause for concern at that time. The interpretation was that we were probably observing only expectable temporal and spatial variations in the general regional pattern of strain energy release. However, it was felt appropriate to bring the increase to the NRC's attention independent of normal progress reports and to recommend that (1) The Virginia Tech and Memphis State researchers continue to monitor the area closely and (2) Accelerographs at all federal engineered projects and veteran hospitals be checked for proper operation and calibration as promptly as reasonable.

Subsequent monitoring has shown the area to continue to be the most active in the region, but the overall level there, both in numbers and magnitudes, has decreased.

DISCUSSION OF PRINCIPAL RESULTS

The results to date from this project constitute the first detailed instrumental investigations of the two seismic zones in Virginia. Much light has been shed on the seismotectonics of the state. The knowledge on that topic has been advanced to the level where serious constraints now exist for the geologic models of the seismicity.

The two seismic zones--Giles County and central Virginia--are separated horizontally by only about 200 km. They are, however, very different seismologically. The Giles County zone appears to be composed of a small number, probably three or four at the most, of discreet, tabular fault structures, while the central Virginia zone exhibits no such obvious lineations. Rather, the hypocenters in that latter area are spread over a volume whose map view is near circular.

The vertical disparity between the seismic energy release in the zones is equally pronounced: It is sub-decollement (5-25 km) in Giles County and supra-decollement (<13 km) in central Virginia. The mean depths and 90% depths are 12 and 18 km, respectively, in the Giles County and 8 and 14 km, respectively, in central Virginia. The mean depths (12 km in Giles County and 8 km in central Virginia) are statistically different (P-value = 0.01).

The focal mechanism solutions discussed in the preceding chapter also exhibit the pervasive differences that exist between the two Virginia seismic zones. In Giles County there is a predominately strike-slip faulting response to a northeasterly, sub-horizontal raximum compressive stress (P-axes). A very similar stress-faulting combination was found some 400 km southwesterly along strike in southeastern Tennessee. Central Virginia focal mechanisms, on the other hand, display both dip-slip and strike-slip modes of faulting and both northeasterly and northwesterly oriented P-axes. Thus, there is uniformity in the stress and faulting estimates for Giles County (and eastern Tennessee) seismicity and variability in those same estimates for central Virginia.

Reflection seismology studies have been conducted in the two Virginia seismic zones. Gresko and others (1985) have interpreted a series of down-to-the-east normal faults that appear to offset basement reflectors (Precambrian) at 5-10 km depth while overlying Upper Cambrian and Ordovician sequences appear to be undisturbed by the faults. The lack of faulting in the younger strata is taken as evidence that growth along the faults ended during the Cambrian. Thus, these faults could be those Iapetan features postulated by Bollinger and Wheeler (1982, 1983). It is important to note here that the northeasterly-striking nodal planes of the Giles County focal mechanism solutions dip steeply to both the east and west. In particular, however, CFM A (Figure 14), from the principal portion of the zone, dips easterly in accord with the Vibroseis results. Of primary importance here is the fact that both focal mechanism and reflection seismology data sets indicate steeply dipping fault planes and thus are in general agreement.

Reflection seismology in the central Virginia seismic zone (Glover and others, <u>GSA Abstr. w/Prog.</u>, 1982, page 467) has been interpreted as a master detachment fault with a complex series of associated listric ramp faults. All of those faults have dips less than 45°, while the dips of the focal mechanism nodal planes are generally greater than 45°. Thus, there is a lack of agreement between the two forms of geophysical data in the sense that the Vibroseis results are apparently not imaging the seismogenic features. Munsey and Bollinger (1985, also Bollinger and others, 1985, NUREG/CR-4288, page 46) suggest that the Mesozoic dikes present in the epicentral area may be acting as seismogenic structures.

The preceding discussions document that much progress has indeed been made in understanding Virginia seismicity. Specifically, we have defined its present geographical location as well as some of its chief geometrical and mechanical characteristics. However, much remains to be done. The following lists some of the more important remaining questions:

- Why are the neotectonics of Giles County and central Virginia so very different? In particular, why is the central Virginia zone located where it is; why does it exist at all? We at least have a beginning geologic model (reactivated Iapetan normal faults) for Giles County.
- 2. The Giles County seismic zone (40 km long, NE trend) is not an isolated seismogenic feature. Network monitoring has defined activity some 80 km to its north, west and south. The relation(s), if any, of this outlying seismicity to the main zone is unknown at this stage. Also, because such shocks are outside of the network, they are less-well located and much less apt to develop reliable focal mechanisms.
- 3. Our results to date are based primarily on small, not-felt earthquakes, although in central Virginia we have instrumental data up to Mb = 4.0. An important question is whether or not the spatial locations and faulting mechanisms inferred from the small earthquakes' data sets are representative of the larger historical shocks and/or the full seismic potential of the zones.

In Giles County, the consistency exhibited by the small earthquakes' data sets implies that the strain energy release is occurring on a few, well-defined structures in response to a uniform stress field. The observations point to the absence of small scale stress concentrators in the area, which might be expected to produce more scattered orientations of the focal mechanism P-axes. Therefore, for Giles County, we may infer that the larger shocks are likely to occur on the same or similarly oriented structures as do the microearthquakes. In central Virginia, the existence of small scale stress inhomogeneity is evident in the variability of the focal mechanisms obtained for that zone. Whether that variability is due to multiple smaller and/or larger structures is unclear at this stage. Thus, it is possible that a group of larger earthquakes (because of their greater source volumes) would exhibit more uniform focal mechanism solutions, representative of the large-scale (regional) stress regime.

4. The temporal aspects of Virginia's seismicity have not yet been addressed. In addition to frequency-recurrence relationships, there is also the question of spatial stationarity. For example, northern Virginia was seismically active prior to 1925: 17 shocks, 1856-1924; one shock in 1974, nothing subsequently. REFERENCES

(see Appendix A)

FIGURE CREDITS

Numbers	Source
1, 2, 7, 8, 10, 13	<u>Geol. Soc. Am. Bull., 96</u> , p. 49-57, Jan., 1985
3, 4, 9	<u>U.S. Geol. Survey Open-File Rept</u> 82-585, 136 p., 1982
12, 14	NUREG/CR-4288, 83 p., 1985
15	<u>Geophys. Res. Letters, 12</u> p. 785-788, Nov., 1985
5, 6, 11	This Study

APPENDIX

STUDIES COMPLETED AND PUBLISHED UNDER THIS CONTRACT

APPENDIX A1 - PRINCIPAL PUBLICATIONS IN REFEREED JOURNALS

- 1985 Bollinger, G. A. and M. S. Sibol, (1985), Seismicity, seismic reflection studies, gravity and geology of the central Virginia seismic zone: Part I. Seismicity, <u>Geol. Soc. Am. Bull., 96</u>, p. 49-57.
 - Bollinger, G. A., M. C. Chapman, M. S. Sibol and J. K. Costain, (1985), An analysis of earthquake focal depths in the southeastern United States, <u>Geophys. Res. Letters</u>, <u>12</u>, p. 785-788.
 - Bollinger, G. A., A. G. Teague, J. W. Munsey and A. C. Johnston, (1985), Focal mechanism analyses for Virginia and eastern Tennessee earthquakes (1978-1984), <u>NUREG/CR-4288</u>, U.S. Nuclear Reg. Comm., Washington, DC, 83 p.
 - Munsey, Jeffrey W. and G. A. Bollinger, (1985), Focal mechanism analyses for Virginia earthquakes, <u>Bull. Seism. Soc. Am.</u>, <u>75</u>, in press.
- 1984 Wheeler, R. L. and G. A. Bollinger, (1984), Seismicity and suspect terranes in the southeastern United States, <u>Geology</u>, <u>12</u>, p. 323-326.
 - Viret, M., G. A. Bollinger, J. A. Snoke and J. W. Dewey, (1984), Joint hypocenter relocation studies with sparse data sets--A case history: Virginia earthquakes, <u>Bull. Seism. Soc. Am., 74</u>, p. 2297-2312.
- 1983 Bollinger, G. A. and Russell L. Wheeler, (1983), The Giles County, Virginia, seismic zone, Science, 219, p. 1063-1065.
- 1982 Bollinger, G. A. and Russell L. Wheeler, (1982), The Giles County, Virginia, seismogenic zone - Seismological results and geological interpretations, U.S. Geol. Survey Open-File Rept. 82-585, 136 p.
 - Seeber, L. J. G. Armbruster and G. A. Bollinger, (1982), Large-scale patterns of seismicity before and after the 1886 South Carolina earthquake, Geology, 10, p. 382-386.
- 1981 Bollinger, G. A., (1981), The Giles County, Virginia, seismic zone -Configuration and hazard assessment, <u>Proc.</u>, <u>Eqkes.</u> and <u>Eqke.</u> <u>Eng.</u> -<u>The Eastern U.S.</u>, <u>1</u>, Knoxville, TN, p. 277-308.
 - Carts, D. A. and G. A. Bollinger, (1981), A regional crustal velocity model for the southeastern United States, <u>Bull</u>. <u>Seism</u>. <u>Soc</u>. <u>Am</u>., <u>71</u>, p. 1829-1847.
 - Sibol, M. S. and G. A. Bollinger, (1981), A note on recent seismicity in the Scottsville, Virginia, area, Eqke. Notes, 52, p. 11-22.
- 1980 Bollinger, G. A., M. C. Chapman and T. P. Moore, (1980), Central Virginia regional seismic network: Crustal velocity structure in central and southwestern Virginia, NUREG/CR-1217, (R6, RA), U.S. NRC, Div. of Reactor Safety Res., Contract No. NRC-04-77-134, 187 p.

APPENDIX A2 - OTHER PUBLICATIONS

- 1985 SEUSSN Contributors, (1985), Availability of a six-year (1977-1983) earthquake catalog for the southeastern United States derived from network monitoring, Bull. Seism. Soc. Am., 75, p. 629-633.
 - Bollinger, G. A., M. C. Chapman, J. W. Munsey, A. G. Teague and A. C. Johnston, (1985), Location and character of neotectonic basement faulting in the southern Appalachians, <u>Appalachian Basin Industrial</u> Association Meeting, April 11-12, 1985, vol. 8, p. 215-230.
 - Sibol, M. S., G. A. Bollinger and E. C. Mathena (ed.), (1985), <u>Seismicity of the Southeastern United States</u>, July 1, 1984-December <u>31</u>, 1984, Bull. 15, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, June, 78 p.
 - Sibol, M. S. and G. A. Bollinger (ed.), (1985), Hypocenter listing from southeastern U.S. seismic network bulletins No. 1-14 (July, 1977-July, 1984), Southeastern U.S. Seismic Network Bulletin 14A, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, April, 46 p.
- 1984 Bollinger, G. A. and M. S. Sibol, (1984), Southeastern U.S. earthquakes, 1981 in Stover, C. W. (ed), <u>United States Earthquakes</u> 1981, U.S.G.S. Sp. Pub., p 112-113.
 - Sibol, M. S. and G. A. Bollinger (ed.), (1984), Hypocenter listing from southeastern U.S. seismic network bulletins No. 1-12 (July, 1977-July, 1983), <u>Southeastern U.S. Seismic Network Bulletin 12A</u>, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, April, 44 p.
 - Bollinger, G. A., M. S. Sibol and Ellen Mathena (ed.), (1984), <u>Seismicity of the Southeastern United States</u>, July 1, 1983-December <u>31</u>, 1983, <u>Bull</u>. 13, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, June, 98 p.
 - Bollinger, G. A., M. S. Sibol and Ellen Mathena (ed.), (1984), <u>Seismicity</u> of the <u>Southeastern United</u> <u>States</u>, <u>January</u> 1, <u>1984-June</u> <u>30</u>, <u>1984</u>, <u>Bull</u>. <u>14</u>, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, December, 53 p.
- 1983 Bollinger, G. A. and M. S. Sibol, (1983), Southeastern U.S. earthquakes - 1981 and 1982, Eqke. Notes, 54, p. 24-29.
 - Bollinger, G. A. and M. S. Sibol (ed.), (1983), Listing of hypocenters from southeastern U.S. seismic network bulletins No. 1-10 (July 1, 1977-June 30, 1982), <u>Southeastern U.S. Seismic Network Bulletin</u> <u>10A</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, April, 36 p.
 - Bollinger, G. A. and Ellen Mathena (ed.), (1983), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>January 1</u>, <u>1983-June 30</u>, <u>1983</u>, <u>Bull</u>. <u>12</u>, V.P.I. & S.U., Dept. of Geol. Sciences, Blacksburg, VA, December, 77 p.

- Bollinger, G. A. and Ellen Mathena (ed.), (1983), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1982-December 31</u>, <u>1982</u>, <u>Bull</u>. <u>11</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, May, 95 p.
- Sibol, M. S. and G. A. Bollinger, (1983), Network locational testing and velocity variations in central Virginia, <u>NUREG/CR-3080</u>, (RA), U.S. NRC, Div. of Reactor Safety Res., Contract No. NRC-04-77-134, 70 p. (Note: This publication is a transcription of the M.S. Thesis of the senior author.)
- 1982 Bollinger, G. A. and Ellen Mathena (ed.), (1982), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1981-December 31</u>, <u>1981</u>, <u>Bull</u>. <u>9</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, May, 47 p.
 - Bollinger, G. A. and M. S. Sibol, (1982), Southeastern United States earthquakes, 1980, Eqke. Notes, 53, p. 50-52.
 - Bollinger, G. A. and M. S. Sibol, (1982), Southeastern United States earthquakes, 1980, in Stover, C. W. and C. A. von Hake (ed.), <u>United States Earthquakes</u>, 1980, U.S. Dept. of Interior and U.S. Dept. of Commerce, p. 148-149.
 - Bollinger, G. A. and Ellen Mathena (ed.), (1982), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>January 1</u>, <u>1982-June 30</u>, <u>1982</u>, <u>Bull</u>. <u>10</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, December, 62 p.
- 1981 Bollinger, G. A. and Ellen Mathena (ed.), (1981), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1980-December 31</u>, <u>1980</u>, <u>Bull</u>. <u>7</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, May, 40 p.
 - Bollinger, G. A. and Ellen Mathena (ed.), (1981), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>January 1</u>, <u>1981-June</u> <u>30</u>, <u>1981</u>, <u>Bull</u>. <u>8</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, December, 90 p.
- 1980 Bollinger, G. A. and Ellen Mathena (ed.), (1980), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1979-December 31</u>, <u>1979</u>, <u>Bull</u>. <u>5</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, May, 51 p.
 - Bollinger, G. A. and Ellen Mathena (ed.), (1980), <u>Seismicity of the</u> <u>Southeastern United States, January 1, 1980-June 30, 1980, Bull. 6,</u> V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, November, 89 p.
- Bollinger, G. A. and Ellen Mathena (ed.), (1979), <u>Seismicity of the Southeastern United States</u>, January 1, <u>1979-June 30</u>, <u>1979</u>, <u>Bull. 4</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, November, 80 p.

