REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST

QUAD-CITIES NUCLEAR POWER STATION

UNIT THO

JUNE 12-13, 1988

8809080021 880815 PDR ADOCK 05000254 PNU

K01,1

TABLE OF CONTENTS

		AGE									
TABLE AND FIGURES INDEX											
INT	ODUCTION	4									
Α.	TEST PREPANATIONS										
	A.1 Type A Test Procedures	4									
	A.2 Type A Test Instrumentation	4									
	A.2.a. Temperature	8									
	A.2.b. Pressure	8									
	A.2.c. Vapor Pressure	8									
	A.2.d. Flow	9									
	A.3 Type A Test Measurements	9									
	A.4 Type A Test Pressurization	10									
8.	TEST METHOD										
	B.1 Basic Technique	12									
	8.2 Supplemental Verification Test	13									
	8.3 Instrument Error Analysis	13									
c.	SEQUENCE OF EVENTS										
	C.1 Test Preparation Chronology	14									
	2.2 Test Preparation and Stabilization Chronology	15									
	C.3 Measured Leak Rate Phase Chronology	16									
	C.4 Induced Leakage Phase Chronology	16									
	C.5 Depressurization Phase Chronology	16									

TABLE OF CONTENTS

																					PAGE
D.	TYPE	A TEST C	ATA																		
	0.1	Measured	Leak #	Rate P	hase	Dat	a .							Ļ	į,	÷		×	*	÷	17
	D.2	Induced l	eakagi	Phas	e Dat	ta.		×	j.					×		×	×	 - %	*	h.,	17
Ε.	TEST	CALCULAT	TIONS						ł						7	*			i.		32
Ē,	TYPE	A TEST A	ESULTS	1																	
	F.1.)	Measured	Leak F	ate T	est R	tesu	lts		k.						,				÷	÷	33
	F.2	Induced L	eakage	Test	Resu	ilts	i.		i.			5		k	,	÷		*	÷		34
	F.3 1	Pre-Opera	tional	Resu	lts v	15.	Test	R	es	ul	ts.				×				ŝ		35
	F.4	Type A Te	est Per	altie	s			i.							×.	ł.	÷		÷	,	35
	F.5 8	Evaluatio	on of 1	Instru	ment	Fai	lure	5	ł.		ć,								i,	ł	36
	F.6 /	As-Found	Type A	Test	Resu	lts		e.	-		•	ł	1			×.		,		×	37
APPE	INDIX	A	TYPE 8	AND	<u>C TES</u>	STS	a,		į.			1	ļ	•	ł		*	×			38
APPE	NDIX	8	TEST (ORREC	TION	FOR	SUN	1P	LE	VE	. (<u>HA</u>	NG	ES		•				ł	47
APPE	NDIX	с	COMPU1	ATION	AL PR	ROCE	DURE	S					•		•			*	*		53
APPE	INDIX	0	INSTRU	MENT	ERROF	R AN	ALYS	IS		ŝ	j,	1			1	•					65
APPE	NDIX	ε	BN-TOP	-1, R	EV. 1	ERI	RATA	5			5								*		71
APPE	NDIX	F	TYPE A	TEST	RESU ANSI	LTS	US1	NG	M	AS	S-F	LO	<u>.</u>	*				*	ł		76

TABLES AND FIGURES INDEX

			PAU	301
TAB	LE	1	Instrument Specifications	5
TAB	LE	2	Sensor Physical Locations	6
TAB	LE	3	Measured Leak Rate Phase Test Results	8
TAB	LE	4	Induced Leakage Phase Test Results	9
FIG	URE	1	Idealized View of Drywell and Torus	7.
FIG	URE	2	Measurement System Schematic Arrangement	1
FIG	URE	3	Measured Leak Rate Phase - Graph of Calculated 20 Leak Rate and Upper Confidence Limit	0
FIG	URE	4	Measured Leak Rate Phase - Graph of Total	1
FIG	URE	5	Measured Leak Rate Phase - Graph of	2
FIG	URE	6	Measured Leak Rate Phase - Graph of Volume	3
FIG	URE	7	Measured Leak Rate Phase - Graph of Volume	4
FIG	URE	8	Induced Leakage Phase - Graph of Calculated	5
FIG	URE	9	Induced Leakage Phase - Graph of Total Time	6
FIG	URE	10	Induced Leakage Phase - Graph of Volume	7
FIG	URE	11	Induced Leakage Phase - Graph of Volume	8
FIG	URE	12	Induced Leakage Phase - Graph of	9
FIG	URE	13	Graph of Reactor Water Level	0
FIG	URE	14	Graph of Torus Water Level	1
FIG	URE	F - 1	Statistically Average Leak Rate and Upper	9
FIG	URE	F-2	Statistically Averaged Leak-rate and Target	0
1490	CH/		LEAK-FATE (ANS/ANS) DO 8 METHOD)	

INTRODUCTION.

This report presents the test method and results of the Integrated Primary Containment Leak Rate Test (IPCLRT) successfully performed on June 12-13, 1988 at Quad-Cities Nuclear Power Station, Unit One. The test was performed in accordance with 10 CFR 50, Appendix J, and the Quad-Cities Unit One Technical Specifications.

For the fourth time at Quad-Cities a short duration test (less than 24 hours) was conducted using the general test method outlined in BN-TOP-1, Revision 1 (Bechtel Corporation Topical Report) dated November 1, 1972. The first short duration test was conducted on Unit One in December, 1982.

Using the above test method, the total primary containment integrated leak rate was calculated to be 0.4155 wt %/day at a test pressure greater than 48 PSIG. The calculated leak rate was within the 0.750 wt %/day acceptance criteria (75% of L_A). The associated upper 95% confidence limit wis 0.4621 wt %/day.

The supplemental induced leakage test result was calculated to be 1.3542 wt %/day. This value should compare with the sum of the measured leak rate phase result (0.4155 wt %/day) and the inducted leak of 8.82 SCFM (1.0814 wt %/day). The calculated leak rate of 1.3542 wt %/day lies within the allowable tolerance band of 1.4969 wt %/day \pm 0.250 wt %/day.

SECTION A - TEST PREPARATIONS

A.1 Type A Test Procedure

The IPCLRT was performed in accordance with Quad-Cities Procedure QTS 150-1. Rev. 15, including checklist QTS 150-S2, S3, S5, S6, S7, S8, S10, S11, S12, S13. S17, S18, S19, and subsections T2, T6, T8, T10, T11, T12, T13, T14, T15. Approved Temporary Procedures 5537, 5540, 5541, 5542, 5543, and 5547 were written in conjunction with the test. Procedure 5537 was written to cover the various manual isolation valves not included in the IPCLRT valve checklist QTS 150-S7. Procedure 5540 was written to allow resetting of the scram after original jumper installation. Procedure 5541 was written to cover exceptions to the manual isolation valve checklist. Procedure 5542, 5543, and 5547 were written to cover exceptions to the valve checklist of QTS 150-S7.

These procedures were written to comply with 10 CFR 50 Appendix J, ANS/ANSI N45.4-1972, and Quad-Cities Unit One Technical Specifications, and to reflect the Commission's approval of a short duration test using the BN-TOP-1, Rev. 1 Topical Report as a general test method.

A.2 Type A Test Instrumentation

Table One shows the specifications for the instrumentation utilized in the IPCLRT. Table Two lists the physical locations of the temperature and humidity sensors within the primary containment. Figure 1 1. an idealized view of the drywell and suppression chamber used to calculate the primary containment free air subvolumes. Plant personnel performed all test instrumentation calibrations using NBS traceable standards. Quad Cities procedure QTS 150-9 was used to perform the calibration.

TABLE ONE INSTRUMENT SPECIFICATIONS

INSTRUMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	RANGE	ACCURACY	REPEATABILITY
Precision Pressure Games (2)	Volumetrics		846,847	0-100 PSIA	±.015 PSI	±.001 PSI
RTD's (30)	Burns Engineering	SP1A1-5 :/2-3A	44210 - 44222 44224 - 44232 44234 - 44238 inclusive 191501, 191509, 191522	50-150°F	±.5°F	. 1°F
Dewcells (10)	Volumetrics (Foxboro)	Lithium Chloride	5835-1, 5835-2 5835-3, 6084-4 6084-9, 5835-6, 6084-7, 5835-9 5835-10, 6084-8	-20-104°F	±1.0°F	<u>+</u> .5°F
Thermocouple	Pall Trinity Micro	14-T-2H		0-600°F	±2.0°F	. <u>↑</u> .1°F
Flowmetti	Fischer & Porter	10A3555S	8405A0348A1	0.927-11.23sc	fm +1.0% of max flow	
Level Indicator LI 263-101	GE	Model 180 Type VSI Model 50-5531	22CAAU2	0-400" H ₂ 0		
Torus Level Indicator	Rosemount	11516P3812MB	106958	10.85"H20=10n 15.84"H20=30n 20.84"H20=50n	nA nA nA	

0756H/0306Z

TABLE TWO SENSOR PHYSICAL LOCATIONS

RTD NUMBER	SERIAL NUMBER		SUBVOLUME	ELEVATION	AZIMUTH*
1 2 3 4 5	191522 44210 44211 44212 44213		1 2 2 3	670'0" 670'0" 657'0" 657'0" 639'0"	180° 0° 20° 197° 70°
7 8 9 10 11 12	44214 44215 44216 44217 44218 44219 44220		4(Annular Ring) 4 5 5 5 5 5 5	643'0" 615'0" 620'0" 620'0" 620'0"	225° 225° 100° 220° 40°
13 14 15 16 17 18	44221 44222 191509 44224 44225 44225 44226 44227	•	6 6 7 7 7 7	608'0" 608'0" 598'0" 598'0" 598'0"	130* 2201 310* 70* 160* 250* 340*
20 21 22 23 24 25 26 27 28 29 30	44228 44230 44232 191501 44234 44235 44235 44236 44237 44238 44229 44231		8 8 8 9(CRD Space) 9(CRD Space)) 10(Torus) 10(Torus) 10(Torus) 10(Torus) 10(Torus)	578 °0" 587 °0" 587 °0" 587 °0" 595 °0" 578 °0" 578 °0" 578 °0" 578 °0"	10° 100° 190° 280° 170° 170° 170° 140° 210° 280° 350°
	clean-up HX)			P1 P112 ****	
1 2 3 4 5 6 7	5835-1 5835-2 5835-3 6084-4 6084-9 5835-6 6084-7		1 2.3.4 2.3.4 5 6 7 8.9	670'0" 653'0" 653'0" 620'0" 605'0" 600'0" 591'0"	AZIMUTH 180* 90* 270* 0* 45* 220* 0*
8 9 10 Thermocouple (Saturated)	6084-8 5835-9 5835-10		8,9 10 10	591'0" 578'0" 578'0"	202* 90* 270*

-6-

Idealized View of Drywell and Torus Used to Calculate Free Volumes

FIGURE 1

A.2.a. Temperature

The location of the 30 platinum RTD's was chosen to avoid conflict with local temperature variations and thermal influence from metal structures. A temperature survey of the containment was previously performed to verify that the sensor locations were representative of average subvolume conditions.

The RTD's were manufactured by Burns Engineering Inc. and are Model SP 1A1-5 1/2-3A. Each RTD and its associated bridge network was calibrated to yield an output of approximately 0-100 mV over a temperature range of 50-120°F. Each RTD was calibrated by comparing the bridge output to the true temperature as indicated by the temperature standard. Four temperatures were used for the calibration. Two calibration constants (a slope and intercept of the regression line) were computed for each RTD by performing a least squares fit of the RTD bridge output to the reference standard's indicated true temperature.

The temperature standard used for all calibrations was a Volumetrics RTD Model VMC 701-B used with a Dewcell/RTD Calibrator Model 07782. The standard was calibrated by Volumetrics on January 20, 1988 to standards traceable to the NBS.

The plant process computer scanned the output of each RTD-bridge networ: and converted the output to engineering units using the calibration constants.

A.2.b. Pressure

Two precision quartz bourdon tube, absolute pressure gauges were utilized to measure total containment pressure. Each gauge had a local digital readout and a Binary Coded Decimal (BCD) output to the process computer. Primary containment pressure was sensed by the pressure gauges in parallel through a 3/8" tygon tube connection to a special one inch pipe penetration to the containment.

Each precision pressure gauge was calibrated from 62.8-65.8 PSIA in approximately 0.5 PSI increments using a third precision pressure gauge (Volumetrics Model 07726) that had been sent to Volumetrics for calibration. The pressure standard was calibrated on February 19, 1988 using NBS traceable reference standards.

The digital readout of the instruments were in "counts" or arbitrary units. Calibration constants (a slope and intercept of a regression line) were entered into the computer program to convert "counts" into true atmospheric pressure as read by the third, reference gauge. No mechanical calibration of the gauges was performed to bring their digital displays into agreement with true pressure.

A.2.c. Vapor Pressure

Ten lithium chloride dewcells were used to determine the partial pressure due to water vapor in the containment. The dewcells were calibrated using the Volumetrics calibrator described in section A.2.a. above and a chilled mirror dewcell standard (Volumetrics S/N 1263) calibrated on January 20, 1988 by Volumetrics. The calibration constants for each dewcell (the slope and intercept of a regression line) were computed relating the 0-100 mV output of the signal conditioning cards to the actual sewpoint indicated by the reference standard.

A.2.d. Flow

A rotameter flowmeter, Fischer-Porter serial cumber 8405A0348A1, was used for the flow measurement during the induced leakage phase of the IPCLRT. The flowmeter was calibrated by Fischer-Porter on February 19, 1988, to within $\pm 1\%$ of full scale (0.927-11.23 SCFM) using NBS traceable standards.

