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ABSTRACT

An integral part of any probabilistic risk assessment (PRA) is
the performance of an uncertainty analysis to quantify the un-
certainty in the point estimates of the risk measures consid-
ered. While a variety of lassical methods of uncertainty
analysis exist, application of these methods and developing new
technigques consistent with existing PRA data bases and the need
for expert (subjective) input has been an area of considerable
interest since the pioneering Reactor Safety Study (WASH-1400)
in 1975. This report presents the results of a critical review
of existing methods for performing uncertainty analyses for
PRAs, with special emphasis on identifying data base limita-
tions on the various methods. Both classical and Baysian
approaches have been examined. This work was funded by the
U.S. Nuclear Regulatory Commission in support of its ongoing
full-scope PRA of the LaSalle nuclear power station. Thus in
addition to the review, this report contains recommendations
for a suitable uncertainty analysis methodology for the LaSalle
PRA.
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I1. UNCERTAINTY METHODS FOR PROBABILISTIC RISK ASSESSMENT

In this section, methods used in PRA analyses for uncertainty
are briefly reviewed. Top event uncertainty methods are treated
first, then component parameter uncertainty specification tech-
niques will be considered.

I11.1 A _Perspective on Uncertainty Analysis

Before discussing methods for performing uncertainty analyses,
it is worthwhile to examine the goals of performing such an
analysis, and to consider the sources of uncertainty we are
trying to characterize. Clearly, the goal is to assess un-
certainty in the estimate of the frequency and sensitivity
measures of some top event given a characterization of the
uncertainty in the input (independent) variables or assumptions.
In the context of a PRA, the analyst is interested in assessing
the uncertainty in computed risk measures (such as accident
segquence frequency, core melt frequency, and plant damage state
frequency) as a function of uncertainties in the interpretation
of data and the parameter estimation process as well as uncer-
tainties inherent in the modeling process itself. Thre ultimate
goal, however, is to be able to make meaningful comparisons
between measures of risk so that robust decisions regarding the
margin of safety and allocation of resources to increase safelLy
can be made. A crucial aspect of selecting any method of
uncertainty analysis is to identify the comparisons to be made,
and to assure that tne selected uncertainty analysis method
will provide the information needed to make those comparisons.

I1.1.1 Uncertainty Analysis Goals

In the context of a PRA for a nuclear power plant, we ulti.
mately wish to make the following comparisons and assessments
after the PRA is completed:

1. Compare one plant's risk measures with those of other
plants to assess relative level of safety.

2. Compare relative risk contributions due to the various
sources of risk modeled in the PRA (random initiating
events, fires, earthquakes, etc.) to identify any
particular vulnerability which may exist at the plant
in question.

3. Compare health and economic consequences of hypo-
thesized accidents at the plant with gimilar conse-
quence measures due to other sources of risk (e.g..
aircraft crashes, chemical releases, etc.) to which the
public is unavoidably subjected.



4. Compute both "best estimate” and "worst case" measures
of risk and consequence to allow informed societal
decisions as to "acceptable" level of risk to be made.

5. Compare the contributions of different component
failures to the plant risk measures to determine those
components for which an increase in reliability woulad
result in the greatest reduction in plant risk and,
thus, provide a basis for an effective allocation of
resources.

6. Compare the "best estimate" accident-induced 1loads
(e.g., pressures, thermal forces, earthquake ground
accelerations, floor spectra, etc.) with the "conserva-
tive" deterministic loads used in the design of the
plant to assess the "margin of safety" of the various
components, srructures, and safety systems and to
identify any areas where changes in design procedures
could result in a more uniform level of “margin of
safety" throughout the plant.

Thus the goal of performing an uncertainty analysis is to qual-
ify the conclusions made as a result of point estimate evalua-
tions, so as to identify those conclusions which are robust when
considering uncertainties in the analysis. It should also be
used to identify where improving the state of knowledge can lead
to maximum benefit with respect to an accurate assessment of
risk,

in particular, an uncertainty analysis should identify those
components or modeis whose uncertainty is "driving" the overall
uncertainty in the plant risk measures, so as to identify any
componernts or models whose uncertainty is preventing any desired
comparisons (as discussed above) to be made, and hence identify
those components or models for which a reduction in uncertainty
(even without a change in our perception of their point esti-
mate) would result in upgrading our decision-making capability.

I1.1.2 VUncertainty and Physical Variability

It is important to distinguish between the concepts of uncer-
tainty and variability. The nature of the events considered in
a PRA (such as initiating events, component failures, operator
actions, etc.) is such that they are treated as being random
processes, and modeled through the use of probabilistic models.
It is this use of probability which gives the PRA its name.

Sources of random variability are incorporated directly in the

PRA models. As examples, the random nature of component
failure times 1is incorporated by assuming a constant failure
rate model for those components, The randomness of operator

recovery times is incorporated by establishing a relationship
between time and the probability of recovery. The randomness
in the magnitudes of earthquakes in a given seismic region is
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incorporated through the wuse of a relationship expressing
frequencr of occurrence as a function of magaitude. These
sources of variability then directly affect the evaluation of
the frequency of the events of interest, such as core melt
frequency.

However, due to lack of data, .r a lack of detailed under-
standing of the physical phenomena being modeled, the relation-
ships that are used to describe the variability are not known
precisely. This can be reflected in a lack of precision in the
value of a component failure rate, or in the provision of
alternative mathematical formalisms. This lack of knowledge is
the uncertainty that is of interest here, and which leads to
the lack of precision in the predictions of the PRA. An
increased level of knowledge will not change the fact that a
PRA is a probabilistic model, but it will give greater
confidence in the predictions of that model.

11.1.3 The Representation of Uncertainty

There are two basic types of uncertainty tc be addressed: the
first is that associated with the values of the parameters of
the input models, the second is that associated with the
possibility of alternate modeling hypotheses.

In the case of parameter values that are estimated on the basis
of data, there are two basic statistical approaches; the so-
called classical approach, and the Bayesian approach. Given
sufficient data, they both produce numerically compatible
results, but due to differences of interpretation, propagation
of uncertainty measures in the Bayesian approach is easier than
in the classical approach.?

(a) Classical Statistical Measures of Uncecrtainty

For parameters that are assumed to have the same constant value
for all members of the population being sampled, we can compute
a statistical confidence interval, which is an interval about
the computed parameter value that is "reasonable" considering
the data from which the parameter estimate was derived. For
example, consider a component with a history of x failures in n
demands. Assuming that the demand failure rate is constant and
that the Binomial distribution is an appropriate model for the
occurrence of such failures, the point estimate of the demand
failure rate is given by

(1)

o
"
o=



The cumulative binomial distribution .unction is given by

.
F(X1.n,p) = :E: (:) pX(1-p) X (2)
X=0

which gives the probability of X < x; for a known value of p.
From the component failure history, we know the number of
failures x and number of demands n, so we can solve equation
(2) for values of p such that the observed value of x lies in
the central region of the distribution, i.e., would be likely
to have been observed. Hence, if we sought values of p which
would imply the measured value of (x,n) to lie in the central
95 percent of the distributinn, we would solve the pair of
equations

X
E (:} pl" (1-91)“”' = 0.025

o

(3)
X
Z (%) pz" (1-p2)“"‘ = 0.975
[e]

and obtain two values, ©p;, Pz, between which we would
(loosely speaking) expect the true value of p to lie with 9%
percent confidence.*

Figure 1 gives the solution to this pair of equations for
various values of x and n. The number attached to each curve
is also n, the number of demands. The ordinate gives the 9%
percent confidence intervals for any value of x/n. Similar
curves could be constructed for any other desired level of
confidence.

*More precisely, a (l-a) percent ~onfidence interval is
defined by (Ref. 4), "“If, in a series of very many repeated
experiments an interval such as the one calculated were
obtained, we would in the long run be correct (l-a) 100
percent of the time in claiming that p is located in the
interval."
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Figure 1. Chart Providing 95 Percent Confidence Limits for P
in Binomial Sampling, Given a Sample Fraction x/n.
Different curves represent different sample sizes n.
Values on ordinate represent 95 percent confidence
bounds on p. (Reference 4).



It is important to note from this figure that as n becomes
large, the confidence 1limits approach the point estimate
P = x/n. Thus, by accumulating more and more data, we can know
the value of p as closely as desired (with 95 percent confi-
dence). Thus, the confidence interval is a measure of the
sampling uncertainty in determining a constant parameter from
data.

Note also that p; and p, are not points on any distribu-
tion, for the failure rate is, by definition, a constant and
not & random variable, and thus no distribution can be attached
to it. In particular, it is not valid to assume p;., pz to
be the Sth and 9%th percentiles of some (unknown) distribution
SO D

Even though, as discussed earlier, the effect of variability
arising from the inherent randomness of the processes modeled
is generally incorporated directly into the frequency evalua-
tion, it is wuseful ¢to discuss here the representation of
variability because it 1is a concept raised later 1in the
consideration of pooling of data from different populations.

In dealing with a quantity which is a random variable with a
known distribution, we state the variability in terms of a

t tolerance taken directly off the prob
ability distribution for the quantity. Thus, we can identify
the 5th and 95th percentiles of the probability distribution
which characterizes the random variability and state that there
is a 90 percent probability that any randomly selected value
lies between these two limits. When the parameters of the
distribution are not known exactly, but are inferred from a se
of n observations (such as the sample mean and sample standard
deviation for a normally distributed random variable) we can
compute a statistical tolerance interval, which is an interval
“within which we can state with a given confidence of being
correct that a prespecified portion of values from a sampled
distribution are located" (Reference 4). The probability of
being correct, of course, increases with increasing number of
observations.

(b) Bayesian and Subjectivist Measures of Uncertainty

The subjectivist interpretation of probability as a measure of
an analyst's degree of belief in some proposition allows the
following approach to the characterization of a parameter value
uncertainty. Suppose a probability density function f(\)
exists, such that the integral

¢
} f(\)d\ s C
o



represents the analyst's degree of belief that the true value
of the parameter is 1less than X\, then (0, X\g) is a
Bayesian probability interval. While it has the same intent as
the classical confidence 1interval, 1i.e., to represent the
analyst's uncertainty in the value of the parameter, the
mathematical formalism adopted does allow the combination of
measures of uncertainty in different parametere in a straight-
forward manner. This is discussed in several references (see,
for example, the review paper by Parry and Winter, Reference
3), and will not be elaborated on here.

There are often several parameters in a PRA model for which
data do not exist from which to make estimates, and engineering
judgment is used. If uncertainties on parameter values are to
be characterized in a manner consistent with that for these
parameters for which data do exist, the Bayesian framework
provides a mechanism for doing so. By contrast, classical
statistics does not provide a means of providing such estimates
Or uncertainty measures.

In addition, the subjectivist approach allows a probabilistic
characterization of modeling uncertainty, whereas there is no
equivalent classical statistical method. The value of perform-
ing such a characterization is a function of the purpose for
which the PRA is being performed. Since the assignment of
consistent probabilities 1is not trivial and 1is analyst-
dependent, some have found the Bayesian approach to probability
unaccentable.