45

- Bollinger, G. A. and Ellen Mathena (ed.), (1979), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1978-December 31</u>, <u>1978</u>, <u>Bull</u>. <u>3</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, May, 69 p.
- 1978 Bollinger, G. A. and C. A. Murphy (ed.), (1978), <u>Seismicity of the</u> <u>Southeastern United States</u>, <u>July 1</u>, <u>1977-December 31</u>, <u>1977</u>, <u>Bull</u>. <u>1</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, April, 56 p.
 - Bollinger, G. A. and Ellen Mathena (ed.), (1978), <u>Seismicity of the</u> <u>Southeastern United States, January 1, 1978-June</u> <u>30, 1978, Bull. 2</u>, V.P.I. & S.U., Dept. of Geol. Sciences and Extn. Div., Blacksburg, VA, November, 78 p.

APPENDIX A3 - PUBLISHED ABSTRACTS

- 1985 Bollinger, G. A. and SEUSSN Contributors, (1985), Availability of a 6-year (1977-1983) earthquake catalog for the southeastern United States derived from network monitoring, <u>GSA Abstr. with Prog.</u>, <u>17</u>, p. 81-82.
 - Bollinger, G. A., M. S. Sibol and J. K. Costain, (1985), An analysis of earthquake focal depths in the southeastern United States, <u>Eqke</u>. <u>Notes</u>, <u>55</u>, p. 25.
 - Bollinger, G. A., J. W. Munsey, A. G. Teague and A. C. Johnston, (1985), Earthquake focal mechanisms for the southern Appalachians, <u>GSA</u> <u>Abstr. with Frog., 17</u>, p. 82.
 - Viret, Marc, G. A. Bollinger and M. C. Chapman, (1985), Three parameter joint inversion tests of focal depth determinations, <u>Eqke</u>. <u>Notes</u>, <u>56</u>, in press.
 - Costain, J. K. and G. A. Bollinger, (1985), A hydrologic model for intraplate seismicity in the southeastern United States, Eqke. <u>Notes</u>, <u>56</u>, in press; also in <u>GSA Abstr. with</u> <u>Prog.</u>, <u>17</u>, no. 7, p. <u>554</u>.
 - Chapman, M. C. and G. A. Bollinger, (1985), Crustal thickness variation in Virginia derived from earthquake traveltimes, <u>Eqke</u>. <u>Notes</u>, <u>56</u>, in press.
 - Gresko, M. J., J. W. Munsey and G. A. Bollinger, (1985), Structure of the Giles County, Virginia, seismogenic zone interpreted from seismic reflection data, EOS, Trans. Am. Geophys. Union, 66, in press.
- 1984 Munsey, J. W. and G. A. Bollinger, (1984), Focal mechanisms for Giles County, Virginia and vicinity Eqke. Notes, 55, p. 8.
 - Teague, A. G. and G. A. Bollinger, (1984), Provisional focal mechanisms for eastern Tennessee earthquakes, Eqke. Notes, 55, p. 8.
 - Oaks, S. D. and G. A. Bollinger, (1984), The epicenter of the December 22, 1875 central Virginia earthquake: New findings from documentary sources, Eqke. Notes, 55, p. 11.
 - Chapman, M. C. and G. A. Bollinger, (1984), Reliability of focal depth estimates from a small network, Eqke. Notes, 55, p. 13.
 - Snoke, J. A., J. W. Munsey, A. G. Teague and G. A. Bollinger, (1984), A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, <u>Eqke. Notes</u>, <u>55</u>, p. 15.
- 1983 Bollinger, G. A., (1983), Seismicity patterns and terrane-mosaics in the southeastern United States, Eqke. Notes, 54, (Abstr.), p. 83.
 - Bollinger, G. A., L. Glover, III, J. K. Costain, M. S. Sibol and C. Coruh, (1983), The central Virginia seismic zone-Seismicity and subsurface geology, Eqke. Notes, 54, (Abstr.), p. 83-84.

- 1982 Sibol, M. S., G. A. Bollinger and J. A. Snoke, (1982), Network locational testing and velocity variations in central Virginia, Eqke. Notes, 53, p. 35.
 - Bollinger, G. A., M. Viret and M. S. Sibol, (1982), Spatial and temporal characteristics of the central Virginia seismic zone, <u>Eqke</u>. <u>Notes</u>, 53 (Abstr.), p. 88-89.
 - Bollinger, G. A., M. Viret and J. A. Snoke, (1982), Joint hypocenter studies of a selected set of Giles County, Virginia, earthquakes, Geol. Soc. Am. Abstr. with Prog., <u>14</u> (Abstr.), p. 6.
- 1981 Bollinger, G. A. and M. S. Sibol, (1981), Fault source models for Virginia earthquakes, Eqke. Notes, 52, p. 61.
 - Viret, Marc, G. A. Bollinger and J. A. Snoke, (1981), Relocation of Giles County, Virginia, earthquakes using JHD, <u>Eqke</u>. <u>Notes</u>, <u>53</u>, p. 32.
 - Wheeler, R. L. and G. A. Bollinger, (1981), Stress orientations on the Giles County, Virginia, seismogenic zone, <u>Eqke</u>. <u>Notes</u>, <u>53</u>, p. 32-33.
 - Bollinger, G. A., (1981), Southeastern United States earthquakes, 1979, <u>Eqke. Notes</u>, <u>52</u>, p. 40-41 and <u>United States Eqkes</u>., <u>1979</u>, p. 124-125.
 - Bollinger, G. A., (1981), Earthquake faults in Virginia, <u>Geol. Soc. Am</u>. Abstr. with Prog., <u>13</u>, p. 413.
- 1980 Bollinger, G. A., (1980), Virginia earthquakes--1978, Eqke. Notes, 51, p. 25-26.
 - Bollinger, G. A., (1980), Southeastern United States earthquakes--1978, Eqke. Notes, 51, p. 27-28.
 - Bollinger, G. A. and R. L. Wheeler, (1980), The Giles County, Virginia, seismogenic zone, Geol. Soc. Am. Abstr. with Prog., 12, p. 389.
 - Bollinger, G. A. and M. S. Sibol, (1980), The central Virginia Seismic network-Monitoring results, 1978-1980, Eqke. Notes, 51, p. 13.
 - Bollinger, G. A. and Russell L. Wheeler, (1980), The Giles County, Virginia, seismic network-Monitoring results, 1978-1980, <u>Eqke</u>. <u>Notes</u>, <u>51</u>, p. 14.
 - Carts, D. A. and G. A. Bollinger, (1980), A regional crustal velocity model for the southeastern United States, Eqke. Notes, 51, p. 15.
 - Wheeler, Russell L. and G. A. Bollinger, (1980), Types of basement faults probably responsible for seismicity in and near Giles County, Virginia, Eqke. Notes, 51, p. 39.

48

1979 Glover, L., G. A. Bollinger and J. K. Costain, (1979), Geology and seismicity of the central Virginia seismic zone, <u>Geol. Soc. Am.</u> <u>Abstr. with Prog.</u>, <u>11</u>, SE Sec. 28th Ann. Mtg., p. 180. APPENDIX B - LIST OF INSTRUMENTALLY LOCATED EARTHQUAKES IN VIRGINIA

12-MDV-85 12:48:53 for the program RMVPIEG Input date from #11e vpiEG DAT

\$ 1				-	Ŧ	Mn: 8		Hypoce Let-N	Long-W	Depth	NBTA	Locat P/S	Ion Par	MIN R	:SE	dip	ERH	101 B	E111P	5 B	Lo.	2	TW/ WI		rc.
5-	>	261	3 06	13	01	14:3	8.9	37-34.08	81-58.38	0.0		1				-	(23		21 6.	0 16	10			-	11
	>	1956	8 10	33	02	29:4	e. 4	37-12.30	81-54 30	3.0							. 9. 1	3, -83	n R	0 10	õ		、		11
9		195	9 04	53	30	38: 4	0.0	37-23.70	80-40.92	0 °C		-					1 7.	0, -82	*	2: 0	10	e	/8		
M-	2	196	5 04	36	13	26: 1	2.4	37-19. 50	81-36.12	0.5		•						348	2	7: 5	iq.	(7)	2		11
-01	2	1964	\$ 03	31	90	18: 5	n .	37-39.66	78- 7.74	1.6							(8.	24	9	2: 8	ē	e	19		11
¥	>	196	7 12	16	12	23: 3	*	37-21.60	81-32.40	*		,					6 S.	4	. 3.	1. 7	iĝ.		,		11
ě		1968	8 03	8	03	38: 1	2.7	37-16.86	80-46.44	7.7		`					6.3	547	9	3. 5	ŝ	*	11		11
-00		196	9 11	8	01	00:1	. 0	37-23.89	80-50.02	13.2	8	5 12	102	10 0	*			0. +54	2	en 60	018	*	19	,	**
Ŷ	>	196	9 13	11	8	44: 3	* .	37-50. 58	77-40.02	1.0		`					(16.	030	3	9, 0	õ	ei	14		11
2	>	197	60 1	12	8	06:2	2.6	38- 9.00	77-35. 52	4.5		`					(13.	1, -56	*	4: 9	1	ei	19		11
5	>	1474	4 02	58	18	38		36-00. 33	77-40. 55	9.0		~		0	0		,				~		1 1.	10	CN.
N W	2	1974	03	3	60	46: 3	0	38-48.42	77-47.16	10.0	12	2/12	186	76 0	N	9	5	3, -30	3	0: 7	210	cui	10	,	**
à		1974	1 03	8	31	58:3	0	37-27.42	81-32.40	4.0						-	* *		1	8	11	ei	11	13	11
Ş		1974	80 .	18	15	8		38-04.76	7'-45.73	1.3		~		0	**		0.	3, 360	0.0	31	Ģ		1 1.	10	0
2		1974	80 1	13	13:	26: 3	0	37-43.15	77-47.92	13.4	~	2/ 3	343	34 0	-	9		414	2	71.11	11.0		1 1.	2	
NJ- W		1974	11 1	02	51	30: 5	6.7	38-14.06	78-09.82	27.5	8	6/10	235	33 0	*	0	. 4.	1, +10	0. 1.	8 2	918	N	1 2	2/15	**
00		197	2 03	01	g	43: 1		37-19.20	80-28.80			1				-					-		1 3.	2/0	10
NO- W		197	5 04	12	13	30: 3		37-48.26	77-41.98	7.3	12	12/11	304	14 0	-	Q	1 1.	214	. 0	8	1:8		11	51	**
N3- 8		1975	0 03	10	12	45:13	8.2	37-43.08	77-43. 52	14.1	13	11/101	315	22 0	0	0	6 3	6	Ni I	8 6	41 C		1 0.	/8	**
17 80		197	00 0	8	10	30: 3	0	37-45.12	77-44.93	0.0	•	9/9	341	31 0	-	0	*	717	~	7,25	2.0		1 0.	16	**
10-11		1975	80 6	13	13	42		38-02.06	77-43.73	0.0		`		0	0	-	0.	1, 360	0 10	1. 1	ô		1 1.	21	~
2 -64	~	1975	60 6	01	10	:02		38-02.03	77-43.70	9.0		~		0	0	-	0 >	1, 360	0. 0.	1: 0	6		1 10	11	N
-CV		147	60 0	18	18	36		38-01.97	77-43.77	0.7		1		0		-	0 >	2, 360	0 10	5 1	ñ		/ 1.	11	CN
00-		197	11 5	11	8	10: 3	9.0	37-13.02	80-53.52	1.0		,					6	3, -3	3	0 19	õ	0	51	4	11
13- 5		1975	12	8	03	ë		38-28.22	77-52.24	16.1				0		-	.0.	7. 360	0 10	7: 1	+		1 1.		a