Plant personnel continuously monitored the flow Juring the induced leakage phase and corrected any minor deviations from the induced flow rate of 8.82 SCFM by adjusting a 3/8" needle valve on the flowmeter inlet. The flow meter outlet was unrestricted and vented to the atmosphere. The flowmeter was calibrated to standard atmospheric conditions.

A.3 Type A Test Measurement

The IPCLRT was performed utilizing a direct interface with the station process computer. This system consists of a hard-wired installation of temperature, dewpoint, and pressure inputs for the IPCLRT to the process computer. The interface allows the process computer to scan the inputs and send the data, still as a millivolt signal or BCD (binary coded decimal) in the case of pressure, to the PRIME computer with minimal manual inputs and without the disadvantages of multiplexers or positioning sensitive electronic hardware inside the containment during the test.

The PRIME computer was used to compute and print the leak rate data using either the ANSI/ANS mass plot method (ANSI/ANS 56.8), a total time method based on ANSI/ANS N45.4, or the BN-TOP-1 method. Key parameters, such as total time measured leak rate, volume weighted dry air pressure and temperature, and absolute pressure were monitored using a Tektronix 4208 terminal and a Tektronix plotter. Plant personnel also plotted a large number of other parameters, including reactor water level and temperature, torus water level, dry air mass, volume weighted partial pressures and temperature, total time leak rate, statistically averaged leak rate and UCL, and all sensor outputs in engineering units. In all cases, data was plotted hourly and computer summaries were obtained at 10 minute time intervals. The plotting of data and the computer printed summaries of data allowed rapid identification of any problems as they might develop. Figure 2 shows a schematic of the data acquisition system.

A.4 Type A Test Pressurization

A 3000 SCFM, 600 hp, 4kV electric oil-free air compressor was used to pressurize the primary containment. An identical compressor was available in standby during the IPCERT. The compressors were physically located on a single enclosed truck trailer located outside the Reactor Building. The compressed air was piped using flexible metal hose to the Reactor Building, through an existing four inch fire header penetration, and piped to a temporary spool piece that, when installed, allowed the pressurization of the drywell through the "A" containment spray header. The inboard, containment spray isolation valve, MO-1-1001-26A was open during pressurization. Once the containment was pressurized, the MO-1-1001-26A valve was closed and the spool piece was removed and replaced with a blind flange. The outboard containment spray value MO-1001-23A was closed and out-of-service for the test. Measurement System Schematic Arrangement

-11-

B.1 Basic Technique

The absolute method of leak rate determination was used. The absolute method uses the ideal gas laws to calculate the measured leak rate, as defined in ANSI N45.4-1972. The inputs to the measured leak rate calculation include subvolume weighted containment temperature, subvolume weighted vapor pressure, and total absolute air pressure.

As required by the Commission in order to perform a short duration test (measured leak rate phase of less then 24 hours), the measured leak rate was statistically analyzed using the principles outlined in BN-TOP-1, Rev. 1. A least squares regression ling for the measured total time leak rate versus time since the start of the test is calculated after each new data set is scanned. The calculated is rate at a point in time, t_1 , is the leak rate on the regression line to the time t_1 .

The use of a regression line in the BN-TOP-1, Rev. 1 report is different from the way it is used in the ANSI/ANS 56.8 standard. The latter standard uses the slope of the regression line for dry air mass as a function of time to derive a statistically averaged leak rate. In contrast, BN-TOP-1, Rev. 1 calculates a regression line for the measured leak late, which is a function of the change in dry air mass. For the ANSI/ANS calculations one would expect to always see a negative slope for the regression line, because the dry air mass is decreasing over time due to leakage from the containment. For the regression line computed in the BN-TOP-1, Rev.1 method the ideal slope is zero, since you presume that the leakage from the containment is constant over time. Since it is impossible to instantaneously and perfectly measure the containment leakage, the slope of the regression line will be positive or negative depending on the scatter in the measured leak rate values obtained early in the test. Since the measured leak rate is a total time calculation, the values computed early in the test will scatter much more than the values computed after a few hours of testing.

The computer printouts titled "Leak Rate Based on Total Time Calculations" attached to the BN-TOP-1, Rev. 1 topical report are misleading in that the column titled "Calculated Leak Rate" actually has printed out the regression line values (based on all the measured leak rate data computed from the data sets received up until the last time listed on the printout). The calculated leak rate as a function of time (tj) can only be calculated from data available up until that point in time, ty. This is significant 'n that the calculated leak rate may be decreasing over time, despite a substantial positive slope in the last computed regression line. Extrapolation of the regre sion line is not required by the BN-TOP-1, Rev. 1 criteria to terminate a short duration test. What is required is that the calculated leak rate be decreasing over time or that an increasing calculated leak rate be extrapolated to 24 hours. The distinction between the regression line values and the calculated leak rate as a function of time is made in Section 6.4 of SN-TOP-1, Rev. 1. Calculated leak rates, as a function of time, are correctly printed out in the "Trends Based on Total Time Calculations" computer printouts in Appendix B of BN-TOP-1, Rev. 1.

Associated with each calculated leak rate is a statistically derived upper confidence limit. Just as the calculated leak rate in BN-TOP-1, Rev. 1 and the statistically averaged leak rate in the ANSI/ANS standards are not the same (and do not necessarily yield nearly equal values), the upper confidence limit calculations are greatly different. In the BN-TOP-1, Rev. 1 topical report the upper confidence limit is defined as the calculated leak rate plus the product of the two sided 97.5% T-distribution value (as opposed to the one-sided 95% T-distribution used in the ANS/ANSI standard) and the standard deviation of the measured leak rate data about the computed regression line (which has no relationship to the value computed in the ANSI/ANS standards).

There are two important conclusions that can be derived from data analuzed using the BN-TOP-1, Rev. 1 method: 1) the upper confidence limit for the same measured leak rate data can be substantially greater than the value calculated using the ANSI/ANS method, and 2) the upper confidence limit does not converge to the calculated leak rate nearly as quickly as usually observed in the latter method as the number of data sets becomes large. With this in mind, the upper confidence limit can become the critical parameter for concluding a short duration test, even when the measured leak rate seems to be well under the maximum allowable leak rate. A graphical comparison of the two methods can be made by referring to Figure 3 for the BN-TOP-1, Rev. 1 calculated leak rate and upper confidence limit and to Figure F-1 in Appendix F for the statistically averaged leak rate and upper confidence limit based on ANSI/ANS 56.8-1981. This data supports the contention of many that BN-TOP-1, while it may not give the best estimate of containment leakage, is a conservative method of testing. The ANSI/ANS 56.8 data contained in Appendix F is provided for information only. The reported test results are based on BN-TOP-1, only.

B.2 Supplemental Verification Test

The supplemental verification test superimposes a known leak of approximately the same magnitude as L_A (8.16 SCFM or 1.0 wt %/day as defined in Technical Specifications). The degree of detectability of the combined leak rate (containment calculated leak rate plus the superimposed, induced leak rate) provides a basis for resolving any uncertainty associated with measured leak rate phase of the test. The allowed error band is + 25% of La.

There are no references to the use of upper confidence limits to evaluate the acceptability of the induced leakage phase of the IPCLRT in the ANS/ANSI standards or in BN-TOP-1, Rev. 1.

B.3 Instrument Error Analysis

An instrument error analysis was performed prior to the test in accordance with BN-TOP-1, Rev. 1 Section 4.5. The instrument system error was calculated in two parts. The first was to determine the system accuracy uncertainty. The second and more important calculation (since the leak tate is impacted most by changes in the containment parameters, was performed to determine the system repeatability uncertainty. The results were 0.1801 wt %/day and .0265 wt %/day for a 6-hour test, respectively. These values are inversely proportional to the test duration.

The instrumentation uncertainty is used only to illustrate the system's ability to measure the required parameters to calculate the primary containment leak rate. The mathematical derivation of the above values can be found in Appendix D. The method of calculating the equipment uncertainty is in conformance with the method outlined in BN-TOP-1.

It is extremely important during a short duration test to quickly identify a failed sensor and in real time back the spurious data out of the calculated volume weighted containment temperature and vapor pressure. Failure to do so can cause the upper confidence limit value to place a short duration test in jeopardy. It has been the stations experience that sensor failures should be removed from all data collected, not just subsequent to the apparent failure, in order to minimize the discontinuity in computed values that are related to the sensor failure (not any real change in containment conditions). For this test, however, no instrument failures after the start of the test were encounlered. However, a single RTD failed in the drywell, RTD 8 in subvolume 4, prior to the start of the test for spiking high and then reading high. The effect of this failure is analyzed in section F.5 of this report. The instrument error analysis in Appendix D reflects the instrument failure and unused instrument.

SECTION C - SEQUENCE OF EVENTS

C.1 Test Preparation Chronology

The pretest preparation phase and containment inspection was completed on June 12, 1988 with no apparent structural deterioration being observed. Major preliminary stops included:

- Blocking open three pairs of drywel! to suppression chamber vacuum breakers.
- 2) Installation of all IFCLRT test equipment in the suppression chamber.
- Completion of all repairs and installations in the dryzall affecting primary containment.
- Venting of the reactor vessel to the drywell by opening the manual head vent line to the drywell equipment drain sump.
- Installation of the IPCLRT data acquisition system including computer programs, instrument console, locating instruments in the drywell, and associated wiring.
- 6) Completion of the pre-test valve line-up.

This test was conducted at the end of the refuel outage to test the containment in an "As Left" condition with repairs and adjustments. The Station has an exemption to IOCFR50, Appendix J requirements to allow performing the test at the end of the refuel outage.

C.2 Test Pressurization and Stabilization Chronology

DATE	TIME	EVENT
06-12-88	0300	Began pressurizing containment.
	0550	Drywell Head, X-1, and X-4 snooped. No leaks observed. Snooped all accessible penetrations in reactor building. No leaks observed.
	0613	2-1402-4B leaks excessively through packing.
	0807	Stopped pressurization due to reactor water and torus water level decreasing at an unacceptable rate. Increased reactor water level to approximately 87".
	0820	Closed the 2-1001-26A and 2-4799-127 valves, Unloaded the compressor and stopped pressurization. Raised reactor water level to approximately 100".
	0900	Tightened packing on the 2-1402-4B, 2-1.01-28A, 34A valves. Closed the 2-2301-6 valve to fully seat.
	1052	Containment is pressurized to 65 PSIA. Beginning containment stabilization phase.
	1200	Attempts are being made to determine a leak of approximately 500 SCFH. All systems are being snooped.
	2050	Closed the 2-1001-25A value on the outboard side of the $2-1001-26A$ value. No effect on the leakage rate.
	2355	Leakrate has stabilized at 1.3LA still searching for the leakage.
6-13-88	0225	Locked out RTD #8 in subvolume #42-2499-20A was found blowing air inside the hydrogen monitoring panel. Heater sample box wis disconnected and removed.
	0230	2-2499-20A valve was closed. The leakage path was found
	0405	All stabilization criteria have been satisfied.

C.3 Measured Leak Rate Phase Chronology

DATE	TIME	EVENT
06-13-88	0405	Containment temperature stable below 0.1°F/hour. Reactor vessel level drop of approximately 0.5 inches/hour. Reactor water temperature stable below 1°F/hour.
	0405	Started meausred leak rate phase. Base data set #181.
	1006	Terminated measured leak rate phase at 6 hour point, base data set #218. Calculated leak rate was 0.4155 wt %/day and decreasing over time. The average measured leak rate over the last five hours was 0.4194 wt %/day. The upper confidence limit was 0.4621 wt%/day. All other BN-TOP-1, Rev. 1 criteria for terminating the test were satisfied.

C 4 Induced Leakage Phase Chronology

DATE	TIME	EVENT
06-13-88	1040	Valved in the flowmeter at 8.82 SCFM (80% scale reading). Radiation Protection is collecting a sample of containment air.
	1106	Stabilization began for induced phase. Data set #224.
	1206	Began induced phase of the test. Base Data set #230. The one hour stabilization required by BN-TOP-1 was complted.
	1517	Terminated induced phase. Last data set was #249. Calculated leak rate was 1.3542 wt%/day. With an upper confidence limit of 1.4626. Data indicates a successful test.

C.5 Depressurization Phase Chronology

DATE	TIME	EVENT	
06-13-88	1650	Began containment depressurization using procedure venting through the Standby Gas Treatment System (SBGT). Flowmeter isolated.	for
	1810	Depressurited down to 52.24 PSIA to perform special	tes

DATE	TIME	EVENT
06-13-88	2010	Completed special test 2-81 preparing to depressurization again.
	2210	Depressurized to 27 PSIA. Opened 2-1601-63 wide open for final depressurization.
06-14-88	0315	Technical Staff personnel entered drywell. No apparent structural damage. Verified all instruments remained in place. Removed all instrumentation in the drywell.
	0604	Made initial entry to suppression chamber. Verified all instrument remained in place and removed all remaining instruments. Sump levels in drywell chacked and recorded.

SECTION D - TYPE A TEST DATA

D.1 Measured Leak Rate Phase Data

A summary of the computed data using the BN-TOP-1, Rev. 1 test method for a short duration test can be found in Table 3. Graphic results of the test are found in Figures 3-7. For comparison purposes only, the statistically averaged leak rate and upper confidence limit using the ANS/ANSI 56.8-1981 standard are graphed in Figure F-1. A summary of the computed data using the ANS/ANSI standard is found in Appendix F.

D.2 Induced Leakage Phase Data

A summary of the computed data for the Induced Leakage Phase of the IPCLRT is found in Table 4. The calculated leak rate and upper confidence limit using the BN-TOP-1, Rev. 1 method are shown in Figure 8. The measured leak rate and last computed regression line are shown in Figure 9. Containment conditions during the Induced Leakage Phase are presented graphically in Figures 10-12.

