10

.

PEACH BOTTOM ATOMIC POWER STATION Unit Nos. 2 and 3 Docket Nos. 50-277 & 50-278

SEMI-ANNUAL EFFLUENT RELEASES REPORT

NO. 25

JANUARY 1, 1988 THROUGH JUNE 30, 1988

Submitted to The United States Nuclear Regulatory Commission Pursuant to Facility Operating Licenses DPR-44 & DPR-50

8809080023 880829 PDR ADOCK 05000277 R PDC

8

PHILADELPHIA ELECTRIC COMPANY

PEACH BOTTOM ATOMIC POWER STATION Unit Nos. 2 and 3 Docket Nos. 50-277 & 50-278

SEMI-ANNUAL EFFLUENT LELEASES REPORT

NO. 25

JANUARY 1, 1988 THROUGH JUNE 30, 1988

Submitted to The United States Nuclear Regulatory Commission Pursuant to Facility Operating Licenses DPR-44 & DPR-56

> Preparation Directed By: D. M. Smith, Vice President Peach Bottom Atomic Power Station

TABLE OF CONTENTS

Ι.

ÎI.

III.

		Page No.
Inti	roduction	11
Tabl	les	
IA.	Gaseous Effluents - Summation of All Releases	1
IB.	Gaseous Effluents For Release Point - Main Stack	2
IC.	Gaseous Eff Or Release Point - U/2 Roof Vents	4
2A.	Liquid Effluents - Summation of All Releases	6
2В.	Liquid Effluents	7
з.	Classes of Solid Radioactive Waste Shipments	9
Atta	achments	

Α.	Supplemental Information	10
B.1	Inoperable Main Stack Sample Flow Moni	12
в.2	Calculations for Critical Organ Dose Using Forticulates With Half-Lives Greater than 8	12 Days

Technical Concurrences: (for accuracy of information)

Date 8/35/88 tion / Date Date Date K. Mc/addentor EPF Director-Radiation Protection

nal tor Radwagte

SEMI-ANNUAL EFFLUENT RELEASE REPORT JANUARY 1, TO JUNE 30, 1988

INTRODUCTION

1.

In accordance with the Unique Reporting Requirements of Technical Specification 6.9.2.h(2) applicable during the reporting period, this report summarizes the Effluent Release Data for Peach Bottom Atomic Power Station Units 2 and 3 for the period January 1 through June 30, 1988. The notations E and Eare used to denote positive and negative exponents to the base 10.

The release of radioactive materials during the reporting period was within the Technical Specification limits. There were changes made to the Offsite Dose Calculation Manual (ODCM) during the reporting period. A copy of the Offsite Calculation Manual is attached to this report.

There were no known unplanned releases of liquid radioactive material.

A special report discussing the inoperability of the Main Stack Sample Flow Monitor is included in the ATTACHMENT B section of this report.

Iodine was not present from either the roof vents or main stack in section labeled Gaseous Effluents (Table 1A). Therefore, the Critical Organ Dose for iodines in mReA was zero. In accordance with the current revision of the Offsite Dose Calculation Manual (ODCM) attached to this report, the Critical Organ Dose was calculated using the particulates with half-lives greater than 8 days. These calculations are incorporated into the ATTACHMENT B section of the report.

In section labeled Liquid Effluents (Table 2B) the Phosphorus-32 reported value is less than the lower limit of detection. The half-life of Phosphorus-32 has been exceeded by a factor of eight half-lives, therefore, Phosphorus-32 is reported as zero for this reporting period. In general, any isotope with halflives greater than eight shall be reported as zero.

