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ABSTRACT

The MAEROS aerosol model is being incorporated into the MELCOR code
system for the calculation of risk from severe reactor accidents. To gain insight to

,

assist in this incorporation, a computational test problem involving a three
component aerosol in the upper plenum of a pressurized water reactor was analyzed
with MAEROS. The following topics were investigated (1) the CRAY-1 CPU time.

requirements to implement and solve the system of differential equations on which
MAEROS is based, (2) the effects on computational time and representational
accuracy due to the use rf different overall section boundaries and numbers of
sections and components, and (3) the behavior of the aerosol and the variables which
influence this behavior. Uncertainty and sensitivity analysis techniques based on
Latin hypercube sampling and regression analysis were used in the investigation.
Five sections and overall section boundaries from 0.!E-6 m to 50.E-6 m were found
to be adequate for the problem under consideration. Further, solution time was
found to be at least several hundred times faster than real time, which is felt to be
adequate for MELCOR. Stepwise regression was used to investigate the sources of
variation in computational time and suspended aerosol concentration.
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1. Introduction. A computational test problem for the MAEROS aerosol model
(1, 2_) involving a three-component aerosol in the upper plenum of a pressurized
water reactor is presented. This model is being incorporated into the MELCOR risk
code system (3) under development at Sandia National Laboratories. The purpose of
this analysis is to gain insights with respect to (1) the CRAY-l CPU time
requirements to implement and solve the system of differential equations on which*

MAEROS is based, (2) the effects on computational time and representational
accuracy due to the use of different overall section boundaries (i.e., minimum and
maximum particle sizes), numbers of sections (i.e., particle size classes), and

,

numbers of components (i.e., chemical species making up the aerosol), and (3) the
behavior of the aerosol and the variables which influence this behavior. These
insights will help in the development and ultimate application of the MELCOR code
system. Further, due to the extensive interest in MAEROS and other aerosol models
outside of the MELCOR effort, the presented results should be of use elsewhere.
For example, MAEROS is also the aerosol model incorporated into the CONTAIN
computer program (4_) for severe nuclear reactor accident contrinment analysis.

The MAEROS aerosol model can be used to represent an aerosol in which each
particle is composed of a number of different materials. In the terminology used
with MAEROS, each material is referred to as a component. In the derivation of the
equations for the model, the particle size range is discretized between specified
minimum and maximum particle sizes into a finite number of particle size classes.
Each size class is referred to as a section. Mathematically, the MAEROS aerosol
model is a system of nonlinear differential equations of the form

dQg(t)/dt = fg [Q(t), t], t= 1,....m. k= 1,....n, (1)

3where Qtk(t) is the concentration (kg/m ) of component k in section 1 at time t
(sec), Q(t) is the vector of all Qtk(t), m is the number of sections, and n is the
number of components. The exact form of the preceding system considered in this
study is given in Section 3 of Helton et al. (5_).

The number of equations in the system in (1) is equal to the product of the
number of sections and the number of components (i.e., mn). Thus, reducing the
number of sections or components for a given problem will reduce the size of the
system of differential equations and may significantly reduce the computational
costs associated with solving the system. Further, appropriate selection of overall
section boundaries may reduce computational costs by making efficient use of the
number of sections selected. For example, due to rapid agglomeration, inclusion of
very small particle sizes can greatly increase computational costs but have no
effect on aerosol properties of interest (e.g., aerosol mass concentration or mass
median diameter).,

This presentation is organized as follows. The aerosol problem under
consideration is described in Section 2. Then, the effects due to section boundaries,

.

number of sections, and number of components are considered in Sections 3,4 and 5,
respectively. A sensitivity analysis for computational time requirements and

- _ _ _ _ _ __ - - ._ _ _ - -
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'

suspended concentration of individual aerosol components is presented in Section 6.
Finally, a summary discussion is given in Section 7.