Measured Leak Rate Test Results TABLE 3

DATA SET #	TIME	TEST . DURATION	AVE. TEMP.	DRY AIR PRESSURE (PSIA)	REACTOR LEVEL (INCHES)	MEAS . LEAK RATE	CALC. LEAK RATE	UPPER CONF. LIMIT
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 197 198 199 200 201 202 204 205 206 207 208 200 210 211 212 214 215 217 218	04:05:31 04:15:33 04:25-33 04:25-33 04:45:35 04:45:35 04:55:36 05:05-39 05:15:39 05:16:01 05:25:04 05:36:05 05:46:06 05:56:09 06:06:09 06:06:09 06:16:10 06:26:10 06:36:14 06:46:15 07:06:15 07:06:15 07:16:16 07:26:20 07:36:21 07:46:25 07:56:23 08:06:26 08:16:28 08:26:30 08:36:33 08:46:33 08:56:35 09:06:35 09:16:36 09:26:36 09:36:37 09:56:41 10:06:42	0.000 0.167 0.334 0.501 0.668 0.835 1.002 1.169 1.175 1.343 1.509 1.677 1.844 2.011 2.178 2.344 2.011 2.178 2.344 2.512 2.679 2.846 3.012 3.180 3.347 3.514 3.682 3.947 3.514 3.682 3.180 3.347 3.514 3.682 3.945 4.183 4.015 4.185 5.352 5.519 5.686 5.853 6.020	93.1 93.1 93.1 93.1 93.1 93.1 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0	63.6012 63.5971 63.5935 63.5907 63.5820 63.5825 63.5752 63.5752 63.5752 53.5714 63.5752 53.5754 63.5505 63.5547 63.5547 63.5547 63.5547 63.5547 63.5547 63.5547 63.5547 63.5542 63.5282 63.5091 63.5003 63.5003 63.5003 63.4975 63.4975 63.5003 63.4975 63.5003 63.4975 63.5003	91.9940 91.7510 91.7510 91.7510 91.6120 91.5080 91.5080 91.3690 91.3690 91.3690 91.3690 91.3690 91.3690 91.2650 91.1260 91.1260 91.1260 91.1260 91.1260 90.8830 90.8830 90.7440 90.7440 90.7440 90.6400 90.5010 90.3620 90.2580 90.840 89.8070 89.8070 89.8070 89.5630 89.5630 89.5280	0.4937 0.4135 0.3569 0.4342 0.3940 0.4414 0.3843 0.4414 0.3843 0.44185 0.4552 0.4381 0.4244 0.4328 0.4247 0.4224 0.4247 0.4247 0.4247 0.4245 0.4247 0.4245 0.4249 0.4246 0.4151 0.4224 0.4176 0.4249 0.4249 0.4162 0.4212 0.4082 0.4212 0.4082 0.4151	0.3529 0.3893 0.3828 0.4050 0.3916 0.3923 0.4087 0.4164 0.4223 0.4171 0.4227 0.4227 0.4257 0.4257 0.4250 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226 0.4225 0.4226 0.4225 0.4225 0.4225 0.4202 0.4205 0.4197 0.4185 0.4185	0.4471 0.6826 0.5716 0.5728 0.5297 0.5031 0.5006 0.5223 0.5169 0.5150 0.5053 0.5047 0.5017 0.5026 0.4988 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4938 0.4887 0.4885 0.4885 0.4885 0.4885 0.4751 0.4735 0.4735 0.4735 0.4735 0.4735 0.4735 0.4735 0.4735 0.4735 0.4735 0.4691 0.4651 0.4639
		A 1 A 10 A	1.66 1.1	10 0 1 T 2 1 1	02.63.0	0.4016	0.4133	0,4021

Induced Leakage Phase Test Results

TABLE 4

230 12:06:56 0.000 93.0 63.4372 95.4520 231 12:16:57 0.167 93.0 63.4308 88.3130 1.3986 232 12:27:00 0.335 93.0 63.4242 88.3130 1.5294 233 12:37:04 0.502 93.0 63.4189 88.1750 1.4124 1.4537 2.4337 234 12:47:05 0.669 93.0 63.4132 88.1750 1.4618 1.4651 1.8206 235 12:57:05 0.836 93.0 63.4075 88.1750 1.4628 1.4652 1.6916 236 13:07:06 1.003 93.0 63.4023 88.0010 1.3386 1.4018 1.6317 237 13:17:06 1.170 93.0 63.3975 88.0010 1.3192 1.3566 1.5575 238 13:27:08 1.337 93.0 63.3857 87.8620 1.3553 1.3442 1.5174 239 13:47:14 1.672 93.0 63.3806 87.7580 1.3598 1.3341 1.4774 241	DATA SET #	<u>TIME</u>	TEST DURATION	AVE. TEMP.	DRY AIR PRESSURE (PSIA)	REACTOF LEVEL (INCH1S)	MEAS. LEAK RATE	CALC. LEAK <u>RATE</u>	UPPER CONF. LIMIT
	230 231 232 233 234 235 237 238 239 240 241 242 244 244 245 244 245 246 247 248	12:06:56 12:16:57 12:27:00 12:37:04 12:47:05 12:57:05 13:07:06 13:17:06 13:27:08 13:37:10 13:47:14 13:57:15 14:07:16 14:17:16 14:27:20 14:37:25 14:47:28 14:57:29 15:07:31	0.000 0.167 0.335 0.502 0.669 0.836 1.003 1.170 1.337 1.504 1.672 1.839 2.006 2.173 2.340 2.508 2.676 2.843 3.010 3.177	93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0	63.4372 63.4308 63.4242 63.4189 63.4132 63.4075 63.4023 63.3975 63.3905 63.3857 63.3806 63.3743 63.3695 63.3695 63.3589 63.3589 63.3589 63.3589 63.3589 63.3532 63.3411 63.3369	25.4520 88.3130 88.3130 88.1750 88.1750 88.1750 88.0010 88.0010 87.8620 87.8620 87.6190 87.6190 87.6190 87.6190 87.6190 87.4450 87.3070 87.3070 87.3070 87.2020	1.3986 1.5294 1.4124 1.4618 1.4628 1.3386 1.3192 1.3553 1.3568 1.3598 1.3649 1.3661 1.3645 1.3645 1.3645 1.3645 1.3663 1.3645 1.3663	1.4537 1.4615 1.4652 1.4018 1.3566 1.3442 1.3373 1.3341 1.3340 1.3347 1.3348 1.3349 1.3356 1.3356 1.3356 1.3356 1.3451 1.3485	2.4337 1.8206 1.6916 1.6317 1.5575 1.5174 1.4926 1.4774 1.4692 1.4635 1.4578 1.4578 1.4528 1.4473 1.4569 1.4579

MEASURED LEAK RATE PHASE GRAPH OF CALCULATED LEAK RATE AND UPPER CONFIDENCE LIMIT

A GURE 3

MEASURED LEAK RATE PHASE GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE

-21-

MEASURED LEAK RATE PHASE GRAPH OF DRY AIR PRESSURE

CONTAINMENT DRY AIR PRESSURE VS TIME

MEASURED LEAK RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE

FIGURE 6

MEASURED LEAK RATE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE

CONTAINMENT AIR TEMPERATURE VS TIME

INDUCED LEAKAGE PHASE GRAPH OF CALCULATED LEAK RATE

INDUCED LEAKAGE PHASE GRAPH OF TOTAL TIME MEASURED LEAK RATE AND REGRESSION LINE

.

INDUCED LEAKAGE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT TEMPERATURE

.

INDUCED LEAKAGE PHASE GRAPH OF VOLUME WEIGHTED AVERAGE CONTAINMENT VAPOR PRESSURE

....

CONTAINMENT VAPOR PRESSURE VS TIME

FIGURE 11

INDUCED LEAKAGE PHASE GRAPH OF DRY AIR PRESSURE

GRAPH OF REACTOR WATER LEVEL THROUGH TESTING PERIOD

RX VESSEL LEVEL VS TIME

FIGURE 13

-30-

GRAPH OF TORUS WATER LEVEL THROUGH TESTING PERIOD

FIGURE 14

SECTION E - TEST CALCULATIONS

Calculations for the IPCLRT are based on the BN-TOP-1, Rev. 1 test method and are found in the functional requirements specification CECo Generic ILRT computer code document ID# SSS-88-002 Dated April 1, 1988. A reproduction of the BN-TOP-1, Rev. 1 test method can be found in Appendix C. In preparing for the first Quad Cities short duration test using BN-TOP-1, Rev. 1 a number of editorial errors and ambiguous statements in the topical report were identified. These errors are presented in Appendix E and are editorial in nature only. The Station has made no attempt to improve or deviate from the methodology outlined in the topical report.

Section 2.3 of BN-TOP-1, Rev. 1 gives the test duration criteria for a short duration test. By station procedure some of these duration criteria have been made more conservative and in some cases these changes may be required by regulations.

A. "Containment Atmosphere Stabilization"

Once the containment is at test pressure the containment almosphere shall be allowed to stabilize for about four hours (4 hours required by Quad Cities procedure and actual stabilization: 17 hrs, 57 min) The atmosphere is considered stabilized when:

 The rate of change of average temperature is less than 1.0°F/hour averaged over the last two hours.

DATA SET*	AVE. CONTAINMENT TEMP.	<u>ΔT</u>
180	93.153	
174	93.237	0.084
168	93.294	0.057
	averader	0.0705°E/bour

* Approximate time interval between data sets is 10 minutes.

or

 "The rate of change of temperature changes less than 0.5°F/hour/hour averaged over the last two hours."

(Not required if A.1 satisfied)

- B. Data Recording and Analysis
 - 1. "The Trend Report based on Total Time calculations shall indicate that the magnitude of the calculated leak rate is tending to stabilize at a value less than the maximum allowable leak rate (L_A) ..."

By Quad Cities procedure the calc -1 leak rate must be less than 0.75 Lg. The actual value -155 Lg, stable, and decreasing (no extrapolation required).

 "The end of the test upper 95% confidence limit for the calculated leak rate based on total time calculations shall be less than the maximum allowable leak rate."

By Quad Cities procedure the upper confidence limit must be less than 0.75 Lg. The actual value was 0.4621 Lg.

and

3. "The mean of the measured leak rates based on Total Time calculations over the last five hours of the test or last 20 data points, whichever provides the most data, shall be less than the maximum allowable leck rate."

By Quad Cities procedure this average must be less than 0.75 Lg. The actual value was 0.4194 Lg for the last 5 hours.

and

 "Data shall be recorded at approximately equal intervals and in no case at intervals greater than one hour."

At Quad Cities data scans are automatically performed on 10 minute intervals. No data sets were missed or lost during the 6 hour test period. No computer failures were encountered.

and

 "At least twenty (20) data point shall be provided for proper statistical analysis."

There were 38 data sets taken for this test.

and

"In no case shall the minimum test duration be less than six (6) hours."

Quad Cities' procedure limits a short duration tast to a minimum of six (6) hours. The data taken during this test would support the argument that a shorter duration test can be conducted. All of the above termination criteria were satisfied in six (6) hours.

SECTION F - TYPE A TEST RESULTS

F.1 Measured Leak Rate Test Results

Based upon the data obtained during the short duration test, the following results were determined: $(L_A = 1.0 \text{ wt } \frac{\pi}{day})$

 Calculated leak rate at 6 hours equals 0.4155 wt %/day and declining steadily over time (<0.750) wt %/day).

- Upper confidence limit equals 0.4621 wt %/day and declining (<0.750 wt %/day).
- Mean of the measured leak rates for the last 5 hours (32 data sets) equals 0.4194 wt %/day (<0.750 wt %/day).
- Data sets were accumulated at approximately 10 minute time intervals and no intervals exceeded 1 hours.
- 5) There were 38 data sets accumulated in 6 hours measured phase.
- 6) The minimum test duration (by procedure) of 6 hours was successfully accomplished (> 6 hours).

F.2 Induced Leakage Test Results

A leak rate of 8.82 scfm (1.0814 wt %/day) was induced on the primary containment for this phase of the test. The leak rates during this phase of the test were as follows.

BN-TOP-1 Calculated Leak Rate (Measured Leak Rate Phase)	0.4155	0.4155
Induced Leak (8.79 scfm)	1.0814	1.0814
Allowed Error Band	<u>+0.2500</u> 1.7469	<u>- 1 2500</u> 1.2469
and water a series of the seri		

BN-TOP-1 Calculated Leak Rate 1.4626 wt %/day (Induced Leak Rate Phase)

The induced phase of the test has a duration criteria given in Section 2.3.C of BN-TOP-1. The test duration requirements are listed below and were satisfied by the test procedure and the data analysis:

- Containment atmospheric conditions shall be allowed to stabilize for about one hour after superimposing the known leak. (actual: 1 hour).
- The verification test duration shall be approximately iqual to half the integrated leak rate test duration. (actual: 3 hours for 6 hour test)
- Results of this verification test shall be acceptable provided the correlation between the verification test data and the integrated leak rate test data demonstrate an agreement within plus minus 25 percent. (actual: see results above)

F.3 Pro-Operational Results vs Test Results

Past IPCLRT reports have compared the results of each test with the pre-operational IPCLRT, performed April 20-21, 1971. Over the last 16 years, different test equipment, sensor locations and number of sensors, test methods, and test duration have been used. This test yielded results that compare favorably with recent tests and demonstrate that there has been no substantial deterioration in containment integrity.