11.1.4 Data Availability Constraints

The availability of data as to type, quantity, and applicability
is the second crucial aspect in choosing an uncertainty analysis
method for any given application. 1In the context of a4 PRA of a
nuclear power plant, we are (in most cases) dealing with rare
vvents. For example, random failures of components at any
given plant are quite infrequent, and the analyst is usually
forced to merge the experience of a number of plants to obtain
a data base which covers the full spectrum of components needed
in a PRA. Similarly, the occurrence of earthquakes is a rare
event anywhere, while the occurrence of an earthquake in the
vicinity of a plant (close enough to at least trip the plant)
is even more rare. A similar situation exists with respect to
pipe break frequencies (for LOCA initiators) and the occurrence
of significant in-plant fires.

Given the spatrseness of the data, the analyst is usually forced
to merge the data from several plants together and to group
similar (but not identical) components into generic classes so
as to pool their data. Engineering judgment is required to
determine the applicability of the data and to perform the
aggregation of the different sources of data into the generic
groupings.



Even in the case of the simplest type of data--component failure
rate in time or per demand--true "data" in the sense of a set of
measurements of the quantity in question does not exist.
Typically, in the literature, one has a record of a number of
components falling in a given span of years. From this the
failure rate may be estimated by computing the ratio

A\ =

Hours of Exposure or Number of Demands

The data are often taken at a number of different plants and on
components in different systems having different operating
environments, test intervals and demand histories. Typically,
the denomination is not known precisely and in many data sources
engineering judgment has been used to determine reasonable
average exposure times, demand histories, etc.

Thus, in addition to a component type's inherent (irreducible)
variability in failure history* due to randomness in materials
used in construction, tolerances in part sizes, etc., we also
have variability which is due to data source differences:

. Plant-to-plant differences (type, location, climate,
mode of plant operation, age of plant, vendor, etc.).

. In-plant differences (component manufacturer, age of
component, location in plant, mode of usage during
operation).

. Generic grouping.

. Mode of failure (electrical vs. binding vs. leakage,
etc.)

This type of variability is often termed gystematic, because we
could (in theory) reduce or eliminate this variability given
enough time and money for testing or monitoring the particular
component of interest, However, this wvariability becomes a
source of uncertainty when data from several sources are applied
to the analysis of a particular plant, as is the case with
RMIEP.

In practice, for failure data on nuclear power plant components,
one must use the existing data with its systematic variability,
and the questions become:

*It should be remembered that this variability is accommodated
by the treatment of failures as random occurrences. The adop-
tion of a constant failure rate or constant failure probability
is equivalent to making an assumption about the appropriate
probabilistic model to describe the failure history.

-10-



a. How to characterize the uncerta'nty in order to reflect
the systematic variability.

b. How to reconcile generic data (from many sources) with
mere limited plant-specific data (if available).

The specific choices one makes in answering these gquestions
will play an important and often limiting role in determining a
suitable method for performing an uncertainty analysis. Some
of the considerations involved are discussed in more detail in
Mosleh® and Parry.®

One resolution, which has been adopted in several PRAs to date,
is to define a generic group of components for which the failure
rate with time or on demand are assumed to be a fixed value.
Then, data from other plants are used to derive a probability
distribution that reflects the plant-to-plant variation in the
value of the parameter for the equivalent group of components.
This probability distribution, which represents a measure of
physical (systematic) variability can be regarded as a con-
fidence interval measure for the parameter value for a
particular plant of interest, under the assumption that the
plant is one of the general population that has been sampled.
Thus, for example, in the WASH-1400 ttudy.7 the data on valve
failure rates from 10 different sources were plotted in
cumulative distribution form to obtain the lognormal
distribution shown in Figure 2.

When no plant-specific data are available, the generic prob-
ability distribution can be wused unmodified. When plant-
specific data are available, the generic distributions can, in
the Bayesian method, be modified, using it as a prior distribu-
tion, and wutilizing the plant-specific data to specify the
likelihood (see later). This is discussed, for example, in
Apostolakis et al.® and Kaplan.? This use of generic data
has important implications for the propagation of uncertainty
measures as discussed in Section 11I1.1.3 - Incorporation of
Correlation.

It may also be deésirable to include other sources of variability
in deriving the probability distriburion. For example, the
distribution may be chosen to reflect both plant-to-plant and
cystem-to-system or component-to-component variability. This
distribution should, however, be used to represent uncertainty
in the component's failure characteristics only if there is no
consistent system-to-system variability at all plants. 1f there
is a significant corsistent system-to-system variability, the
components from different systems should not be grouped into the
same population, but rather each system should be treated sepa-
rately by constructing a plant-to-plant distribution for com-
ponents of that system.

.
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be noted that the results of the Maximus calculation depend on
the set of values which have been selected for the subjective
parameters.

After the accident sequence confidence intervals have been
determined for each set of subjective parameters, the Maximus/
Bounding approach provides three different perspectives of the
top event uncertainty; subjective uncertainty, statistical
uncertainty, and overall uncertainty. The subjective uncer-
tainty ir calculated by fix ' ng all objective parameter values
at their nominal estimates based on the data. The range of the
top event value due to uncertainty of the subjective parameters
is calculated by varying the subjective parameter values from
their low values to their high values. The statistical confi-
dence limits of the top event are calculated by fixing all

subjective parameter values at their nominal e¢stimates. A
Maximus calculation is then performed using the objective param.
eter data to calculate a confidence interval. The overall

uncertainty is estimated by setting the subjective parameter
values fixed at two different values, their low value and their
high value. At each set of fixed subjective values, a Maximus
calculation is performed on the objective parameters. Recall
from earlier discussion that the Maximus solution will vary for
different values of the subjective parameters. An example of
the three types of uncertainty intervals estimated by Maximus/
Bounding is shown in Figure 3.

Comparisons of the Maximus/Bounding approach with a Bayes'/
Monte Carlo approach (using assumed distributions) for a typical
PRA systems model have shown!? that the Maximus approach leads
to wider confidence bounds (as expected) but that the upper
bounds of both methods are in reasonable agreement.

The advantages of the Maximus/Bounding approach are:

1. No assumptions need be made concerning the distri.
butional form of the basic event probabilities, since
failure rates are assumed to be constant parameters.

2. Once the systems models are in series,/parallel block
diagram form, the method is straightforward and simple

to apply.
Disadvantages of the method are:

1. The typical PRA systems model in fault tree format must
be converted to a block diagram format.

2. A certain degree of arbitrariness exists when generating
“equivalent” data for groups of like components.

3. The Maximus “"rules" for parallel configurations cannot
be proven with mathematical rigor, although extensive
demonstration calculations substantiate their heuristic
foundations.

14
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11.2.2 Method of Moments

The Method of Moments propagates the basic event uncertainty
through PRA models by generating lower order moments, such as
the mean and variance, of the distribution of the top event
from the moments of the basic event distributions. 1In essence,
one is using a Taylor series expansion of the variation of the
top event value with respect to variations in the independent
variables (the basic events). The coefficients of the Taylor
series are related to the moments of the distributions of the
basic events.

In theory, if sufficient terms of the expansion are generated,
the distribution of the top event can ve determined completely.
In practice, only a few lower ordered terms are generated. For
example, if one has estimates of only the means and variances
of the basic events, one can approximate the mean and variance
of the distribution of the top event. However, with the Method
of Moments, once the top event attributes (mean and variance)
have been calculated, it is necessary to make an assumption
about the form of its distribution so that other attributes,
such as 95%th and &Sth quantiles, can be estimated. A more
detailed treatment of this method is covered in_a comparison
study of various uncertainty analysis me.hods.l!? Technigues
also I%xiut that include the use of higher otder moments as
well.

Advantageous of the Method of Moments are:

1. The mean and variance of the top event can be approxi-
mately determined even if only means and variances of
the basic events are known, rather than their complete
distributions.

2. VFor simple top event functions with derivatives that
can be determined analytically, the Method of Moments
is gimple to apply.

Disadvantages are:

1. For functional relationships between the top event and
the basic events which are significantly nonlinear, the
use of only lower ordered terms in the Taylor series
expansion can lead to significant inaccuracies.

2. For complex functional relationships ¢ r which analyti
cal derivatives cannot be easily obt 1ned, some form of
experimental design is required to nu srically determine
the coefficients of the Taylor series expansion.

i1, VFor large systems models of the type usually encountered

in PRAs, this approach has been found to be unwieldy in
application.

- 16



11.2.3 Method of Moments Using Tchebyschev's Inequality

In this technique, the mean and variance of the top event dis-
teibution are calculated from the basic event moments as in
Section 11.2.2. However, to arrive at uncertainty intervals,
Tchebyschev's inequality is used instead of assuming a form for
the top event's distribution. Tchebyschev's inequality is a
theorem in probability theory which states, "for any distribu-
tion with finite mean and variance, at least (l-k"€) o 100
percent of the probability is in the range of sko around the
mean," (Reference 4). Thus, for example, this inequality
implies that at least 88.9 percent of the probability lies in
the interval of w s30. Such tolerance intervals calculated
with Tchebyschev's inequality tend to be very conservative.

11.2.4 Propagation of Discrete Probability Distributions

Propagation of Discrete Probability Distributions (DPD) is a
technigque in which the basic event distributions are discre-
tized, and a discrete analog of the top event distribution is
calculated., Each distribution is divided into some number of
intervals, say n. A value for each basic event probability is
chosen for each interval (usually the mean of the basic event
probability in th.t interval), and the probability that the
basic event probability occure in each interval is calculated.
Thus, the distribution of each basic event probability is
discretized into n values, each value with a corresponding
probability. The top event is evaluated nX times where k is
the number of independent variables. The result of each evalua-
tion has an associated probability equal to tne product of the
probabilities of the independent variables. Thus, a discrete
probability distribution can be constructed from these values.

The DPD technigque is, in theory, a valid method for functions
of many variables. However, the technique can become gquite
cumbersome with respect to computer storage, and the propagation
must be performed in stages with intermediate re-discretization.
Incorporation of correlation is then guite awkward. More dis-
cussion of this method can be found in Reference 15.

11.2.% Monte Carlo Method

The Monte Carlo approach is the most fundamental approach to
uncertainty analysis. Monte Carlo simulation consists of making
repeated quantifications of the top event value,. For each
gquantification or Monte Carle run, each random variable basic
event is sampled using a random number generator to select a
value from the basic event's distribution. This procedure is
repeated numerous times, and the various top event outcomes are
sorted to obtain empirical estimates of the desired top event
attributes such as mean, median, 95th, and Sth gquantiles.

AP



As more and more Monte Carlo samples are made for a top event
equation, the precision of the empirical quantile estimates of
the top event distribution improves. However, the rate of
convergence to the true dietribution tends to decrease as the
number of samplee increases.}) Of course, the validity of
the result is only as good as that of the input.

Advantages of the Monte Carlo method are:

1. Complete flexibility in the selection of basic event
distributions.

2. Any specified precision of the top event attributes can
be achieved (limited only by cost and rourndoff-error).

3. The method is reasonably easy to implement.
Disadvantages of the Monte Carlo method are:

1. Probability distributions must be defined for all
parameters.

2. Computer costs can become significant for large
problems.

3. Sensitivity measures of the basic event uncertainties
contribution to the tey event uncertainty are not
directly obtained.