-ii-

TABLE 1A

-

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988A)

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

	Unit 2&3	Quarter 1	Quarter 2	Est. Total Error, %
A. Fission & activation gases				
1. Total release	Ci	3.02 E2	2.93 E2	54.0 EO
2. Average release rate for period	uCi/sec	3.84 E1	3.46 E1	
3. Gamma Air Dose	Millirad	3.53 E-2	4.44 E-2	
Percent of Tech. Spec.	%	3.53 E-1	4.44 E-1	
4. Beta Air Dose	Millirad	1.77 E-2	1.96 E-2	
Percent of Tech. Spec.	%	8.85 E-2	9.80 E-1	
B. Iodines				
1. Total iodine-131	Ci	0	0	61.0 E0
2. Average release rate for period	uCi/sec	0	0	
3. Critical Organ Dose	Millirem	5.11 E-6	3.57 E-5	
Percent of Tech. Spec.	%	3.41 E-5	2.38 E-4	
C. Particulates				
 Particulates with half-lives greater than 8 days (includes Alph> and Strontium 85-90) 	Ci	2.65 E-4	3.31 E-4	61.0 EO
2. Average release rat period	uCi/sec	4.11 E-5	3.91 E-5	
3. Gross Alpha Radioact	Ci	2.50 E-5	4.11 E-5	
). Tritium				
1. Total release	Ci	3.41 EO	1.87 EO	94.0 EO
2 Average release rate for served		A 24 E 1	2 21 5 1	

TABLE 18

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988A)

GASEOUS EFFLUENTS FOR RELEASE POINT: MAIN STACK 2880089940

CONTINUOUS MODE BATCH MODE

uclides Released	Unit 2 & 3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
. Fission gases					
Krypton-85M	Ci	0	0	0	0
Krypton-87	Ci	0	0	0	0
Krypton-88	Ci	0	0	0	0
Xenon-133	Ci	0	0	0	0
Xenon-135	Ci	0	0	0	0
Xenon-135M	Ci	0	0	0	0
Xenon-138	Ci	0	0	0	0
Unidentified	Ci	2.47 E2	2.22 E2	0	0
Total for period	Ci	2.47 E2	2.22 82	0	0
lodines					
lodine-131	Ci	0	0	0	0
lodine-133	Ci	0	0	0	0
Iodine-135	Ci	0	0	0	0
Total for period	Ci	0	0	0	0
Particulates					
Strontium-89	C'	4.90 E-7	3.50 E-7	0	0
Strontium-90	Ci	2.60 E-7	8.50 E-7	0	0
Strontium-91	Ci	0	0	0	0
Cesium-134	Ci	0	0	0	0
and the second	(2)				

TABLE 1B (Continued)

2880089940

		CONTINUOUS MODE		BATCH MODE	
uclides Released	Unit 2 & 3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
Cesium-137	Ci	0	0	0	0
Cesium-138	Ci	0	0	0	0
Barium-139	Ci	0	0	0	0
Barium-140	Ci	0	0	0	0
Lanthonum-140	Ci	0	0	0	0
Cobalt-57	Ci	0	0	0	0
Cobalt-58	Ci	0	0	0	0
Cobalt-60	Ci	0	0	0	0
Zinc-65	Ci	0	0	0	0
Yttrium-91M	Ci	0	0	0	0
lodine-133	Ci	0	0	0	0
Copper-64	Ci	0	0	0	0
Rubidium-88	Ci	0	0	0	0
Manganese-54	Ci	0	0	0	0
Strontium-92	C1	0	0	0	0
lotals	Ci	7.50 E-7	1.21 E-6	0	0

TABLE 1C

.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988A)

GASEOUS EFFLUENTS FOR RELEASE POINT: U/2 & U/3 Roof Vents 2880089940

CONTINUOUS MODE BATCH MODE

Nuclides Released	Unit 2&3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
1. Fission gases					
Krypton-85M	Ct	0	0	0	0
Krypton-87	Ci	0	0	0	0
Krypton-88	Ci	0	0	0	0
Xenon-133	Ci	0	0	0	0
Xenon-135	Ci	0	0	0	0
Xenon-135M	Ci	0	0	0	0
Xenon-138	Ci	0	0	0	0
Xenon-133M	Ci	0	0	0	0
Unidentified	Ci	5.50 E1	7.09 E1	0 0	
Total for period	Ci	5.50 E1	7.09 E1	0	0
2. Iodines					
Iodine-131	Ci	0	0	0	0
Iodine-133	Ci	0	0	0	0
Iodine-135	Ci	0	0	0	0
Total for period	Ci	0	0	0	0
3. Particulates					
Strontium-89	Ci	1.65 E-5	3.05 E-5	0	0
Strontium-90	Ci	8.95 E-6	1.50 E-5	0	0
Strontium-91	Ci	0	0	0	0
Cesium-134	Ci	0	0	0	0
Cesium-137	Ci	0	0	0	0
	(4)			