TEST DATA	TEST DURATION	CALCULATED LEAK RATE	STATISTICALLY AVE.
	(HOURS)	(BN-TOP-1)	LEAK RATE (A+ ,/ANS)
August, 1971 1976 1980 1983 February, 1984 May, 1985 October, 1986 June, 1987	24 24 24 24 24 24 24 24 8 6	Not Available Not Available Not Available Not Available .3670 .3225 .4155	0.1112 0.327 0.449 0.464 0.385 0.4071 0.3294 0.4141

F.4 TYPE A TEST PENALTIES

During the type A test, there were a number of systems that were not drained and vented outside the containment. The isolation values for these systems or penetrations were not "challenged" by the type A test. Even though these systems would not be drained and vented during a DBA event, historically, penalties for these systems have been added to the type A test results.
	MINIMUM PATH	WAY LEAKAGE
	SCFH	WT%/DAY
Primary Sample Valves	0.00	0.00
ACAD	3.30	0.00674
RHR A	2.45	0.00500
RHR B	1.65	0.00337
Feedwater		
DWFDS	0.75	0.00153
DWEDS	0.40	0.00082
RCIC steam exhaust	3.88	0.00792
RCIC drain	1.65	0.00337
HPCI steam exhaust	3.22	0.00658
HPCI Drain	2.10	0.00429
All electrical penetrations	0.20	0.00041
Oxygen analyzer	16.0	0.03268
Tip purge check valves	3.0	0.00613
CAM-Isolation Valves & Panels	0.00	0.00
MSIV drain valves	0.00	0.00
SRM/IRM Purge	0.00	0.00
Total	38.60 SCFH	0.0788 wt%/day

AC IEFT

F.5 EVALUATION OF INSTRUMENT FAILURES

Prior to the start of the test, RTD No. 8, located behind the biological shield, failed. The instrument spiked high, then read high. The failure was noted and locked out approximately one hour forty minutes prior to the measure phase.

The effect of this instrument failure on the instrument error reported in section B.3 of this report is minimal.

The system accuracy uncertainty becomes 0.1801 wt %/day and the system repeatability uncertainty becomes 0.0265 wt %/day for a 6 hour test.

F.6 AS FOUND TYPE A TEST RESULTS

The following table summarizes the results of all type B and C testing, as well as the IPCLRT results to arrive at an "As Found" type A test result. Since the total is more than the 0.750 wt %/day, the present schedule of performing a type A test every refuel outage must be maintained.

SUMMAR LEAK UNIT	OF ALL RATE TES TWO REF SPRING.	CONTAINMENT TING DURING UEL OUTAGE 1988	
	AS MI	FOUND (SCFH) NIMUM PATHWAY LEAKAGE	AS LEFT (SCFH) MINIMUM PATHWAY LEAKAGE
(1) MSIV'S @ 25 PSIG		17.28	17.28
<pre>(2) MSIV's converted to 48 PSIG*</pre>		27.30	27.30
(3) All Type C Tests (Except MSIV's)	• 15	11.84	64.94
(4) All Type B Tests	1	2.5	12.2
TOTAL (2 + 3 + 4)	150	58.92	121.72
 Type A Test Integrated Leak Rate Test> 		0.4155 wt %/day	
(2) Upper Confidence Limit of Type A Test Result	. (0.4621 wt %/day	
(3) Correction for Unvented Volumes During Type A Test	- (0.0788 wt %/day	
(4) Correction for Repairs Prior to Type A Test (As Found - As Left)		2.956 wt %/day	(<u>1568.92 - 121.72</u> 489.59
(5) Correction for Change Sump Levels	= (0.000 wt %/day	in
TOTAL (2 + 3 + 4 + 5)	$\sim 10^{-1}$	3.497 wt %/day (A	s Found ILRT Result

 Leak Rate at 25 PSIG converts to Leak Rate at 48 PSIG using conversion ratio of 1.58. REFERENCE ORNL - NISC - 5. Oak Ridge National Laboratory, Aug. 1965, page 10.55. TYPE B AND C TESTS

.....

Presented herin are the results of local leak rate tests conducted on all peretrations, double-gasketed seals, and isolation valves since the previous IPCLRT in October 1986. Total leakage for double gasketed seals and total leakage for all penetrations and isolation valves following repairs satisfied the Technical Specification limits. REFUEL OUTAGE LOCAL LEAK RATE TEST SUMMARY

QTS 100-S1 Revision 7 May 1987 APPROVED

SEP 0 9 1987

UNIT /WT	~ 100
TEST DIRECTOR	hend rede
OPERATING ENG.	with the with
TECH STAFF SUPV	· All cantal for

		AS FOUND (SCFH)					AS LEFT (SCFH)			
DESCRIPTION	VALVE(S)/ PENETRATION	DATE	TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	PATHEAY	PATHEAT	
A' MSIV	A0 203-14,24	14-10-881	3.45	11.73	348	14-10 88	3 46	11.73	340	
B' MSIV	A0 203-18,28	14-10-851	4.61	231	451	4-2-88	4.61	2.31	4.61	
C' MSIV	A0 203-10,20	14-10-881	671	346 1	6.91	4.10 28	691	3.46	190	
D' MSIV	A0 203-10,20	14-10-88	2.30	1.15	230	1410 50	230	1.15	1.30	
		TO	TAL	17.28		TO	TAI,	17.28		
		TOTAL CORRECT	TED .	2730	ATOT	L CORREC	TED .	27.30		

MSL DRAIN	MO 220-1,2	14-11-78 65 45 3223 165 45	16-210100 100 100 1
PRIMARY SAMPLE	A0 220-44,45	15288 00 100 100	152881001001:01
'A' FEEDWATER	CV 220-584,624	14.27.88 508.21 548.21 5082	15-5 231 32 6 1 1.55" 1 1 2 3 1
'B' FEEDWATER	CV 220-588,628	14-13 88 890.11 890.1 890.1	16.15881 2.05 1055 12.05 TH
RHR TO RADWASTE	MO 1001-20,21	14-13-88 00 100 100	142:58:00 100 100 1
A' DE SPRAY	MO 1001-234,264	14.1788 028 014 1028	1477 1028 0.14 13.28 1
A RHR RETURN	MO 1001-294	14-19-11 45 1225 145	14-19 W145 1225 145 1
A' TORUS COOLING SPRAY	MO 1001-34,36,37A	17-19 2 1.22 041 1122	\$-14.18 1.02 0.20 11.02 1
B' DE SPRAY	MO 1001-238,268	1529 BA 643 1 522 1 643	Ex9#1612 1322 1643 1
B' RHR RETURN	MO 1001-298	15-27 \$ 207 104 1207	507-51207 1 104 1207 1
B' TORUS COOL ING/SPRAY	MO 1001-34,36,378	1529.01 182 1 151 1182	152381182 1061 1182 1
	PAGE TOTAL (EXCEPT MSIV'S)	1 NA 11430 571 1438.701 1430.07	\$078 9.69 50.78

.1.

10/0168s

UNIT TWO			REFUEL OUTAGE LOCAL LEAN RATE TEST SUMMARY				0TS 100-S1 Revision 7			
UNIT			AS FOUND (SCFH)			1	AS LEFT (SCFH)			
DESCRIPTION		VALVE(S)/ PENETRATION	DATE	TOTAL	PATHEAY	PATHWAY	DATE	TOTAL	PATHWAY	PATHEAT
SHUTDOWN COOLING	MO	1091-47,50	14.2.88	0.0	0.0	10.0	16-1-80	3 \$ 2	11.76	13.52
HEAD SPRAY	MO	1001-60,63	14.22.88	10.57	10.28	10.57	14 -2.84	0.57	10.28	10.57
CLEAN UP SUCTION	MO	1201-2,5	5.4.18	1/3/	6.55	1131	16 7 88	1.88	10.94	1188
RCIC STEAM SUPPLY	MO	1301-16,17	1411-88	1007	004	10.07	16-11-81	1.64	1082	1154
RCIC STEAM EXHAUST	CV	1301-41	14-10-88	7.75	388	1. 1. 1.	14-10-881	775	13.58	17.75
RCIC VAC. PUMP EX.	CV	1301-40	1410.80	13.3	1.65	13.3	14-10-84	3.3	11.65	13.3
DU/TORUS PURGE SUPPLY	AO	1601-21,22,55,56	14-11.88	14.45	7.23	114.45	14-11.88	14.45	1723	114 45
DW/TORUS PURGE EX	AO	1601-23,24,60, 61,62,63	5-15-88	00	00	0.0	1-15-84	00	00	00
'A' TORUS VENT	AO CV	1601-20A, 1601-314	41.78	3.58	1.78	356	4.11.80	3.sr	1.78	355
'B' TORUS VENT	AO CV	1601-208. 1601-318	4.11.88	9.67	4.84	9.67	\$11-25	9.67	484	9.67
DE/TORUS PURGE	AQ	1601-57,58,59	19-10-85	0.60	0.30	2.60	19-10-20	060	030	060
DW FLOOR DRAIN SUMP	AO	2001-3,4 # 3	14-18 34	40	40	1412	6-4.881	1.50	075	11.50
DI EQ CA SUMP	AO	2001-15, 16	4 18.88	08	04	0.8	14.18 85	0.8	0.4	10.8
HPCI STEAM SUPPLY	MO	2301-4,5	4-11.85	2.3	1.15	2.3	14-11-251	2.3	1.15	123
HIPCI STEAM EX	CV	2301-45	14-10-80	6.43	322	1643	14.0.00	8.43	322	16.43
HPCI DRAIN POT EX	CV	2301-34	4-10-88	4.2	21	142	14-10-25-1	4.2	21	142
ON PNEUMATIC	AO	4720, 4721	5288	0.20	015	0.20	15 2.831	0 20	0.15	1 20
APPROVED SEP 00 198	1	PAGE TOTAL	NA	71.00	3757	7100	NA	62.37	3: 15	62.37
OCOSR		* 1 are fish	d work	suit - 1	salage in	eo quan	tidies in	and a	201-41 1.10	in as

WIT TWE		REFUEL OUTAG	REFUEL OUTAGE LOCAL LEAK RATE TEST SUMMARY			075 100-51 Revision 7				
unit <u>Laco</u>		AS	FOUND (SC	FH)	1	AS L	EFT (SCFH)			
DESCRIPTION	PENETRATION	DATE TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	PATHRAY	PATHWAY		
0. ANALYZER	A0 88014, 88024	15-3-31 20	10.0	120	15.3.15	20	100	120		
0 ANALYZER	A0 88018, 88028	5-8-85 1.5	100	11.5	15 3381	1.5	100	11.5		
O ANALYZER	A0 8801C, 8802C	5-3-85 10 8	105	1 10.0	16.11 581	120	1120	1120		
O_ANALYZER	A0 80010, 88020	15-3.88 7.0	14.0	150	15.3.081	9.0	140	150		
Q ANALYZER	A0 8803, 8804	14-11-85 0; 12	10:12	10,12	16-11 85-1	1.5	10.0 500	1.6 8303		
TIP BALL VALVE	1 233-1 737-1B	5-12 18 0.0	100	100	6.11.85	0.3	103	103		
TIP BALL VALVE	1732 737.16	15-12 61 00	00	00	611.281	00	100	10.0		
TIP BALL VALVE	1 733 737.10	15-12-60 10-1	1 10.1	110.1	16-11-101	0.0	100	100		
TIP BALL VALVE	1735-1 237-18	15-12-11/10	11.0	1.0	15-1-251	1.2	112	112 1		
TIP BALL VALVE	1 732-5 737 -1F	15-12-11 2 2	12.2	122	15-100	02	10-	10.2 1		
TIP PURGE CHECK	700-743	15-12 081 3 0	3.0	130	5-12-22	30	130	301		
CAM	SO 2499-14,2A	14.14 88 0.0	00	00	14. 4.28	00	100	100 1		
CAN	1 50 2499-18,28	W14-881 0.0	00	00	4.4581	0.0	100	100 1		
CAM	SC 2499-34,44	17488 0.0	00	00	14 4.15	00	100	001		
CAM	SO 2499-38,48	1414 88 0.0	00	0.0	4-14.19	00	100	100		
ACAD	A0 2599-24,234	19 14 38 2.4	100 = 3A	2.4 24	Y. MAFT	2.4	100234	12424 1		
ACAD	A0 2599-28,238	14-14-20 2.1	02 238	1.7 26	44881	2.1	10.2 -30	11.9 28 1		
ACAD	A0 2599-34,244	14-14 881 61	24 3A	37 244	4-1481	51	124 3A	13724A		
ACAD	A0 2599-38,248	14-14-88 2.3	00 248	2.3 18	Y. 4 84	2.3	100 248	12.336		
ACAD	A0 2599-44,54	15-511 0.7	0.7 44	02 54	5-15-14	0.7	107 44	0.2 5A 1		
ACAD	A0 2599-48,58	5-5-88 1.0	0.058	10 48	5-15-181	1.0	10.0 26	10 48 1		
APPROVED SEP 09 1987	PAGE TOTAL	- NA 66 2	36.2	58.3	NA	45 60	240	38.3		