11.2.6 Latin Hypercube Sampling

Latin hypercube sampling (LHS) was developed to improve upon
the accuracy and precision of Monte Carle simulations in
estimating functions of multiple random variables.l® LHS is
a stratified sampling technique, where n different values are
selected for each basic event. The values are selected by
dividing each basic event's probability distribution inte n
intervals, each of equal probability. Within each {interval,
one value of each basic event's probability is randomly
selected. The n values of a particular random variable are
then combined (in a manner which keeps the pair wise correla-
tions near zero) with the n values of the other basic events.
The result is an n x kK matrix (k is the number of sampled basic
events) where the ith row of the matrix contains specific
values of each random variable to be used in the ith run or
calculation of the top event value. The top event's distribu-
tion and quantiles are empirically estimated from the n runs.

LHS has the same advantages as associated with Monte Carlo
methods, Additional advantages include:
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1. The accuracy in modeling the top event uncertainty is
improved with respect to direct Monte Carlo methods for
the same number of samples.

2. Use of LHS ensures that the tails of the basgsic event
distributions are included in the propagation of uncer-
tainty.

Disadvantages of the LHS method may be:

1. Possible bias in result, particularly for small sample
sizes.

2. 1{ not suitably automated, this procedure can be
cumbersome and time-consuming.

3. Being a relatively echnique, all of its properties
may not be fully un 0d.

11.3 Method Recommended for iMIEP

Following a review of the various methods for uncertainty
propagation, and in view of the recommendation th»' uncertainty
in parameter values should be represented by di . -.wutions (as
discussed in 11.1.3), an approach based on i. '+ hypercube
sampling (LHS) and Monte Carlo simulation is re. .iendad for
RMIEP. This approach was chosen for the following reasons:

l. This approach can conveniently accept any form of
distribution for each basic event, and thus the effect

of different distributional assumptions could be
assessed,

2. This approach can be applied directly to the output of
typical fault tree analysis codes (e.g., SETS, FTAP,
ete.).

3. This approach allows a direct assessment of the effects
of correlation between uncertainties for components in
generic categories.

4. The approach has been found to be relatively simple and
inexpensive for large systems models.

The choice of LHS as the method for propagation of uncertainty
will allow flexibility in characterizing basic event uncer-
tainty. Any method of basic event uncertainty characterization
which establishes a distribution for the failure probability
can be used in conjunction with LHS.
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I11. ELEMENTS OF RECOMMENDED APPROACH FOR UNCERTAINTY
PROYPAGATION

The Latin hypercube/Monte Carlo approach recommended for RMIEP
will be implemented using the Top Event Matrix Analysis Code
(TEMAC) . 17 This computer code ~an accept the samples gen-
erated from either an LHS routine or a Monte Carlo simulation.

I11.1 Propagating Uncertainty Through RMIEP Models

The following sections describe the codes which are recommended
for use in the Latin Hypercube Sampling procedure for propaga-
tion of uncertainties through the RMIEP systems models. Code
output capabilities and sensitivity measures computed are also
described.

I11.1.1 Latin Hypercube Sampling

The TEMAC code requires a set of sample vectors cheosen in
accordance with the stratified sampling approach. A Latin
Hypercube Sampling (LHS) routinel® is used to generate the
input sample vectors by sampling basic event probabilities from
their distcibutions. The output of the LHS will be read
directly into TEMAC, which 1is designed to take simulations
(either pure Monte Carlo or Latin hypercube samples) of
paramete values and quantify a top event equation. The LHS
and TEMAC codes permit flexibility in uncertainty modeling by
allowing for different probability distributions to be used in
the same computer tun. This eliminates the necessity of
assuming all random variables have the same iype of
distribution.

An introduction to the I,HS technique, with a brief discussion
of the theory of LHS and a simple example demonstration is
inciuded in Appendix B. The example and discussion are taken
directly from Reference 16, the LHS user's guide.

I11.1.2 Quantification of Top Eveut Attributes

O.uce the Latin hypercube sample matrix has been generated for
the basic event probabilities, it is read into TEMAC, along
with the top event equation. TEMAC evaluates the equation for
each sample vector in the matrix.

TEMAC generates a variety of attributes of the top event's
distribution as a result of the propagation of basic event
parameter uncertainty through the model. These include esti-
mates of the top event's mean, median, standard deviation, 5th
and 95th quantiles and a nominal e¢stimate of the top event's
value calculated with the nominal estimates of the base events.
Four importance measures of basic event contributions to the
top event's value are calculated- partial derivative of the top
event equation with respect to eacnh basic event, risk reduction,
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risk increase, and a measure of an event's uncertainty contribu-
tion to the variance of the top event distribution called uncer-
tainty importance. For each measure, the basic events are
ranked in order of contribution. These measures are briefly
described in Section III.1.4.

I11.1.3 Uncertainty Correlation in Sampling

It is recommended that uncertainty correlation be included in
the LHS samples. The need for this is discussed below. When
components are grouped together into a single generic category,
the assumption is made that each component in that group has
the same failure rate or probability. Thus suppose that an
accident sequence ACC is given in terms of basic event proba-
bilities as

ACC = ajap + ayby + azb; + byby (4)

where aj is the failure unavailability of component i of the
group identified by the letter aj and similarly for bj.
Since each component within the group has the same unavaila-
bility, ACC can be rewritten as

ACC = a2 4+ 2ab + b2 , (5)

where a represents the unavailability of a component in generic
group a and similarly for b.

In performing an uncertainty analysis, it is equation (5), must
be used to evaluate the probabi.ity distribution on ACC. This
gives different results from using equation (4), as can be scen

from taking the expected value. 1In using the first expression,
the aj are treated as independent so that

E(ACC) = EZ2(a) + 2E(a)E(b) + E2(b) , (6)
whereas in the second it is

E(ACC) = E(a?) + 2E(a)E(b) + E(b%) , (7)
where E(x) is the expected value of Xx.

The necessity of including the so-called uncertainty correlation
was discussed, in a Bayesian context, by Apostolakie and Kaplan
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in Reference 18. They pointed out that the values of the a;
and a; (and b; and by) must be regarded as being the same
sipce the analysts state of knowledge about them is identical.
Trhus in a Monte Carlo analysis, when in one sample a random
value from the probability distribution on a; is chosen, the
same value must be used for the value of a;, and so on. It
is in th.s sense that the values are correlated.

Consideration of uncertainty correlation can be important when
screening is performed. The fact that the expected value of ACC
using equation (5) is greater than that using equation (4) means
that extra care has to be taken when using point estimates
directly in the equation for ACC as a screening method for
identifying dominant cut sets. This is particularly important
when there are more than two components from a single group in
a cut set and/or the uncertainty on the value of the component
availability is large, when

E(al) >> Ef(a)

It may thus be desirable, unless it is easy to identify in a
ceneral way the possibility of such cut sets, to accept some
sort of second screening where, for example aP is replaced by
a whenever the former appears in a cut set, to guarantee saving
the potentially troublesome cut sets. This would mean, in the
current example, calculating the unavailability (for screening
purposes) as

ACC = a + 2ab + b

Any cut sets that reviewed this second screening would also be
included in a full uncertainty analysis, (expressed of course
in their original form).

For the final quantification and uncertainty analysis, the
TEMAC code c¢an incorporate this uncertainty correlation
directly, since the Latin hypercube sampling program permits the
specification of full correlation between arbitrary numbers of
variab es in che top event Boolean equation. (In fact, these
codes permit the spccification of any dugree of correlation
less than full correlation also.) It is recommended, however,
that full correlation be used for failure rates of components
in the same generic category (and same failure mode).

111.1.4 Sensitivity and Importance Measures Computed in [EMAC
Th 'EMAC code calculates various measures of the sensitivity

of the top event estimates to changes in the estimates of the
basic events. These measures enable the basic events to be




ranked Aas to their contribution to the top event values and
enhance inverpretation and comparison of the PRA results.

In TEMAC, th» mathematical representation of a Boolean equation
consisting of m cut sets. each of which consists of k events,
is written as

m a 4
g(X) = L xllj xzzj sii'y xkkj : (8)

j=1
where ajj = 1 if the i'h event, X;, is contained in the

jth cut set, otherwise ajj = O.

The basic event Xj may be either a component failure rate de-
scribed in probabilistic terms, or an initiating event repre-
senting a frequency of occurrence and exnressed as a certain
number of occurrences during some time period. Thus, g(X)
expresses the frequency of the top event.

The sensitivity and uncertainty measures available are computed
(for each simulation) from this equation as described below.

Partial Derivative

The partial derivative is a measure of the sensitivity of
a function to changes in a parameter's value at a specific
point. The partial derivative of the top event g(X) given
with respect to Xj is

m a a
9g(X)/dX, = ¢ x 1) x 2]
i 4 1 2
1=1
: (9)
a - a
ij kj

Note that the partial derivative expressed above will
never contain the variable X; since a value of aj; =
0 eliminates the term from the partial derivative and a
value of ajj = 1 generates an exponent of zero for Xj.
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Risk Reduction*

Risk reduction is a measure of the maximum potential
reduction in the top event value if a basic event failure
rate is reduced to zero. Risk reduction identifies com-
ponents for which improved reliability could yield signi-
ficant improvement in risk. Improved concepts in system
designs and operator procedures are types of insights
possibly gained h~re.

The measure is calculated by setting the nominal value of
an event, Xjj., equal to zero in g(X) and subtracting
the resulting value from the nominal evaluation of g(X):

Risk Reduction for Xj = g(Xx) - g(;lxj = 0) . (10)

Risk Increase*

Risk increase is a measure of the maximum potential in-
crease in top event frequency if a basic event's proba-
bility increases to one. Risk increase yields insights
of critical components and procedures which, if allowed
to become less reliable or effective, could result in a
worsening of the risk profil. at a plant. The importance
of improvements in preventative measures, such as
maintenance and testing, are types of insights derived
from increase measures. The measure is calculated by:
\

Risk Increase for Xj = g(XiXy = 1) - g(X) . (11)

Uncertainty Importance

Uncertainty importance, a new measure, is a measure of the
significance of a basic event's uncertainty to the uncer-
tainty of the top event. This measure gives insight into
which basic event probabilities, due to their own uncer-
tainty, are driving the uncertainty of the top event

estimate. Areas of need for improved data analysis or
increased data gathering c¢an be identified by this
measure. Uncertainty importance, UIlj, for event X

is calculated as:

uly = [Var(Xj)]l/z(ag(X)/GXj) . (12)

terval estimates. Ratio estimates can also be defined and are

|

|

*The risk increase and risk reduction measures in TEMAC are in- |
useful in certain applications. See Reference 19.

|
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Nc e that each of these sensitivity and uncertainty measures are
computed for each simulation, so that sample distributions are
also available for each of the sensitivity measures as well as
for the Boolean equation being evaluated.

The risk measures calculated by TEMAC provide a set of measures
which enhance resolution of safety issues from various regula-
tory perspectives. Insights to design improvements, operational
improvements, and critical factors for reactor integrity and
accident consequences can be gained from the TEMAC output.