TABLE 1C (Continued)

ħ

CONTINUOUS MODE

2880089940

BATCH MODE

uclides Released	Unit 2&3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
Cesium-138	Çi	0	0	0	0
Barium-139	Ci	0	0	0	0
Barium-140	Ci	0	0	0	0
Lanthanum-140	Ci	0	0	0	0
Cobalt-57	Cí	0	0	0	0
Cobalt-58	Ci	0	0	0	0
Cobalt-60	Ci	1.11 E-4	9.13 E-5	0	0
Zinc-65	Ci	1.03 E-4	1.52 E-4	0	0
Yttrium-91M	Ci	0	0	0	0
lodine-133	Ci	0	0	0	0
Copper-64	Ci	0	0	0	0
Rubidium-88	C1	C	0	0	0
Manganese-54	C1	0	0	0	0
Strontium 92	Ci	0	0	0	U
Totals	Ci	2.39 E-4	2.89 E-4	0	0

TABLE 24

×

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988A)

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES 2880089940

	Unit 2&3	Quarter 1	Quarter 2	Est.Total Error, %
A. Fission & activation gases				
 Total release (not including tritium, gases, alpha) 	Ci	9.49 E-2	7.69 E-2	32.0 EO
2. Average diluted concentration during period	uCi/ml	6.04 E-9	5.34 E-9	
3. Whole Body Dose	Millirem	4.50 E-1	5.47 E-1	
Percent of Technical Specification	×	15.0 EO	18.2 EO	
4. Bone Dose	Millirem	3.64 E-1	4.57 E-1	
Percent of Technical Specification	*	3.64 E0	4.57 EO	
B. Tritium				
1. Total release	Ci	4.40 E0	2.43 EO	39.0 EO
 Average diluted concentration during period 	uCi/m1	2.81 E-7	1.69 E-7	
C. Dissolved and entrained makes				
1. Total release	Ci	0	0	42.0 EO
 Average diluted concentration during period 	uCi/m1	0	0	
D. Gross alpha radioactivity				
1. Total release	Ci	1.14 E-4	1.06 E-4	39.0 EO
2. Average diluted concentration during period	uCi/m1	7.26 E-12	7.36 E-12	
E. Volume of waste released (prior to dilution)	liters	4.98 E6	4.61 E6	32.0 EO
F. Volume of dilution water used during period	liters	1.57 E10	1.44 E10	30.0 E0

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1988A)

IADEL ED

LIQUID EFFLUENTS

2880089940

CONTINUOUS MODE BATCH MODE

Nuclides Released	Unit 2&3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
Strontium-89	Ci	0	0	1.87 E-4	8.35 E-5
Strontium-90	Ci	0	0	4.80 E-4	3.99 E-5
Alpha	Ci	0	0	1.14 E-4	1.07 E-4
Tritium	Ci	0	0	4.40 EO	2.43 EO
Phosphorus-32	Ci	0	0	0	0
Iron-55	Ci	0	0	1.33 E-2	2.55 E-3
Kenon-131M	Ci	0	0	0	0
Kenon-133	Ci	0	0	0	0
Kenon-133M	Ci	0	0	0	0
kenon-135	Ci	0	0	0	0
Kenon-138	Ci	0	0	0	0
Krypton-85M	Ci	0	0	0	0
(rypton-87	Ci	0	0	0	0
rypton-88	Ci	0	0	0	0
(enon-135M	Ci	0	0	0	0
langanese-54	Ci	0	0	1.69 E-5	0
Celsium-134	Ci	0	0	1.76 E-2	1.99 E-2
Cesium-137	Ci	0	0	2.73 E-2	3.73 E-2
Cesium-138	Ci	0	0	0	0
linc-65	Ci	0	0	2.11 E-2	8.94 E-3
Sodium-24	Ci	0	0	0	0
obalt-58	Ci	0	0	0	0
Cobalt-60	Ci	0	0	1.43 E-2	8.09 E-3
lodine-131	Ci	0	0	0	0
odine-133	Ci	0	0	0	0
folybdenum-99	Ci	0	0	0	0