-CV 1976 0311 01.45.41.8 37-46.75 77-46.897 11.1 14 8/14 323 26 0.2 71 -W 1976 03120 0312.50.8 37-32.11 77-26.90 5.3 11 6/10 331 31 0.2 71 -W 1976 05119 13-58 32-01.97 77-44.18 17-26.90 5.3 1 6/11 31 0.2 71 1 -W 1976 07119 13-58 31-39.2.5 31-749.25 81-7 74 1 7 1 7 1	14 4		Year	ŝ	ň	ł	S E	Sec.	-	Hypocen Let-N	Long-W	Desth	NSTA	p/6	e e	MU d	IN RM	gan san	(ER	HI. AZ	1. ERH	ä	(B1210)		114/9	1 81	
(N) (17) (0) (0) (1) <th>10</th> <th>2</th> <th>1976</th> <th>03</th> <th>11</th> <th>01</th> <th>104</th> <th>41.</th> <th>8</th> <th>37-40 75</th> <th>77-46.89</th> <th>11.1</th> <th>14</th> <th>8/1</th> <th>1 32</th> <th>3 26</th> <th>0</th> <th>2 CID</th> <th>5</th> <th>98</th> <th>19</th> <th>61 7</th> <th>. 01 0.</th> <th></th> <th>11.2</th> <th></th> <th></th>	10	2	1976	03	11	01	104	41.	8	37-40 75	77-46.89	11.1	14	8/1	1 32	3 26	0	2 CID	5	98	19	61 7	. 01 0.		11.2		
W 1976 06 19 03: 34: 134 37-20. 64 81-7. 62 1 7 1 1 CC 1976 07 03 20: 53: 45. 8 37-19. 26 81-7. 56 1 7 7 7 1 CV 1976 07 19 13: 58 36-01. 97 77-44. 18 1 7 7 7 7 1 CV 1976 07 19 13: 58 36-01. 97 77-44. 18 19 7 1 0 1 1 CV 1976 10 09 10: 57: 18 36-01. 97 77-43. 52 19 17 7 7 1 0 1 1 CV 1976 10 09 16: 57: 18 37-36. 66 77-33. 62 19 17 1	£	>	1976	00	30	90	13	8	8	37-32.11	77-26.90	5.3	11	6/1	33	1 31	0	2 CID	(3	86		31 35	6. B. D)		1 1.2		
0 1976 07 20 30-19 81-7 52 1.0 7 1.0 7 1.0 7 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 1.1 1.0 <	3	2	1976	90	10	50	-	13.		37-20.64	81-36.12	0.9		~				-	4 1	40	3, 3	ŝ	8.	e.		13 1	
CV 1976 07 13.36 38-01 77-44 18 1 7 0 0 1 M 1976 09<13 18.54:36.5 38-036.24 30-044.56 19.75 19	0	9	1976	0.1	CO	20	33	43	8	37-19.25	81- 7.62	1.0		*				**	1 7	43	61 3	ŝ	0.0	Ci.		,	
W 1976 07 18 34-36.24 30-44.35 15 6 1 155 7 155 7 <td>Q.</td> <td>></td> <td>1976</td> <td>01</td> <td>19</td> <td>13</td> <td>38</td> <td></td> <td></td> <td>28-01.97</td> <td>77-44.18</td> <td>1.9</td> <td></td> <td>~</td> <td></td> <td></td> <td>0.0</td> <td>-</td> <td>0 ></td> <td>1, 36</td> <td>0 0</td> <td>11</td> <td>0.61</td> <td></td> <td>/ 1.8</td> <td></td> <td></td>	Q.	>	1976	01	19	13	38			28-01.97	77-44.18	1.9		~			0.0	-	0 >	1, 36	0 0	11	0.61		/ 1.8		
(1) (1) <td>5</td> <td>z</td> <td>1976</td> <td>60</td> <td>13</td> <td>18</td> <td>34</td> <td>38</td> <td>n</td> <td>36-36.24</td> <td>80-44.56</td> <td>18.5</td> <td>4</td> <td>19</td> <td>1 13</td> <td>5 73</td> <td>0.1</td> <td>CID</td> <td>n ~</td> <td>13</td> <td>131 2</td> <td>ñ</td> <td>5. O. C.)</td> <td>e,</td> <td>1 2 9</td> <td></td> <td></td>	5	z	1976	60	13	18	34	38	n	36-36.24	80-44.56	18.5	4	19	1 13	5 73	0.1	CID	n ~	13	131 2	ñ	5. O. C.)	e,	1 2 9		
(N) (1976 (10 (10 (10 (10 (10 (11 </td <td>Ŷ</td> <td>></td> <td>1976</td> <td>10</td> <td>30</td> <td>60</td> <td>33</td> <td>40.</td> <td></td> <td>37-38.96</td> <td>77-53.62</td> <td>15.0</td> <td>13</td> <td>1/6</td> <td>33</td> <td>6 3</td> <td>0.0</td> <td>2 CID</td> <td>6 ></td> <td>03</td> <td>.6. 1</td> <td>ŝ</td> <td>. 41 8)</td> <td></td> <td>/ 1.0</td> <td></td> <td></td>	Ŷ	>	1976	10	30	60	33	40.		37-38.96	77-53.62	15.0	13	1/6	33	6 3	0.0	2 CID	6 >	03	.6. 1	ŝ	. 41 8)		/ 1.0		
CV 1976 11 03 137-21 64 77-51 64 67 62 61 CV 1976 11 04 05:57:45.7 37-20.91 77-53.54 16.6 16 16.10 337 64 0.1 1 CV 1976 12 07:11:23 37-41.18 77-53.54 15.6 12 14 0.1 1 1 CV 1977 01 23 07:11:233 37-41.18 77-42.37 7.8 12 12/1 0.1 0.1 1	Ŷ	>	1976	10	8	10	57	19	2	37-40.44	77-55. 62	15.0	14	1/61	1 32	4 30	0.0	2 CID	~	10	2, 1.	-	(V IO . 1		/ 1.3		**
CV 1976 11 06 05:57:45.7 37-20.91 77-53.56 4.6 16 16/10 337 64 0.1 C1 CV 1976 12 02 18:25: 39-06 7 77-25.72 9.2 7 0.1 20.1 1 0.1 1 CV 1977 01 23 07:11:23.5 37-41.18 77-42.37 7.8 12 12 0.1 0.1 1 0.1 1 0.1 1 1 0.1 1 0.1 1 0.1 1 0.1 1	Ŷ	>	1976	11	8	18	8	11.	-	37-21.64	77-51.02	19.7	13	13/1	34	1 64	0.0	2 CID	4 3 .	*	18: 2	3, 1	5. 7. DI		12.0		-
CV 1976 12 02 18:23: 36-06 71 77-25.72 9.2 7 0 1 0 1 CV 1977 01 23 07:11:23.5 37-41.18 77-42.37 7.8 12 12/12 329 26 0.2 01 CV 1977 02 27 30:05:33.5 37-35.51 78-36.51 55.5 8 3/8 153 14 0.1 01	4	>	1976	11	8	03	37	-	~	37-20.91	77-53.54	16.6	16	16/1	33	7 64	0	CID	(2	66	1 19	7127	7. 61 0)		1 2.5	~	**
CV 1977 01 23 07:11:23 37-41 18 77-42 7.8 12 12/12 329 26 0.2 C1 CV 1977 02 27 20:05:35 37-41 18 73-36 5 5 5 5 5 5 5 6 0.2 6 0.2 6 1 7 1 7 7 1 0 1 <td>4</td> <td>></td> <td>1976</td> <td>12</td> <td>8</td> <td>18</td> <td>53</td> <td></td> <td></td> <td>38-09.71</td> <td>77-25.72</td> <td>9.0</td> <td></td> <td>~</td> <td></td> <td></td> <td>0</td> <td></td> <td>1)</td> <td>8, 36</td> <td>01 1</td> <td>ŵ</td> <td>1. 51</td> <td></td> <td>1 0.8</td> <td>,</td> <td>-</td>	4	>	1976	12	8	18	53			38-09.71	77-25.72	9.0		~			0		1)	8, 36	01 1	ŵ	1. 51		1 0.8	,	-
(1) (1) <td>Ŷ</td> <td>></td> <td>1977</td> <td>10</td> <td>8</td> <td>07</td> <td>11:</td> <td>8</td> <td></td> <td>37-41.18</td> <td>77-42.37</td> <td>7.8</td> <td>12</td> <td>12/1</td> <td>2 32</td> <td>9 26</td> <td>0</td> <td>2 C:D</td> <td>~ ~</td> <td>cù</td> <td>2: 2</td> <td>â</td> <td>B. 61 C)</td> <td></td> <td>1 1. 1</td> <td></td> <td>**</td>	Ŷ	>	1977	10	8	07	11:	8		37-41.18	77-42.37	7.8	12	12/1	2 32	9 26	0	2 C:D	~ ~	cù	2: 2	â	B. 61 C)		1 1. 1		**
CV 1977 03 06 01:28: 38-00.94 77-44.47 0.4 / / 0.0 1 CV 1977 04 10 03:19: 38-00.94 77-44.41 1.2 / 0.0 1 CV 1977 04 10 03:19: 38-00.42 77-44.41 1.2 / 0.1 1 1 CV 1977 04 24 07.45 7 0.7 1 11 1 <td>Ŷ</td> <td>></td> <td>1977</td> <td>03</td> <td>53</td> <td>30</td> <td>03</td> <td>33</td> <td>10</td> <td>37-55. 51</td> <td>78-36.51</td> <td>5</td> <td>8</td> <td>3/</td> <td>8 13</td> <td>3 1</td> <td>0 1</td> <td>3 DIC</td> <td>6 9</td> <td>- '8</td> <td>9. 1</td> <td>ë</td> <td>3. 9. 01</td> <td>ci</td> <td>15</td> <td>14</td> <td>**</td>	Ŷ	>	1977	03	53	30	03	33	10	37-55. 51	78-36.51	5	8	3/	8 13	3 1	0 1	3 DIC	6 9	- '8	9. 1	ë	3. 9. 01	ci	15	14	**
CV 1977 04 10 1.2 / 0.1 0.1 1 CV 1977 04 24 0.7 44.4 1.2 / 0.1 0.1 1 CV 1977 04 24 0.7 44.4 1.2 / 0.1 0.1 1	4	2	1977	EO	90	10	8			38-00.94	77-44.79	0.4		*			0	-	6 9	2.3	0 10	ñ	1.01		1 0.7	~	-
CV 1977 04 24 02:31: 36-00.42 77-45.57 0.7 7 1 91 1 VA 1977 10 23 07:51:41.0 36-55.91 82- 6.04 10.0 7 7/1 191 127 0.1 7 1 VA 1977 10 23 13-53.4 37-13.68 80-44.80 4.5 3 3/3 2.43 11 0.1 01 01 VA 1978 01 28 23-13:23.4 37-13.68 80-44.80 4.5 3 3/3 2.43 11 0.1 01 01 01 VA 1978 03 18 26-44.70 80-44.80 4.5 3 3/3 2.43 11 0.1 01 <td< td=""><td>0</td><td>></td><td>1977</td><td>04</td><td>10</td><td>60</td><td>19</td><td></td><td></td><td>38-02.03</td><td>77-44. 41</td><td>1.2</td><td></td><td>•</td><td></td><td></td><td>0</td><td>-</td><td>¢ 0</td><td>1.3</td><td>0 100</td><td>11</td><td>0.7.</td><td></td><td>1 0.8</td><td></td><td>C4</td></td<>	0	>	1977	04	10	60	19			38-02.03	77-44. 41	1.2		•			0	-	¢ 0	1.3	0 100	11	0.7.		1 0.8		C4
vial 1977 10 23 07: 34-53. 91 82- 8.0 10.0 7 7/1 191 127 0.1 C10 occ 1978 01 28 23: 13: 23. 3 37- 3 37- 3 37- 3 37- 3 37- 3 11 0.1 11 0.1	ç	>	1977	0	54	03	31			36-00.42	77-45. 57	0.7		~			0	1	0)	2,3	0 109	ñ	0.41	Ľ	1 2.0	~	-
OC 1978 01 28 23:13:23.4 37-13.68 60-44.80 4.5 3 3/ 3 3/ 3 3/ 3 1 0.1 DID VA 1978 03 17 18:26:34 34-46.77 60-44.22 15.9 9 9/ 5 154 28 0.4 CI VA 1978 03 18:26:34 36-46.77 60-44.22 159 9 9/ 5 154 28 0.4 CI OC 1978 03 10:01 60-49.82 26.2 3 3/ 3 268 12 0.1 CI OC 1978 03 28:1 37-0.01 60-47.65 12.1 5 3/ 3 269 3 0.2 CI	5		1977	10	8	01	31	41	0	16-22 61	82- 8.04	10.0	2	12	1 19	1 12	0	1 CID	5	n in	31. 1.	-	9.0.0	1	1 2	>	**
VA 1978 03 17 18:26:34 36-46.77 80-44.22 15.9 9 7.5 154 28 0.4 CIC 0C 1978 03 10 04:19:09.6 37-12:80 80-44.22 15.9 3 3 3 26 1 2 0.1 CID 0C 1978 03 10 04:19:09.6 37-12:80 80-49.82 26.2 3 3/3 268 12 0.1 CID 0C 1978 03 23 1 37-0.01 80-47.65 12.1 5 3 269 3 0.2 CID	O.	0	1978	10	8	33	: 13	8		37-13. 68	80-44.80	*	m	3/	3 24	I E	0	aid 1	5 0	6	341 1.	ñ	3. 0. C	i.	1 1.6	,	**
0C 1978 03 10 04:19:09.4 37-12.80 80-49.82 26.2 3 3/3 268 12 0.1 CID 0C 1978 03 25 0 37-0.01 80-47.65 12.1 5 5/3 269 3 0.2 CID	5		1978	03	17	18	36	3	0	36-46.77	80-44.22	15.9	0	16	0 13	* 21	0	4 CIC	~	7	231 2	ŝ	5. BIC	ci	3/ 2.		-
00 1978 05 25 08:30:25.1 37- 0.01 80-47.65 12.1 5 5/ 3 269 3 0.2 CID	ō.		1978	03	10	8	10	8	-0	37-12.80	80-49.82	26. 2	0	16	3 26	8	0.	1 CID	* > 1	4	141 1	ñ	3.0.8		1 0.1	~	-
	Ö.		1978	00	53	80	30	33.		37- 0.01	80-47. 65	12.1	n	16	3 26	0	0	2 CIE		e.		ň	3 8 8	į,	1 2.		**
00 1978 06 01 01:33:01.0 37-17.99 80-41.98 17.3 3 3/ 3 170 9 0.2 CIC	Ö		1978	98	10	10	8	01.	0	37-17.99	80-41.98	17.3	0	16	3 17	0	0	2 010	6 5	.8	11: 2	-	9.1.0		9-1	2	-
W 1978 06 09 04:42:49.4 37-47.36 81- 9.25 14.7 4 3/ 2 340 35 0.1 DID	3	>	1978	90	60	0.	\$	\$4		37-47.36	81- 9.25	14.7	*	16	2 34	0 3	0	I DI		7	561 3	9.9	9. O. D		1 0.		iet
00 1971 07 28 08:39:40.7 37-20.22 80-41.41 11.8 4 4/ 3 146 10 0.3 CIC	Ö	v	1974	01	92	90	æ		~	37-20.22	80-41.41	11.8	*	18	3 14	6 1	0 0	3 C10		6	39: 2	ñ	B. 1.C		1 0.	1	
WV 1978 08 14 04:50:05 4 37-56 34 80-52 44 23.0 8 7/ 6 243 39 0.3 CID	3	2	1978	80	41	6	8	03		37-56.34	80-52.44	23.0	8	11	5 24	9	0	3 CII	5 1 0	. 7	1 100	â	3.3.8		1 1.1	~	-

MENTALLY LOCATED REGIONAL/LOCAL EARTHQUAKES (FOR VI

52

INBTRUMENTALLY LOCATED REGIONAL/LOCAL EARTHQUAKES (FOR VIRGINIA)

.