I11.1.5 Inclusion of Modeling Uncertainty

As discuscsed in Section 1.1, modeling uncertainty is that which
arises because of the existence of plausible alternative models
or hypotheses concerning the basic events being analyzed.
Thus, for example, one might wish to include the uncertainty
due to the fact that two alternative models for a reactor
coolant pump seal failure exist, and it is not possible to
exclude either model due to limited experience with the
phenomena.

Incorporation of such modeling uncertainty can be directly ac-
complished with the Latin hypercube sampling routine and the
TEMAC code, provided one can assign a relative likelihood to
each alternative. Thus, for example, if a modeling alternative
consists of two hypotheses A and B, and if hypothesis A is
assigned a 10 percent likelihood and hypothesis B is assigned a
90 percent likelihood, then in choosing N vectors of samples
for the TEMAC uncertainty analysis, the LHS routine will select
0.1N of the vectors utilizing hypothesis A, and 0.9N of the
vectors utilizing hypothesis B. More generally, the LHS routine
has the capability of considering multiple (more than two)
alternatives for a given basic failure event, provided relative
likelihoods are prescribed for each alternative (and, of
course, these relative weightings sum to unity). By this
method, the uncertainty in the top event will include both
uncertainty in the basic event parameters as well as uncer-
tainty due to alternative modeling parameters. In addition,
for this simple case, regression modeling can be used to rank
the various modeling issues with respect to their impact on the
top event, and to rank the alternatives within each issue. An
example a, i1ication of this approach is given in Reference 20,

In the more general case, the LHS sampling code and the TEMAC
code can, 1in principle, be wused to incorporate modeling
uncertainty into the distribution of the accident sequence
frequency (or other top event of interest). To 1illustrate,

cunsider a simple accident sequence 1involving these basic
events:

ACC = C1C2Cy . (13)
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high
Prob (C2 ) = pzz

~high
Prob (b3 ) = P32

Then, assuming independence of the levels,

low high

Prob (¢;°¥ and c and cM9by _ 5 p p

2 3 ) 11 22 " 32

1f, however, the levels of the variables are not independent,
then the degree of correlation must be specified. Thus, for
example, if the "high levels" of variables C; and C3 always
occur together, then they are fully correlated (p=1) and

high ana Chiqh

Prob (C2 3

) = Min (Pzz. 932)

rathet than equal to Py, P33 as in the independent case.
Any degree of correlation can, in principle, be considered.

In any case, the probability of each distinct combination of
levels can be computed, and the total number of LHS sample runs
is subdivided in properties to the computed probabilities of
occurrence of the varizus combinations.

As an example, consider each of the two accident sequences to
be equally 1likely and the level of basic event Cy to be
independent of C; and C3, but the events C, and C3 to
be fully (positively) correlated. Further, assume the levels
of each of the three events to be equally likely. Thus

Prob (c{°”) - 0.5

high

Prob (C1 ) = 0.5

Prob (c;°” and c§°”) - 0.5
Prob (cgigh and c?iqh) - 0.5
Prob (C;ow and Cgiqh) = 0.0

= T



and hence we have four distinct combinations

Prob (Ciow and C;OU and C;ow) = 0,3%
Prob (ci°"’ and cgi"“ and cgi"") - 0.25
Prob (c'lligh and c;‘iq” and c;‘iqh) - 0.25
Prob (Ct{iqh and C;OV and C;OH) a 0,2%

Thus, if we intended to generate 1000 LHS samples, we would
generate samples of the basic events C;, Cp, C3 according
to the relative proportive given in Equation 2. That is, 250
sample vectors with random variable C; sampled from its
distribution with the low mean, but variables C, and Cj,
sampled from their corresponding means set at their high mean
value, etc.

Further, in this set of 2%0 sample vectors, the switch A would
be treated as a variable, and set to 1.0 in 50 percent of the
vectors and to zero in the remaining %0 percent of the vectors.
Finally, the four sets of 250 sample vectors would be input to
the TEMAC code, which would evaluate the "super seguence" in
Equation 1 for each sample vector, and generate an empirical
dis ribution for the accident sequence frequency.

The above example illustrates how modeling uncertainty can be
incorporated in the core damage f{requency evaluations. In
application, the problem is one of scale, for the number of
“level" combinations into which the LHS samples must be parti.
tioned is mP where m is the number of levels associated with
eaca variable and n is the number of variables. Clearly, a
number of sensitivity runs should be performed prior to evalu-
ating the empirical distribution of the top event to eliminate
as many variables as possible. However, the generation of LHS
samples for core damage accident sequences is relatively effi.
cient and inexpensive, 8o that incorporation of modeling
uncertainties using the LHS and TEMAC codes is quite feasible.
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IV. DATA AND DATA ANALYSIS

As has been discussed earlier, the methods for pertorming uncer-
tainty analyses are inextricably linked to the data available
in the following, the data needed in performing a Level 1 PRA
are described, and current sources of data are outlined.

IV.1 The Parameter Value Estimation Process

The development of generic basic event probability estimates and
uncertainty is a vital component in performing any uncertainty
analysis. Limited operating experience forces the analyst to
rely on information compiled from other plants. The data de-
velopmen* process 1is usually interative, with the initial
accident sequence evaluations performed using a set of conser-

vative, screening input data. The screening values are then
reviewed and adjusted as appropriate for the development of a
finalized set of parameter values, The process of developing

the screening values and adjusting them to final values is
discussed in this section.

IV.1.1 Component Definition and Classification of Failures

A vital link in developing parameter estimates is the coordina-
tion of the available information with the needs of the plant
models. At the start of any PRA project, the analyst has a
general idea of the level of detail and type of basic events he
will incorporate 1into his system models. As the systems
analysis progresses, the nature of the basic events--actual
components modeled, failure modes, human errors of interest,
recovery actions--become better defined and understood.
However, the available data and generic estimates do not always
correspond to the models an analyst may develop. The actual
definition of component boundaries and the groupina of 1 forma-
tion into failure categories can vary between a. a4 8 urces.
Component boundary and failure mode definitions are not always
appropriate for the data analyst's needs. Problems in finding
useful information on certain component failure modes can
arise. While many of these component failure modes will be
matched with well-documented, well-founded generic parameter
estimates, usually several component failure modes will arise
that represent areas where little or no data collection has
occurred.

IV.1.2 Screening Quantification of Component Failures

Once the component boundaries and failure modes are defined, a
get of conservatively estimated values are developed for the
screening analysis based on a review of published data. A
nominal estimate for each component failure mode is made. A
conservative or high estimate is also made. 1In most cases, any
difference between nominal and conservative values reflects
differences in published values. In some cases, though, it
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In the following sections, data needs, data sources and methods
for developing uncertainty distributions from various combina-
tions of site specific data, generic data and expert judgment
are described.

IV.2 Data Needs and Data Types

For evaluation of accident sequences in the 1internal event
analysis, point estimates and uncertainties are needed for the
following:

Initiating Events

Component Unavailabilities

Recovery Terms

Common Mode Failure Model Parameters

ooow

Each of these are discussed below.
a. Initiating Events

A variety of LOCA and transient-inducing initiating
events are identified for the plant under considera-
tion. For example, a total of 30 :nitiating events are
being treated for the LaSalle plaa. in RMIEP, as shown
in Table 1. The choice of initiating events is based
on a review of plant-specific occurrences plus an
evaluation of 1initiating events occurring at similar
plants which may bLe applicable to the site in question,
and a detailed examination of plant support systems.

b. Component Unavailabilities

Components may be unavailable due to a wide variety of
causes. In general, the component unavailability may
be computed from (some or all) of the following expres-
sions as appropriate:

Qp Demand Failure Unavailability
ol
\g - Standby Failure
AR Tn Failure to Run
M TR Unavailable Due to Unscheduled
Maintenance
T Unavailable Due to Failure to
\M PFM a1 Restore After Unscheduled
2 Maintenance
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Table 1

LaSalle Unit 2 Initiating Event Categories

Transients (General)

1.

2.

Turbine trip with turbine bypass available
Turbine trip with turbine bypass unavailable
Total main steam isolation valve closure
Loss of normal condenser vacuum

Total loss of feedwater

Trip of one feedwater or condensate pump

Inadvertent opening of a safety-relief valve
(stuck)

Loss of offsite power

ransients (Special)

9.

10.

11,

12.

13.

14.

15.

Loss of 125 Vdc bus

Loss of 4160 Vac bus

Loss of instrument air

Loss of drywell pneumatic

Loss of 100 drywell pneumatic

Complete loss of reactor vessel narrow range
Loss of Channels A and C of reactor vessel

narrow range level instrumentation (false high
level indications)

LOCA (Inside Containment)

16.

17,

gmall L. CA inside containment (
ft. for liquid, < 0.1 square ft.

0.00% square

<
for steam)

Medium LOCA inside containment (0.005 te¢ 0.3
square ft. for liquid, 0.1 to 0.3 ft., for steam)

_.




Table 1

LaSalle Unit 2 Initiating Event Categories (Concluded)

18,

19.

Large LOCA inside containment (> 0.3 square ft.)

Reactor vessel rupture

LOCA (Outside Containment)

LOCA

20.

Steamline LOCA outside containment

(Interfacing System, OQutside Containment)

>

w

21.

22 .

23

24.

&)
o

- 7

28.

30.

RHR or LPCS LOCA outside containment without
igsolation

CRD LOCA outside drywell without isolation

Turbine trip with turbine bypass available
combined with reactor protection system failure

Turbine trip with turbine bypass unavailatie
combined with reactor protection system failure

Total main steam isolation valve closure
combined with reactor protection system failure

Loss of normal condenser vacuum combined with
reactor protection system failure

Total loss of feedwater combined with reactor
protection system failure

Trip of one feedwater or condensate pump
combined with reactor protection system failure

Inadvertent opening of a safety-relief valve
(stuck) combined with reactor protection system
failure

Loss of offsite power combined with reactor
protection system failure
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el Unavailable Due to Test
Qutage

\_P : 4 Unavailable Due to Failure to
Restore After Test

for any specific component, not all sources of unavail-
ability are important, but this must be determined for
each component. The parameters are defined as:

Qp - Demand failure probability

Ag : Standby failure rate

T¢ - Average time between tests that would detect the
standby failure

A¢ = Running failure rate

Tm - Mission time following demand that component
must perform satisfactorily

Am « Frequency of unscheduled maintenance

Te¢ = verage repair time for components due to un-
scheduled maintenances

Pfm = ProbabiliLy of failure to restore component to
service following unscheduled maintenance

Ty = Average time between te:ts which would
detect the failure to restore error

At = Frequency of scheduled testing
Tto = Average test outage time
P"¢y = Probability of failure to restore component
to service following testing
Ty = Average time between tests which would detect
the failure to restore error

In general, we nced both point estimates and uncertain-
ties for each term above.

The demand, standby and running failure rates are de-
termined using plant-specific component failure records
and/or generic data. The process of combining plant-
specific and generic data is described explicitly in
Sections 1V.4.2 and 1IV.4.3.

The frequency of scheduled testing is obtained directly
from the plant test and maintenance procedures. No un-
certainty is usually associated with this parameter.

The frequency of unscheduled maintenance is determined
by examining plant documents such the control room log
and maintenance request records or data from similar
plants. These data will define a distribution on the
f requency, again often taken in a lognormal form,.
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The mission time 1is determined for each accident
sequence by 1identifying the time required for the
component to function (following its demand) in order
to mitigate the off-normal situation. Often, this is
defined explicitly by success criteria for the safety
system of which the component is a part. It is usually
treated as a parameter with no uncertainty.