; 2. Problem for Analysis. As already indicated, this presentation involves a
three-component aerosol in the upper plenum of a pressurized water reactor. The
reactor is assumed to be undergoing a severe accident with uncovering of and

j damage to the fuel rods. The three aerosol components are assumed to be Cst,
' CsOH, and other materials, respectively. The variables considered in the analysis *

3
I are listed in Table 1. The upper plenum is assumed to have a volume of 15.5 m ; the
! particle slip coefficient, which is used in the calculation of size-dependent slip
.

correction factors, is taken to be 1.57, and no water condensation is assumed.
i

I

j To determine computational time requirements and other system properties, a
'set of 50 MAEROS runs was made for each of various formulations of the system of

,f equations indicated in (1). The variable values used as input to MAEROS were
' obtained by generating a Latin hypercube sample (6,7) of size 50 for the variables in

Table 1. The restricted pairing technique of Iman and Conover (8) was used in r
fgenerating the sample to induce the desired correlation structure (see Table 1).~,

Further, the inequality involving x and Y was implemented as described in Equationa

4
(5.2) of Helton et al. (5). Various graphical techniques and stepwise regression were

| used to examine input-output relationships as a means of understanding the behavior
1 of the system.

!- 3. Effects Due to Section Boundaries. The problem was first analyzed with 10 ,

'

sections and overall section boundaries of 0. ole-6 m to 50.E-6 m, 0.lE-6 m to'

50.E-6 m, and 0.lE-6 m to 100.E-6 m, respectively. The effect of these boundaries
'

,

on the computational time required to evaluate one set of coefficients (i.e., the B's
i and p's in Tables 3.1, 3.2 and 3.3 of Helton et al. (5)) for the system of differential

equations representing aerosol behavior is shown in Figure 1. This figure contains*

three estimated cumulative distribution functions. Each of these estimated
! distribution functions corresponds to one set of section boundaries and was

'
constructed from the results of 50 MAEROS runs performed for the previously#

indicated Latin hypercube sample. Such distribution functions are used in several
places in this presentation to display observed variability in model behavior. As can

,

be seen from Figure 1, approximately 0.57 sec to 0.71 sec of CPU time was requiredi

i to evaluate the coefficients for section boundaries of 0.lE-6 m to 50.E-6 m
i (curve 2), while boundaries of 0.lE-6 m to 100.E-6 m (curve 3) and 0.01E-6 m to '

i 50.E-6 m (curve 1) required approximately 10% and 20% more time, respectively.
t
I For 3 components and 10 sections, a system of 30 differential equations results

for each pair of section boundaries and each element of the Latin hypercube
sample. These systems were solved with the Runge-Kutta differential equation
solver RKF45 (9_),3which is incorporated into MAEROS. Relative and absolute error

'

tolerances of 10- and 10-20, respectively, were used. For section boundaries of -

j
0.lE-6 m to 50.E-6 m, Figure 2 shows the distribution of time required to solve the

*
,

I resultant systems of equations for time intervals of 1, 5,10 and 30 seconds. '

Further, Figure 3 shows distributions for the ratio of problem time to solution time
'

is the time period (sec) over which aerosol behavior is(i.e., t /t , where to< p s
considered and t is the CPU time (sec) required to solve the system in (1) from t=0s
to t=t ). This ratio varied from approximately 25 to 400, with the smaller |p

i
|

|
-2-j

!
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j

i

! ratios associated with the shorter time intervals. As indicated in Figure 4, the
i solutions approach an asymptote at or before about 30 sec. In this problem, no

aerosol movement out of the upper plenum is assumed. Such movement could affect
aerosol behavior and the form of the asymptote. However, in the implementation of5

MELCOR, the movement of aerosols out of control volumes will take place between,

i system time steps rather than continuously during such steps; hence, the present-

i approach is consistent with MELCOR implementation.
:

i The solution times for section boundaries of 0. ole-6 m to 50.E-6 m were much'

! greater than for boundaries of 0.lE-6 m to 50.E-6 m, while the solution times for
section boundaries of 0.lE-6 m to 100.E-6 m were quite similar to those for

| boundaries of 0.lE-6 m to 50.E-6 m. Figure 5 illustrates this behavior for solutions
from 0 sec to 30 sec. The following notation is used in conjunction with this figure:"