02: 19: 38: 37-21: 71 80-40.06 8.4 4. 4. 2 159 12 0.1 CIC (3 19: 37: 06. 37-39 28 - 1; 74 78 - 6, 34 5.5 3 3/3 3 292 22 0.2 DID (6 08: 33 47 6 37-40 87 74 - 5, 34 5.5 3 3 3 292 22 0.2 DID (6 08: 33 47 39- 1; 74 79 - 6, 34 5.5 3 3 3 3 292 20 DID (7 08: 33 47 39- 1; 74 79 - 6, 34 5.5 3 3 2 2 2 0 DID (7 09: 135 45 39- 3; 65 11.3 7 7 7 7 7 6 9 2 2 0 DID (7 1 09: 23: 23 39- 3 16- 10 10 10 10 10 1 1 1 <	(31, 28) 101 64(C) (11, -45) 021 47(8) (11, -45) 021 47(8) (115, -33) 114(208) 3 (25, -46) 46(29, 2)0) (25, -46) 46(29, 2)0) (26, 7, -80, 2, 9) 89(C) (26, 7, -80, 2, 9) 89(C) (26, 7, -80, 2, 9) 89(C) (26, 4, -47) 4, 11, 3, 2)(C) (14, 8, -52) 2, 11, 13, 9, 0) (14, 8, -52) 2, 11, 13, 9, 0) (15, 7, -34) 1, 2, 2, 11, 13, 9, 0) (15, 7, -34) 2, 11, 13, 2, 2, 0) (16, 4, -77) 2, 5, 12, 2, 0) (16, 4, -77) 2, 5, 12, 2, 0) (16, 5, -35) 0, 8, 2, 2, 0) (16, 5, -36) 2, 2, 11, 13, 3, 0)	7 0 3/ 7 0 4/ 7 1 1/ 7 1 1/ 7 1 1/ 7 1 1/ 7 1 1/ 7 1 1/ 1 2/ 1 1/ 1 1/ 1 1/ 1 1/ 1 1/ 1 1/
19 37-39 23 31/3 292 23 31/3 292 23 0 110 (1 12 23 37-40 39 77-33 53 33 3	<pre>(6 670, 3 6.17.5,0) (1.145, 0 2; 4 7,8) (1.533, 1.4, 3 0.8) 3 (9 546, 4 6.29 2:0) (9 546, 4 6.29 2:0) (1 934, 0 6. 5 2.0) (1 934, 0 6. 5 2.0) (1 082, 0 6. 1.8; A) (1 082, 0 6. 1.8; A) (1 082, 0 6. 1.8; A) (1 092, 0 5. 1.8; A) (1 1 7, 49, 1 2, 3 6.8) (1 4 852, 2 1.13 9.0) (1 535, 0 8. 2 2.14) (4 477, 2 5.112 2.0) (4 477, 2 5.112 2.0) (4 734, 2 1.18 3.0) </pre>	/-0.4/ /111/ 32/18/ /16/ /16/ /116/ 13/16/ 13/14/ 12/11/ 10/16/ 11// 10/16/ 11// 10/16/ 11// 10/16/1
12 22 42 39-1 78-6 3 5 4/ 196 50 0 810 (1 08 33 47 37-40 89 77-33 55 13 4 196 50 0 810 (1 09 13 47 6 13 5 4/ 196 50 2 810 (1 09 13 37-42 80 13 6 1 3 3/ 256 28 0 28 10 1	(11.145, 02.4 7.8) (1533, 14, 30.8) (9546, 46,29.2) (4027, 14, 47,8) (19,-34, 06, 52.0) (10,-82, 06, 18,4) (10,-82, 06, 18,4) (10,-81, 07,214,0) (10,-81, 07,214,0) (11.7,49, 12, 36,8) (14.8,-52, 21,139,0) (14.8,-52, 21,139,0) (14.8,-52, 21,139,0) (14.8,-52, 21,139,0) (14.4,-77, 25,122,0) (4.7,-34, 21,183,0) (4.7,-34, 21,183,0)	7 1 1/ 3 2/ 1 8/ / 1 6/ / 1 6/ / 1 8/ / 1 8/ / 1 8/ / 1 8/ / 1 8/ 1 3/ 1 4/ 1 2/ 1 1/ 1 2/ 1 2/ 1 2/ 1 2/
08 37-40 87 77-33 63 13 4 196 50 0 2 810 1 09<	(1533; 14, 30,8) 3 (9546; 46; 29.2; D) (1934; 06; 52; C) (1934; 06; 52; C) (1082; 06; 18; A) 1 (0981; 0.7; 21.4; D) (10.95, -81; 0.7; 21.4; D) (11.7, 49; 1.2; 3.6; B) (14.8, -52; 21; 13.9; D) (1535; 0.8; 22; A) 3 (1555; 0.8; 22; A) 3	3 2/ 1 8/ / 0 0/ / 1 6/ / 1 8/ / 1 8/ / 1 8/ 1 3/ 1 6/ 1 3/ 1 4/ 1 0 7/ / 1 1/ 1 0 7/ 1 0 7/ 1 0 7/ 1 1 1/ 1 0 7/ 1 0 7/ 1 1 1/ 1 0 1 6/ 1 0 7/ 1 0 0
09:13:54:0 37-42.63 79-26.17 6.8 3 3/1 256 28 0.3 DID (1 09:37:26 38-4.78 80-14.08 11.3 7 7/6 199 28 0.3 DID (4 09:37:3 38-5.5 80-14.08 11.3 7 7/6 199 28 0.3 DID (4 00:43:57.3 38-5.53 80-14.08 7.2 4 3/2 2653 30 0.2 CID (4 03:04:51.3 37-25.68 72-28 5.0 3 2 <th2< th=""> 2</th2<>	(9546) 46.29.210) (4027) 14, 47.18) (1934, 06.52,00) (5790, 29, 89,00) (1082, 06, 1.81A) (0991, 07,214,00) (10.9,-91, 07,214,00) (11.7,49, 1.2,36,10) (14.8,-52,21,139,0) (14.8,-52,21,139,0) (14.8,-52,21,139,0) (14.4,-77,25,122,00) (14.4,-77,25,122,00) (14.4,-77,25,122,00) (14.4,-77,25,122,00) (14.4,-77,25,122,00)	/ 1 6/ / 1 6/ / 1 8/ / 1 8/ / 2/ 1 8/ 1 2/ 1 1/ 1 0/ 1 6/ / 1 1/ 2 8/ 2 2/1 2 8/ 2 2/1
09: 39: 32: 6 38- 4.78 80-13.93 11.3 7 10 197 28 0.2 CID (1 00: 43: 57: 3 39- 5.63 80-13.93 16.5 10 10/10 187 28 0.2 CID (1 00: 43: 57: 3 37-36. 23 81-10.68 7.2 4 3/2 265 30 0.2 CID (1 03: 04: 51: 3 37-35. 58 81-10.68 7.2 4 3/2 265 30 0.2 CID (1 03: 04: 51: 3 37-25. 68 77-28: 73 80-13: 15 7 32 265 30 0.2 CID (1 07: 21: 51: 3 37-25. 78 80-13: 15 3	(4.0,-27) 1.4, 4.7,8) (1.9,-34, 0.6/ 5.2,0) (6.7,-90, 2.9) 8.9,0) (1.0,-92, 0.6/ 1.8,4) 1 (0.9,-91, 0.7,21.4,0) 1 (1.7, 49) 1.2, 3.6/8) (14.8,-52, 2.1,13.9,0) (14.8,-52, 2.1,13.9,0) (15.4,0,0,0,0,2.2,4) 3 (15.4,0,0,0,0,2.2,10) (15.4,0,0,0,0,2.2,10) (15.4,0,0,0,0,0,2.2,10) (15.4,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (15.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	/ 1 6/ 1 / 1 8/ 1 / 0 7/ 1 1 3/ 1 4/ 1 1 0/ 1 6/ 1 / 1 1/ 1 / 1 1/ 1 / 0 7/ 1 2 8/ 2 2/1 3 0/ 1 4/ 1
00: 45: 57: 3 38- 5.63 80-13.93 16.5 10 10/10 187 28 0.2 CID (1 08: 32: 47.8 37-36.23 81-10.68 7.2 4 3/2 26.53 30 0.0 DID (6 03: 04: 51: 3 37-25.68 79-13.15 6.8 10 9/7 103 28 0.2 BIC (1 07: 21: 53.8 37-25.68 77-38 7.6 5.0 5 5/7 103 28 0.2 DID (6 (1 07: 21: 53.8 37-43.33 77-38 7 5.0 5 5/7 103 28 0.2 DID (6 07: 21: 53.8 37-43.33 77-38 13.0 9 17 0.2 DID (1 1 03: 58: 55.3 37-43.35 13.0 9 1 0 1 2 0 2 DID (1 03: 58: 55.3 37-35 8 0.5 10 10	(1.9, -34, 0.6, 5.2, C) (5.7, -80, 2.9, 8.9, C) (1.0, -82, 0.6, 1.8, A) (0.9, -81, 0.7, 21.4, D) (5.6, -47, 4.1, 3.2, C) (1.7, 49, 1.2, 3.6, B) (14.8, -52, 2.1, 13.9, D) (14.8, -52, 2.1, 13.9, D) (1555, 0.8, 2.2, A) (1.5, -55, 0.8, 2.2, A) (4.7, -34, 2.1, 18.3, D) (4.7, -34, 2.1, 18.3, D)	/ 1.8/ / 0.7/ 1.3/ 1.4/ 1.2/ 1.1/ 1.0/ 1.6/ / 1.1/ 2.8/ 2.2/1 2.6/ 2.2/1
08 37-36 31-136 31 81-10 68 7.2 4 37/2 265 80 0 0 10 1 03<04	(6 7, -80. 2 9, 8 9, C) (1 0, -82. 0 6, 1 8, A) 1 (0 9, -81. 0 7, 21 4, D) 1 (6 6, -47. 4 1, 3 2, C) 1 (1 7, 49. 1 2, 3 6, 8) (1 8, -52. 2 1, 13 9, D) (2 9, -77. 1 7, 6 4, C) 2 (1 5, -55. 0 8, 2 2, A) 3 (4 4, -77. 2 5, 12 2, D) (4 7, -34. 2 1, 18 3, D)	/ 0 7/ 1 3/ 1 4/ 1 2/ 1 1/ 1 0/ 1 6/ 1 1// 2 8/ 2 2/1 3 0/ 1 4/
03:04:51.3 37-23.68 78-13.15 6.8 10 9/7 103 28 0.2 810 (1 07:21:53.8 37-23.58 81-34 5 5 5 5 5 5 77 80 2 6 10 (0 2 173 55 173 54 0.2 0.10 (1 0 0 4 0.2 0.10 (1 0 0 4 0 2 0 2 10 (1 0 0 4 0 0 4 0 10 (1 0 0 4 0 10 0 4 0 10 0 4 0 10	(1.082) 0.61 1.814) 1 (0.981) 0.7121 410) 1 (6.647) 4.11 3.21() 1 (1.7.49) 1.21 3.618) (14.852) 2.1113 910) (2.9,-77) 1.71 6.41() 2 (1.555) 0.81 2.21A) 3 (4.477) 2.5112 210) (4.7341 2.1118 310)	1.3/1.4/ 1.2/1.1/ 1.0/1.6/ 7.1.1/ 7.1.1/ 2.8/2.2/1 3.0/1.4/
07:21:53.8 37-43.33 77-28 76 5.0 5 5/5 5 <td< td=""><td>(0 9,-81, 0 7,21 4,0) 1 (6 6,-47, 4 1, 3 2,0) 1 (1 7, 49, 1 2, 3 6,8) (14 8,-52, 2 1,13 9,0) (2 9,-77, 1 7, 6 4,0) 2 (1 5,-55, 0 8, 2 2,4) 3 (4 4,-77, 2 5,12 2,0) (4 7,-34, 2 1,18 3,0)</td><td>1.2/1.1/ 1.0/1.6/ 1.1.1/ 1.1.1/ 2.0/1.4/ 3.0/1.4/</td></td<>	(0 9,-81, 0 7,21 4,0) 1 (6 6,-47, 4 1, 3 2,0) 1 (1 7, 49, 1 2, 3 6,8) (14 8,-52, 2 1,13 9,0) (2 9,-77, 1 7, 6 4,0) 2 (1 5,-55, 0 8, 2 2,4) 3 (4 4,-77, 2 5,12 2,0) (4 7,-34, 2 1,18 3,0)	1.2/1.1/ 1.0/1.6/ 1.1.1/ 1.1.1/ 2.0/1.4/ 3.0/1.4/
13: 50: 55 7 36-37.89 81-34 03 3.6 10 10/ 8 323 80 0.4 D1D (6 03: 56: 55 3 37-259 21 81- 5.16 5.0 3 3/ 2 253 17 0.2 D1D (6 22: 33: 15 7 37-259 21 81- 5.16 5.0 3 3/ 2 253 17 0.2 D1D (14 22: 33: 15 7 37-269 21 81- 5.16 5.0 3 3/ 2 253 17 0.2 D1D (14 03: 14: 04 6 36-234 85 77-34.92 0.7 7 7/ 7 206 35 0.2 B1D (14 03: 14: 04 6 37-34.85 77-34.92 0.7 7 7/ 7 206 35 0.2 B1D (14 03: 31: 19: 9 37-34.85 77-34.92 0.7 7 7/ 7 206 35 0.2 E1D (14 03: 31: 19: 9 37-34.85 779-45 28 9 7 11 7 11 1 1 1 1 1 <t< td=""><td>(6.647, 4.1, 3.2(C) 1 (1.7, 49, 1.2, 3.6(B)) (14.852; 2.1,13.9(D)) (2.9,-77, 1.7, 6.4(C) 2 (1.5,-55; 0.8; 2.2,4) (4.4,-77, 2.5,12.2(D)) (4.7,-34; 2.1,18.3(D))</td><td>1.0/1.6/ /1.1/ /0.7/ 2.8/2.2/1 3.0/1.4/</td></t<>	(6.647, 4.1, 3.2(C) 1 (1.7, 49, 1.2, 3.6(B)) (14.852; 2.1,13.9(D)) (2.9,-77, 1.7, 6.4(C) 2 (1.5,-55; 0.8; 2.2,4) (4.4,-77, 2.5,12.2(D)) (4.7,-34; 2.1,18.3(D))	1.0/1.6/ /1.1/ /0.7/ 2.8/2.2/1 3.0/1.4/
03:56:55.3 37-25:78 80-35:54 13.0 9 5/.9 199 22 0.3 810 (1 22:33:15.7 37-29:21 81-5.16 5.0 3 3/.2 2533 17 0.2 0.10 (14. 03:14:04:6 36-23:88 80-35.50 0.5 10 10/.6 128 92 0.3 210 (14. 03:14:04:6 36-23.88 80-35.50 0.5 10 10/.6 128 92 0.3 210 (14. 03:14:04:6 35-34.85 77-36.27 28.5 10 10/.6 128 92 0.3 210 (12. 03:31:19:9 37-46.35 77-36.27 28.5 4 3/.4 215 28 0.3 210 (14. 03:31:19:9 37-36.27 28.5 4 4/.1 146 17 0.1 210 (14. 22:33:35:4 37-36.20 77-45.86 4.9 4 11 7 0.1 210 (14. 10:13:32.7 38-30.74 80 4.9 11	(1.7, 49, 1.2, 3.6(8) (14.8, -52, 2.1, 13.9, 0) (2.9, -77, 1.7, 6.4(C) 2 (1.5, -55, 0.8, 2.2, A) 3 (4.4, -77, 2.5, 12.2, 0) (4.7, -34, 2.1, 18.3, 0)	/ 1.1/ / 0.7/ 2.8/ 2.2/1 3.0/ 1.4/
22:33:15.7 37-29:21 81-5.16 5.0 3 3/2 233 17 0.2 D1D (14) 03:14:04 36-23:88 80-36.50 0.5 10 10/6 128 92 0.3 C1D (14) 03:14:04 37-46.35 77-34.92 0.7 7 7/7 206 35 0.2 81D (1 03:31:19:9 37-34.85 77-34.92 0.7 7 7/7 206 35 0.2 81D (1 03:31:19:9 37-34.85 77-54.27 28.5 4 3/4 215 28 0.3 C1D (2 03:31:19:9 37-34.85 77-55.27 28.5 4 4/1 146 17 0.1 C1D (4) 22:33:55.4 37-56.27 28.5 4 4/1 146 17 0.1 C1D (4) 22:33:55.4 37-56.27 28.5 5 4 215 28 0.3 C1D (4) 23:35.5 36-10.49 80-4.08 5.6 4 8/7 111<	(14. 852; 2. 1; 13. 9; D) (2. 9; -77; 1. 7; 6. 4; C) 2 (1. 5, -55; 0. 8; 2. 2; A) 3 (4. 4; -77; 2. 5; 12. 2; D) (4. 7; -34; 2. 1; 18. 3; D)	1 0.7/ 1 2 8/ 2 2/1 1 3 0/ 1.4/ 1
03:14:04:6 36-23:88 80-36.50 0.5 10 10/6 128 92 0.3 010 02 03:59:54:8 37-46.35 77-34.92 0.7 7 7/7 206 35 0.2 81D (11 03:31:19:9 37-46.35 77-56.27 28.5 4 3/4 215 28 0.3 0.1 0.1 (11 22:33:55:4 37-36.27 28.5 4 4/1 146 17 0.1 0.1 (14 10:13:32.7 36-3.97 77-45.86 4.9 8 8/7 111 7 0.1 418 (0.3) 10:13:32.7 36-10.49 80-4.20 3.1 8 6/5 193 14 0.3 0.1 (21 10:13:32.7 36-10.49 80-4.20 3.1 8 6/5 193 14 0.3 0.1 (13 10:13:32.7 36-10.49 80-4.20 3.1 8 6/5 14 0.3 0.1 (13 (21 10:13:32.7 36-10.49 80-4.20 3.1 8 6/5 14 0.3 0.1 (14	(2.4,-77, 1.7, 6.4,C) 2 (1.5,-55, 0.8, 2.2,A) 3 (4.4,-77, 2.5,12.2,D) (4.7,-34, 2.1,18.3,D)	2 8/ 2.2/1 1
03:39:54:8 37-46.35 77-34.92 0.7 7 7/7 206 35 0.2 81D (1 03:31:19:9 37-36.35 77-56.27 28.5 4 3/4 215 28 0.3 012 10 0 0.3 012 10 0 0.3 012 10 0 22:33:55:4 37-56.20 78-4.08 5.6 4 4/1 146 17 0.1 010 (4. 22:33:55:4 37-56.20 78-4.08 5.6 4 4/1 146 17 0.1 010 (4. 10:13:32.7 36-10.49 80-4.20 3.1 8 6/5 193 14 0.3 0.0 (4. 10:02:46.3 36-10.49 80-4.20 3.1 8 6/5 193 14 0.3 0.1 (3. 01:31:57 36-4.10 77-44.11 0.4 7 7 7 0.3 10 (3.	(1.5,-55) 0.8, 2.2, A) 3 (4.4,-77) 2.5, 12.2, D) (4.7,-34, 2.1, 18.3, D)	3.0/ 1.4/ 1
03:31:19:9 37-34.85 77-56.27 28.5 4 3/4 215 28 0.3 CID (4.1) 22:33:55:4 37-58.20 78-4.08 5.6 4 4/1 146 17 0.1 CID (4.1) 22:33:55:4 37-58.20 78-4.08 5.6 4 4/1 146 17 0.1 CID (4.1) 10:13:32.7 38-3.97 77-45.86 4.9 8 8/7 111 7 0.1 A18 (0.1) 10:02:46:3 38-10.49 80-4.20 3.1 8 6/5 193 14 0.3 CID (3.1) 01:31:57 38-4.46 77-46.11 0.4 7 7 7 10.3 CID (3.1)	(4.477, 2.5,12.2,D) (4.734, 2.1,18.3,D)	
22.33.55.4 37-58.20 78-4.08 5.6 4 4/1 146 17 0.1 CID (4. 10.13.32.7 38-3.97 77-45.86 4.9 8 8/7 111 7 0.1 A18 (0. 10.02.46.3 38-10.49 80-4.20 3.1 8 6/5 193 14 0.3 CID (3. 01.31.57 8 38-4.16 77-46.11 0.4 7 7/5 116 7 0.5 CID (3. 01.31.57 8 38-4.16 77-46.11 0.4 7 7/5 116 7 0.5 CID (4.	(4. 734, 2. 1, 18. 3, D)	1 0.91
10.13.32.7 38-3.97 77-45.86 4.9 8 8/7 111 7 0.1 A18 (0.10.02.46.3 38-10.49 80-4.20 3.1 8 6/5 193 14 0.3 C10 (3	1 C 7 AL C 0 8. 1 4.41	/ 0.0/
10:02:46.3 38-10.49 80-4.20 3.1 8 6/ 5 193 14 0.3 CID (3. 01:31:57 8 38-416.77-46.11 0.4 7 7/ 5 116 7 0.5 616 6	1 D. LI	1 0.7/ 1
01 31 57 8 38- 4 14 77-44 11 0 4 7 7/ 8 114 7 0 2 6 8 1	(3.1,-24, 1.7, 3.3/8)	1 1.4/ 1
	(1.3-32, 0.9,52.3,0) 3	3.5/ 2.0/ 1
05.04:15 7 38- 4.67 77-43.00 4.5 3 3/ 3 222 6 0.2 DID (7.	(7. 5, 88, 2.7, 9.4,C)	/ 0.1/ 1
01:47:01.1 37-13.01 80-49.32 23.5 3 2/ 3 345 11 0.3 DID (7.	(7.2, 40; 2.3; 4.9,0)	1-0.2/ 1
22:40:28 5 38-7,20 77-48.67 2.4 4 3/3 168 6 0.1 CIC (5	(3 3, -49, 0 8; 6 8; C)	1 0.7/ 1
01: 20: 04: 6 37- 4. 69 80-13. 82 11. 0 14 11/13 171 22 0. 4 CIC (2.	(2.0, 13, 1.1, 3.1,8)	/ 1.7/ 1
03 48 07 6 38- 3 98 80-12 88 10.0 7 6/ 7 180 27 0.2 810 (2	(29,-34,0.9,3.9,8)	/ 1 1/ 1