The average time to repair and average test outage
times are determined from plant records (control toom,
log, etc.). These times are used to define distribu-
tions (often lognormal) from which average values and
uncertainty measures can be taken.

The terms T¢, T¢, Tt define the times be-
tween scheduled testing or routine evaluation which
would detect the components wunavailability due to
failure of restoration of the component. These times
may or may not be the same. They are, however,
idercified from the plant test and maintenance
procedures.

Finally, the probabilities of "failure to restore" are
determined both from plant-specific histories of such
occurrences, generic models and theoretical models.
These human error probabilities are themselves treated
as random variables, with uncertainty distributions
assigned to each.

Recovery Terms

Recovery terms are appended to the (dominant) accident
sequence cu. sets to reflect the probability that the
plant operators will either not correctly diagnose the
accident condition and appropriate mitigating response,
or will not effectively perform the actions required to
effect the recovery. Models 1involve simulator data,
generic grouping of recovery actions and expert judgment
in choosing the "most likely" recovery action that the
operator will select for a given accident scenario.
Point estimates and uncertainties are usually provided
by the model selected, hence no separate data gathering
is involved. For the RMIEP PRA of the LaSalle plant, a
new simulator-based recovery model has been developed
(Reference 23). Thus the recovery terms used in this
PRA will be quite plant specific, although indications
are that the¢ new model has wide generic applicability.

Common Cause Failure Model Parameters

Often, there are important cut sets that involve
failure of like components in parallel service condi-
tions, i.e., failure of both diesel generators or both
emergency station battery banks. The common cause
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Collections and

Table 2

Summaries of Actual Failuce Events

10.

Title

Source

Reference

Licensee Event Reports

Licensee Event Report Summaries

Pumps

Valves

Electrical Power

Circuit Breakers., Protective
Relays

Initiating Events

Selected I&C Components

Control Rode and Urive Mechanisms

In-Plant Reliablility Data System

Pumps
Valves

USNRC

1daho National Engineering
Laboratory

Oak Ridge NMational Laboratory

Electrical Power (Diesel Batteries,

Chargers and Inverters)

Nuclear Plant Reliability
Data System

Reactor Safety Study Section
11T - LER Data for 1972-1973

ATWS: A Reappraisal

Loss of Offaite Power at
Nuclear Power Plants

Diesel Generator Reliability
at Nuclear Power Plantse

Clasoification and Analysis of
Reactor Operating Experience
Involving Dependent Events

PORV Failure Reducticn Methods

Institute for Nuclear
Power Operations

USNRC

Electric Power Research
Institute

Electric Power Research
Institute

Electric Power Research
Institute

Electric Power Research
Institute

Combustion Engineering

NUREG/CR-1205%
NUREG/CR- 11363
NUREG/CR-1362
NUREG/CR-4126

NUREG/CR-13862
NUREG/CR-1740
NUREG/CR- 1331

NUREG/CR-2886
NUREG/CR-3154
NUREG/CR- 11362

Quarterly Reports

WASH- 1400

EPRI NP-2330

EPRI NP.2301

EPRI NP-2431)

EPRI NP 3967

CEN- 145




failure or unavailability rates for different components.
Reports often differ as to assumptions with respect to number
of demands, plant down-time or method of statistical analysis,
and thus different reports can arrive at different failure
rates using the same data base of failure events. Table 3
lists a number of such studies which have been found useful.
They differ from the reports in category 1 in that sufficient
information for reanalysis under different assumptions is not
available.

The final category consists of compilations of "generic" com-
ponent failure rates and associated estimates of uncertainty.
These generic values are usually obtained by review of two or
more category 1 or 2 sources, and may also include expert
opinion on component failure rates or probabilities derived
from other (non-nuclear) industrial experience. Table 4 lists
the more important generic data bases in use today. The user
is cautioned that these various generic data bases should never
be cecnstrucd as being independent, as in no case is this true.
Further, considerable expert opinion has usually been used in
choosing appropriate generic values.

IV.4 Data Analysis Methods Available

The techniques discussed earlier are methods of propagating the
uncertainty of basic events through a system or accident
sequence model to estimate the uncertainty of the top event.
Methods of characterizing the wuncertainty of the individual
basic events of these models in terms of probability distribu-
tions are dis~ussed here.

IV.4.1 Bootstrapping Mc:hod

This 1is an approach to generating a sampling distribution for
one or more (constant) parameters in a failure model when only

the results of a single sample are available. To illustrate
this method, consider a binomial failure rate model, with data
of X observea failures in n demands. Let p be the observed

failure rate (x/n).

Random samples of the failure rate p are generated by randomly
choosing a probability value P and solving for a value of y
from the binomial probability distribution equation

n

v) e Ya-pp™Y (16)

P = |

Thus, we are using the observed values of n and P to generate
random sample values of number of failures y, and thus random
samples of the failure rate p* = y/n. From these, a distribu-
tion on p can be generated.
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Table 3

Statistical Analyses of Data
Title Source Reference
1. Probabilistic Safety Analysis USNRC NUREG-0666
of DC Power Requirements
for Nuclear Power Plants
2. Reliability Data Book Swedish Nuclear RKS85-25%
Power Inspectorate
3. Statistical Analysis of Nuclear Los Alamos NUREG/CR-3650
Power Plant Pump Failure National Laboratory
Rate Variability-Preliminary
Results
items 2, 3, 5, 7, 8, 9, and 10 of Table 2 present ana'yses of reported

In addition,
data.
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This bootstrapping process does yield a sampling distribution
on the failure rate parameter which can be used in an uncer-
tainty propagation procedure requiring parameter distributions

as input. It has been found to lead to optimistic (conserva-
tive) results when dealing with components having few (or zero)
failures in the data base used. The 1interpretation of the

bootstrap-derived distributions may vaiy greatly depending on
the sources of the data used in constructing the distributions.
The method does not allow the impact of plant-specific data tco
be segregated and understood as is the case of the Bayesian
approach and hence the latter is to be performed in those cases.

IV.4.2 Use of Plant-Specific Data in a Bayesian Analysis

In many older plants, data obtained from control room logs,
maintenance request and event reports may be used to develop
plant-specific estimates of failure rates, either for specific
components or for a ga2neric component category. Conversion of
these point estimates into probability distributions can be
accomplished utilizing Bayesian analysis in two ways depending
on the extent of additional (industry wide) data available.

IV.4.2.1 Use of Non-Informative Priors

ldeally, sufficient data would exist so that statistical
analysis of a specific component's actuisl failure record could
be made so as to yield an experience-based estimate of a
component's failure rate. A Bayesian analysis using a
noninformative prior distribution (see 1V.4.2.2) vyields a
characterization of the uncertainty in terms of a probability
distribution. Such an analysis could be conducted on individual
components, or on generic families of components, such as all
check valves in a plant. All components or events of the same
family would be modeled with the same distribution. Unfor-
tunately, it is rare in nuclear power experience that plant.
specific data exist in sufficient quantity to produce accurate
parameter estimates 2.0, narrow uncertainty intervals.
However, the Bayesian technique should be employed by RMIEP
whenever data is available in appropriate gquantity.

IV.4.2.2 Bayesian Updating of Generic Data

Bay.sian data analysis allows for 1incorporation of limited
plant-specific data 1into past experience or knowledge as
contained in generic data bases to yield improved understanding
or updated distributions of basic event probabilities. Limited
plant-specific data implies that some information on a specific
component or family of components is available, but not enough
for a full plant-specific data analysis as discussed in Section
£3:3:%. Bayesian updating utilizes Bayes' theorem which is
discussed in Section 1IV.5.1.
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In using Bayes' theorem, a basic event's probability may be
modeled by a certain distribution based on past knowledge,
perhaps from previous PRAs or other experience. This 1is
referred to as the prior distribution of the parameter 1in
question. Suppose also that there is some plant-specific data
available for the basic event at hand. Bayes' theorem gives us
a probabilistic relationship between the basic events prior
distribution, the current data, and a new, or updated, distri-
bution. Thi. wupdated distribution 1is called the posterior
distribution tur the parameter, and represents a revision of
the prior distribution based on the available plant-specific
data. The posterior distribution 1is then used in the PRA
models.

IV.4.3 Expert Opiniun

Use of expert opinion or judgment 1is an approach to estimating
failure characteristics based on tapping into wunquantified
experience. For example, one might seek failure rate data from
personnel in related non-nuclear areas where accurate failure
or repair records are not kept. Or one might seek to infer
failure characteristics for one component (for which little or
no actual data are available) from data on a component of
similar design by appealing to the judgment of experts involved
in the design and application of the two types of components.
Or, in the case of simple mechanical failures, one might
calculate a failure rate based on fatigue 1limit data for
sub-pieces of the component in question. Here again, expert
judgment is used to choose the most appropriate material data
and calculational scheme.

The process of assembling expert opinion wusually involves
literature searches of past relate® experience and formal
surveys of "experi.s" with applicable experience. Often, the
results of formal surveys are combined, summarized and retucrned
to the experts surveyed so that clarification or revisions are
possible (as in a formal Delphi process). Generic lists of
component failure probabilities or failure rates are a typical
result of this method, such as printed in the Interim
Reliability Evaluation Program (IREP) Procedures Guide?? or
the NUREG/CR-4550 document.?® wWhile expert opinion can yield
good estimates of means and extreme values, assumptions must
often be made regarding the shape of distributions. However,
the assumptions on distribution shapes are frequently guided by
expert opinion. Appendix C contains a summary paper prepared
by Los Alamos National Laboratory which describes the results
of an NRC-sponsored research program on the quantification of
expert opinion, and presents recommendations for soliciting
such information.

IV.5 Elements of the Bayesian Updating of Base Event Patameter
Attributes

L3-S LS.

The Bayesian method .llows for prior knowledge of a component's
behavior to be revised with a limited amount of plant-specific
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data. Experience from other power plants or data sources can
be updated with the latest contribution to the data pool from
the current component of interest. Use of Bayes' theorem to
achieve this update ensures that the rules of probability theory
are observed.

Bayes' theorem can be used to generate a distribution of a
parameter's value for two different cases: (1) prior knowledge
exists, and (2) no prior knowledge exists, or the analyst
chooses not to use prior knowledge so as to avoid biasing the
analysis. In the first case, a distribution of a parameter's
value which reflects the analyst's beliefs about the parameter's
possible values prior to collecting the current information is
chosen. This distribution 1is called the prior distribution.
Its form is not theoretically prescribed, but it is possible to
gelect a prior distribution so that the mathematical calcula-

tions involved in the updating are not too complex. In the
second case, the analyst chooses a "non-informative" prior
distribution. In both cases, the prior distribution is wused

along with the current information on the parameter in Bayes'
theorem to derive a new, updated distribution of the parameter's
value. This new distribution is called the posterior distribu-
tion. The posterior distribution is used in whatever sampling
technique 1is chosen for propagating component wuncertainty
through the system or sequence models.