10/0168s 0 C 0 S R

-3-

TI		LEAK RA	Revision 7							
UNIT 100		AS FOUND (SCFH)			FH)	AS LEFT (SCFH)				
DESCRIPTION	VALVEIS)/ PENETRATION	DATE	TOTAL	PATHWAY	PATHEAY	DATE	TOTAL	PATHEAT	PATHWAY	
EQUIPMENT HATCH	X-1	1-11-881	00	100	100	K.um	00	100	100	
DW ACCESS HATCH	X-4	14.1.281	00	100	10.0	16-19-58	0.0	100	1 2.0	
CRD HATCH	1 X-6	5-13-58	0.0	10.0	100	15 1/18	00	100	00	
TIP PENETRATION	j X-35A	IST IT AM	0.6	10.6	0.5	S. N. 58	0.6	106	106	
TIP PENETRATION	X-358	5-14-51	0.0	10.0	10.0	5-14-18	00	100	100	
TIP PENETRATION	1 X-35C	5-14-38	0.0	0.0	100	15-4 78	00	100	100	
TIP PENETRATION	X-350	15.14.81	00	0.0	0.0	5-14-15-	00	100	0.0	
TIP PENETRATION	1 X-35E	15-19-201	00	0.0	16.2	5-9-11	00	10.0	00	
TIP PENETRATION	1 x - 35F	15-14 381	0.0	00	100	15.14.HP	00	100	100	
TIP PENETRATION	X-35G	15.14 11	00	00	00	5-14 1M	00	100	00	
TORUS HATCH	1 X-200A	14.10-11	00	00	00	6-11+1	00	0.0	00	
TORUS HATCH	×-2008	140.25	00	00	00	Sutr1	00	00	00	
DRYWELL HEAD		14-12-201	0.3	0.3	03	15-11-12	00	0.0	03	
SHEAR LUG INSP. HATCH	SL-1	15-17-854	0.0	0.0	1.00	5-17-18	0.0	100	0.0	
SHEER LUG INSP. HATCH	1 51-2	15.17.891	00	0.0	00	15.19.181	00	105	0.0 1	
SHEAR LUG INSP. HATCH	SL-3	5-17-861	00	00	00	15-17-201	00	1 0 0	0.0 1	
SHEER LUG INSP. HATCH	SL-4	15-17-881	00	00	00	15.17.11	0.0	10.0	031	
SHEAR LUG INSP HATCH	1 SL-5	15-17-181	00	1201	00	15.0.01	00	1 0.0	0.0 1	
SHEER LUG INSP HATCH	1 SL-6	15-17-881	00	00	0.0	12.0.101	0.0	0.15	0.0 1	
SHEAR LUG INSP HATCH	SL-1	S-17 K	03	0.3	03	15-12-201	03	03	0.3 1	
SHEER LUG INSP HATCH	SL-8	[7-17日]	00	100	00	15-12-141	20	120.1	0.0	
APPROVED	PAGE TOTAL	 NA	1.2	1.2	1.2	NA	09	0.9	0.9	

10/01685

OCOSH

-4-

	νr		REFUE	E LOCAL SUMMARY		QTS 100-S1 Revision 7				
			1	AS	FOUND (SC	FH)	1	AS L	EFT (SCFH)	
DESCR	PTION	PENETRATION	DATE	TOTAL	PATHWAY	PATHWAY	DATE	TOTAL	PATHRAY	PATHWAY
MECH. P	ENETRATION	X 7A	14-14-8M	00	100	100	14-14-98	00	1 0.0	00
MECH. PI	ENETRATION	X-78	4-14-81	00	1 00	100	14-14-181	0.0	1 00	00
MER PI	ENETRATION	X - 7C	14-11-28	00	100	1 00	14-1.141	00	1 0.0	1 00
MECH. PI	ENETRATION	x-70	Seller	00	100	0.0	1411-111	20	1 0.0	00
MECH. PI	ENETRATION	X-8	14-14 881	00	100	1.00	14.14-50	0.0	0.0	0.0
MECH. PE	ENETRATION	X-9A	14.14-88	00	10.0	100	1-14-58	00	1 0.0	00 1
MECH PE	ENETRATION	X-98	14-11-58	08	10.8	08	14-11-881	0.8	08	08
MECH. PE	ENETRATION	X-10	14-11-881	10	100	0.0	1411.85	00	100	00 1
MECH. PE	ENETRATION	X-11	1411-85	0.3	10.3	103	14-11-881	03	1 0.3	03
MECH. PE	ENETRATION	X-12	14-11-181	50	150	50	14-1: 10	50	150	50
MECH PE	ENETRATION	X-13A	4-14-58	00	10.0	0.0	14-14.59	On	100	00 1
MECH. PE	ENETRATION	X-138	14-11-881	02	0.2	02	1411-881	02.	02	021
MECH. PE	INETRATION	X-14	1414-87	1.4	1.4	1.4	1414.30	14	144	1.4
MECH PE	ENETRATION	X-23	411111	00	100	017	14.11-54	0.0	0.0	0.0
MECH PE	INETRATION	X-24	14-11-77	00	00	0.0	19-11-8PM	1.0	0.0	0.0 1
MECH PE	INETRATION	x-25	14-14-821	00	001	00	14.14 M	0 0	0.0	0.0 1
MECH PE	INETRATION	x-26	14-14-881	00	001	0.0	FY YY FM	0.0	0.0	0.0.1
MECH PE	NETRATION	1.36	4-11-95	0.3	0.3	03	14-11-17	03	03	0.3 1
MECH PE	NETRATION	x-47	41101	00	001	0.0	14-1-201	0.0	0.0	0.0 1
MECH. PE	NETRATION	1-17	14-14 841	14	14	1.4/	14.14.70	14	1.4	1.4
MECH IVE	NETRATION	X-16A	14-10 151	13	13	1.3	14 10 SF	13	1.3	1.3 1
	APPRUVED SEP UD 1987	PAGE TOTAL	NA	10.7	10.7	127	 NA	10.7	107	10.7

- 5-

10./0168s

OCOSH

UNIT TWAT		LEAK RA	LEAK RATE TEST SUMMARY			Revision 7					
and a second sec	a statute of	1	AS	FOUND (SCFH)		1	AS L	EFT (SCFH)	Sec. 1		
DESCRIPTION	VALVE(S)/ PENETRATION	DATE	TOTAL	PATHWAY	PATHRAY	DATE	TOTAL	PATHRAY	PATHWAY		
MECH PENETRATION	X - 168	1413-88	04	104	104	14-13-51	04	10.4	164		
ELECTRICAL PENETRATION	X - 100A	IN/A I	12/A	N/A	IN/A	W-AI	NA	N/A	LV/A		
E'SCIRICAL PENETRATION	[X-1008	1413 1	00	0.0	10.0	14-13-24	00	100	100		
ELECTRICAL PENETRATION	X - 100C	19-11-St	0.0	0.0	102	14-11-81	0.0	100	0.0		
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X - 1000	N/A	N.4	N/A	N/A	INA I	N/A	N/A	4/A		
ELECTRICAL PENETRATION	X - 100E	14-11-881	00	100	100	14-11 581	00	10.0	100		
ELECTRICAL PENETRATION	X 100F	15-18-001	00	00	100	15-13-89	00	100	00		
ELECTRICAL PENETRATION	X - 100G	15-13-88	00	00	100	15-13 BM	0.0	1 0.0	0.0		
ELECTRICAL PENETRATION	X-101A	14-11-881	0.0	00	10.0	141188	00	1 0.0	100		
ELECTRICAL PENETRATION	X-1018	14-11-871	0.0	00	10.0	14-11-881	00	0.0	0.0		
ELECTRICAL PENETRATION	X-1010	S- 3. 84	0.0	10.0	10.0	15-13-8H	00	0.0	100 1		
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X-102A	N/A	N/A	N/A	NA	NA	N/A	NA	N/4		
ELECTRICAL PENETRATION (UNIT THO ONLY)	x - 1028	4-11-28	02	0.2	0.2	4.100	02	0.2	02		
ELECTRICAL PENETRATION	j x - 103	14-11881	0.0	0.0	0.0	14-11-881	00	100	00 1		
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-104A	++++	0.0	00	00	4-13-11	00	0.0	0.2		
ELECTRICAL PENETRATION	X-1048	14-18-881	00	0.0	100	14.J.E	0.0	0.0	0.2 1		
ELECTRICAL PENETRATION	X-104C	Her.851	00	00	100	14-11-38-1	0.0	00	00 1		
APPROVE SEP 0.9 108	D PAGE TOTAL	 NA	0.6	0.5	0.6	NA	0.6	0.5	0.6		

10/01685

OCOSR

.6.

The start		LEAK RA	LEAK RATE TEST SUMMARY			Revision /			
UNIT 7 000		1.1	AS	FOUND (SC	FH)	AS LEFT (SCFI)			
DESCRIPTION	PENETRATION	DATE	TOTAL	PATHEAY	PATHWAY	DATE	TOTAL	PATHWAY	PATHWAY
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-1040	4-11-20	00	100	00	4-11-82	00	00	100
ELECTRICAL PENETRATION	1 X-104F	15-13-851	00	12.0	10.0	15-13 8	00	100	10.0
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X-105A	N/A	N/A	N/A	NIA	NA	N/A	N/A	NA
ELECTRICAL PENETHATION (UNIT ONE ONLY)	X-1058	IN/A	N/A	N/A	NA	N/A	N/A	N/A	N/A
ELECTRICAL PENETRATION	X-105C	14-11-881	0.0	00	100	1711 81	00	0.0	100
ELECTRICAL PENETRATION (UNIT ONE ONLY)	X - 1050	N/A	W/A	1.1A	N/A	NA	N/A	N/A	N/A
ELECTRICAL PENETRATION (UN:1 THE ONLY)	X - 106A	4.11 W	60	00	0.0	+-17-58	0.5	0.0	00
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X - 1068	4-11-81	00	00	00	4-11-11	0.0	00	00
ELECTRICAL PENETRALION	1 X-107A	5-13-25	00	00	0.0	15-13 1	0.0	00	00
ELECTRICAL PENETRATION (UNIT TWO ONLY)	X-1078	4.14 9F	00	20	00	408	00	00	00
TORUS PENETRATION	X-227A	17-11 87	00	63	0.0	14-4'881	00	00	00
TORUS PENETRATION	¥-2278	14-14-117	0.0	6.0	0.0	14-14 FT	00	00	20
A' TORUS LEVEL FLANGES	1 marsh	14-26 501	00	00	00	17-26 TH	00	00	0.0
APPROV	ED PAGE TOTAL	I I	0.0	0.0	00	 	0.0	0.0	00

. 2 .

REFUEL CUTACE LOCAL

075 .00.51

SEP 0 9 1987

10/01685

OCOSR

-45-

UNIT Twee		LEAK RATE TEST SUMMARY							
		-	AS	FOUND (SC	FH)	1	AS L	EFT (SCFH)	
DESCRIPTION	PENETRATION	DATE	TOTAL	PATHWAY	PATHRAY	DATE	TOTAL	PATHWAY	PATHWAY
'B' TORE'S LEVEL FLANGES	1 ++++	14.25 281	00	100	100	14258	00	6.0	10.0
SPEN/IRE PURGE (UNIT THEO ONLY)	****	5.18.80	0.0	0.0	00	15-15-101	00	00	0.0
PERSONNEL INTERLOCK X-2	X-?	14-15.84	00	100	100	\$.75 B	15.11	15.11	15.11
H2/02 MONITORING SYSTEM (TOTAL)	A hope	13-25-881 15-27-881	00	00	00	15-25-40	0.0	00	0.0
	PAGE TOTAL	[NA [10	00	00	I I I NA I	60	0.0	0.0
	TESI TOTAL +	 NA	30	1524.97	16×1.87.	NA	191.15 191.15	92.25	1 78. 76
		1	627.77						

"To determine the corrected leakage of the MSIV's (as if they had been tested at 48 PSIG), multiply by 1.58.

** Then the maximum pathway leakage exceeds 0.6 Lz (293.75 SCFH), crite an LER immediately.

The test total is the sum of all page totals in the checklist (exclude MSIV's from all test totals).

Reference: QTS 150 8. "Determination of Total Containment Lesk Rate."

*1 The she	A Halloz cobust look oth mes quent had by Terry 2-2499-224 charles look rate = 0.0 sitt	porony providen 5484 through APPROVED
		SEP 0.9 1987
	(final)	OCOSR

-8-

10/01686

APPENDIX B

TEST CORRECTION FOR SUMP LEVEL CHANGES

The total time measured leak rate, given by the functional requirements specification CECo Generic ILRT Computer Code Document ID # SSS-88-002 Dated April 1, 1988 (see Appendix C), assumes that the containment free air space is 280,327.5 ft³ at a water level in the reactor of 35", torus water level is zero, and that any change in reactor water level is due to a water leakage from the containment changing the free air volume. If the water leakage is from the containment and due to the operation of the shutdown cooling mode of RHR to maintain reactor water temperature, this leakage would not be representative of accident conditions when shutdown cooling would be isolated.

During the stabilization phase of the test considerable effort went into reducing the rate of level decline to approximately 0.45 inches/hour (11.25 ft³/hr or 1.40 GPM) that was experienced during the test. Since the leakage could not be reduced further and level indication for the suppression pool indicated that most of the water leaving the reactor was not entering the suppression pool, but leaving containment, the computer program option for including the vessel level in the leak rate calculation was selected.

The test verification during the induced phase of the test demonstrates the accuracy of this model and the change was completely explained to the NRC inspector witnessing the test.

A hand calculation, using a complete water balance, is included in this Appendix to show that the leak rate reported is not significantly affected by a more detailed analysis, including changing subvolume free air space due to rater leaking from the reactor vessel to the drywell sumps and suppression pool.

To perform a leak rate calculation with a changing containment free air space, the dry air mass for each containment subvolume is calculated using the following equation:

W1 = 2.6995 X P1 X V1

(Ti + 459.69)

where Pi = dry air pressure in ith subvolume.

Vi = free air space in the ith subvolume, and

T = average temperature in the ith subvolume.

The total containment dry air mass is given by the sum of the dry air masses for all of the subvolumes.

$$W^{\dagger} = \sum_{j=1}^{j} W_j$$

The computed leak rate will be the total time leak rate and is given by:

$$L^{\xi} = - \frac{2400}{H} X \quad \underline{W}^{\xi} - \underline{W}^{\circ}$$

where W° = dry air mass of the containment at the start of the test.

N^t = dry air mass of the containment at time t.

H = duration of the test from start to time t in hours, and

Lt = total time leak rate at time t.