1

X ~ solution (CPU) time,0.lE-6 m to 50. E-6 m
g

f Y ~ solution (CPU) time,0.lE-6 m to 100.E-6 m
g

Y ~ s lution (CPU) time,0.01E-6 m to 50.E-6 m
2 ,

i X ~ (X g, Y g), O ~ (X g, Y ).2

I
The variable Xg is represented on the abscissa of Figure 5, while Yg and Y2 are,

i represented on the ordinate. Fifty values of X ~ (X , Y g) and 0 ~ (X g, Y ) appear in i

1 2
i the figure (i.e., one for each of the 50 Latin hypercube sample vectors). The
i straight line labeled (Xg, Xg) in Figure 5 passes through the origin and has slope 1.
j If the solution times associated with a given sample vector but different overall
i section boundaries are the same, then the corresponding points X and 0 will fall on

this line. In contrast, the appearance of a point above this line indicates that more
solution time was required than with boundaries of 0.!E-6 m to 50.E-6 m, and the

'

appearance of a point below this line indicates that less solution time was required.
Thus, Figure 5 shows that, for solutions from 0 sec to 30 sec, solution times for
overall section boundaries of 0.lE-6 m to 50.E-6 m (i.e., X g) and 0.lE-6 m and
100.E-6 m (i.e., Yg) are essentially identical, while solution times for boundaries of;
0.01E-6 m to 50.E-6 m (i.e., Y ) are higher by factors of approximately 5 to 20.1 2

! Such plots will be used several times in this presentation to display variability in
; model behavior.

; If the different section boundaries produce similar solutions, the boundaries of
j 0.lE-6 m to 50.E-6 m would be preferable on a computational basis. The solutions
i cannot be compared on a section by section basis because the section boundaries are

| not the same when different lower and upper section boundaries are used. However,
| the total suspended mass can be compared. This comparison was made and the
| choice of section boundaries was found to have essentially no effect on total

suspended mass. Figure 6 illustrates this comparison. Thus, section boundaries of.

0.lE-6 m to 50.E-6 m appear to be adequate for this problem.

j In some cases, the assumed distributions for geometric standard deviation (i.e.,.

! GSDl, GSO2 and GSD3) and mass median diameter (i.e., MMDI, MMD2 and MMD3)
I result in a significant fraction of the entering component mass being in particles
;

.

i -3-

!

E-____ _ _ _ _ _ _ _ _ _ _ . _ _ _ __



smaller than the particles contained in the lowest section. In such cases, particle
mass was distributed over the sections actually considered. Specifically, the
geometric expected value (calculated from the assumed mass median diameter) and
the geometric standard deviation of the entering particles were used to calculate
the shape of the particle mass distribution. Then, the assumed total mass of the .

entering particles was apportioned according to this distribution between the lower
and upper section boundaries. The fact that no difference in total suspended mass
was encountered when this apportioning scheme was used with boundaries of -

0.01E-6 m to 50 E-6 m and 0.lE-6 m to 50.E-6 m further indicates the limited
importance of particles between 0.01E-6 m and 0.lE-6 m for the problem under
consideration. Another apportioning scheme would be to calculate the mass of
particles below the lowest section boundary and then to enter this mass into the
lowest section under consideration. However, as no difference in total suspended
mass was observed with lower boundaries of 0.01E-6 m and 0.lE-6 m, the question
of which apportioning scheme to use seems to be rather unimportant.

4. Effects Due to Number of Sections. As already discussed, section
boundaries of 0.lE-6 m to 50.E-6 m appear to be adequate for this problem. The
effects due to the number of sections used between these boundaries is now inves-
tigated. Specifically, analyses were performed using 5,10 and 15 sections. ~ The
effect of the number of sections on the computational time required to evaluate one
set of coefficients for the system of differential equations representing aerosol
behavior is shown in Figure 7. The distributions appearing in this figure are based on
50 coefficient evaluations for each case using the previously described Latin
hypercube sample. The coefficient evaluations for 5 sections required

approximately 0.5 sec of CPU time, while the evaluations for 10 and 15 sections
required about 2 and 4 times as much time, respectively.

