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1. INTRODUCTION

This vessel fluence reduction fuel cycle study is Phase 2 of a three-phase
project designed to reduce high-energy (>1.0 MeV) neutron fluence on reactor
vessel weld material. Of concern is the ability of the vessel weld material
to conservatively iiithstand pressurized thermal shock (PTS), while undergoing
increasing embrittiement induced by high-energy nreutrons, over the planned
lifetime of the plant.

In Phase 1, a computer code, ADJ, was developed to economic”1ly correlate the
power production in specific fuel assemblies to the fast flux at the reacter

vessel inner wal].l

ADJ uses specially prepared PDQO7 power distribution
data, combined with a data file of adjoint fluxes from DOT computer runs
generated for specific azimuthal angles relative to the core major axis, to
calculate both the fast flux at a specific weld location and the fraction of
flux contributed by each assembly. The weld locations considered were at 0,
11, 14, and 19 degrees relative to the core major axis. These angles
represent weld locations of interest for the Rancho Seco, Three Mile Island

Unit 1, and Oconee Unit 1 reactor vessels.

Phase £, reported nerein, consisted of developing several fuel cycle loading
patterns to specifically reduce the fast neutron fluence at the aforementioned
weld locations through reducing peripheral assembly power densities over that
achieved with the very low leakage (VLL) fuel management scheme reported in
reference 2. This was achieved by placing 1) highly burned fuel, 2) fresh
Tumped burnable poison (LBP) in burned fuei, or 3) fresh fuel containing
natural uranium in peripheral assembly Tlocations H15, K15, and L15 (and
symmetric locations). Then, the ADJ code was used to assess the fluence
reduction for eacn fuel cycle shuffle scheme. In addition, an analysis of the
Technical Specification operating limits was addressed in section 5. The
detailed calculations for the Phase 2 aralysis are documented in reference 3.
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Phase 3 will consist of plant- and cycle-specific work to be determined after

the completion of Phases 1 and 2. This would relate the fuel cycle design to

reach a given fluence reduction to the specific characteristics of each plant.
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Figure 2-1. In-Qut-In (LBP) Fuel Figure 2-2. In-In-Qut (VLL) Fuel
Loading Diagram Loading Diagram
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combines the r-theta pin power distributions from SORREL with the adjoint flux
from a 00T-prepared data file and calculates the fast flux at a given weld
location and the fraction of flux contributed by each fuel assembly. Further
details concerning ADJ can be found ii. reference 1.
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Figure 3-1. Vessel Fluence Calculations
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As shown in Table 4-1 and Figure 4-9, each fluence reduction scheme,
particularly the natural wuranium scheme designated ULLNAT1, produced
substantially lower peripheral peaking than the VLL. The peripheral
peaking, KI5 and L15 average of 0.178, is the lowest of all patterns
investigated. While the peak pin (1.551) meets the peaking guidelines given
in Table 3-1, subsequent evaluation (see section 5) suggests that this
scheme would require more restrictive operational limits. Another natural
uranium pattern, ULLNAT2, was developed that would achieve a peak pin
comparable to the VLL scheme, but at the expense of slightly higher peripheral
power and shorter cycle length,

The LBP scheme, ULLBPl, with 1.8 wt % B4C BPRAs produced a peak pir of 1.534,
This peak is higher than desirable but through pattern optimization the peak
pin could be reduced to that comparable to the VLL, yet maintain approximately
the same peripheral power. The high-burnup scheme, ULLHBU, was depleted with
H15, K15, and L15 starting with assembly burnups of 45,000 MWd/mtU (3.36 wt %
U-235 initial enrichment). The FCYCLS code was used to calculate this cycle
because of the ease with which high-burnup fuel could be modelled. Since
FCYCLS is a nodal code, it only calculates assembly average KPDs. However, by
careful comparison to the PDQ07 calculations in the other shuffle schemes, an
accurate estimate of 1.505 for the pin peak was made. The peripheral RPD of
0.246 for ULLHBU is comparable to the 0.228 value cof the ULLBP1 scheme.
Starting with an assembly burnup of 45,000 MWd/mtU, this scheme naturaliy
produced the highest end-of-cycle (EOC) assembly burnup of all schemes with
48,753 MWd/mtU. Burnup limits for fuel assembly designs currently undercoing
irradiation do not allow burnups this high, but burnup Timits for future
assembly designs can allow limits in excess of 50,000 MWd/mtU. Alternatively,
fuel of Jlower initial enrichment and burnup could provide the equivalent
reactivity for lowering peripheral RPDs.