A B 1980 1 21 41 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <th></th> <th>Reg</th> <th>Year</th> <th>Dr 1g</th> <th>D N</th> <th>1±</th> <th>Mn: B</th> <th></th> <th>Hupace Lat-N</th> <th>Long-W</th> <th>Depth</th> <th>1 NBVA</th> <th>Loc.</th> <th>tion OAP</th> <th>DHIN</th> <th>RMS I</th> <th>GØS</th> <th>EFFOT</th> <th>Ellips ZI: ERH2</th> <th>ERZ,</th> <th></th> <th>Mb/MI</th> <th>de 1 /1 S1</th> <th></th>		Reg	Year	Dr 1g	D N	1±	Mn: B		Hupace Lat-N	Long-W	Depth	1 NBVA	Loc.	tion OAP	DHIN	RMS I	GØS	EFFOT	Ellips ZI: ERH2	ERZ,		Mb/MI	de 1 /1 S1	
I I	*	-80	1980	11 0	80	31	48 1	4.7	38-10.70	79-54 11	3.8	21	19/10	27	n	0	*:	(0.7	251 C.4	1 1.0	4)	1 3	0/1	**
1 0 190 12 0 1 1 2 1 2 1 2 1		-80	1990	11	8	01	44:0	0.	36- 3.70	80- 7.33	15.3	*	4/ 4	324	18	0.1	CID	(2.9	421 2.8	1 3.4.1	8	/ 0.	19	**
Ma -CV 1981 01 21 31-43 32-43 32-43 32-43 32-43 32-43 32-43 32-44 32 32-44 <td></td> <td>8</td> <td>1980</td> <td>12</td> <td>8</td> <td>07</td> <td>47:3</td> <td>8 5</td> <td>37-25 08</td> <td>80-32.25</td> <td>12.2</td> <td>•</td> <td>3/ 3</td> <td>113</td> <td>25</td> <td>0.3</td> <td>CIC</td> <td>(3.2,</td> <td>51, 2.0</td> <td>11 7.41</td> <td>()</td> <td>/ 0.</td> <td>18</td> <td></td>		8	1980	12	8	07	47:3	8 5	37-25 08	80-32.25	12.2	•	3/ 3	113	25	0.3	CIC	(3.2,	51, 2.0	11 7.41	()	/ 0.	18	
III III III III III III III III III IIII IIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	\$	-00	1861	01	16	21	34:1	6.9	37-43.94	78-26.15	2.9	~	212	182	28	0 0	CID	1.2	76: 0.6	1: 18. 2:	10	1 0	. 19	
No Ord No		25	1991	01	5	16	29. 3		37-46.08	78-24.96	5.8	~	6/3	175	24	0.1	CIC	(1.0.	54. 0.6	5.1.	()	1 0	3/	**
0 1330314 37-46 73-24 63 12 71 14 26 12 11 20 11 32/th> 32/th 32/th> 32/th 32/th 32/th	5	PC -	1991	8	11	13	44.1	* 9	37-43.22	78-26.40	3.7	14	14/ 9	79	56	0 3	810	1 0.7.	68: 0.6	. 2 2	A) 3	4/ 8	6/4	
C 1981 131 31.3 39-43 79-37 7 9 1 2 <th2< th=""> <th2< th=""> <th2< th=""> <</th2<></th2<></th2<>		PC A	1981	8	11	13	50:3		37-44.87	78-24. 69	10.1	12	12/ 7	114	26	0.2	810	(1.0.	36: 0.7	1 1.61	A) 3	51	*	**
0 1981 0 1 0 2 3	¥	PS-	1361	8	11	13	31.3		37-43.26	78-27.02	7.3	•	8/ 9	128	52	0 3	BIC	6 1. 1.	60: 0.6	4. 24	8	91 2.	5/3	
-0 1981 0.3 0.4 0.3 2 2 3 2 3 3 1 1 0.3 3 1 0.3 3 1 0.3 3 1 0.3 3 1 1 2 1 -0 1981 0 0 12.3 3 7 3 3 3 3 1 3 3 1<1	2	PCU-	1991	03	12	10:	41. 5	0.0	37-44 03	78-25.17	12.5	e	2/ 3	276	28	0.0	CID	(2.8.	611 1.8	1 14.9,	â	1-0	19	**
-CV 1981 06 07 12.544 37-38 07 17-49 26 11 8/10 12		Nº.	1991	60	8		02:0	0	37-31.18	77-40.75	6.9	n	2/ 3	162	49	0.1	CID	. 1. 9.	85, 1.0	1 27. 21	(g	1 0.	19	
7 0.0 1991 04 0.7 34.36.0 37-37.95 77-51.96 1.1 4 2/4 30 42 0.2 0.2 0.1 0.0 0.4 0.1 0.0 0.4 0.1 0.0 0.4 0.1 0.0 0.4 0.1 0.0 0.4 0.1 0.0 <th< td=""><td></td><td>25</td><td>1961</td><td>10</td><td>g</td><td>07:</td><td>12: 5</td><td></td><td>37-28.87</td><td>77-49.26</td><td>0.8</td><td>11</td><td>8/10</td><td>129</td><td>\$3</td><td>0.3</td><td>BIC</td><td>(1.2.</td><td>891 0.6</td><td>1 2.1.</td><td>¥)</td><td>1 2</td><td>11</td><td>**</td></th<>		25	1961	10	g	07:	12: 5		37-28.87	77-49.26	0.8	11	8/10	129	\$3	0.3	BIC	(1.2.	891 0.6	1 2.1.	¥)	1 2	11	**
		PS-	1981	*0	8	07:	34.3	0.9	37-27.95	77-51.96	1.1	*	2/ 4	267	42	0.3	CID		68: 2.3	1.99.01	60	1 0.	4/	
-CV 1941 04 13 492 37-36		-80	1991	8	11	13:	20.3	2.2	38-13 36	79-50. 21	10.2	•	3/ 3	254	4	0.1	0:0	(6.6.	55: 1.1	3.8	c)	1-0	19	**
0 -HC 1981 0.6 08:03:58.7 38-12.45 79-30.87 14.3 6 5/1 13 0.3 0.1 (2.3.3.45) 4.7.25.010 7.0.7/1 1 1 -V 1981 07.30 11:59:48.5 39-11.46 78-5.26 6.0 10 8/10 180 0.3 CIC (2.722) 1.3:6.70 31/1.4/3 1 0.7 1 0.7 1 0.7 1 0.7 1 1 0.7 1 0.7 1 0.7 1 0.7 1 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7		PCA	1961	8	16	13	49:2	0.0	37-36. 32	78-12.89	13. 3		3/ 3	189	53	1.0	010	(10. 7	651 0.4	1. 4. 7:	â	10.	11	**
-CV 1981 07 30 11.59:48.3 38-11.66 78-5.26 6.0 10 8/10 180 0.2 CIC (2.7,-22.1) 2.1.5 6.7.1 31/1 4/3< 1 2 -6C 1981 06 24 16 7 6/7 183 11.1 2.1.5 6.7.1 31/1 4/3 1 0.0 2 11 0.2 11.1 2.1.5 6.7.1 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 1 0.2 11 0.2 11.1 2.1.5 1.1.07 1 0.7 1 0.2 11 1.1 2 1.1.07 1 1 0.7 1 0.7 1 0.7 1 0.7 1 0.7 0.7 1 0.7 0.7 1 0.7 0.7 0.7 0 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7		-BC	1981	8	8	8	03: 34	1 2	38-12.45	79-30.87	14.3	4	3/ 6	139	13	0.0	DIC	(23. 5.	45: 4.7	1 25. 01	â	1 0.	11	
2 -96 1981 08 11.30 12 36-36.71 80-44.75 16.8 7 6/7 183 11 0.2 810 (1.643) 11.1 2.8.18 /1.0/7 1 3<	-	PC PC	1981	0.7	8	11:	39:41	5	38-11.66	78- 5.26	0.9	10	8/10	180	8	0.3	CIC	(2.7	22: 1.3	21 6.71	C) 3	1. 1.	6/4	**
3 -00 1981 11 2 06.24 16 12/14 10 06-44 92 2 2/14 223 10 0.2 CID 1 10.10 7 0 7 0 7 0 1 1 0 7 0 7 0 1 1 1 0 7 0 7 0 1 1 1 0 7 0 1 1 1 1 0 7 0 1 1 1 1 0 7 0 1 0 1	~	¥	1961	8	5	11:	20: 1	~	36-36.71	80-44.78	16.8	~	617	183	11	0 0	BID	(1. 6	43. 1.1	2.8	(B	1 1.	0	
- CV 1981 11 23 36-14 6 79-5 9 16 12/11 175 50 0.3 81C (1.6. 2) 0.61 14/A 21/21/3 1 9 -CC 1981 11 20 23 56 16 12/11 175 50 0.3 81C (1.6. 2) 0.61 14/A 7 20 12 2.46 12 2.1/21/3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	-	¥	1961	11		8	24: 1-	0.1	37-14.10	80-44.95	6		2/ 4	223	10	0.2	CID	- '6 E)	67: 1.6	1 10. 71	â	1 0.	11	**
3 -00 (1981) 12 04 02 14/7 157 7 0.4 C1 (1.9, -20) 1.2; 2.4;41 / 2 0/ 1 <td></td> <td>P.S</td> <td>1961</td> <td>1</td> <td>8</td> <td>13:</td> <td>14: 5</td> <td>0.1</td> <td>38-14 48</td> <td>79- 5.36</td> <td>9.6</td> <td>16</td> <td>12/11</td> <td>175</td> <td>30</td> <td>0.3</td> <td>BIC</td> <td>(1.6.</td> <td>2: 0.4</td> <td>1.41</td> <td>A) 2</td> <td>1/ 2</td> <td>E/1</td> <td>**</td>		P.S	1961	1	8	13:	14: 5	0.1	38-14 48	79- 5.36	9.6	16	12/11	175	30	0.3	BIC	(1.6.	2: 0.4	1.41	A) 2	1/ 2	E/1	**
· -CV 1982 01 13 13 16 27 9 10 6/ 170 6 0.2 AIC (0.8, -67) 0.6, 0.8, 0.8, 0.4 /		8	1961	12	3	8	35. 56	*	36-39.99	80-44.77	3.5	91	14/ 7	157	2	* 0	CIC	1.9	20: 1.3	. 2. 4.	i	1 2	10	**
8 -CV 1982 01 18 06 11 41 2 37-54 31 77-50 35 7.4 6 6/5 171 9 0.1 BIC (1.136) 0.6 2.2,4 1 0.3/7 1 1 0.3/7 1 1 0.3/7 1 1 0.3/7 1 1 0.3/7 1 1 1 0.3/7 1		Nº.	1982	01	2	13	16:2	0	37-44.95	78- 4.20	* *	10	6/9	170	•	0 0	AIC	(0.8, -	67: 0.4	10 B	ŝ	1 1.	31	-
-CV 1982 02 04 37-29 17 77-42 40 0 1 1 0 1 5/1 5/1 5/1 5/1 5/2 5/1 5/2 <	-	2S	1982	01	10	8	11:41		37-54.31	77-50 33	7.4	*	e /9	171	0	0.1	BIC	C 1. 1	36: 0.4	2.2		1 0.	3/	**
0 - CV 1982 04 11 20: 01: 14.4 37-43.78 78-25.12 1.3 4 4/4 277 28 0.1 C1D (1.9, 24: 0.8: 28.1.D) / 0.9/ 1 A - CV 1982 05 04 14: 54: 02.2 37-33 84 78-27 76 5.2 6 5/6 139 40 0.3 C1C (2.880, 1.1; 8.3;C) / 1.4/ 1	-	N.	1982	8	8		34:2		37-29.17	77-42.40	8 0	•	8/ 7	145	49	0.1	CIC	C 0 8	GRI. 0. 4	1. 79. 6.	10	11.	3/1	
A -CV 1982 05 04 14:54:02 2 37-33 84 78-27 76 5.2 6 5/ 6 139 40 0.3 C:C (2.880, 1.1; 8.3;C) / 1.4/ 1	-	Ś	1982	5	11	8	1:10		37-43.78	78-25.12	1.3	*	4/ 4	277	38	0 1	CID	1.9.	24: 0.6	1 28 1.	01	1 0.	16	-
		N	1982	03	*	14:	34: 00	2 2	37-33.84	78-27.76	5.5	•	5/ 6	139	40	0.0	CIC	(2.8	80. 1. 1	18 3	0	1 2	14	