There are 3 subvolumes to consider in evaluating the effects of water leakage from the vessel: the vessel itself (subvolume 11), the suppression pool (subvolume 10), and the subvolume for the drywell equipment drain sump (DWEDS) and the drywell floor drain sump (DWFDS) (subvolume 9). Any water leaking from the vessel in excess of that added to the sumps and suppression pool will be assumed to have leaked from the containment through the shutdown cooling mode of RHR.

DATE	TIME	DWFDS*	DWEDS*
06/21/88 06/14/88	0300 0315	10 24.0	8.0 6.2
ate of level c in/hr)	hange	0.290	0.0373
ate of free air hange (ft3/hr)	r vol	-1.108	0.142

*The sumps are assumed to have filled at a constant rate during the period when the containment was fully pressurized. Each sump holds 1200 gallons and is 42" deep.

The following table gives the extrapolated values of the subvolume free air spaces using the above data:

SURVALUME	6 HOUR TEST		INDUCED TEST	
NO. (1)	V₁ t=0	Vi t=6	v; t=0	V1 t=3
1 2 3 4 5 6 7 8 9* 10*	10,550 9,596 10,990 3,783 24,125 32,265 27,618 26,071 8,808 119,580 5,146	10,550 9,596 10,990 3,783 24,125 32,265 27,618 26,071 8,802 119,658 5,215	10,550 9,596 10,990 3,783 24,125 32,265 27,618 26,071 8,800 119,700 5,235	10,550 9,596 10,990 3,783 24,125 32,265 27,618 26,071 8,797 119,714 5,266

Ó

*
$$V_9 = 8,901 - \left(\frac{DWFDS}{42} \times 1200 \times .13368\right) - \left(\frac{DWEDS}{42} \times 1200 \times .13368\right)$$

 $V_{10} = 119,268 - 863.75 \left(\frac{ft^3}{10}\right) \times Torus level (in)$
 $V_{11} = 6571.0 - 25(Level - 35)$

Using the subvolume vapor pressure, subvolume temperature, and the subvolume free air space, the dry air mass for each subvolume can now be calculated. The following table gives the necessary data for the start of the test as 04:05:31 on 06/13/88(Data Set No. 181).

SUBVOLUME	VAPOR PRESSURE	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE	DRY AIR MASS (1bs. mass)
1	.473	63.620	104.456	3211.72
2	.482	63.611	110.334	2890.76
3	.482	63.011	109.135	3317.68
4	.482	63.611	109.428	1141.43
5	.494	63.599	106.536	7314.94
6	.496	63.597	101.419	9871.98
7	. 458	63.635	96.697	8526.97
8	. 443	63.630	86.329	8204.11
9	. 443	63.650	87.720	2764.68
10	.481 2.264	63.612 61.829	83.287 130.436	37,818.08

W°= 5 W1 =86,517.81

The following table gives the necessary data for the end of the 6 hour test at 10:06:43 on 06/13/88 (Data Set No. 218).

SUBVOLUME NO.	VAPOR PRESSURE	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE *F	DRY AIR MASS (1bs. mass)	
1 2 3 4 5 6 7 8 9 10 11	. 458 . 467 . 467 . 481 . 481 . 481 . 446 . 444 . 475 2. 218	63.522 63.513 63.513 63.499 63.499 63.534 63.536 63.536 63.536 61.762	102.829 109.441 109.030 109.397 106.680 101.512 96.630 86.203 87.616 83.043 129.686	3216.05 2890.84 3313.18 1139.73 7301.59 9855.14 8514.46 8191.31 2758.38 37,796.08 1475.25	
			W6 =	86,452.01	

The leak rate for the 6 hour test is:

 $L_{6,020} \times \frac{86,452.01 - 86,517.81}{86,517.81}$

L6hr = .3032 wt % / day (compared to .4072 computed ignoring sump level changes)

The following table gives the necessary data for the start of the induced phase of the test at 12:06:56 on 06/13/88 (Data Set No. 230).

SUBVOLUME	VAPOR PRESSURE	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE *F	DRY AIR MASS (1bs. mass)
1 2 3 4 5 6 7 8 9 10	.456 .463 .463 .463 .476 .479 .443 .447 .447 .447 .475 2.234	63.463 63.456 63.456 63.443 63.440 63.440 63.476 63.472 63.472 63.472 63.444 61.685	103.329 109.392 109.154 109.580 106.780 101.555 96.648 86.206 87.621 83.051 129.949 start W =	3210.21 2888.49 3309.48 1138.34 7293.86 9845.23 8506.41 8183.01 2754.95 37,772.47 <u>1478.40</u> 86,380.85
			induced	

The following table gives the necessary data for the end of the induced phase of the test at 15:17:33 on 06/13/88 (Data Set No. 249).

SUBVOLUME NO.	VAPOR PRESSURE (PSI)	DRY AIR PRESSURE (PSIA)	SUBVOLUME TEMPERATURE 	DRY AIR MASS (1bs. mass)
1 2 3 4 5 6 7 8 9 10 11	456 463 463 463 477 478 478 455 455 455 273	63.359 63.352 63.352 63.338 63.337 63.373 63.361 63.361 63.361 63.339 61.542	104.369 109.674 109.394 109.883 106.971 101.668 96.703 86.166 87.740 83.148 130.586 end	3199.04 2882.33 3302.67 1135.87 7279.33 9827.26 8491.77 8169.30 2748.60 37.707.63 1482.11
			W =	86,225.91

The leak rate for the induced phase is

L (induced) = $-\frac{2400}{3.177}$ X $\frac{(86,225.91 - 86,380.85)}{86,380.85}$

= 1.3550 wt % / day (compared to 1.3962 computed ignoring sump level changes)

The above calculations show that the leakage from the reactor vessel did not significantly affect the reported leak rate and that the reported values are conservative values with respect to the actual leakage.

APPENDIX C

COMPUTATIONAL PROCEDURE

D. INPUT PROCESSING .

Calculations perfomed by the software are outlined below:

D.1 Average temperature of subvolume #i (T_i) = The average of all RTD temps in subvolume #i

$$T_1 = \frac{1}{N} \quad \begin{array}{c} N \\ \Sigma \\ j=1 \end{array} \quad T_1, j$$

where N = The number of RTDs in subvolume #1

D.2 Average dew temperature of subvolume #i (D₁) = The average of all dew cell dew temps in subvolume #i

$$D_{i} = \frac{1}{N} \frac{\sum_{j=1}^{N} D_{i,j}}{\sum_{j=1}^{N} D_{i,j}}$$

where N = The number of RTDs in subvolume #i

- 0.3 Total corrected pressure #1, (P1)
 - C1 First correction factor for raw pressure #1. (from program initialization data set).
 - M1 Second correction factor for raw pressure #1, (from program initialization data set).
 - Pri Raw pressure #1, from BUFFILE.
 - P1 = C1 + M1 Pr1/1000, for 5 digit pressure transmittors
 - P1 = C1 + M1 Pr1/10000. for 6 digit pressure transmitters
- D.4 Total corrected pressure #2, (P2)
 - C2 First correction factor for raw pressure #2, (from program initialization data set.
 - M2 Second correction factor for raw pressure #2, (from program initialization data set.
 - Pr2 Raw pressure #2, from BUFFILE.
 - P2 = C2 + M2 Pr2/1000, for 5 digit pressure transmitters
 - P2 = C2 + M2 Pr2/10000, for 6 digit pressure transmitters

Whole Containment Volume Weighted Average Temperature, (Tr) 0.5 Approximate Tc = E fi Ti Method T_C = <u>N</u> f₁ Exact Mathod where: fi= The volume fraction of the ith subvolume N = The total # of subvolumes in containment 0.6 Average Vapor Pressure of Subvolume 1, (Curve fit of ASME steam tables.) (Pvi) $\begin{array}{r} \mathsf{Pv}_1 = 0.01529125 + 0.001653476 \ \mathsf{D}_1 \\ = 1.44734 \ \mathsf{X} \ 10^{-6} \ (\mathsf{D}_1)^2 \ + \ 7.081828 \ \mathsf{X} \ 10^{-7} \ (\mathsf{D}_1)^3 \\ = 2.28128 \ \mathsf{X} \ 10^{-9} \ (\mathsf{D}_1)^4 \ + \ 3.03544 \ \mathsf{X} \ 10^{-11} \ (\mathsf{D}_1)^5 \end{array}$ whole Containment Average Vapor Pressure. (Pvc) 0.7 $Pv_{C} = \sum_{i=1}^{N} f_{i} Pv_{i}$ Approximate Method $Pv_{C} = T_{C} \sum_{i=1}^{N} \frac{f_{i} Pv_{i}}{T_{i}}$ Exact Method N . The total of subvolumes in containment fi= Volume fraction of the ith subvolume 0.8 whole Containment Average Dew Temperature, (Dc) Approximate Dc = E fi Di Method Exact Method The whole containment average vapor pressure. (Pvc) calculated with the exact method is used to find Dc. An initial value of Dc is guessed and used with the equation in D.6 to calculate Pvc. This value is then compared to the known value from D.7. A new value of De is guessed and the process is repeated until a value of De is found that results in a calculated value of Pvc that is within .0001 psia of the value from D.7.

D.9 Average total containment pressure.(P)

P = (P1 + P2)/2

Average total containment dry air pressure. (Pd) $Pd = P - Pv_c$

D.10 Total Containment dry air mass. (M)

Type 1: M = R T_c

where: R = Perfect gas constant, $V_C = Total containment free volume.$

Type 2: Type 2 dry air mass accounts for changes in Reactor Vessel level.

For uncorrected dry air mass, (Type 1) the below definitions apply.

 $V_c = \sum_{i=1}^{N} V_i$ and $f_i = V_i/V_c$

where Vi is the user entered free volume in subvolume i.

For corrected dry air mass, (Type 2) the same definitions for $V_{\rm C}$ and f₁ apply, except that one of the V₁s is corrected for changes in vessel level. If k is the subvolume number of the corrected subvolume then:

 $V_k = V_{k0} - a(C - b)$

a is the number of cubic feet of free volume per inch of vessel level.

b is the base level of the reactor vessel, in inches.

C is the actual water level in the reactor vessel, in inches.

 V_{KO} is the volume of the subvolume k when C equals b.

The volume fractions (f_i) are then calculated with the corrected volume, and all other calculations are subsequently performed as previously specified for Type 1 dry air mass.

D.11 Leakrate Calculations using Mass-Plot Method:

This method assumes that the leakage rate is constant during the testing period, a plot of the measured contained dry air mass versus time would ideally yield a straight line with a negative slope.

Based on the least squares fit to the data obtained, the calculated containment leakage rate is obtained from the equation:

W

here	M =	containment dry air mass at time t	(1bs.)
	B =	calculated dry air mass at time t=0	(1bs.)
	A =	calculated leakage rate	(lbs/hr)
	t .	time interval since start of test	(hours)

The values of the constants A and B such that the line is linear least squares best fitted to the leak rate data are:

$$A = \frac{N\Sigma(t_{1})(M_{1}) - (\Sigma t_{1})(\Sigma M_{1})}{N\Sigma(t_{1})^{2} - (\Sigma t_{1})^{2}}$$

$$B = \frac{\Sigma M_{1} - A\Sigma t_{1}}{N}$$

By definition, leakage out of the containment is considered positive leakage. Therefore, the statistically averaged least squares containment leakage rate in weight percent per day is given by:

L = (-A) (2400)/B (weight %/day)

In order to calculate the 95% confidence limit of the least squares averaged leak rate, the standard deviation of the least squares slope and the student's T-Distribution function are used as follows:

$$\sigma = \begin{bmatrix} 1 & N\Sigma(M_1)^2 & -(\Sigma M_1)^2 & -A^2 \end{bmatrix} \begin{pmatrix} 2 & (2400) & (weight % D) \\ \hline & (N-2) & N\Sigma(t_1)^2 & -(\Sigma t_1)^2 & -A^2 \end{bmatrix} \begin{pmatrix} 2 & (2400) & (weight % D) \\ \hline & B & per day \end{pmatrix}$$

 $UCL = L + \sigma (T)$

 $T = \frac{1.6449(N-2) + 3.5283 + 0.85602/(N-2)}{(N-2) + 1.2209 - 1.5162/(N-2)}$

where

N Number of data sets = test duration at the ith data set t4 (hours) = standard deviation of least squares slope 0 (weight%/day) = Value of the single-sided T-Distribution function with 2 degrees of freedom = calculated leak rate in weight %/day τ = 95% upper confidence limit UCL (%/dav) = calculated containment dry air mass at time t=0 (1bs.) 8

D.12 Point to Point Calculations

This method calculates the rate of change with respect to time of dry air mass using the Point to Point Method.

For every data set, the rate of change of dry air mass between the most recent, (t_i) and the previous time (t_{i-1}) is calculated using the two point method shown below:

$$\dot{M}_{i} = \frac{2400}{(t_{i} - t_{i-1})} (1 - M_{i}/M_{i-1})$$

Then the least square fit of the point to point leakrates is calculated as described for dry air masses in section D.11

D.13 Total Time Calculations

This method calculates the rate of change with respect to time of dry air mass using the Total Time Method

Initially, a reference time (t_r) is chosen. For every data set the rate of change of dry air mass between t_r and the most recent time, t_i is calculated using the two point method shown below.

$$\dot{M}_{i} = \frac{2400}{(t_{i}-t_{r})}$$
 (1 - M_i/M_r)

Then the least squares fit and 95% UCL of the Total Time leakrates are calculated as shown below:

$$B = \frac{\sum M_{1} \sum (t_{1})^{2} - \sum t_{1} \sum M_{1} t_{1}}{N \sum (t_{1})^{2} + (\sum t_{1})^{2}}$$

$$A = \frac{(N \sum t_{1} M_{1} - \sum t_{1} \sum M_{1})}{N \sum (t_{1})^{2} - (\sum t_{1})^{2}}$$

$$L = B + At$$

$$T = \frac{1.6449(N-2) + 5283 + 0.85602/(N-2)}{(N-2) + 1.2209 - 1.5162/(N-2)}$$

Note: N is the number of data sets minus one.

$$F = \frac{1}{N} + \frac{(t_p - \Sigma (t_i) / N)^2}{\Sigma (t_i)^2 - (\Sigma t_i)^2 / N}$$

$$\sigma = \frac{1}{N} + \frac{1}{\Sigma (t_i)^2 - (\Sigma t_i)^2 / N}{\sqrt{1 + \frac{1}{N} + \frac{1}$$

Note: This equation is calculated for information only from the start of the test up to 24 hours, then it becomes the official leakrates for future times.