A1l four schemes exhibited cycle lengths of 10 to 15 EFPD shorter than the VLL
because of the reduced reactivity contribution from H15, K15, and L15. The 10
to 15 EFPD should be viewed with caution since the vessel fluence reducticn
schemes are not "equilibrium" cycles and are therefore not directly comparable
to the VLL. However, it gives an indication of the relative cycle lengths
achievable between the various designs.
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actual rated power, and corrections to account for measured versus calculated
fluences obtained from specimen capsule analyses. For illustrative purposes
only, a conservative average axial shape factor of 1.17 and a 1.26 correction
factor based on specimen capsule analyses5 were applied. The ADJ
calculated fluxes were converted to meximum fluences per effective full power
year (EFPY) at the limiting weld locations for Oconee Unit 1 (19 degrees) and
Rancho Seco (14 degrees). Using the calculated additional fluence required
to reach the screening criteria for Oconee Unit 1 and Rancho Seco (updated
from reference 4 from December 31, 1981 to January 1, 1986, assuming operation
with an LBP low-leakage shuffle scheme), the EFPY needed to reach these
criteria were calculated and compared to the remaining EFPY for each
plant. For Oconee 1, the remaining EFPY was calculated assuming a 32-EFPY
lifetime, and for Rancho Seco, an 80% capacity factor was assumed for
operation over the remainder of the licensed operating period (October 11,
2008). The results for each scheme are shown in Table 4-3 for Oconee Unit 1
and Rancho Seco. For both Oconee Unit 1 and Rancho Seco, the results show
that converting to the base VLL scheme is sufficient to increase the EFPY to
reach the screening criteria well above the remaining plant Tlifetime.
Consequently, further vessel fluence reduction may not be necessary.
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Shuffle
Scheme

Oconee 1
Cy 3-7
Average

LBP

VLL

ULLNAT1

ULLNATZ2

ULLBP1

uLLney (@)

(a)

Table 4-2. Fast Flux (>1.0 MeV) at the Vessel Wall

Angle,

Fast Flux,

degrees n/cm2-secx10™2

0 9.417
11 9.979
14 9.920
19 9.321
0 7.168
11 7.421
14 7.291
19 6.748
0 4.770
11 4.869
14 4,822
19 4,713
0 3.171
11 3.343
14 3.41

19 3.669
0 3.239
11 3.371
14 3.446
1 3.752
0 3.736
11 3.891
14 3.918
19 4.043
0 4,021
11 4,198
14 4,227
19 4,362

Estimated using ULLBP1 x O.

246/0.228

Fast Flux Ratios

Relative to

Relative to

VLL Oconee 1 Cy 3-7
1.97 - -
2.05 - -
2.06 - -
1.98 - -
1.50 0.76
1.52 0.74
1.51 0.73
1.43 0.72
- - 0.51
- - 0.49
- - 0.49
- - 0.51
0.66 0.34
0.69 0.34
0.71 0.34
0.78 0.39
0.68 0.34
0.69 0.34
0.72 0.35
0.80 0.40
0.78 0.40
0.80 0.39
0.81 0.40
0.86 0.43
n_85 0.43
0.80 0.42
0.88 0.43
0.93 0.47

Babcock & Wilcox

a McDermott company



Estimate of Additional
for Oconee 1 (19

fluence
reach
.,critgria,
18

Scheme cm x10

nee 1 (8,3C PY)

Babcock & Wiicox

2 McDermott company




[T N PPURTCVIRN R "
onl o e gz
~ O 22 o © 8 w o6, 2
qignslgasiags O~ O © £
— ~ < < O < N N 3
-~ - o o M - o -
s
- E— G — — — — — — — — — — — — — — — — m
0~ o« -~ o o < 0 o N
S O O o~ <~ 0~ ~ 0 o 200 o Q
- < D33 m o u95 HQO D36 4 or~ oo s
P ~O |+ w -~ ™ n < ~ o o ~ < 0 10
5 -~ ™ — o = - o —~ 3232 “a
a
- -
= PPECATSTN | SIS, SEPCORREN SISy RN, A
0 ~~
ow <« o0 o™ o~
o
- o~ m n ~NO |~ ~
2 51438 91988 31788 eug R8 §
b=
=
£ FESICREET, Py PRSI, IONFEEER SanEnerens . LSRR . SRy
>
B o~ O o~ o~ oo o o0 o~ o 0
ey - o~ < i~ © aND |+
.W s K - | AN | ~N™M - .1/...0.‘ @ w
T P T}
- 4 i sl e o el e S o i i s i et G, S i o ©
©
~N
< o= ~ ™ o n 0 o co -~ O 0 o~ d & & .m. © VWYY <
~ o O 0 SW o o O e 2 OO0 n
; A2 R1A6217 R|ASR|A G[AR8 | ARKS He oo
o -~ | A ® | HaNm —~ ~ ™ - e w.
w
...
" =SRR SEEN SRy, (TN SRR e SRt I, - - A
>
O ~ o~ n o om oo or 0 10 -
b o ~ © o~ ©° O 0 0 o 0 S ® =2
a 5 m.h% o = a3 R mﬂﬂ 2 RIAARIJES o & &~
- R — ~N ™ - | AN® | - o = v 00N
. P LR NS O, S R L R e R L, M. o s W, = T KR
.
™o O O or < ow ™
B 4 0 © ® 0 0 w& ~ a o °R o
N u36 m79 D o~ moo D ™ mu.I B ™ o~ =
@ ~ O ™ O ~ ™ © r~ 0 A <~ +)
[ il ~ ™ N™M — “~tNM — N ™m — N wm ”%m—ﬁ
S
o
“ - — <« O o~ N o oo 0 o0 0 o
g | o3 @ @ o 0 O O ~ O
0 ™~ u36 m 0 ™ r~ mOB ™ ™ u33 D?B
o~ ~ O <+ |+ o | < t~ O ~ < [0