IV.5.1 Bayes' Theorem

Bayes' theorem provides a medium by which some prior knowledge
about a random variable can be updated using new data in a

manner such that the rules of probability are observed. A
prior probability distribution is defined for the parameter
value in question. The parameter could be a demand failure

rate for standby components, a time failure rate for standby
components, or a time failure rate for components which must
function for a certain period of time. The prior distribution
will reflect the analysts opinion of the components behavior
nased on published analyses of similar failures at other

plants. Licensee Event Reports (LERs), previous PRAs, and
generic failure models are examples of sources of information
used to define prior distributions. Any plant specific

information is Lhen used to update prior distributions.

Bayes' theorem can be expressed as

CIMIE) o uSRIRIECN) (17)
JL(XIN)f(N)dx
where
L(XIN) = likelihood that, given a parameter vaiue A\, a set

of observations on some quantity x would result in
the values given by a vector Xx.

~-43.



f(\N|x) = posterior distribution on the values of the
parameter A\, given that one has observed the
values X.

f(\) = prior distribution on the value of the parameter \.

The form of the likelihood function is determined by the nature
of the data, binomial (constant failure on demand model) or
poisson (constant failure rate model). The form of the prior
distribution is not necessarily prescribed. However, it |is
often advantageous to select a prior distribution which will
simplify the mathematics of using Bayes' theorem. One such
approach is to use conjugate priors, as discussed in Section
11.1. Examples of applying Bayes' theorem to constant-failure-
rate and constant failure on demand models are shown below.

1V.5.2 Constant Failure Rate Model

Many component failures are well described by a model that
estimates the frequency at which failures will occur. The time
period over which a component's failure probability is of
interest may be short--the length of time nceded to mitigate an
accident condition, or long- the time between testing of standby
components such as normally open valves. Furthermore, the rate
at which a component will fail can be thought of as having a

constant value. Unfortunately, the Kknowledge associated with
the component's benavior is usually incomplete, and the exact
value for the failure rate is not known. Data on failures of

similar components in other systems and other nuclear plants
may yield a probabilistic range for the value of the failure
rate. This probability distribution is derived from information
on other components of similar design, but different locations,
environments, and maintenance histories. Even so, it serves as
a basis to model the failure rate of a particular component.
Bayes' theorem provides a mechanism by which limited plant
specific data on a component can be incorporated into a distri
bution characterized by a large body of data pooled from other
plants.

IV.5.2.1 Bayes' Thecrem with Conjugate Friors
Suppose that current experience has shown that a particular
component type at a nuclear power plant has failed r times in a

total time period of T. The likelihood function for this type
of data is:

. (AT)F )
L(E|T.\) = LFTl exp(-\T) (18)
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The prior distribution for the component failure rate, X\,
when combined with this likelihood function in Bayes' theorem,
will yield a posterior distribution of A\ of similar form as
the prior is . gamma distribution. Suppose that past
experience at other plants shows a failures in a total time
period 8. The prior distribution would be a gamma distribution
with parameters a and B:

a

£(\) = -1.-?“—) 2\ lexp (-BN) (19)

where [(a) is the gamma function. The resulting posterior
distribution is also a gamma distribution with parameters a+T
and R+T:

f(NX) = {B+T)(a+T) AN(as4T-1) exp[-(ﬁ+T)k] (20)

C(a+T)

The initial model of the failure rate distribution has thus
been adjusted to account for the new information at hand.

While conjugate priurs are attractive from a mathematical view-
point, they are only useful when the existing data justifies
the use of a distribution of conjugate form. Mathematical
simplicity should not be the primary criterion of selection.

IV.5.2.2 Bayes' Theorem with Non Informative Priors

If no additional information other than limited plant-specific
data exists, or if the analyst does not wish to bias the
analysis with outside information, a non-informative prior
distribution can be chosen. A non-informative prior is merely
a mechanism by which plant-specific data can be converted into
a distributional form, and does not necessarily trepresent any
engineering judgment or experience. As with other priors,

mathematical simplicity can be enhanced with conjugate dis-
tributions.

A gamma prior distribution with parameters a = B = 0 can be
used as a conjugate non-informative prior* for the constant

failure rate model, incorgorating r failures in the time period
T

*It should be noted that the form of the appropriate non-

informed prior does depend on the censoring scheme for sampling
data as detailed in Reference 29.

45



£(N) = 1/\ . (21)

The resulting posterior distribution is also a gamma distribu-
tion with parameters r and T.

IV.5.2.3 Bayes' Theorem with Lognormal Priors

In practice, mathematically convenient priors which are conju-
gates of the likelihood functions of the data are not neces-
sarily an adequate characterization of past experience. More
often, the lognormal distribution is used to represent uncer-
tainty. This distribution is not a conjugate with Poisson
data, but is very useful for many components. Although the
mathematics of Bayes' theorem with lognormal priors is not as
simple as with the conjugate priors, simple numerical integra-
tion techniques can be used to generate an empirical posterior
density function, f(\|r,T) from Bayes' theorem:

2
\E-1 oM oo 2_; enh-u ;
£(\£,T) = ‘L[ 8 ] (22)
2
f f—le-XT exp )-% [!n:'u] %dx
0

u = mean of the natural logarithms of the prior data

0 = the standard deviation of the natural logarithms of
the prior data

r = number of failures observed
T = component exposure time

This expression is easily evaluated. Thus, it is seen that
prior distributions need not fit conveniently into conjugate
forms in order to benefit from applications of Bayes' theorem.

IV.5.3 Constant-Failure-Probability on Demand Model

Many component failure modes are characterized by a constant
probability of failure given that the component is demanded to
function in the appropriate mode. Examples of such component
failure modes are pumps failing to start upon teceiving initia-
tion signals and valves which must change state for system

operation. Just as with constant failure rate models, the
knowledge of a component's failure probability on demand is
often incomplete. lLimited plant-specific data may not be
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sufficient to estimate a component's behavior with a high degree
of confidence. Information pooled from other souzces can be
used to derive a probability distritution indicative of the
behavior of similar component failures. This probzpility dis-
tribution does not represent exactly the possible range of a
particular component's failure probability, since plant-to-
plant differences are incorporated into it. However, it does
provide a foundation for generating a distribution using the
limited plant-specific data.

IV.5.3.1 Bayes' Theorem with Conjugate Priors

Suppose the current information on a component's behavior is in
the torm of n failures in N demands. This is binomial data, and
the likelihood function used is:

LnIN.®) = myineayT o (- " (23)

The conjugate prior for the failure probability, p, for this
likelihood function is the beta distribution. I1f past experi-
ence has shown % failures in m demands, the prior distribution
is:

£(p) = C(R + m) !-l(l_p)m-—l

F(e)f(m) P (24)

The resulting posterior distribution is also a beta distribu-
tion, with parameters f+n and m«N n.

IV.5.3.2 Bayes' Theorem with Non Informative Priors

As with constant failure rate models, limited plant- specific
data of constant probability on demand can be converted to a
distribution even without the use or existence of other infor-
mation. Mathematical simplicity can be enhanced by selecting a

non- informed conjugate prio.: distribution for the availab'e
date.

The beta distribution with parameters O and 0 is a commonly used
non-informative prior:

I
f(p) = 5(1-p) . (25)

The resulting posterior distribution is also a beta distri-
bution with the parameters n and N-n.
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IV.5.3.3 Bayes' Theorem with Lognormal Priors

Just as with constant failure rate models, conatant demand
probability information often can not justify the wuse of
conjugate priors. The lognormal distribution has been usad
frequently to represent uncertainty in practice. Numerical
integration techniques can be used to solve for an emp rical
posterior density function, f(p), from Bayes' theorem:

p* 1™ ¥ exp 3—

f(p'xln) - S e es———— S _‘_-_”__{‘___ (26)

1 } \ . Z
d/~yx-l(l.y)n _J. j [&Qﬁhu]

N
—~—
o
=
afs
v
e—
(X

™ e

where
u = mean of the natural logarithms of the prior data

o = standard deviation of the natural logarithms of the
data

X = number of failures ohserved

n number of demands

Again, this expression is easily evaluated. Thus, again i: is
seen that there ic no need to sacrifice accuracy of models for
mathematical simplicity,.

IV.5.4 Development of Prior Distributions from Subjective
Opinion

In the above Lw» examples, the parameters of the prior distribu-
tions were assumed to be from past information on component
failures. However, methods exist for incorporating subjective
opinion of component behavior in lieu of data.39 For example,
suppose our prior knowledge of a component's demand rate, p, is
such that we believe there is only a five percent chance that
the value of p will exceed some value, p*. A mean value of p
is also assumed to be known. This pair of quantile estimates
of p can be used to generate the parameters of an assumed prob-
ability distribution. Tables exist which relate these quantile
estimates to appropriate values of parameters for distributions
such as the beta and gamma.3! Thus, an analyst's subjective
opinion of an event's probability attributes such as mean and
95th quantile can be used to generate a prior distribution for
the event's failure probability.
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V. CONCLUSIONS

This report has presented the results of a brief review of
available uncertainty analysis methods and deccribed the Latin
Hypercube sampling approach (as embodied in the TEMAC code)
that is recommended for use in the RMIEP probabilistic risk
analysis of the LaSalle plant. One important aspect of this
approach, which was an important <consideration in its
selection, is its comprehensive sensitivity measure option. It
should be remembered that uncertainty propagation 1is, of
itself, of limited interest since it 1is essentially an
integration function. The ability to perform sensitivity
studies through the use of the importance measures and the
ability to identify the parameter estimates whose uncertainties
contribute most to the uncertainty in the end result are a key
feature of the approach adopted here. In addition the method
treats modeling uncertainty in a manner compatible with that
proposed for the level 2 and 3 parts of the analysis. Thus the
approach to be adopted has the potential for enhancing the
understanding and analysis of the results ot the Level 1 PRA
both as a stand-alone analysis and as input to a Level 2 and 3
PRA.

The TEMAC code has recently been successfully applied in an
uncertainty analysis of the Peach Bottom plint as part of the
Accident Sequence Evaluation Program.32 This application
showed that this approach is both effective and relatively
inexpensive with respect to computer cost. Based on the above
considerations, the use of the TEMAC code and Latin hypercube
gamnpling was deemed the optimal analysis tool for use in RMIEP.
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Appendix A

Interface Between Core Damage Frequency Analysis (RMIEP),
the Accident Progression and Containment Failure
Analysis (PRUEP) and the Health and
Economic Consequence Analysis
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Figure A-1. Major Steps in a Level 111 PRA Analysis of Reactor
Accidents
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Figure A-2. Accident Sequence Analysis - lnput and Output



. Core damage cut sets

. Plant afety systems status information implied by each
cut set

Of course, all the component failure and test and maintenance
outage data plus their associated uncertainty characterizations
must also be available to the back end analysts. But the only
front end result which is passed to the back end is a listing
of the dominant core damage cut sets. Working together, the
front end and the back end analysts will regroup these cut sets
into plant damage states.