D.14 BN-TOP-1

This method calculates the rate of change with respect to the time of dry air mass using the Total Time Method.

Initially, a reference time (t_r) is chosen. For every data set the rate of change of the data item between t_r and the most recent time, (t_i) is calculated using the two point method shown below:

$$\dot{M}_{j} = \frac{2400}{(t_{j} - t_{r})} (1 - M_{j}/M_{r})$$

Then the least squares fit of the Total Time leakrates and the BN-TOP-1 95% UCLs are calculated as shown below.

$$B = \frac{(\Sigma \dot{M}_{1} \Sigma (t_{1})^{2} - \Sigma t_{1} \Sigma \dot{M}_{1} t_{1})}{N \Sigma (t_{1})^{2} - (\Sigma t_{1})^{2}}$$

Note: N is the number of data sets minus one.

$$A = \frac{(N \Sigma t_1 \dot{M}_1 - \Sigma t_1 \Sigma \dot{M}_1)}{N \Sigma (t_1)^2 - (\Sigma t_1)^2}$$

$$L = B + At$$

$$T = 1.95996 + \frac{2.37226}{(N-2)} + \frac{2.8225}{(N-2)^2}$$

$$F = 1 + \frac{1}{N} + \frac{(t_p - \Sigma (t_1) / N)^2}{\Sigma (t_1)^2 - (\Sigma t_1)^2 / N}$$

$$\sigma_{1}^{*} / \frac{F}{N} = \frac{1}{\sqrt{2}} \frac{F}{\Sigma (\dot{M}_{1})^{2} - B \Sigma \dot{M}_{1} - A \Sigma \dot{M}_{1} t_{1}}$$

UCL + L + To

Note: This equation is calculated for information only from the start of the test up to 24 hours, then it becomes the official leakrates for future times.

D.15 Temperature stabilization checking per ANSI 55.8-1981

- Ti Weighted average containment air temperature at hour i.
- Ti.n Rate of change of weighted average containment air temperature over an n hour period at hour i, using a two point backwards difference method.

$$T_{i,n} = \frac{T_i - T_{i-n}}{n}$$

Zi is the ANSI 56.8-1981 Temperature stabilization criteria at hour 1.

21 = | T1.4 - T1.1 | 1 must be 2 4.

Per ANSI 56.8-1981. 2 must be less than or equal to 0.5 OF/hr

NOTE: If the data sampling interval is less than one hour, then:

Option #1 Use data collected at hourly intervals

Option #2 Use average of data collected in previous hour for that hour's data.

D.16 Calculation of Instrument Selection Guide, (ISG)

$$\frac{15G = 2400}{t} \frac{12}{V} \frac{(e_p/p)^2 + 2}{N_p} \frac{(e_r/T)^2 + 2}{N_r} \frac{(e_d/p)^2}{N_d}$$

where: t is the test time, in hours p is test pressure, psia T is the volume weighed average containment temperature, OR Np is the number of pressure transmitters Nr is the number of RIDs Nd is the number of dew cells ep is the combined pressure transmitters' error, psia er is the combined RIDs' error, OR ed is the combined dew cells' error, OR

where: Sp is the sensitivity of a pressure transmit. RPp is the repeatability of a pressure transmitter RSp is the resolution of pressure transmitter

where: Sr is the sensitivity of an RTD RPr is the repeatability of an RTD RSp is the resolution of an RTD

8.

 $e_{d} = \frac{\Delta P_{v}}{\Delta T_{d}} \left| \frac{T_{d}}{T_{d}} \frac{T_{d}}{(S_{d})^{2} + (RP_{d} + RS_{d})^{2}} \right|^{2}$

where: S_d is the sensitivity of a dew cell RP_d is the repeatability of a dew cell RS_d is the resolution of a dew cell

> ΔP_v change in vapor pressure ΔT_d \overline{T}_d change in saturation temperature

The above ratio is from ASME steam tables and evaluated at the containment's saturation temperature at that time.

D.17 BN-TOP-1 Temperature Stabilization Criteria Calculation

A. The rate of change of temperature is less than 1 °F/Hr averaged over the last two hours.

> $K_1 = |T_i - T_{i-1}|$ $K_2 = |T_{i-1} - T_{i-2}|$ K_1 and K_2 must both be less than 1 to meet the criteria listed in A.

B. The rate of change of temperature changes less than 0.5 F/brur/hour averaged over the last two hours.

 $\begin{array}{l} K_1 = (T_i - T_{i-1})/(t_i - t_{i-1}) \\ K_2 = (T_{i-1} - T_{i-2})/(t_{i-1} - t_{i-2}) \\ Z = [(K_1 - K_2)/(t_i - t_{i-1})] \end{array}$

Z must be less than 0.5 to meet the criteria listed in B.

D.18 Reactor Vessel Free Volume Mass Calculation

As shown in section D.10, the free volume of the Reactor Vessel subvolume κ is given by the below equation.

 $V_{\kappa} = V_{\kappa 0} - a (c-b)$

The dry air mass in subvolume x can then be written as:

ME = 144 (P-PVE) VE/RTE

Where: Ma is the dry air mass in subvolume κ , (lbm)

R is the gas constant of air

 T_{κ} is the average temperature of subvolume κ , (OR)

 $P_{V\kappa}$ is the average vapor pressure of subvolume κ , (pisa)

P is the average containment pressure, (psia)

 V_{κ} is the free air volume in subvolume κ , (ft³)

WP+/DOC. 7

D.19 Torus Free Volume Calculation

Free volume calculations of the Torus rely upon narrow range Torus water level inputs. These values range between plus and minus five inches. It is assumed that the Torus subvolume free air volume is that subvolume's volume when the Torus level equals zero. The user may enter three constants to model the variation of Torus air volume with water level.

The equations for Torus free volume in subvolume t are given:

 $V_t = V_{to} - (aL + bL + cL^3)$ when $L \ge 0$ $V_t = V_{to} + (-aL + bL^2 - cL^3)$ when $L \le 0$

The dry air mass in subvolume t can then be written as:

 $M_{t} = 144 (\bar{P} - \bar{P}_{vt}) V_{t} / R\bar{T}_{t}$

Where: Mt is the dry air mass in subvolume τ , (lbm)

P is the average containment pressure, (psia)

Pvt is the average vapor pressure of subvolume t (pisa)

Vt is the free volume in subvolume t. (ft3)

R is the gas constant of air

Tt is the average temperature in subvolume t (°R)

L is the Torus level, (inches)

a,b,c are Torus level constants

Vto is the free volume in subvolume T when L equals zero,

taken from standard free volume inputs, (ft3)

E. OUTPUTS

E.1 OUTPUT DEVICE TYPES: The below output devices shall be supported. There are no special constraints on output device locations.

PRINTERS.	PRIME High Speed Line Printer OKIDATA 2410
PLOTTERS:	OKIDATA 93 LA120 Hewlet Packard 7475A 8.5" X 11"
CRTs:	Hewlet Packard 7585A 8.5" X 11" Hewlet Packard 7585A 11" X 17"
	View Point 60 Ampex Dialogue 80 & 81
GRAPHICS TERMINALS:	RamTech 6200 RamTech 6211 Tektronix 4107 Tektronix 4208
64	Tektronix 4014

APPENDIX D

INSTRUMENT ERROR ANALYSIS

.

IPCLRT SAMPLE ERROR ANALYSIS FOR SHORT DURATION TEST

A. ACCURACY ERROR ANALYSIS

Per Topical Report BN-TOP-1 the measured total time leak rate (M) in weight percent per day is computed using the Absolute Method by the formula:

$$M(\% / DAY) = \frac{2400}{H} * \left(1 - \frac{T \overline{P}}{1 N} \right)$$
$$T \overline{P}$$
$$N 1$$

where: \overline{P}_1 = total (volumn weighted) containment dry air pressure (PSIA) a. :e start of the test;

- \overline{P}_{N} = total (volume weighted) containment dry air pressure (PSIA) at data point N after the start of the test;
 - H = test duration from the start of the test to data point N in hours;

(1)

- T1 = containment volume wighted temperature in °R at the start of the test;
- T_N = containment volume weighted temperature in °R at the data point N.

The following assumptions are made:

٩	-	PN	*	P	A where P is the average dry air pressure of the containment (PSIA) during the test;
T1	-	TN	*	Λ T	A where T is the average volume weighted primary containment air temperature (°R) during the test;
P1	+	PN			where P is the total containment atmospheric pressure (PSIA);
P۷	ļ	P	/N		Where P_V is the partial pressure of water vapor in the primary containment.

Taking the partial derivative in terms of p: ssure and temperature of (1) equation and substituting in the above assumptions yields the following equation found in Section 4.5 of BN-TOP-1 Rev. 1:

$$e_{M} = \pm \frac{2400}{H} + \frac{2}{2} \left(\frac{p}{\Delta}\right)^{2} + 2 \left(\frac{t}{\Delta}\right)^{2} \frac{1}{2}$$

where

 e_{D} = the error in the total pressure measurement system.

$$e_p = \pm [(e_{p_T})^2 + (e_{p_V})^2]^{1/2};$$

ept = (instrument accuracy error) / I no. of inst. in measuring total containment pressure;

epy = (instrument accuracy error) / v no. of inst. in measuring vapor partial pressure;

et = (instrument accuracy error) / √ no. of inst. in measuring containment temperature;

em = the error in the measured leak rate;

H = duration of the test.

NOTE

Subvolume #11, the free air space above the water in the reactor vessel, is treated separately from the rest of the containment volume. The reason for the separate treatment is that neither the air temperature or the partial pressure of water vapor is measured directly. The temperature of the air space is assumed to be the temperature of the reactor water, as measured in the shutdown cooling or clean-up demineralizer piping before the heat exchangers. The partial pressure of water vapor is computed assuming saturation conditions at the temperature of the water. Volume weighting the errors for the two volumes (Subvolume #11 and Subvolumes #1-10) is the method used.

-67-

B. EQUIPMENT SPECIFICATIONS

INSTRUMENT	RTD (°F)	PPG (PSIA)	DEWCELL (°F)	FLOWMETER (SCFM)	THERMOCOUPLE (°F)
Range	50-150	0-100	20 - 104	0.927-11.23	0 - 600
Accuracy	±.50	±.015	±1	±.111	<u>+</u> 2.0
Repeat- ability	±.10	±.001	±.50	<u>+</u> .02	±.10

COMPUTATION OF INSTRUMENT ACCURACY UNCERTAINTY C.

1. Computing " er "

Volume Fraction for Volume #11 = .02344 Volume Fraction for Volumes #1-10 = .97656

er = + (.97656 * .50 + .02344 * 2) 129 11

er = + .13:5°R

2. Computing " Ppr "

e

$$PT = \pm \frac{.015}{\sqrt{2}}$$

ept = + .0106 PSIA

3. Computing " epy "

At a dewpoint of 65°F (assumed), an accuracy of \pm 1°F corresponds to ± .011 PSIA. For subvolume #11 at an average temperature of 140°F, an accuracy of + 2°F corresponds to + .150 PSI.

epy = + (.97656 * .011 + .02344 * .150) VI V10

epv = + .0069 PSIA

4. Computing " ep "

 $e_{D} = \pm [(.0106)^{2} + (.0069)^{2}]^{1/2}$

ep = + .0126 PSIA

5. Computing total instrument accuracy uncertainty " em " $e_{M}^{A} = \pm \frac{2400}{H} * \left[2 * \left(\frac{.0126}{63.5} \right)^{2} + 2 * \left(\frac{0.1376}{552.6} \right)^{2} \right]^{\frac{1}{4}}$ assuming P = 63.5 PSIA $T = 552.6^{\circ}R$ Therefore, for a 6 hour test (H), em = ± .1801 wt % / DAY COMPUTATION OF INSTRUMENT REPEATABILITY UNCERTAINTY D. 1. Computing " er " er = + .10 √30 et = + .0183°R 2. Computing " ept " ept = + .001 12 ept = ± .0007 PSIA 3. Computing " epv " epy = + (.97656 * .006 + .02344 * .008) 10 $\sqrt{1}$ epy = + .0020 PSIA 4. Computing " ep " ep = [(.0007)² + (.0020)²]^{1/2} ep = ± .0021 PSIA

L

-69-

1

5. Computing the total instrument repeatability uncertainty " e_M "

$$e_{M}^{R} = \frac{2400}{H} \cdot \left| \frac{2}{2} \left(\frac{.0021}{63.5} \right)^{2} + 2 \left(\frac{0.0183}{552.6} \right)^{2} \right|^{\frac{1}{4}}$$

Therefore, for a 6 hour test,
 $e_{M}^{R} = \pm .0265$ wt % / DAY

E. COMPUTING TOTAL INSTRUMENT UNCERTAINTY

$$e_M = \pm 2 * [(e_M)^2 + (e_M)^2] 1/2$$

 $e_M = \pm 2 * [(.1801)^2 + (.0265)^2] 1/2$
 $e_M = \pm .3641$ weight % / DAY for a 6 hour test.