Cycle D, Assembly Burnup Distribution
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ULLNAT1 Core Loading and Assembly Burnup Distribution

Figure 4-3,
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Figure 4-4, ULLNAT2 Co~e Loading and Assembly Burnup Distribution
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' Figure 4-8. Cyclie Average RPDs for LBP &nd VLL
l Reference Cycles
8 9 10 11 12 13 14 15
' H 10.839 1.037 1.084 1.385 1.160 1.353 1.009 0.548
' 0,938 1.160 1.104 1.395 1.128 1.314 0.947 0.375
K | 1.027 1.345 1,151 1.354 1.129 1.116 0.556
l 1.205 1.398 1.288 1.359 1.204 1.11& 0.351
L 1.152 1.353 1.028 1.244 0.907 0.411
l 1.321 1.390 1.008 1.226 0.772 0.248
. m| 1.13¢ | 1.262 0.998 |0.634
1.273 1.342 1.073 0.577
' " 0.987 0.930 0.412
' ‘ 1.1583 0.944 0.338
0.499
' 0| 0.397
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Figure 4-9. Cycle Average Assembly RPDs for Vessel
Fluence Reduction Schemes

8 3 10 11 12 13 14 15
0.960 1.187 1.130 1.429 1.157 1.362 0.923 0.211
0.918 1.134 1.108 1.406 1.093 1.348 0.969 0.220
0.957 1.184 1.125 1.421 1.142 1.313 0.911 0.280
0.915 1.126 1.100 1.413 1.085 1.351 0.960 0.289

1.234 1.431 1.318 1.389 1.217 1.085 0.207
K{1.194 1.381 1.294 1.385 1.234 1.119 0.216
1.229 1.426 1.311 1.377 1.205 1.074 0.265
1.185 1.392 1.275 1.375 1.217 1.056 0.281
1.351 1.422 1.028 1.237 0.760 0.149
L] 1.155 1.383 1.033 1.264 0.785 0.155
1.346 1.415 1.023 1.233 0.754 0.191
1.141 1.374 1.041 1.257 0.780 0.210
1.300 1.368 1.098 0.575
M1i1.289 |1.371 1.115 ]0.59
1.296 1.365 1.086 0.577
1.257 1.355 1.101 0.611
1.175 0.961 0.342
v |1.204 0.996 0.361
1.172 0.959 0.342
1.203 0.995 0.368
0.405 ULLNAT1
ol 0.527 ULLNAT2
0.403 ULLBP1
0.542 ULLHBU
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6. SUMMARY AND CONCLUSICNS

This report examined several fuel management schemes for reducing the fast
‘lux to the reactor vessel wall for a specified rance of weld Tlocations.
These schemes built upon the resulits attained from the VLL design by further
reducing peripheral assembly pcwers in locations symmetric to H15, K15, and

L15,
1.

From an analysis of these schemes, the following conclusions are drawn:

The base VLL design offers a substantial vessel fluence reduction relative
to typical previous fuel cycles, and may be sufficient for some utilities
seeking to substantially reduce vessel fluence.

Shuffle schemes providing additional fluence reductions up to 30% lower
than the VLL, and over 60% lower relative to typical previous cycles, can
be implemented without unusual design modifications.

These fluerce reductions can be realized without significantly affecting
Technical Specification operating limits, relative to the VLL design.
However, as addressed in reference 2, implementing the VLL design may
entail additional core-specific physics, thermal-hydraulic, and safety
analysis work relative to current fuel management schemes. The same is
true for the schemes examined in this report.

Further reducing vessel fluence while maintaining maximum pin peaking
comparable to the VLL design inherently requires fuel Jloadings that
shorten cycle length, for a given feed batch size and enrichment. Cycle
lengths may be reduced up to a maximum of 10 to 15 EFPD relative to that
attainable with the VLL design.

Selectively reducing peripheral assembly RPOs can shift the angular
location of the peak vessel flux, possibly causing another weld location
to be limiting. In addition, decisions regarding placement of vessel
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cavity dosimetry at the peak flux location may be influenced by the type

of vessel fluence reduction scheme to be implemented.

Implementing one of the vessel fluence reduction schemes addressed in this
report will necessitate the careful plant-specific evaluation of the desired
level of fluence reduction relative to the economic considerations associated
with

Potentially shori.er cycle lengths than attainable with the VLL.
Irradiating fuel assemblies to very high burnup.

Fabricating fuel assemblies containing natural uranium (or tails). Due
to the very low incremental burnup that these assemblies would experience
each cycle, the waximum residency time would be much 1longer than for
typical fuel assemblies. The evaluation of maximum achievable residency
time would need to be addressed in future mechanical design analyses.

Alternative schemes, such as combination of very highly burned fuel and
fresh LBP, may result in fluence reductions approaching that attained with

natural uranium.
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