(7)

TABLE 2B (Continued)

4

2880089940

		CONTINUOUS MODE		BATCH MODE	
Nuclides Released	Unit 2&3	Quarter 1	Quarter 2	Quarter 1	Quarter 2
Iodine-135	Ci	0	0	0	0 -
Barium-140	Ci	0	0	0	0
Neptunium-239	Ci	0	0	0	0
Chromium-51	Ci	0	0	0	0
Yttrium-91M	Ci	0	0	0	0
Strontium-91	Ci	0	0	0	0
Antimony-122	Ci	0	0	0	0
Tellurium-132	Ci	0	0	0	0
Niobium-95	Ci	0	0	0	0
Lanthanum-140	Ci	0	0	0	0
Cadmium-109	Ci	0	0	0	0
Cesium-136	Ci	0	0	0	0
Silver-110M	Ci	0	0	8.53 E-5	8.51 E-5
Cesium-144	Ci	0	0	0	0
Antimony-124	Ci	0	0	0	0
Iron-59	Ci	0	0		0
Tellurium-129M	Ci	0	0	0	0
ellurium-1.1M	Ci	0	0	0	0
Zirconium-95	Ci	0	0	0	0
Cerium-141	Ci	0	0	0	0
Total for Period (above)	Ci	0	0	4.495 EO	2.507 EO

.