TRUMENTALLY LOCATED REGIONAL/LOCAL EARTHOUAKEB (FOR VIRGINIA

54

INSTRUMENTALLY LOCATED REGIONAL/LOCAL EARTHOUAKES (FOR VIRGINIA)

10 10<	4	5=2	Year Ma	Du Ti	1	UCT)	1 Hypor Lat-N	enter Lo	-W Da	pth	NSTA	P/S	etion GAU	Para Para	N RMS	2 SQD	-0	EFFOT	E111	÷ di	Proj.	- Ma	Bn1 t	1/1	Srce
2 1982 0 1984 0 1 </td <td>-</td> <td>S</td> <td>1 20 2861</td> <td>*0</td> <td>14:5</td> <td>7:31.2</td> <td>37-33.1.</td> <td>3 78-26</td> <td>31</td> <td>0.4</td> <td>*</td> <td>31</td> <td>23</td> <td>8</td> <td>0</td> <td>CID</td> <td>-</td> <td>. 3.</td> <td>811 0</td> <td>3</td> <td>2.4.D</td> <td></td> <td>1 0</td> <td>11</td> <td>**</td>	-	S	1 20 2861	*0	14:5	7:31.2	37-33.1.	3 78-26	31	0.4	*	31	23	8	0	CID	-	. 3.	811 0	3	2.4.D		1 0	11	**
0 100 101 101 1	T	S	1982 05	8	07: 11	8:10.9	37-51.2	\$ 77-34	23	4.7	10	10/ 8	130	1 10	0	81C	÷	. 0	82. 0	7.	2.3.4		1 2	1/0	**
0 1	T	¥	1982 05	18	1 - 60	\$ DE 9	37- 7. 7	2 80-29	97 1	n 0	12	121 7	140		0.0	810	~	ñ	21 0	ŵ	1.41A	~	2 2.	19	**
9 198 06 14.17 14.1 15.4 11 15.4 11 15.4 11 12 12.4 12 12.2 12 12.2 12 12.2 12 12.2 12 12.2 12 12 12.2 12 12.2 12 12.2 12 12.2 12 12.2 12 12.2 12		S	1982 06	16	18:4	0.58.6	38-7.6	3 78-30	44	4.0	•	19	12:	33	0	AIC	*	1.7.	9. 0	ā	1.714		1 23	1/1	**
	T	ş	1982 06	53	1 . 9	1.94.1	37-52.2	1 80-37.	42	1.1	11	16/ 9	111	8	0.0	810	-		0 189	õ	2.0.4		1 2	è	**
7 -0' 1982 0 is 153:32 0 7-09 76 10 10/10 10 10/10 10 10/10 11 2/1 11	7	S	1982 06	53	23: 0	3.47.0	37-49 B	6 77-30	12 1	e 10		6 16	166	8	0.1	AIC		.6	-4- 0	ä	1.5.4	~	/ 1.	18	**
0 183 0 17 0 17 0 17	T	2	1982 09	8	1.2	0 25 0	37-49 3	0 77-29.	76 1	9.0	10	10/10	106		0.0	810	2	- '6 .	98: 0	ġ	1.5.4		11	2	**
9 9 1 9 1	T	×	10 0861	8	3.3	3: 33.8	37-19.6	96-36	53		n	4/ 4	136	1.6	0	BIC	-	6	13/ 1	ñ	4.2.8		/ 1	à	**
0 -00 1983 01 20 2	T	2	10 0861	21 0	13.3	1.20.4	10 + - 00	3 -06 8	64 1	7.8	*	4/ 4	327	21	0	CID	~	6 .	44: 2	î.	4.2.8		10	14	**
I VM IMED OR OR B Y IB Y IA Y IA Y IA Y	7	×	10 5861	2	N	5 38 3	37-23.1	90-30	32 1	4.7	61	14/17	81	13	0.3	818	2	6	481 0	ä	1.2.4		1 2.	/8	**
2 -00 1980 04 20 7/6 17/6 17/6 120 120 11.2/7 11.2/7 30 -00 180 04 20 120 120 120 120 11.2/7 1	1	*	1983 02 1	0 0	91 .9	5. 59. 5	36-35.70	0 82-58	56	6.1	œ	8/ 7	186	72	0.0	CID	-	. 0	29. 0	ŵ	5.940		2	à	**
Mained 1983 05 12 0.2 12 0.2 11 49 06-43 14 3 1	4	×	*0 C861	2	8 0	56.6	37-20. 9.	80-49	1 66	* 0	٢	71 6	129	•	0.3	818	~	8	251 0	ő	2.1:4		1 2	2	**
B -00 1983 03 17 03-10 13 03-11 14 5.2.0 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1 1-0.1/1 1	7 3	×	1 60 0861	0	0: 23	0.7.0	37-11.45	64-08	88	0	n	3/ 5	202	13	0.0	BID		2.2	1 162	e	4.0.8		0-/	2	
- 0c 1983 03 01 18 10 12 10 2 12 2 <th2< th=""> <th2< th=""> 2 <t< td=""><td>1 8</td><td>×</td><td>1 50 0861</td><td>7 0</td><td>2:00</td><td>1.47.7</td><td>37-15.27</td><td>80-44</td><td>60</td><td></td><td>~</td><td>21 3</td><td>132</td><td>0</td><td>0.3</td><td>CIB</td><td>~</td><td>- '0 -</td><td>181</td><td>÷</td><td>3. 2. C</td><td></td><td>9</td><td>11</td><td>**</td></t<></th2<></th2<>	1 8	×	1 50 0861	7 0	2:00	1.47.7	37-15.27	80-44	60		~	21 3	132	0	0.3	CIB	~	- '0 -	181	÷	3. 2. C		9	11	**
Motion 1983<06 10 00:18.40.5 37-56.88 80-067 78 23.6 12 10/12 156 31 0.2 81C (1.251) 0.7 3.6.80 //1.2/7 1 Motion 1983<06 10 00:28 57.0 37-55.68 80-11.31 18.4 13/13 160 31 0.2 81C (1.449) 0.4, 3.6,80 //1.2/7 1 K We 1983<06 10 00:31:08 3 37-56.30 80-11.31 18.4 13 10/11 156 31 0.2 81C (1.449) 0.4, 3.6,80 //1.2/7 1 K -6V 1983<07 00 16 037 12 13 13/13 170 29 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 20 20 20 20 20 20 21 21 20 21	9	×	C 50 0861	10 92	1:04	44.8	37-30.33	80-18	56	0.4	10	8/14	104	0	0.0	818	~	6	37: 0	ŵ	1.814	~	6/ 2	2	
Be -wv 1983 06 10 37-57 04 10-11 18 13/13 160 31 0.2 81C (1.4, -49) 0.4 3.618) /1.2/1 1 C -wv 1983 06<10 00.31:083 37-56.30 80-10.08 13 13/13 170 27 81C (1.4, -49) 0.4 3.618) /1.2/1 1 C -wv 1983 07 03 16.27 37-56.0 07 13 8/13 170 27 8 0.3 8/14 11.2/1	1 3	s	1983 06 1	0	0: 18	1.40.5	37-56.86	80-08	78 2	9 0	12	10/12	156	30	0.3	BIC	~	- 2 -	51: 0	i.	3.8.8		1 1.	à	**
KC WV 1982 06<10 00:31:08:3 37-56.30 80-10 13 10/11 156 31 0.3 BIC (2.7, -56, 0.9, 3.3;B) (7.0, 1/2)	1	s	1 90 0861	0	0.24	57.0	37-57.04	80-11.	31 10	*	13	13/13	140	31	0.2	BIC	*	- 18 -	141 0	÷	3.618		11.	à	**
-CV 1983 07 16 27 13 8/13 170 29 0.3 CIC (1.5, -75) 0.91 4.218) / 1.2/ 1 1 2/ 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2 1 2 <td>7</td> <td>2</td> <td>1 90 0861</td> <td>0</td> <td>0:31</td> <td>: 08 3</td> <td>37-56. 30</td> <td>80-10</td> <td>08 1</td> <td>0.0</td> <td>12</td> <td>11/01</td> <td>156</td> <td>31</td> <td>0.0</td> <td>BIC</td> <td>~</td> <td>1.7</td> <td>561 0</td> <td>ő</td> <td>3.318</td> <td></td> <td>10</td> <td>14</td> <td></td>	7	2	1 90 0861	0	0:31	: 08 3	37-56. 30	80-10	08 1	0.0	12	11/01	156	31	0.0	BIC	~	1.7	561 0	ő	3.318		10	14	
-0c 1983 07 10 11 7/ 89 6 0.3 81.4 (1.2, -18, 1.2, 2.9,8) /1.0/ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Y	2	0 20 0861	1	10	24.9	37-38.43	78-22	40		13	8/13	170	52	0.3	CIC	~		75: 0	ō	4.218		11.	51	-
-wv 1983 07 20 04 11 0 11 10/11 208 35 0.3 81D (2.653) 0.8 2.7 1 1 6 1 6 35 0.3 81D (2.653) 0.8 2.7 1 6 1 <	9		1 40 6861	0	4 03	39. *	37-16.23	80-45.	5	2.6	~	717	89	4	0.3	8:8	2	1	18, 1	Ň	2.9.8		1 2	10	**
Mar w/l 1983 07 25 03 27:00 2 37-29 75 81-21 11 29:0 4 3/ 29:0 32 0.1 CID (4.5,-81) 2.6 5.0 1 0.6 1 1 0 1 <t< td=""><td>7</td><td>2</td><td>2 10 0841</td><td>0</td><td>4.41</td><td>40.9</td><td>37-53.07</td><td>18-08</td><td>47 1</td><td>0</td><td>11</td><td>11/01</td><td>206</td><td>33</td><td>0.3</td><td>810</td><td>~</td><td></td><td>0 100</td><td>ŵ</td><td>2.7.8</td><td></td><td>1. 1</td><td>3</td><td></td></t<>	7	2	2 10 0841	0	4.41	40.9	37-53.07	18-08	47 1	0	11	11/01	206	33	0.3	810	~		0 100	ŵ	2.7.8		1. 1	3	
-val 1983 07 30 36-41 54 81-38 20 8 57 43 0.3 CID (2.4, -45, 1.2) 6.1, Cl 1.5/ 1 00 -Vv 1983 08 10 12 8 11.2 8 8/6 118 23 0.3 CID (2.4, -45, 1.2) 6.1, Cl 1 23 0.3 CIC 1 24, +28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>7</td> <td>2</td> <td>2 70 2891</td> <td>0</td> <td>3.27</td> <td>00 2</td> <td>37-29.73</td> <td>81-21</td> <td>11 24</td> <td>0</td> <td>*</td> <td>3/ 4</td> <td>299</td> <td>32</td> <td>0.1</td> <td>CID</td> <td>5</td> <td>- · · · ·</td> <td>81. 2</td> <td>ā</td> <td>6. 51 C</td> <td></td> <td>1 0.</td> <td>19</td> <td></td>	7	2	2 70 2891	0	3.27	00 2	37-29.73	81-21	11 24	0	*	3/ 4	299	32	0.1	CID	5	- · · · ·	81. 2	ā	6. 51 C		1 0.	19	
0 - CV 1983 08 10 12 29 34 1 37-46.35 78-25 46 11 2 8 8/ 6 118 23 0.3 C/C (3.4.+28.1.3, 4.9.8) / 1.8/ 1 1 - 0C 1983 08 25 03 04 34 8 37-19 47 80-43 68 14 7 4 3/ 4 279 6 0.2 C/D (3.0.+29/1.8) 3.8/8) / 0.0/ 1	7	*	E 10 E841	0	6.31	52.8	36-41.54	86-18	8	0	œ	3/ 8	187	64	0 3	CID	~	- *	1 .51	ñ	6.1.0		1	2	-
11 -0C 1983 08 25 05 04 34 8 37-19 47 80-43 68 14 7 4 3/ 4 279 6 0 2 CID (3 0, +29, 1 8, 3 8/8) / 0 0/ 1	9 9	2	1 80 0841	0	5 30	34.1	37-46.33	78-25	46 11	~	8	8/ 6	118	23	0.3	CIC	-	. 4. +	28: 1	ñ	4.9.8		1 2	18	**
	9 1		1983 08 2	0	0.04	34.8	37-19.47	60-43	1 89	~	*	\$ 18	279	-0	0 2	CID	~	+ .0	1 162	ŵ	9 8 8		0	10	