There is one other aspect of this interface waich requires
further description, and that has to do with those front end
accident sequences which are denoted as ‘“core vulnerable"
rather than "core damage"” states. In these accident sequences,
the question of whether or not the core is damaged depends on
how the accident progression affects the functioning of safety
systems operating to prevent core damage. To d<termine which
cut sets in the core vulnerable accident sequences lead to core
damage, an additional small event tree is appi:nded to these
sequences. This tree contains phenomenologicsl alternatives
(i.e., does the containment fail, etc.). “his tree and
associated split fractions (probabilities) associated with each
option will be provided by the back end analysis team prior to
final accident sequence cut set determination vy the front end
team,

Figure A-3 shows the inputs and outputs *'o the accident
progression calculations. The accident sequence cut sets
provided by the front end analysis are first resorted into
plant damage states. All cut sets assigned to a given plant
damage state present the same initial and boundary conditions
to the accident progression analysis, and thus are propagated
together through the accident progression event tree. Cut sets
from a given accident segquence may be assigned to different
damage state bins. The definitions of the various damage states
ate determined by the first few (ten to 20) questions on the
accident progression event tree (which is developed {or each
plant) and to some degree, with consideration of the important
accident sequences identified in the front end analysis. An
example of the questions which define the damage states (taken
from the draft Grand Gulf PRA NUREG-11%0) is given in Table
A-1. Taken together, it was found on the basis of these
questions that eight damage states could be defined which would
cover all the dominant internal event cut sets. Definition of
these plant damage states requires a significant amount of
interaction with the internal event (front end) analysts to
determine the plant systems status for each cut set,.
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Table A-1

Initial Questions on the Grand Gulf Accident Progression
Event Tree Used to Define Plant Damage States

Questions

What is the initiating event?

What is the level of preexisting
leakage or isolation failure?

What is the level c¢f preexisting
suppression pool bypass?

13 there a station blackout (diesel
generators fail)?

1s DC power not available?

For 1C accident sequence, does
SLC fail to injecty

Does HPCS fail to inject?

Doege RCIC fail to inject?

Does the CRD hydraulic system inject?
Does the condensate system fail?

Do the LPC and LPCl systems fail?

Does RHR fail (heat exchangers not
available)?

Does the service waterL cross tie to
LPCl fail?

Are the containment (wetwell) sprays
failed?

I1s ADS inhibited or failed?
Does the RPV remain pressurized?

What type of sequence is this (sum
mary of plant damage)?

Prior Question
Dependencies

None

None

None

None

None

None

None
None
None
None
1.4:.7.9

1.4,11

1.4,11

1.4,11

None

1:9:,7,8,13%

1,7,8,16




The remainder of the accident progression analysis makes use of
ihe full accident progression event tree (APET), which has on
the order of 50 to 100 brancn points at which different possi-
bilities of accident progression are evaluated as a function of
the plant systems status and the various phenomenological possi-
bilities and their associated probabilities (split fractions).
Although a logic tree having 50 to 100 branches has potentially
millions of separate branches, these outcomes are grouped into
accidert progression bins. As with the plant damage states,
each accident bin presents one unique set of initial and
boundary conditions for the source term calculations of Block
3., Table A 2 is a (partial) list of typical BWR source term
attributes. Each branch of the containment event tree is
numerically evaluated, and each path through the ¢tree cor-
responds to a particular set of values for the source term
attributes. A vast majority of these accident paths are
deleted from further consideration based on

a) negligible frequency of occurrence, and
b) negligible consequence of the resulting soutce terms

(At least one low consequence bin 1is always retained to
represent those accident sequences with no containment failure,
and hence, low consequence.) The remaining non-negligible
accident paths are then grouped according to the source term
attributes, and these groupings constitute the accident
sequence bins. Typically, 50 to 200 individual accident bins
result from these groupings for each plant damage state.

The accident progression event trece ‘s a logical enumeration of
all the initial and boundary conditions for the accident pro-
gression as well as all the potential accident paths identified
by results of calculations using more detailed computer code
calculations. The codes used in the phenomenological calcula-
tions are shown as an input on Figure A-3. The containment
event tree is the vehicle for incotporating all the insights
gained from these detailed and scmetimes costly code analyses
of accident paths 1into a model which can be efficiently
evaluated for use in uncertainty and sensicivity studies.

Numerical evaluation of the accident progression event trce is
performed wusing the computer code EVNTRE. Three important
aspects of this code are that

a) Multiple branches are allowed at each node of the tree.

b) Branch probabilities may depend on paths taken through
the tree.

¢) Proper correlation between dependent probabilities can
be incorporated.



Table A-2

Typical BWR Source Term Attributes Used
to Define Accident Progression Bins

Initiating Event Type
Time to Core Cooling Failure - <2 hr., <10 hr., >10 hr.
RPV Pressure at Vessel Breach - - High, Intermediate, Low
Containment Failure Time - -

Before Core Degradation

During Core Degradation
At Vessel Breach

Late
Containment Leak Level - - Four sizes considered
Pool Bypass Level -- Three levels considered
Pool Temperature -- Subcooled, Saturated
Reactor Building Bypass - - No, Yes
Core Concrete Interaction -- No, Yes with Water, Yes, but dry
Containment Sprays - - Always, Never, Early Not Late, Late Not

Early
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The output of the accident progression analysis consist of
frequencies of the accident progression bins.

Figure A-4 shows the input and output of the source term
analysis block of the back end analysis. 1In this analysis, the
flow of fission products released from the fuel is modeled and
analyzed. The numerical analysis will be performed using the
RELTRAC code which wutilizes a set of time-dependent rate
equations to model transport, suspension and deposition of
fission products from the fuel, through the reactor vessel and
primary piping, the containment and subsequent release to the
environment., These ratc equations are based on the results of
core damage and fission product release calculations and
experiments. The rates used in RELTRAC reflect insight and
results from calculations using the more time consuming and
detailed codes such as MELCOR. The use of the simpler rate
equation formulation in RELTRAC results in a code which can be
efficiently used in a sampling mode.

The RELTRAC code is run for each of the accident progression

bins. The result (for each bin) is a vector of released
radionuclide mass as a function of time tor each of the nine
radionuclide groups shown on Table A-3. These nine time

histories (resulting from each accident progression bin) are
then further collapsed to a vector of three numbers:

where

EEER = equivalent mass of 1I; released in the first two
hours after warning

IEER = equivalent mass of 1, released following two hours
after warning

LR = equivalent maes of Cs released

The condensation from the vector of nine time histories of mass
release to three constant values of release utilizes studies
reported in NUREG/CR 4467 in which the relative importance of
the various fission product elements and their isotopes were
studied with respect to their radiobiological effect, and
equivalences were established in terms of equivalent masses of

iodine (early biological effect) and cesium (late biological
effect).
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Thus the source term analysis results in a release effect
vector (EEER, IEER, LE} of three numbers for each accident
progression bin identified as important in the accident
progression analysis. When uncertainties in parameters, models
and timing are included, a number of different vectors are
obtained for each accident progression bin. These different
vectors may be viewed as different observations for a Monte
Carlo analysis. Thus, if we have 50 accident progression bins
and 100 observations (i.e., resulting vectors) for each bin,
then 5000 different release effect vectors result. Each one of
these vectors could form the input to a single health/economic
consequence calculation (using the MACCS code or equivalent).
However, to reduce the number of such calculations, the release
effect vectors are grouped into «clusters, and a single
health/economic consequence calculation is performed for each
cluster, The cluster analysis is performed by considering each
release effect vector as a point in three dimensional space
with coordinates (EEER, FEELR, LE}, and using the CLUSTER
code to identify groups of points which are closely spatially
related. Then, a single vector of fission products which
characterizes the cluster is used as input to the consegquence
calculations.

The health and econonic consequence calculation block is shown
in Figure A-5. The input is the source term vector described
above, as well as the site and environment data shown on the
figure. The code to be used for the RMIEP application isg the
MELCOR Accident Consequence Code System {(MACCS), which
calculates estimatns of population dose and health effects as
well as associated costs. Repeating the MACCS calculations for
each input source term vector yields distributions on the
output values which characterize the uncertainty in the back
end calculation of core damage accident consequences.
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to think of the LHS, or a randoa sample of size n, as forming
an n x k Jatrix of input where the ith row contains specific
values of each of the k input variables to be used on the ith
rtun of the computer model.

The LHS technique has been applied to many different computec
models since 1975, The results of an application of LHS to a
large computer model can be found in Steck, Iman, and Dahlgren
(1976). A more detailed description of LHS with application to
sensitivity analysis techniques can be found in Iman, Helton,
and Campbell (1981, 1981b). A tutorial on LHS may be found in
Iman and Conover (1982b). A comparison of LHS with other
techniques is given in Iman and Helton (1983).

To help clarify how 1intervals are determined in the LHS,
consider a simple example where it is desired to generate a LHS
of a size n = & with two input variables. Let us assume that
the first random variable X; has a normal distribution
concentrated on the range from A to B, In this program, the
following interpretations (not subject to change by the user
without modifying the code) are given to A and B for both the
normal and lognormal distributions, namely

P(X; < A) = .00l and P(X; < B) = .001,

where P(E) denotes the probability of event E. That is, A is
defined as the .00l quan:iile and B is defined as the .999
quantile of the distribution of X1 Thus, P(A < X; < B) =
.998, 8o both the normal and lognormal distributions are
truncated slightly in the program, That is, the sampling
procedure excludes values outside the interval [A, B). These
definitions of A and B imply that the mean of the normal
distribution is given by u <« (A + B)/2 and since for a
standardized normal variable 2,

P(Z < -3.09) = .001,

it follows that the standard deviation of the desired truncated
normal distribution is given (to a close approximation) by

g =« (B - u)/3.09 = (B - A)/6.18,

With the parameteis u and o thus defined, the endpoints of
the intervals are easily determined. The intervals for n . &
are illustrated in Figure B-1 in terms of both the density
function and the more easily used cumulative distribution
function (cdf). If the distribution were not truncated, then
the intervals in Figure B-1 would satisfy

P(A < Xy €C) =« P(F < X} <B) = .198

= P(C < X) D) = P(D g Xy < E) = P(E g X; <F) = .2,



To account for truncation requires dividing these probabilities
by .998. Thus, for all practical purposes, the five intervals
correspond to 20% probability.

We shall assume in this example that the second random
variable, X, has a uniform distribution on the interval from
G to H., The corresponding intervals used in the LHS for X;
are given in Figure B-2 in terms of both the density function
and the cdf.

The next step in obtaining the LHS is to pick specific values
of X, and X in each of their {ive respective intervals,
This selection should be done in a random manner with respect
to the density in each interval; that is, the selection should
reflect the height of the density across the interval. For
example, in the (A,C) interval for X;, values close to C will
have a higher probability of selection than will those values
close to A. Next, the selected values of X; and X, are
paited to form the required five input vectors. In the orig-
inal concept of LHS as outlined in McKay, Conover, and Beckman

Figure B 1. 1Intervals Used with a LHS of Size n = 5 in Terms
of the Density Function and Cumulative Distribution
Function for a Normal Random Variable
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Figure B 2. Intervals Used with a LHS of Size n - 5 in Terms
of the Density Function and Cumulative Distribution
Function for a Uniform Random Variable

(1979), the pairing was done by associating a random permu.
tation of the first n integers with each input variable. For
purposes of illustration, in the present example consider two
random permutations of the integers (1, 2, 3, 4, 5) as follows:

Permutation Set No. 1: (3, 1, &, 2, 4)
Permutation Set No. 2: (2, 4, 1, 13, &)

By using the respective position within these permutation sets
as interval numbers for X, (Set 1) and X, (Set 2), the
following pairing of intervals would be formed.