As this problem is for 3 components, systems of 15, 30 and 45 differential
equations result for 5,10 and 15 sections, respectively. As before, these systems
were solved with the Runge-Kutta differential eguation solver RKF45. Relative andabsolute error tolerances of 10 - 5 and 10-2 , respectively, were used. The
distributions of solution times associated with the previously considered coefficients
are shown in Figures 8, 2 and 9 for 5, 10 and l5 sections, respectively. As
examination of these figures shows, the solutions for 15 sections required
approximately 10 times as much CPU time as the solutions for 5 sections while the
solutions for 10 sections required approximately 4 times as much CPU time as the
;olutions for 5 sections. This comparison is shown more explicitly in Figure 10 for
solutions from 0 sec to 30 sec.

If solutions for 5,10 and 15 sections are similar, then use of 5 sections is
computationally more efficient than use of a larger number of sections. The
solutions for total suspended mass were compared for 5, l0 and 15 sections and
found to be very similar. Such a comparison is shown in Figure 11. For this
problem, it appears that the use of 5 sections is adequate. Figure 12 shows the ratio -

of problem time to solution time for 5 sections: Figure 3 contains the same
information for 10 sections. As shown in these figures, the ratio of problem time to
solution time varies between 25 and 400 for 10 sections and between 100 and 1100 -

for 5 sections.

-4-

- - - _ _ _ _



__ _ _ _ __ .

4

,

5. Effects Due to Number of Components. The number of equations in the
MAEROS system increases linearly with the number of components under
consideration. A possible way to reduce computational time is to solve a system of
differential equations in which all particle mass is assumed to be concentrated in a
single component and then to solve a system of algebraic equations at the end of.

each solution time step to approximate the mass associated with each component in
each section (l.0). To provide an indication of the amount of computational time
that might be sapd by such a procedure, the systems for 10 sections and boundaries< -

of 0.lE-6 m to 50.E-6 m were reformulated and snived with the mass in each
section concentrated in a single component. This rt duces each system from 30
equations to 10 equations. Although reducing the number of components from 3 to I
reduced the required computational time, the effect was not large. As shown in
Figure 13 for solut'on time from 0 sec to 30 sec, reducing the number of components
reduced the solution time by about 30%. In contrast, variation of the variables in
Table I caused solution time from 0 sec to 30 sec to vary by a factor of 4, and
reduction of the number of sections from 15 to 5 reduced solution time by a factor
of 10.

! 6. Sensitivity Analysis. After the MAEROS calculations were completed, a
sensitivity analysis was performed to determine which of the variables in Table I are
most important in influencing the time required to evaluate the required
coefficients and solve the associated system of equations and also in influencing the
suspended concentrations of the three components. This determination was made on

,

the basis of stepwise regression using a program available at Sandia National
Laboratories (H). Regressions were performed on both raw and rank-transformed
data for the case involving 5 sections and section boundaries of 0.lE-6 m to 50.E-6

The designation " raw data" denotes the input and output variables as originallym.
used or generated in the analysis. The designation " rank-tranformed data" denotes
the variables after they have been transformed by giving the smallest value of each
variable the value of 1, the next largest value of each variable the value of 2, and so
on up to the largest value of each variable which is given the value of 50, where 50
is the size of the sample being analyzed. The rank transform often facilitates
regression analyses when outtlers or nonlinear relationships between independent and
dependent variables are present (H).

The results of the regression analyses are presented in Tables il through VI. A
variable was required to be significant at the 0.02 a-level to enter a regression
model and to remain significant at the 0.05 u-level to stay in the regression model
once entered. The behavior of R2 values and PRESS (Predicted Error Sum of
Squares) values were also considered in selecting the stopping points for the
stepwise regressions presented in the indicated tables. The PRESS value is used to

3 assure that the selected regression model is not overfitting the data on which it is
based (H). Additional background on the approach to sensitivity analysis being used

; is available elsewhere (5, M, ,l_5, M).

The regression analyses for the CPU time required to evaluate the MAEROS
t

coefficients are given in Table !!. The distribution of CPU time under consideration
is shown in Figure 7 (curve 1). The variability in CPU time is dominated by x*

(dynamic shape factor) and c (turbulence dissipation rate). However, as indicated in
Figure 7, the variability in this time is not large.