55

1030-66 111 15 16 16 17. 9 1 16 1 10 2 17. 17. 16 2 17. 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17. 16 17.	Lab -Rag	Year	Ma	- 20	1 an	(UC)	1 1	Hypocen Let-N	ter Locat Long-W	Depth	NSTA	Loc.	et ion	Para	N RHS	Sap	I Er (ERH	TOT E1	ERHC2.	Froj ERZig)	I Magnitud Mb/M1/	src.	
1038-6 111 1<	1024-00	1983	11	0	16	51:0	14.7	37-33.36	80-45 29	10.01	•	31	1 12	1	0	BIC	1 1	026	0 3	2.2.4)	10.4		
1000-000 17 17 17 1 <th< td=""><td>1028-00</td><td>198</td><td>11</td><td>1</td><td>17</td><td>8</td><td>1.1</td><td>37-33, 53</td><td>80-45 23</td><td>9.1</td><td>*</td><td>2/</td><td>23</td><td>0</td><td>0</td><td>BID</td><td>1.</td><td>516</td><td>8 0</td><td>3.718)</td><td>/-0.8</td><td>1 1</td><td></td></th<>	1028-00	198	11	1	17	8	1.1	37-33, 53	80-45 23	9.1	*	2/	23	0	0	BID	1.	516	8 0	3.718)	/-0.8	1 1	
1000-000 1000 11.23 16.23 30 1 1 2 <th2< th=""> <th2< th=""></th2<></th2<>	1020-00	1983	11	1	17	8	1 2	37-33.35	80-45 17	11.0	n	3/	1 17		0 1	BIC	1.1	522	0.9	3.5.8)	1 0.7		
1000-05 1900 112 16.27.67.8 37-34.10 80-47 11 7 7 1 7 1 7 1 7 1 7 1 <	1034-00	1980	11	8	16	55	0.50	37-33.57	80-45.34	8.9	e	11	36	9 0	0.0	010	é v	5. +63	3.9	10 4 01	1-1 3		
100 100 <td>1038-90</td> <td>1983</td> <td>11</td> <td>-</td> <td>16</td> <td>5</td> <td>17.8</td> <td>37-34.10</td> <td>80-44.71</td> <td>11.9</td> <td></td> <td>15</td> <td>0 18</td> <td></td> <td>0 1</td> <td>AID</td> <td>0 ></td> <td>809</td> <td>0.6</td> <td>1.7.4)</td> <td>1 0.7</td> <td>1</td> <td></td>	1038-90	1983	11	-	16	5	17.8	37-34.10	80-44.71	11.9		15	0 18		0 1	AID	0 >	809	0.6	1.7.4)	1 0.7	1	
10	1036-90	1980	11	12	16	8	8 00	37-34.09	80-45.03	11. 3	*	12	1 26	0	0 1	CID	1 2	£1-13	1.40	5. 61 C)	1-0.8		
100 1	104 -00	1980	12	8	8	11:	97.9	37-12.05	80-47.15	12 4	17	17/20		8 1	0 0	818	0 >	752	0.6	1.2.4)	/ 1.3		
100 -CV 1986 CO 12 77-90 13 71 1	VM- 501	1980	12	2	10	31:0	6 12	37-45.94	80-50.21	13.7	•	16	58	6 30	0	CID	, 2 ,	S 39	1.5.	3. A.	1.6/ 0.3		
107 - 6C 1964 6.3 11 04:01:37:8 37-36 01 60-33 36 14.3 9 14.4 12 02 12.6 12.	106 -CV	1984	20	8	1	27.0	* 0	37-34.38	78-08.93	* 0	*	41	1 12	* 2	0.0	CIC	0.1	583	0.3	30. 31 D)	12.1		
106 -CV 1984 0.1 23 46.01 37-36.56 78-01 47 527 14 0.1 0.1 0.6 4.518 7-0.67 1 2 106 -CV 1984 05 11.28*350 38-06.42 78-47.56 07.4 5 5/7 32 0.1 CID (2.210) 1.4 7.2.67 7.1.37 1 111 -CV 1984 15 150.56 37-17 80-43.26 11.2 7 7 2 81.6 (1.1.402 0.4 7 12 1 <t< td=""><td>107 -00</td><td>1984</td><td>53</td><td>11</td><td>10</td><td>01.1</td><td>87.8</td><td>37-29. 01</td><td>80-33.56</td><td>14.3</td><td>•</td><td>16</td><td>9 19</td><td>1 1</td><td>0 0</td><td>2 810</td><td>5</td><td>162</td><td>1.21</td><td>2.8.8)</td><td>11.0</td><td></td><td></td></t<>	107 -00	1984	53	11	10	01.1	87.8	37-29. 01	80-33.56	14.3	•	16	9 19	1 1	0 0	2 810	5	162	1.21	2.8.8)	11.0		
100 100 <td>108 -CV</td> <td>1984</td> <td>*0</td> <td>2</td> <td>8</td> <td>-94</td> <td>9.04</td> <td>37-56.56</td> <td>78-01.47</td> <td>06.1</td> <td>0</td> <td>18</td> <td>1 23</td> <td>7 1</td> <td>0</td> <td>C ID</td> <td>. C 3.</td> <td>638</td> <td>0.6</td> <td>4.5.8)</td> <td>1-0.</td> <td>1 1</td> <td></td>	108 -CV	1984	*0	2	8	-94	9.04	37-56.56	78-01.47	06.1	0	18	1 23	7 1	0	C ID	. C 3.	638	0.6	4.5.8)	1-0.	1 1	
110 -00 1994 07 10 11 7 9 7 9 9 7 9 1 <td< td=""><td>106 -CV</td><td>198</td><td>02</td><td>8</td><td>11</td><td>8</td><td>0 50</td><td>38-06. 42</td><td>78-47.58</td><td>07.4</td><td>•</td><td>15</td><td>3</td><td>2</td><td>0</td><td>C 10</td><td>~</td><td>2, -10</td><td>1.41</td><td>7.2.01</td><td>11.3</td><td>/ 1</td><td></td></td<>	106 -CV	198	02	8	11	8	0 50	38-06. 42	78-47.58	07.4	•	15	3	2	0	C 10	~	2, -10	1.41	7.2.01	11.3	/ 1	
111 -V 1994 06 17 16 05 15 05 75 06 7 15 15 15 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 17 15 16 16 17 15 16 17 15 16 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 16 17 15 16 16 16 16 17 16 17 16 17 16 17	110 -00	1984	01	8	61	31:15	1 10	37-17.07	80-43.24	11.2		11		2	0	2 814	1 1	1.+02	0.9.	2.3.4	11	1 1	
112 -w 1964 10 05 37-42 7 80-53.44 13.4 9 9/7 222 14 0.2 810 (0.050) 0.5 0.644) /21/1 1 113 -vv 1964 10 7 37-50 11 14.7 9 8/7 202 17 0.5 610 0.51 0.51 0.41 /11/1 1 114 -vv 1964 11 7 03 17 0.2 810 (0.0.4-66) 0.51 0.41 /11/1 1 </td <td>111 -CV</td> <td>1984</td> <td>8</td> <td>17</td> <td>81</td> <td>03</td> <td>6.9</td> <td>37-32.05</td> <td>78-19.42</td> <td>08.2</td> <td>5</td> <td>13/</td> <td>3 10</td> <td></td> <td>0 5</td> <td>2 810</td> <td>0)</td> <td>9. +18</td> <td>0.6</td> <td>1. 7, 81</td> <td>4.2/ 4.0</td> <td>1. 5/</td> <td></td>	111 -CV	1984	8	17	81	03	6.9	37-32.05	78-19.42	08.2	5	13/	3 10		0 5	2 810	0)	9. +18	0.6	1. 7, 81	4.2/ 4.0	1. 5/	
113 -CV 19964 10 17 0.2 810 (0.9, -27) 0.5 0.94.4) /1.1/ 1 114 -0C 19964 11 7 03 17 0.2 810 (0.9, -27) 0.5 0.94.4) /1.1/ 1 <td>112 -40</td> <td>1984</td> <td>10</td> <td>8</td> <td>00</td> <td>8</td> <td>11.5</td> <td>37-42.77</td> <td>80-53.44</td> <td>13.4</td> <td>•</td> <td>16</td> <td>3</td> <td>2</td> <td>0 1</td> <td>2 810</td> <td>0 1</td> <td>9 50</td> <td>0.5</td> <td>0. 61 4</td> <td>1 2</td> <td></td> <td>-</td>	112 -40	1984	10	8	00	8	11.5	37-42.77	80-53.44	13.4	•	16	3	2	0 1	2 810	0 1	9 50	0.5	0. 61 4	1 2		-
114 -00 1984 11 03 17 94 10 1 1	V3- E11	1984	10	23	8	57:	10.7	37-56 05	77-30.41	14.7	•	18	30	3	0	2 815	0 3 1	927	0.5	0.914	11.1	/ 1	
115 -V 1984 12 22 37-26 52 77-35 57 4 5 3/ 6 25 0 0 0 0 0 4 0 0 4 0 0 4 0 0 4 1	114 -00	1984	11	Pr at	8	17.	0.8	37-15.94	80-43.61	10.3	4	41	11	8	0	I AID	(O.	4.+68	0.3	1.0.4	/ 0.0		
116 -BC 1984 12 21 13:12 21 9 36-11 85 80-12 49 5 8 12 10/12 223 26 0.4 CID (2.0, -28) 0.5 2.0,8) / 1.6/ 1 117 -CV 1985 04 22 18:21:16.0 37-36.15 78-35.91 4.5 8 7/8 111 43 0.8 CIC (1.1, -90) 0.5) 4.1/C) / 2.0/ 1 118 -6C 1985 06 10 12:22:38.3 37-14.89 80-29 111 9 9/5 6 0.3 818 (0.9, -17) 0.9/2 2.0/8) 1.6/1 1 2.0/1 1 1.2 2.0/1 1 1.2 2.0/1 1 1.2 1.1 43 0.8 CIC (1.1, -90) 0.5) 4.1/C) / 2.0/1 1 1.2 2.0/1 1 1.2 2.0/1 1 1.2 2.0/1 1.1 43 0.8 CIC (1.1, 1, -90) 0.5 1.2 2.0/1 1.2 2.0/1 1.2 2.0/1 1.2 2.0/1 1.2 2.0/1 1.2 2.0/1 1.2 2.0/2	113 -CV	1984	12	8	12	8		37-26. 52	77-35 57		4	3/	5	4	0	2 CID		9. +90	0 6	4 210	11.1		
117 - CV 1985 04 22 18. 21:16.0 37-36.15 79-35.91 4.5 8 7/ 8 111 43 0.8 CIC (1.1, -90:0.5, 4.1;C) / 2.0/ 1 118 - 6C 1985 06 10 12.22:38.3 37-14.89 80-29 12 11.1 9 9/ 5 99 6 0.3 818 (0.9, -17) 0.9; 2.0;8) 3.2/ 2.8/4 1 119 - 4W 1985 06 14 07:57:10.2 37-32.05 81-01.19 2.4 5 4/ 3 242 17 0.3 818 (0.9, -17) 0.9; 2.0;8) 3.2/ 2.8/4 1 119 - 4W 1985 06 19 27:32:28:08;9 37-13:30 82-02:30 0.5 13 13/ 7 183 89 0.4 CID 1.627/ 1.10; 3.8/5 1 0.8/7 1 0.8/7 1 12.6/6 1 1 0.8/7 1 12.6/7 1 <	116 -80	1984	12	12	13	12	6 12	38-11.85	80-12.49	8.8	12	10/1	3	2	0	CID .	0i 	028	0.5	2.0.8	11.1		
118 -6C 1985 06 10 12 222 37-14 89 60 28 70 60 38 70 71 09 50 31 32 28/4 1 119 -wv 1985 06 14 07 51 11 7 8 4/3 242 17 03 11 4.4C) 7 08/1 1 120 -wt 1985 06 14 07 51 13 24 5 4/3 242 17 03 10 13 4.4C) 7 08/1 1 1 0 1 1 1 1 1 1 1 1 1 1 2 4 1	117 -CV	1982	10	8	18	21:12	0.9	37-36.15	78-35.91	*	0	11	8 11	4	0	a C1C	1 3	190	0.5	4. 1. C	120	1 1	
119 - W 1985 06 14 07:57:10.2 37-32.05 81-01.19 2.4 5 4/ 3 242 17 0.3 010 (3.6, -52) 11, 4.4,C) / 0.8/ 1 120 - VA 1985 06 19 27-13.30 82-02.30 0.5 13 13/ 7 183 89 0.4 CID (1.6, -27) 1/0) 3.8/C) / 3.6/ 1 120 - VA 1985 06 19 37-13.30 82-02.30 0.5 13 13/ 7 183 89 0.4 CID (1.6, -27) 1/0) 3.8/C) / 3.6/ 1 1 0.6 1.4 1 0.6/1 1 1 0.6 1 1 0.6 1 1 0.6/1 1 0.6/1 1 0.6/1 1 0.6/1 1 0.6/1 1 0.6/1 1 1 0.6 1 1 0.6/1 1 0.6/1 1 0.6/6/1 1 0.6/6/1 1 0.6/1 1 0.6/1 1 0.6/1 1 0.6/6/1 1 0.6/1 1 1 0.6/1	118 -00	1982	80	10	12	8	E 8	37-14.89	80-29.12	11.1		16		2	0	818 0	0 1	917	. 0. 9	2.0.8	3.2/ 2.	1/4 3	
120 -VA 1985 06 19 22 28:08.9 37-13.30 82-02.30 0.5 13 13/7 183 89 0.4 CID (1.627/1.0.38.C) /36/ 1 121 -0C 1985 07 02 05 38:24.9 37-14.71 80-34.03 7.7 3 3/3 185 14 0.1 81D (0.8.+02.04.22.8) /-0.6/ 1	NH- 611	198	8	*	01	57: 1	0.2	37-32.05	81-01 19	4.1	-	14	3 24	1 2	0	a pit	6 1	6 52	1.1.	4.4.0	1 0.1		-
121 -0C 1985 07 02 05 38 24 9 37-14 71 80-34 03 7.7 3 3/3 185 14 0.1 BID (0.8, +02, 0.4; 2.2; 8) /-0.6/ 1	120 -VA	198	8	01	8	38	6 9	37-13.30	82-02.30	0.0	13	151	7 18	8	0	110 *		627	1 10	3.8.0	13	1 1	
	121 -00	1983	0.1	8	00	8	6.92	37-14.71	80-34.03	7.7	e	16	3 16	1 50	0	1.8.1	0 2 0	8.+02	* 0 *	2.2.8	. 1-0.	1 /1	