APPENDIX E

BN-TOP-1, REV 1 ERRATA
APPENDIX E

.

.

O

SN-TOP-1, REV. 1 ERRATA

The Commission has approved short duration testing for the IPCLRT provided the Station uses the general test method outlined in the BN-TOP-1, Rev. 1 topical report. The primery difference between that method and the ones previously used is in the statistical analysis of the measured leak rate data.

Without making any judgments concerning the validity of this test method. certain errors in the editing of the mathematical expressions wire discovered. The intent here is not to change the test method, but rather to clarify the

EQUATION 3A, SECTION 6.2

Reads:

Should Read:

L, = A + B t, L. = A. + B. C.

Reason:

Reads:

The calculated leak rate (L_i) at time t is computed using the regression line constants A_i , B_i (computed using equations 6 and 7). The summation signs in equation 6 are defined as $\Sigma = \Sigma$, where n is the number of data sets up until time t. . The regression line constants change each time a new data set is received. The calculated leak rate is not a

PARAGRAPH FOLLOWING EQ. 3A, SECTION 6.2

The deviation of the measured leak rate (M) from the calculated leak rate (L) is shown graphically on Figure A.1 in Appendix A and is expressed as:

Ceviation = M. - L.

Should Read: The deviation of the measured leak rate (M_) from the regression line (N) is shown graphically on Figure All in Appendix A and is expressed as:

Deviation = M - M

where N = A - 3 - 1 - .

Ap, B = Regression line constants computed from all data sets available from the start of the test to the last data set at time to,

5

a time from the start of the test to the ith data set

Season:

The calculated leak rate as a function of time during the test is based on a regression line. The regression line constants, A, and B, are changing as each additional data set is received. Equation 3A in used later in the test to compute the upper confidence limit as a function of time For the purpose of this calculation, it is the deviation from the last computed regression line at time t, that is important.

2

EQUATION 4, SECTION 6.2

Reads:	SSQ	= 1	(M ₁ -	L_)
Should Read:	SSQ	2 L	(M	N.)
Reason:	Same	As	Above	12

EQUATION 5, SECTION 6.2

Reason:	Same As Above
Should Read:	SSQ = 2 [M - (A + B + t)]2
Reads :	$SSQ = \Sigma (M_i - (A + Be_i))^2$

EQUATION ABOVE EQUATION 6, SECTION 6.2

Reads :	3	(e.	-	ē)	()	1	•	9)
		1	1(1		•	2)	2	-

Should	Read:	8, =	Σ((=,	•	E)	(M	•	A)	1
				Z	(5		3	2		

Reason:

Regression line constant 3, changes over time as a function of t_) as each additional data set is received. Bar of "t" left out of decominator Summation signs omitted.

EQUATION 6. SECTION 6.2

Reads:	3 = a I t, H, - (I t,) (I H,)
	a 2t, ² + (2 t ₁) ²
Should Read:	$\mathbf{B}_{i} = \frac{\mathbf{a} \boldsymbol{\Sigma} \mathbf{c}_{i} \boldsymbol{H}_{i} - (\boldsymbol{\Sigma} \mathbf{c}_{i}) (\boldsymbol{\Sigma} \boldsymbol{H}_{i})$
	a It' - (I t')'
Reason:	Same As Above

73

EQUATION 7, SECTION 6.2

Reads:	A = M - B E
Should Read:	A
Reason:	Same As Above

EQUATION 10, SECTION 6.2

Reads:
Reads:

$$A = \frac{(\Sigma M_i) (\Sigma t_i^2) - (\Sigma t_i) (\Sigma t_i M_i)}{\alpha \Sigma t_i^2 - (\Sigma t_i)^2}$$
Should Read:

$$A_i = \frac{(\Sigma M_i) (\Sigma t_i^2) - (\Sigma t_i) (\Sigma t_i M_i)}{\alpha \Sigma t_i^2 - (\Sigma t_i)^2}$$

Reason: Same As Above

EQUATION 13, SECTION 6.3

Reads :	$\sigma^{2} = s^{2} \left[1 + \frac{1}{a} + \frac{(t_{p} - t)^{2}}{(t_{1} - t)^{2}}\right]$	
Should Read:	$\sigma^{2} = s^{2} \left(1 + \frac{1}{\alpha} + \frac{(t_{p} - \tilde{t})^{2}}{\frac{\Gamma}{\Gamma}(t_{i} - \tilde{t})^{2}}\right)^{\frac{1}{2}}$	

Ŭ	aere	°p		time from the start of the test of the last data set for which the standard deviation of the measured leak rates (1) from the regression line (N) is being computed;	
		¢.	٦	time from the start of the test of the 1 th data	
		a	-	number of data sets to time tp;	
		Σ	=	Ω Σ ; and t=1	
	1		*	$\frac{1}{\alpha} \mathbf{\Sigma} \mathbf{t}_{\mathbf{L}}$	
Reason	•			Appears to be error in editing of the renort	

Report does a poor job of defining variables.

EQUATION 14, SECTION 6.3

Reads:
$$\sigma = s \left[1 + \frac{1}{n} + \frac{(t_p - t_r)^2}{(t_1 - t_r)^2} \right]$$

Should Read: $\sigma = s \left[1 + \frac{1}{a} + \frac{(t_p - \overline{t}_r)^2}{\overline{\Sigma(t_1 - \overline{t})^2}} \right]$

Reason: Same As Above

EQUATION 15, SECTION 6.3

Readr :	Confidence Limit " L = T
Should Read:	Confidence Limits = L ± T x σ
where L a	calculated leak rate at time t,
Ţ₩	T distribution value based on a, the number of data sets received up until time t ;
g =	standard deviation of measured leak rate values (M.) about the regression line based on data for

d on data from the start of the test matil time t

Resson: Same As Above

EQUATION 16, SECTION 6.3

	Reads:	UCL = L	* 7
	Should Read:	UCL = L	• 1 * 7
	Reason:	Same As	Above
EQUATION 1	7, SECTION 6.3		
	Reads:	LCL = L	• 1
	Should Read:	LCL = L	• 7 7 0
	Reason:	Same As	Above

APPENDIX F

TYPE A TEST RESULTS USING MASS - PLOT METHOD MEASURED LEAK RATE PHASE

TYPE A TEST RESULTS USING MASS - PLOT METHOD MEASURED LEAK RATE PHASE

DATA SET #	DATA SET TIME DAY HH MM SS	TEST TIME, (HR)	DRY AIR MASS, (LBM)	LEAK RATE, (%/D)	95% UP CONF LIMIT, (%/D)
DATA SET # 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	DATA SET TIME DAY HH MM SS 165 04:05:31 165 04:15:33 165 04:25:33 165 04:25:33 165 04:45:35 165 04:45:35 165 04:45:35 165 05:15:39 165 05:16:01 165 05:26:04 165 05:26:04 165 05:26:04 165 05:26:04 165 05:56:09 165 06:06:06 165 05:56:09 165 06:26:10 165 06:26:10 165 06:26:10 165 06:26:10 165 06:26:10 165 06:26:10 165 06:36:14 165 06:46:15 165 07:26:20 165 07:26:20 165 07:36:21 165 07:46:25	TEST TIME, (HR) 0.000 0.167 0.334 0.501 0.668 0.835 1.002 1.169 1.175 1.343 1.509 1.677 1.844 2.011 2.178 2.344 2.512 2.679 2.846 3.012 3.180 3.347 3.514 3.682	DRY AIR MASS, (LBM) 0.86622156E+05 0.86619172E+03 0.86617172E+05 0.86615703E+05 0.86610281E+05 0.8660187E+05 0.86605937E+05 0.86605937E+05 0.86605937E+05 0.86601875E+05 0.86597359E+05 0.86597359E+05 0.86593906E+05 0.86599750E+05 0.865990531E+05 0.86585578E+05 0.86579734E+05 0.86577734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05 0.8657734E+05	LEAK RATE, (%/D) 0.4136E+00 0.3545E+00 0.4051E+00 0.4012E+00 0.4012E+00 0.4012E+00 0.4011E+00 0.4011E+00 0.4316E+00 0.4316E+00 0.4316E+00 0.4340E+00 0.4245E+00 0.4282E+00 0.4282E+00 0.4282E+00 0.4260E+00 0.4255E+00 0.4255E+00 0.4272E+00 0.4271E+00 0.4246E+00	95% UP CONF LIMIT, (%/D) 0.8110E+00 0.4720E+00 0.4926E+00 0.4483E+00 0.4690E+00 0.4422E+00 0.4422E+00 0.44273E+00 0.4594E+00 0.4594E+00 0.4559E+00 0.4559E+00 0.4455E+00 0.4455E+00 0.4437E+00 0.4365E+00 0.4355E+00 0.4355E+00 0.4355E+00 0.4355E+00 0.4355E+00 0.4355E+00 0.4355E+00
205 206 207 208 209 210 211 212 213 214 215 216 217 218	165 07:56:25 165 08:06:26 165 08:16:28 165 08:26:30 165 08:36:33 165 08:46:33 165 08:56:35 165 09:06:35 165 09:16:36 165 09:26:36 165 09:36:37 165 09:46:39 165 09:56:41 165 10:06:43	3.849 4.015 4.183 4.350 4.517 4.684 4.851 5.018 5.185 5.352 5.519 5.686 5.853 6.020	0.86563953E+05 0.86559828E+05 0.86555844E+05 0.86555844E+05 0.86551562E+05 0.86551562E+05 0.86547765E+05 0.86545765E+05 0.86545765E+05 0.86539344E+05 0.86538297E+05 0.86538297E+05 0.86533672E+05	0.4236E+00 0.4220E+00 0.4201E+00 0.4199E+00 0.4199E+00 0.4194E+00 0.4196E+00 0.4196E+00 0.4176E+00 0.4175E+00 0.4175E+00 0.4156E+00 0.4156E+00 0.4156E+00	0.4318E+00 0.4296E+00 0.4273E+00 0.4273E+00 0.4253E+00 0.4253E+00 0.4259E+00 0.4229E+00 0.4229E+00 0.4222E+00 0.4222E+00 0.4222E+00 0.4207E+00 0.4207E+00 0.4207E+00 0.4201E+00

TYPE A TEST RESULTS USING MASS - PLOT METHOD INDUCED LEAK PHASE

DATA SET #	DATA SET TIME ' DAY HH MM SS	TEST TIME, (HR)	DRY AIR MASS, (LBM)	LEAK RATE, (%/D)	95% UP CONF LIMIT, (%/D)
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248	DAY HH MM SS 165 12:06:56 165 12:16:57 165 12:27:00 165 12:37:04 165 12:47:05 165 12:57:05 165 13:07:06 165 13:17:06 165 13:27:08 165 13:37:10 165 13:37:10 165 13:57:15 165 14:07:16 165 14:17:16 165 14:27:20 165 24:37:25 165 14:47:28 165 14:57:29 165 14:57:29 165 15:07:31	0.000 0.167 0.335 0.502 0.669 0.836 1.003 1.170 1.337 1.504 1.672 1.839 2.006 2.173 2.340 2.508 2.676 2.843 3.010	MASS, (LBM) 0.86450312E+05 0.86441875E+05 0.86431859E+05 0.86424750E+05 0.86415062E+05 0.86401953E+05 0.86304719E+05 0.86385047E+05 0.86359906E+05 0.86351609E+05 0.86351609E+05 0.86335469E+05 0.86335469E+05 0.86318625E+05 0.86307047E+05 0	0.1529E+01 0.1437E+01 0.1453E+01 0.1640E+01 0.1383E+01 0.1332E+01 0.1332E+01 0.1332E+01 0.1339E+01 0.1345E+01 0.1345E+01 0.1345E+01 0.1347E+01 0.1351E+01 0.1363E+01 0.1363E+01	0.2176E+01 0.1623E+01 0.1542E+01 0.1513E+01 0.1513E+01 0.1479E+01 0.1423E+01 0.1398E+01 0.1376E+01 0.1374E+01 0.1372E+01 0.1370E+01 0.1368
249	165 15:17:33	3.177	0.86290515E+05	0.1374E+01	0.1391E+01

MEASURED LEAK RATE PHASE GRAPH OF CALUCLATED LEAK RATE AND UPPER CONFIDENCE LIMIT

Ð

٢

MASS PLOT LEAKRATES VS TIME

FIGURE F-1

.

-79-

INDUCED LEAKAGE PHASE GRAPH OF CALUCLATED LEAK RATE

FIGURE F-2

-00-

Commonwealth Edison

Quad Cities Nuclear Power Station 22710 206 Averue North Cordova, Illinois 61242 Telephone 309/654-2241

August 15, 1988

Mr. Thomas E. Murley Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.C. 20555

SUBJECT: Reactor Containment Building Integrated Leak Rate Test Quad-Cities Nuclear Power Station Docket No. 50-254, DPR-29, Unit One

Enclosed please find the report "Reactor Containment Building Integrated Leak Rate Test, Quad-Cities Nuclear Power Station, Unit Two, June 12-13, 1988" and the related appendices describing the Type A test. The performance of this test was witnessed and inspected by representatives of the NRC Region III Office.

This report is submitted to you in accordance with the requirements of 10 CFR 50, Appendix J, Section V.B.1. The information contained in Appendix A of this report is intended to comply with requirements of 10 CFR 50. Appendix J, Section V.B.3. According to 10 CFR 50, Appendix J. Section III.A.6, the test schedule for the next Type A test is to be reviewed and approved by the Commission. The next Type A test for Quad-Cities Unit One is scheduled for the fall of 1989; the Commission's review and approval of this schedule is hereby requested.

Very truly yours.

COMMONWEALTH EDISON COMPANY Quad-Cities Nuclear Power Station

53 Bay

R. L. Bax Station Manager

RLB/KRS/klm

Attachment

1490H/

A017