-5-
;
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The regression analyses for the CPU time required to solve the MAEROS
equations are given in Table 111. The distribution of CPU Lime under consideration is
shown in Figure 8 (curves 3 and 4). The most important variable appears to be
MMD5 (mass median diameter for third component); increasing this variable
decreases the solution time. In addition, increasing GSD3 (geometric standard .

deviation for diameter of third component) and x (dynamic shape factor) also
(turbulence dissipation rate)decreases the solution time, while increasing c

increases solution time. Properties of the third aerosol component are important in -

Influencing computational time because it is added to the system at a cignificantly
higher rate than the other two components (i.e., see SRl, SR2 and SR3 in Table 1).
Increasing MMD5 results in more mass being associated with larger particles; in
turn, this results in less rapid agglomeration, longer time steps by the differential
equation solver, and hence, lower overall solution time. Similarly, increasing GSD3
tends to move mass to larger particles and hence reduce solution time. Increasing x
decreases the rate of agglomeration; this results in longer time steps by the
differential equation and lower overall solution time. In contrast, increasing c
results in more rapid agglomeration, shorter time steps and larger overall solution
time.

2 values below 0.6, they are notAs all the regressions in Table til have R
completely successful in accounting for the observed variation in CPU time required
to solve the MAEROS equations. This lack of success is probably due in part to the
discretization of solution time on the basis of the number of steps required by the
differential equation solver and in part to the summation of solution times (e.g., the
solution time to 10 sec was taken to be the solution time from 0 sec to I sec, plus
the solution time from I sec to 5 sec, plus the solution time from 5 sec to 10 sec).
Both of these processes have effects on the analyzed solution times that tend to
obscure the influence of variables in Table 1.

The regression analyses for the suspended concentrations of the three compo-
nents are presented in Tables IV, V and VI. For each component, the most important
variables are the source rate for that component (i.e., SRl, SR2 or SR3), c
(turbulence dissipation rate) and y (agglomeration shape factor). Increasing a source
rate increases the corresponding component concentration, while increasing c and y,
decreases concentration by increasing the rate at which agglomeration is taking
place. Most of the other variables selected in the regressions are related to
agglomeration and tended to decrease suspended concentration as their values
increased.

7. Discussion. A computational test problem involving a three component
aerosol in the upper plenum of a pressurized water reactor is used to investigate
various characteristics of the MAEROS aerosol model. For this problem, the use of
5 sections and section boundaries from 0.lE-6 m to 50.E-6 m was found to be
adequate; model formulations using larger numbers of sections and wider overall
section boundaries were more time-consuming computationally but yielded similar -

results. For the preceding formulation, the solution from 0 see to 10 sec was
approximately 270 to 450 times faster than real time, while the solution from 0 see
to 30 sec was approximately 390 to 1100 times faster than real time. Based on

-

present knowledge of the MELCOR code system, this range of computational times
is felt to be acceptable for the acrosol problem under consideration. It is likely that
MELCOR will use time steps of approximately 10 sec for primary system problems.

-6-
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An additional test was made to determine if a significant reduction in
computational time could be made by coalescing the three acrosol components under
consideration into a ' single component. For 10 sections and overall section
boundaries of 0.lE-6 m to 50.E-6 m, this reduction from a system of 30 differential
equations to a system of 10 differential equations lead to a 30% decrease in solution.

time.

Most of this presentation has dealt with the solution time required by different-

formulations of the system of differential equations underlying MAEROS. However,
a significant amount of time is required to ovaluate the coefficients used in this
system (i.e., compare the distributions of time to evaluate coefficients in Figure 7
with the distributions of solution time in Figures 8,2 and 9). For example, the time
to evaluate the coefficients is of ten 4 to 6 times the time required to solve the
associated system from t=0 see to t=30 sec Thus, if the coefficients must be
recalculated often, this could require more computational time than solving the
associated systems of differential equations. On the other hand, if the coefficients
are evaluated infrequently, then the time required in their calculation would
probably be small relative' to that required to solve the equations. In this regard,
the MAEROS program (1) contains an interpolation procedure which permits a quick
recalculation of the coefficients for changes in temperature and pressure. However,
in the presented analyses, temperature and pressure were not found to be very
important in influencing the aerosol under consideration; other variables had larger
effects. The interpolation procedure to recalculate coefficients for changes in
temperature and pressure was not used in this analysis; rather, 50 sets of
coefficients (i.e., one for each Latin hypercube sample vector) were calculated for
eacn computational variation of the aerosol problem.