PEACH BOTTOM UNITS 2 & 3 JANUARY 1 TO JUNE 30, 1988 CLASSES OF SOLID RADIOACTIVE WASTE SHIPMENTS

Waste Description (Source of Waste)	Container/Type	Volume (cubic feet)	lotal Volume (cubic feet)	Total Curie	Principal Radionuclides
Dewatered Resin	HIC/ Type A Cask	174.3 120.3 83.4	2963.1 240.6 83.4	231.5665	Fe-55, Co-60, Zn-65, Cs-134, Cs-137
DAW	Metal Drum/ STC	7.5 11.3	6045.0 113.0	63.3197	Fi -55, Co-60, Zn-65 Cs-134, Cs-137
DAW	Poly Drum/ STC	38.3	76.6	9037	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
DAW	B-25 Box/ STC	96.0	5157.2	4.7414	Fe-55, Co-60, Zn-65, Cs-134, Cs-137
Filters	HIC/ Type A Cask	170.8	170.8	17.6857	Fe-55, Co-60, Zn-65, Cs-134, Cs-137
Dewatered Resin/ DAW	HIC,STC/ Type A Cask	7.5	105.0	5.8574	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
Dewatered Resin	HIC/ Type A Cask	174.3	1220.1	176.6622	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
DAW	HIC/ Type A Cask	120.3	120.3	0.8271	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
Dewatered Pesin	HIC/ Type B Cask	120.3	120.3	158.9576	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
Filters, DAW	HIC/ Type B Cask	120.3	120.3	16.9322	Fe-55, Co-60, Zn-65 Cs-134, Cs-137
			16535.7	678.4535	
	Waste Description (Source of Waste) Dewatered Resin DAW DAW Filters Dewatered Resin/ DAW Dewatered Resin DAW Dewatered Pesin	Waste Description (Source of Waste)Container/TypeDewatered ResinHIC/ Type A CaskDAWMetal Drum/ STCDAWPoly Drum/ STCDAWB-25 Box/ STCDAWB-25 Box/ STCDAWHIC/ Type A CaskDewatered Resin/ DAWHIC,STC/ Type A CaskDewatered ResinHIC/ Type A CaskDAWHIC/ Type A CaskDewatered PesinHIC/ Type B CaskFilters, DAWHIC/ Type B Cask	Waste Description (Source of Waste)Container/TypeIndividual Volume (cubic feet)Dewatered ResinHIC/ Type A Cask174.3 120.3 83.4DAWMetal Drum/ STC7.5 11.3DAWPoly Drum/ STC38.3DAWPoly Drum/ STC38.3DAWB-25 Box/ STC96.0FiltersHIC/ Type A Cask170.8Dewatered Resin/ DAWHIC/ Type A Cask7.5Dewatered ResinHIC/ Type A Cask174.3DAWHIC/ Type A Cask120.3DawHIC/ Type B Cask120.3Filters, DAWHIC/ Type B Cask120.3	Waste Description (Source of Waste)Container/TypeIndividual Volume (cubic feet)Iotal Volume (cubic feet)Dewatered ResinHIC/ Type A Cask174.3 120.3 120.3 240.6 83.42963.1 240.6 83.4DAWMetal Drum/ STC7.5 11.3 11.36045.0 11.3 113.0DAWPoly Drum/ STC38.3 16.6DAWPoly Drum/ STC38.3 170.8DAWB-25 Box/ STC96.0 S157.2FiltersHIC/ Type A Cask170.8 170.8Dewatered Resin/ DAWHIC, STC/ Type A Cask7.5 105.0Dewatered Resin/ DAWHIC/ Type A Cask174.3 120.3Dewatered ResinHIC/ Type A Cask120.3 120.3Dewatered PesinHIC/ Type B Cask120.3 120.3Filters, DAWHIC/ Type B Cask120.3 	Waste Description (Source of Waste) Container/Type Individual Volume (cubic feet) Total (cubic feet) Total Cubic (cubic feet) Dewatered Resin HIC/ Type A Cask 174.3 120.3 240.6 83.4 2963.1 240.6 83.4 231.5665 DAW Metal Drum/ STC 7.5 11.3 6045.0 11.3 63.3197 DAW Poly Drum/ STC 38.3 76.6 .9037 DAW Poly Drum/ STC 38.3 76.6 .9037 DAW B-25 Box/ STC 96.0 5157.2 4.7414 Filters HIC/ Type A Cask 170.8 170.8 17.6857 Dewatered Resin/ DAW HIC/ Type A Cask 174.3 1220.1 176.6622 DAW HIC/ Type A Cask 174.3 1220.1 176.6622 DAW HIC/ Type A Cask 120.3 120.3 0.8271 Dewatered Resin HIC/ Type B Cask 120.3 120.3 16.9322 Filters, DAW HIC/ Type B Cask 120.3 120.3 16.9322 16535.7 678.4535 1657.4535 1678.4535 1678.4535

Indicates actual total PECo radwaste shipped from Quadrex, after volume reduction, to the buria' site.