NUMENTALLY LOCATED REGIONAL/LOCAL EARTHQUAKES (FOR VIRGINIA)

Abbreviations For Regions:

- BC: Bath County, Virginia, arsa,
- CV: Central Virginia Seismic Zone.
- QC: Giles County, Virginia, Seismic Zone.
- NA: North Anna, Virginia, area.
- KY: Kentucky area.
- NV: Northern Virginia area.
- SC: South Carolinia area.
- TN: Tennessee area.
- VN: Virginia / North Carolina area. VN: Virginia / West Virginia area.
- WV: West Virginia.
- R : Events that have been relocated for special studies. Calculated using either, a new technique (JHD, JED, HYPDELLIPSE, etc.) or a different velocity model.

Sources and/or References

57

- VTSO records. NRC reports. SEUSSN Bulletins, or Q. A. Bollinger personal files.
- 2: Dames and Moore, 1977. 'A Seisnic Monitoring Program At The North Anna Site In Central Virginia'. - January 24. 1974 Through August 1, 1977. Bubmitted to VEPCO. 1977.
- 5: Coffman, Jerry L., and C. W. Stover, 19XX. U. S. Earthquates, 19XX; annual publication by NGAA and the USGS, 7: USGS Preliminary determination of epcenters, 19XX, monthly listings.
- 11: Dewey and Gordon, 1987. Relocation of major eastern North American earthquakes using JED/JHD.

BIBLIOGRAPHIC DATA SHEET	NUREG/CR-4502
EE INSTRUCTIONS ON THE REVERSE TITLE AND SUBTITLE	L LEAVE BLANK
Virginia Regional Seismic Network: Final Report (1977-1985)	A DATE REPORT COMPLETED
	December 1985
G. A. Bollinger, J. A. Snoke, M. S. Sibol & M. C. Chapman	REDATE REPORT ISSUED
PERFORMING ORGANIZATION NAME AND MAILING ADDRESS /include Zip Code/	PROJECT/TASK WORK UNIT NUMBER
Virginia Polytechnic Institute and State University Seismological Observatory Blacksburg, VA 24001	BE249
SPONSORING ORGANIZATION NAME AND MALING ADDRESS (Include 2 & Cade)	11, TYPE OF REPORT
Division of Radiation Programs and Earth Sciences Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555	Final Technical MERIOD COVERED (Universe darm) 1977-1985
2 SUPPLEMENTARY NOTES	an a
Eight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate number able differences between the two seishically active polareas (southwestern (Giles County) and central parts of	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl
Bight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate numbe able differences between the two seishically active po areas (southwestern (Giles County) and central parts o some 200 km. Despite their proximity, the two zones e geometrical/mechanical characteristics. In Giles County predominately strike-slip faulting in a near vertic that is below the Appalachian decollement. In central derived from mixed dip-slip and strike-slip faulting is (~100 km diameter; ~10 km vertical thicknest), above Stress estimates, as derived from single- and sompositiare NE to ENE in Giles County and NW to NE in central The causes for the observed variability are unknom. tectonostratigraphic (suspect) terranes and that differ recently proposed Hydroseismicity model (Costain an Biobserved seismicity variations in Vinginia and through drainage basin hydrologic characteristics plus differ	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (~ 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing.
B ABSTRACT (200 more stream) Eight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate numbe able differences between the two seishically active po- areas (southwestern (Giles County) and central parts o some 200 km. Despite their proximity, the two zones e geometrical/mechanical characteristics. In Giles Coun- by predominately strike-slip faulting in annear vertic that is <u>below</u> the Appalachian decollement. In central derived from mixed dip-slip and strike-slip faulting i (~ 100 km diameter; ~ 10 km vertical thickness), <u>above</u> Stress estimates, as derived from single- and composit are NE to ENE in Giles County and NW to NE in central The causes for the observed variability are unknom. tectonostratigraphic (suspect) terranes and that differ recently proposed Hydroseismicity model (Costain and Br observed seismicity variations in Virginia and through drainage basin hydrologic characteristics plus differ	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (~ 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing.
Eight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate numbe able differences between the two seishically active portareas (southwestern (Giles County) and central parts or some 200 km. Despite their proximity, the two zones endower in the endower is the	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (~ 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing.
Eight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate numbe able differences between the two seishically active po areas (southwestern (Giles County) and central parts o some 200 km. Despite their proximity, the two zones e geometrical/mechanical characteristics. In Giles County predominately strike-slip faulting in a near vertic that is below the Appalachian decollement. In central derived from mixed dip-slip and strike-slip faulting i (~ 100 km diameter; ~ 10 km vertical thicknes), above Stress estimates, as derived from single- and composit are NE to ENE in Giles County and NW to NE in central The causes for the observed variability are unknown. tectonostratigraphic (suspect) terranes and that differencently proposed Hydroseismicity model (Costain an Biobserved seismicity variations in Vinginia and through drainage basin hydrologic characteristics plus differencently Strike Stress Process	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (* 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing.
Eight years of monitoring with a 20-station regional n $(M \le 4)$, focal depths and mechanisms of adequate numbe able differences between the two seisnically active po- areas (southwestern (Giles County) and central parts o some 200 km. Despite their proximity, the two zones e geometrical/mechanical characteristics. In Giles Coun- by predominately strike-slip faulting in a near vertic that is below the Appalachian decollement. In central derived from mixed dip-slip and strike-slip faulting i (~ 100 km diameter; ~ 10 km vertical thicknest), above Stress estimates, as derived from single- and composit are NE to ENE in Giles County and NW to NE in central The causes for the observed variability are unknom. tectonostratigraphic (suspect) terranes and that differ recently proposed Hydroseismicity model (Costain and Br observed seismicity variations in Virginia and through drainage basin hydrologic characteristics plus differ * DOCUMENT ANALYSE - * KEYWORDEDESCRIPTORS Seismicity Seismic Network Giles County Hypocenter Bullentin Earthquakes	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (* 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing.
A ABSTRACT (200 MORE & 200 MO	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (* 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing. Is Availability Unlimited A SECURITY CLASSIFICATION The page Unclassified
Is ABSTRACT (200 moment of two) Eight years of monitoring with a 20-station regional n (M ≤ 4), focal depths and mechanisms of adequate number able differences between the two seishically active po areas (southwestern (Giles County) and central parts o some 200 km. Despite their proximity, the two zones e geometrical/mechanical characteristics. In Giles County predominately strike-slip faulting in a near vertic that is below the Appalachian decollement. In central derived from mixed dip-slip and strike-slip faulting i (~ 100 km diameter; ~ 10 km vertical thickness), above Stress estimates, as derived from single- and composit are NE to ENE in Giles County and NW to NE in central The causes for the observed variability are unknom. tectonostratigraphic (suspect) terranes and that differecently proposed Hydroseismicity model (Costain an Bobserved seismicity variations in Virginia and through drainage basin hydrologic characteristics plus differently Hypocenter Bullentin Earthquakes NORMATINERECOMENTIONENTIAL Seismic Network Giles County Hypocenter Bullentin Earthquakes	etwork has produced epicenters r and quality to reveal consider- rtions of Virginia. Those two f the state) are separated by onl xhibit remarkable differences in ty, seismic energy is released al, tabular zone (* 40 km long) Virginia, the seismicity is n a large, coin shaped volume the major detachment faulting. e-focal mechanism solutions P-axe Virginia. The two zones are in different rence could be relevant. The ollinger, 1985) ascribes the out the Southeast to different nces in upper crustal fracturing. Inclassified The image of the seismic Unclassified The image of the solutions for the solution of the solution of the seismic Unclassified

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

COURT !!

i.

120555078877 1 1AN1RA US NRC ADM-DIV OF TIDC POLICY & PUB MGT BR-PDR NUREG W-501 WASHINGTON DC 20555 SPECIAL FOURTH CLASS RATE POSTAGE & FEES PAID USNRC WASH. 0.C PERMIT No. G-67

-

.

NUREG/CR-4502