In the implementation of the MAEROS model in MELCOR, it is planned to
decompose the coefficients associated with the equation in (1) in a way which
permits the direct use of temperatures and pressures calculated in the
thermal-hydraulics submodels. This will ' obviate the need to recalculate
coefficients for changes in temperature and pressure. However, the need may
remain to handle coefficient variability due to changes in other system properties.

Overall, the variability in computational time was not large. For a specified
aumber of sections and a given pair of lower and upper section boundaries, the
largest observed time to evaluate the model coefficients was about 1.2 to 1.3 times
the smallest observed value. Similarly, for solution time over various intervals, the
largest observed time was 2 to 4 times the smallest observed value. Thus, for
problems of the type considered here, it appears that large swings in computational
time do not take place for perturbations in system properties (i.e., the variables
listed in Table 1). ;Such stability is very desirable in an often called module of a
large code system such as MELCOR.

A sensitivity analysis based on stepwise regression was performed to determine
which of the variables in Table I are most important in influencing computational
time and suspended aerosol concentration. The most important variables for time to
compute the MAEROS coefficients were x (dynamic shape factor) and c (turbulence'

dissipation rate). Overall, MMD5 (mass median diameter of third aerosol
component), c and GSD3 (geometric standard deviation of third aerosol component)
were most important in influencing solution time. For suspended aerosol

-7-
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mass, the most important variables were the source rate of the particular aerosol
component under consideration, c and y (agglomeration shape factor).

Sensitivity analysis results provide useful guidance for additional study. For
example. a relatively small subset of the variables in Table I dominates the .

uncertainty in the suspended concentrations of the three aerosol components (see
Tables IV, V and VI). To reduce uncertainty in these concentrations, efforts should
be focused on reducing the uncertainty in the most important independent variablas
(i.e., SRI SR2, SR3, y, c). If the uncertainty in such variables cannot be controlled,
there is little to be gained by reducing the uncertainty in other less important
variables.

Computational time for this problem appears to be acceptable for the MELCOR
code system. If such were not the case, a productive area for additional
investigation would be any variables which affected computational time but did not
influence dependent variables of interest. For example, MMD3 (mass median
diameter of third aerosol component) has a larger effect on computational time than
it has on aerosol concentration.

This analysis employed techniques based on Latin hypercube sampling and
stepwise regression. It is felt that this provides an effective approach to
investigating model complexity. First, the use of Latin hypercube sampling assures
consideration of both the full range of each variable and a wide variety of variable
combinations. Second, the use of stepwise regression makes it possible to determine
the variables which are affecting quantities of interest. The presented techniques
should be applicable for systematically investigating complexity problems for a
variety of models.

|

-

!

|

.
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Table I Variables for Upper Plenum Test Problem. Components I, 2 and 3 correspond to Csi,
CsOH, and other aerosol materials, respectively.

Variable Definition Ranoe Distribution Restrictions.

CSDI Geometric standard deviation 1.3-4. uniform --

for diameter of first-

component (unitiess)

MMD1 Mass median diameter for 0.01E-6-5.E-6 tog uniform 0.5 rank corre-
first component (m) lation with SRI

SRI Total mass source rate for 0.01-0.03 uniform 0.5 rank corre-
first component (kg/sec) lation with MMDI

RDL Release duration for first 2.34E3-9.42E3 uniform --

component (sec)

GSD2 Geometric standard deviation 1.5-4. uniform --

'

for diameter of second com-
ponent (unitiess)

MMO2 Mass median diameter for 0.01 E-6-5.E-6 log uniform 0.5 rank corre-
second component (m) lation with SR2