ATTACHMENT A SUPPLEMENTAL INFORMATION

il) Case	.y: es:	Peach Bottom Units 2 & 3 DPR-44 DPR-56	2880089940
Reg	gulato	ry Limits (Technical Specificatio	n Limits)
Α.	Nob	le Gases:	
	1.	<pre>< 500 mRem/Yr - total body < 3000 mRem/Yr - skin</pre>	- "instantaneous" limits per Tech. Spec. 3.8.C.l.a
	2.	< 10 mRad - gamma air < 20 mRad - beta air	- quarterly air dose limits per Tech. Spec. 3.8.C.2.a
	3.	< 20 mRad - gamma air ≤ 40 mRad - beta air	- yearly air dose limits per Tech. Spec. 3.8.C.2.b
в.	Iod	ines, Tritium, Particulates with	Half Life > 8 days:
	1.	<pre>< 1500 mRem/Yr - any organ (inhalation path)</pre>	- "instantaneous" limits per Tech. Spec. 3.8.C.1.b
	2.	≤15 mRem - any organ	- quarterly dose limits per Tech. Spec. 3.8.C.3.a
	3.	≤ 30 mRem - any organ	- yearly dose limits per Tech. Spec. 3.8.C.3.b
с.	Liqu	uid Effluents:	
	1.	Concentration < 10 CFR 20, Appendix B, Table II, Col. 2	- "instantaneous" limits per Tech. Spec. 3.8.B.1
	2.	<pre>< 3.0 mRem - total body < 10 mRem - any organ</pre>	- quarterly dose limits per Tech. Spec. 3.8.B.2.a
	з.	<pre>< 6.0 mRem - total body < 20 mRem - any organ</pre>	- yearly dose limits per Tech. Spec. 3.8.B.2.b
Max	imum B	Permissible Concentrations	

The MPCs specified in 10 CFR 20, Appendix B, Table II, Column 2, for identified nuclides are used to calculate permissible release rates and concentrations for liquid releases per Peach Bottom Technical Specification 3.8.B.1.

ATTACHMENT A (Continued)

2880089940

3. Average Energy

Not applicable.

4. Measurements and Approximations of Total Radioactivity

A. Fission and Activation Gases

The method used is the Nuclear Data 6600/6700 Counting System - Gas Marinelli

B. Iodine

The method used in the Nuclear Data 6600/6700 Counting System - Charcoal Cartridge

C. Particulate:

The method used is the Nuclear Data 6600/6700 Counting System - Air Particulate Sample, 47 mm filter

D. Liquid Effluents:

The method used is the Nuclear Data 6600/6700 Counting System and the Radwaste Liquid Discharge Pre-Release Method with a liter bottle.

5. Batch Releases

Α.	Liquid	Q1	-	Q2	
	# of Batch Releases:	66		69	
	Total Time for batch releases, minutes	18396		16871	
	Maximum time period for a batch release, minutes	340		340	
	Average time period for batch release, minutes	279		245	
	Minimum time period for a batch release, minutes	38		23	
	Dilution flow (Liters)	1.57	E10	1.44	E10

- B Gaseous: N/A
- 6. Abnormal Releases
 - A. Liquid: See Attachment B
 - B. Gaseous: None

ATTACHMENT B

2880089940

SUMMARY OF UNPLANNED RELEASES

1. Inoperable Main Stack Sample Flow Monitor

On February 9, 1988, the Main Stack sample flow rate monitor (FT-7341) could not be calibrated during a surveillance test, thus the monitor was determined to be inoperable. Technical Specification 4.8.C.4.e requires that if inoperable radiation monitors cannot be corrected within 30 days, an explanation of why the inoperability was not corrected will be reported in the next Semi-annual Radioactive Effluent Releases Report A replacement monitor was ordered; however, the manufacturer could not supply the same model. In addition, the manufacturer could not deliver a replacement until late May, 1988. On March 18, 1988, a calibration check was successfully performed on a redundant in-line Flow Indicating Transmitter (FIT-6509), which is being used to temporarily perform the same function as FT-7341. Meanwhile a site modification is currently being designed to install the new monitor. This modification is expected to be installed by October 10, 1988.

2. Calculations For Critical Organ Dose Using Particulates With Half-Lives Greater Than 8 Days

The following doses were calculated using particulates identified during the first and second quarter reporting period of 1988;

PARTICULATE	CRITICAL ORGAN DOSE, Quarter 1	LIVER, (MREM) Quarter 2
Sr-89	6.40 E-8	1.18 E-7
Sr-90	2.97 E-6	5.03 E-6
C0-60	1.03 E-8	8.50 E-8
Zn-65	2.07 E-6	3.05 E-5
Total	5.11 E-6	3.57 E-5

The percentage of Technical Specification for the Critical Organ (liver) for the first quarter is 3.41 = 5, second quarter is 2.38 = 4.

(12)