SR2 Total mass source rate for 0.06-0.21 uniform 0.5 rank corre-
second component (kg/sec) lation with MMD2

RD2 Release duration for second 2.34E3-9.42E3 untiarm --

component (sec)

CSD3 Geometric standard deviation 1.3-4. uniform --

for diameter of third
component (unitiess)

MMD5 Mass median diameter for 0.01 E-6-5.E-6 tog uniform 0.5 rank corre-
third component (m) lation with SR3

SR3 Total mass source rate for 0.76-2.62 uniform 0.5 rank corre->

third component (kg/sec) lation with MMD3

RD3 Release duration for third 2.34E3-9.46E3 uniform --

component (sec)
.

T Temperature (K) 800.-1800. uniform -->

P Pressure (Pa) 1.6E 7- 1.8E7 uniform --
-

RCV Ratio of ceiling area to 3.-9. uniform --

volume (m-l)

-11-
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Table I Variables for Upper Plenum Test Problem (continued).

Variable Definition Ranoe Distribution Restrictions
.

RFV Ratio of floor area to 3.-9. uniform --

volume (m-1)
.

RWV Ratio of wall area to 5.-50. uniform --

volume (m-1)

x Dynamic shape factor 1.-7. uniform x1y
(unitiess)

,

,

6 Diffusion boundary layer 5.E-5-8.E-3 log uniform --

thickness (m)

p Particle material density 2.E 3-8.E 3 normal --

3(kg/m )

CT Constant associated with 1.- 3. uniform --

thermal accommodation
coefficient (unitiess)

y Agglomeration shape factor I.-7. uniform y )_ x

(unitiess)

ST Probability sticking factor 0.5-1. uniform --

(unitiess)

VK Temperature gradient (K/m) 1.E 3-5.E4 log uniform --

c Ratio of thermal conductivity 0.05-1. triangular --

of gas to that of particle with an apex
(unitiess) at 0.5

c Turbulence dissipation rate 0.001-0.1 log uniform --

2 3(m /sec )

MW Molecular weight of gas 2.- 18. uniform --

(kg/kg-mole)

.
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Table II Regression Analyses for CPU Time (sec) to Compute MAEROS
Coefficients for Upper Plenum Test Problem with 5 Sections and
Section Boundaries of 0.lE-6 m to 50.E-6 m.

.

* RAW RANK

Step Vara SRCb Rc Vara SRCb 22 Rc

1 x -0.70 0.51 x -0.60 0.49

2 c -0.41 0.68 c 4 .56 0.78

3 y -0.2 l 0.80

4 VK -0.16 0.85

5 MW -0.15 0.85

6 p 0.14 0.87

a Variables listed in the order that they entered the regression model.

b Standardized regression coefficients for final regression model.

c R2 value with entry of each successive variable into the regression model.

.

.

3

*
9
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Table til Re.. 'ssion Analyses for CPU Time (sec) to Solve MAEF10S Equations
witt RKF45 (RELTOL = 10-3 and ABTOL = 10-20) for Upper Plenum
Test .' roblem with 5 Sections, 3 Components and Section Boundaries of
0.lE-6 m to 50.E-6 m. Notation is the same as in Table 11.

.

.

RAW RANK

Step Var SRC R2 Var SRC R2

la MMD5 -0.57 0.31 MMD5 -0.51 0.29

2 GSD3 -0.36 0.44 c 0.34 0.41

3 c 0.29 0.53 GSD3 -0.26 0.48

4 SRI -0.25 0- 39 SRI -0.25 0.54
,

Ib MMD5 -0.80 0.32 MMD5 -0.65 0.42

2 x -0.31 0.41

3 GSD3 -0.30 0.49

4 SR3 0.32 0.57

a Solution time: O sec to 10 sec.

b Solution time: O sec to 30 sec.

.

-l4-
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Table IV Regression Analyses for Suspended Concentration (kg/m3) of First
Aerosol Component (Csi). Notation is the same as in Table II.

.

RAW RANK

Step Var SRC R2 Var SRC R2

la SRI 0.57 0.39 SRI 0.63 0.37

2 c -0.44 0.57 c -0.49 0.57

3 y -0.46 0.74 y -0.40 0.71

4 MMD5 -0.25 0.80 SR3 -0.25 0.76

5 ST -0.16 0.83

lb y -0.63 0.39 SRI 0.59 0.31

2 SRI 0.45 0.61 c -0.53 0.55

3 c -0.35 0.72 y -0.45 0.75

4 MMD3 -0.22 0.77 SR3 -0.24 0.79

5 T 0.19 0.82

6 ST -0.15 0.85

a Suspended concentration at 10 sec.

b Suspended concentration at 30 sec.

, .

! .

,

|

1
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Table V Regression Analyses for Suspended Concentration (kg/m ) of Second
Aerosol Component (CsOH). Notation is the same as in Table 11.

. .

RAW RANK

Step Var SRC R2 Var SRC R2

la SR2 0.69 0.41 SR2 0.76 0.38

2 c -0.49 0.64 c -0.54 0.62

3 y -0.40 0.77 y -0 45 0.78

4 hNO3 -0.18 0.80 MMD5 -0.19 0.82

5 ST -0.18 0.85

6 MMD2 -0.18 0.87

lb y -0.61 0.29 SR2 0.68 0.28

2 SR2 0.56 0.57 y -0.57 0.51

3 c -0.44 0.75 c -0.51 0.76

4 MMD3 -0.19 0.78 ST -0.21 0.80

5 MMD2 -0.21 0.84

6 SR5 -0.16 0.864

a Suspended concentration at 10 sec.

b Suspended concentration at 30 sec.
.

t
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Table VI Regression Analyses for Suspended Concentration (kg/m ) of Third
Aerosol Component (Other materials). Notation is the same as in
Table II.

.

'

RAW RANK

Step Var SRC R2 Var SRC R2

la SR3 0.66 0.28 c -0.57 0.30

2 c -0.54 0.54 SF13 0.54 0.53

3 y -0.42 0.68 y -0.4 l 0.68

4 MMD3 -0.33 0.77 ST -0.21 0.75

5 ST -0.22 0.82 MMO3 -0.21 0.77

lb y -0.63 0.41 c -0.56 0.26

2 c -0.46 0.58 y -0.52 0.55

3 SR3 0.47 0.70 SR3 0.46 0.68

4 MMO3 -0.29 0.76 ST -0.2 l 0.73

5 ST -0.18 0.79 MMD5 -0.24 0.77

6 MW -0.21 0.81

7 T 0.20 0.85

8 p 0.16 0.87

a Suspended concentration at 10 sec.

b Suspended concentration at 30 sec.
-

.
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(RELTOL = 10-(sec) to 30 sec for MAEROS Equations with RKF45and ABTOL = 10-20) for Upper Plenum Test Problem
Solution TimeFigure 10

with 3 Components, Section Boundaries of 0.lE-6 m to 50.E-6 m, and
Different Numbers of Sections (X ~ (X g, Yg) and 0 ~ (X[, Y ), where2
X g, Y g and Y2 denote solution times with 10, 5 and 15 sections,
respectively).
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The MAEROS serosol model being orporated into the MELCOR code
system for the calculation of risk m severe actor accidents. To gain insight to
assist in this incorporation, a omputationa test problem involving a three
component aerosol in the upper num of a pres ized water reactor was analyzed
with MAEROS. The following ics were invest ted (1) the CRAY-1 CPU time
requirements to implement a solve the system o ifferential equations on which
MAEROS is based, (2) the fects on computati I time and representational
accuracy due to the use of. ifferent overall secti boundarios and numbers of
sections and components, a (3) the behavior of the a sol and the variables which
influence this behavior, ertainty and sensitivity a lysis techniques based on
Latin hypercube sampling nd regression analysis were d in the investigation.
Five sections and overall ction boundaries from 0.lE-6 o 50.E-6 m were found
to be adequate for the tem under consideration. Fur r, solution time was

found to be at least sev 1 hundred times faster than real tl , which is felt to be
adequate for MELCOR. tepwise regression was used to inves ate the sources of
variation in computation I time and suspended aerosol concentrat n.
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