Interval No, Interval No.
Computer Run No, Used for X, Used for X;

W e
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e s



RANGE OF X,

Thus, on computer run number 1, the input vector is formed by
selecting the specific value of X, from interval number 3 (D
te E) and pairing this value with the specific value of X2
selected from interval number 2 (1 to J), etec. Once the
specific values of each variable are obtained to form the five

input vectors, a two dimensional representation of the LHS can
be made such a¢ given in Figure B-3.

Note in Figure B 3 that all of the intervals for X; have becen
sampled, and the same is true of Xz. In general, a set of n
LHS points in k-dimensional Euclidean space contains one point
in each of the intervals for each of the k variables.
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Figure B 3,

A Two-Dimensional Representation of One
Possible LHS of Size & Utilizing X; and X,
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and Specific Values of X Selected Through the
Inverse of the Distribution Function (bottom)



To illustrate how the specific values of a variable are
obtained in a LHS, consider the following example, Suppose it
is desired to obtain a LMHS of size n =« S5 from a normal
distribution on the range from 0.0 to 10.0. Recall that these
two limits are taken to represent the lower and upper .00l
quantiles, respectively. Therefore, the random variable has a
mean of f(ive and a variance of 2.618 as indicated in Figure 4.
These points together with the density characteristics of the
normal distribution allow for the definition of the equal
probability interval endpoints. These endpoints are shown in
Figure 4 in terms of a density function. The next step is to
randomly select an observation within each of the intervals.
This selection is not done uniformly within the intervals shown
in Figure 4, but rather it is done relative to the distribution
being sampled (in this case, the normal distribution). This
meang that the sampling is done uniformly

of the cdf as shown in Figure B-4.

Therefore, to get the specific values, n - 5 randomly selected
uniform (0, 1) numbers (Up, m = 1, 2, 3, 4, 5) are obtained
to serve as probability levels. These probabilities are then
scaled by

Pn o U'(-z) + (. - l)('z) m = 10 2. 30 ‘o 5

Thies ensures that exactly one ptobability, Pgp, will fail
within each of the five intervals (0, .2), (.2, .4), (.4, .6),
(.6, .8) and (.8, 1). The values Pp are used with the inverse
normal distribution function to produce the specific values to
be used in the LHS. Note that exactly one observation is taken
from each interval shown in Figure B 4. The entire process is
shown in Table B.1l. Figure B 4 makes it c¢lear that when
obtaining a LHS, it is easier to work with the cdf for each
variable. This is the approach used in the computer program,
rather than defining the endpoints of the {ntervals on the
X-axis,

The above illustration shows how one input variable having a
normal distribution is sampled with LHS, This procedure is
repeated for each input variable, each time working with the

corresponding cumulative distribution function. 1f a random
sample is desired, then it 1is not necessary to divide the
vertical axis into n intervals of equal width. Rather, n

random numbers between O and 1| are obtained and each is mapped
through the inverse distribution function to obtain the
specific values. The final step in the sampling process
involves pairing the selected values.

It should be noted that even though two variables are sampled
independently and paired randomly, the sample correlation
confficient of the n paire of variables in either a random
sample or a LHS will, in general, not equal 2zero, just due te
gampling fluctuations. In order to obtain a sample in which
the sample correlations more nearly match the assumed, or
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Table B.1

One Possible Selection of Values for a LHS of Size S
from a Normal Disiribution on the Interval (0,10)

Scaled Corresponding
Probabilities Standard Normal
Interval Uniform (0.1) Within the Interval Value (z-score)
Number Random No. Pm = Um(.2)+ From the Inverse
AR Um. (m_1)(.2; . Distribution
1 . 080 .0l6 ~-2.144
2 .610 .322 -0.462
3 .52% .50% 0.013
4 .93% . 787 0.79%96
5 .620 .924 1.433

Corresponding
N(5.2.618)

Observation
Within the

Intervals
1.529
4.252
5.021
6.288

7.319



intended, correlations, Iman and Conover (1982a) proposed a
method for restricting the way in which the variables are
paired. The effect of this restriction on the statistical
properties of the estimated distribution of Y, its mean and
percentiles, 1is not known, but 1is felt tc be small. The
pairing of variables in the program can be done either randomly
ot by the restriction procedure through wuse of an input
parameter, which is explained in the next section.

Additionally, the restricted pairing procedure of 1Iman and
Conover can be used to 1induce a user-specified correlation
among selected input variables through use of another input
parameter explained in the next section. However, it should be
pointed out that such induced correlations are based on the
non-parametric technique known as rank correlation. Such a
measure is used since it remains meaningful in the presence of
non-normal distributions on the input variables.

As a final note if a correlation structu.e is n.t specified by
the user, then the program computes a measure for detecting
large pairwise correlations. This measure 1is known as the
variance inflation factor (VIF) and is defined as the largest
element on the diagoral of the invers2 07 che correlation
v ALE1IX. As the VIF gets larger thn 1, there may be some
uwidesirably large pairwise correla ons present. Marquardt and
Snee (1975) deal with some very irge VIFs (> 2 x 108) and
provide a very readable explanation on reasonable sizes of

VIFs, Marquardt (1970) 1indicates that there can be serious
collinearity (i.e., large pairwise correlations present) for
VIF > 10. Thus, there is certainly no problem as long as the
VIF is close to 1. The VIF appears as part of the computer

printout when the user requests the correlation matrix to be

printed, given that no correlation structure has been specified
by the user.

c
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ELICITATION OF EXPERT OPINION--SOME GUIDELINES

J. M. Booker and M. A. Meyer
Alamos National Laboratory

This appendix outlines some guidelines and issues of importance to
eliciting expert opinion data. It is intended to provide a brief overview.
Hovever, {t offers references for those interested in more detailed
information.

Some of the concepts discussed below are 1) the nature of expert opinion
data; 2) means of selecting and motivating experts; 3) basic methods for
eliciting expert opinion and tradeoffs in selecting one; 4) selection of a
response mode and means of measuring dispersion; 5) how much data to elicit
and record; and 6) reducing or countering the occurrence of bias in
eiicitation methods, response modes, or requests for problem-solving data; and
7) analyzing the information.

EXPERT OPINION DATA

Expect opinion data consists of expert’s subjective judgments.
Typically, it has been gathered vwhere experimental data is sparse or
inavailable such as in risk analyses or reliability assessments. The use of
expert opinion ﬁa'a is wide spread in Probabilistic Risk Assessments (PRA)
applications and ranges from those formally elicited to those which are done
as part of the PRA process. Most people think of the formal use of expert
opinion such as in the lesting of probabilities of rare events. Hovever,

opinion also 1¢ 1 uc the less formally elicited judgments that are

y engineers and analy , aximls stages of the PRA. Some examples

vhich systems will e i ided; what will be used as a lower bound on

screening the cut s; wh eatures will be included in the accident

sequence or fau tree; who will serve on the reviev board of the PRA; who
vill be on the PR am; and vhat data will be used in the PRA?.

Until recer many scientific disciplines viewed expert opinion, as
being lover in quali than data gathered by observations or measurements.
This viev had b most common in fields, such as engineering, where even
measured data that was probabilistic in nature ("fuzzy" or uncertain) wvas not
readily accepted. In these environments, information that was not
deterministic or totally quantitative in nature tended to be regarded as other
than “..ai data" or as unanalyzable. This philosophy has been changing and
nov even the data purists seem to be more amenable to wutilizing all the
information available, including that from human beings

current trend is one of acceptance of "fuzzy" or probabilistic data,
from measurements or observations, and of concentration on better
consistent vays of handling it. Expert opinion fits into this viewpein
it i observational data, can be both quantitative and qualitative
has a probabilistic structure. Like any other type of data, care is
needed in its elictation, analysis, and interpretation. The "care" that i
needed is i
data. This appendix focuses on the use of
process.
Although expert opinion ranges from those formally to informall:

elicited, none of these judgments need be gathered in an ad-hoc fashion. B

in the use of consistent and valid procedures tor handling thi:
h

procedures in the elicitation




varieties of expert judgment can benefit from careful elicitation. Adherrance
to simple quidelines on eliciting and recording is wusually sufficient to
providing well-documented and consistent procedures for handling expert data
in PRAs. Some of these suggestions are given belov.

SELECTING AND MOTIVATING EXPERTS

An expert is anyone especially knowledgeable in the field and at the
level of knovledge being elicited. For example, one level of knovledge could
be core damage frequency for a group of plants ; and a more detailed level
could be the risk of direct containment heating at the Surry Plant. Expertise
can be of tvo types: normative and substantive. Substantive expertise is
having knovledge in the field in question such as on nuclear reactors or
seismology. Normative expertise is based on having knovledge related to the
response mode (i.e., the form in which the experts are asked to encode their
judgments). Substantive expertise is no guarantee of normative expertise.
For example, because the experts are asked frequently about the probabilities
of events, an expert could have substantive knowledge of the field at the
necessary level of detail required but not normative knowledge of the rules
of probabilities.

In selecting experts, normative expertise, substantive expertise, and
knovledge at the needed level of detail are alvays important. In addition,
such factors as the reputations and diversity of the experts can become
important. Selecting experts vho are wvell knovn and respected amonz their
peers or the public can lend greater credibiiity to the study as vell as
provide motivation for other experts to participate. Diversity among experts
is desirable when trying to counter anticipated correlation or dependency
among experts (Seaver, 1976).

Motivating experts can be done by communicating the intrinsic benefits of
participation or by offering renumeration. The authors recommend motivating
through communication because paying the experts is costly, may attract one
type of participant (Gordon, 1980:118), or may detrimentally affect their view
of the study (Baron and Byrne, 1974:122). Some aspects of the study wvhich
could be presented as motivating to the experts are: the chance for
recognition; the opportunity to contribute to the development or improvement
of a process; and the experiencing of something new or, at least, different
from their usual vork routine.

In general, hov the aspects of the study are communicated to the expert
will affect his desire to participate. Usually, more individuals will respond
positively to a request delivered in person than by mail. For this reason, it
is recommended that the experts be contacted, initially, in person or via the
telephone. Guidelines abstracted from communications theory (Stroud 1981;
Gorden, 1980) and the authors’ intervieving experiences suggest that
particular items of information be communicated and in the following order: 1)
vhy the experts are being contacted (the purpose of the study and vhy they are
needed); 2) wvho is conducting or sponsoring the study 3) hov much time and
effort their participation will involve; 4) hov they wvere selected: 5) What
tasks will be required; 6) hov confidentiality will be handled; 7) wvhether
participation 1is voluntary or reauired; 7) vhat the product of the study will
be and vhether they will have access to the results (Meyer and Booker, 1987b).

ELICITATION METHODS

There are about four methods commonly used for elicitation: the
staticized (also called the "nominal") group, the Delphi, the structured
interactive group, and the interactive group. These vary in terms of the
degree of interaction that they allov between the experts and how the expert’s
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estimates are combined. For example, the staticized group method allows no
interaction either by mail or in person between the experts. In this case,
estimates tend to be mathematically aggregated. The Delphi method involves
limited interactions between the experts via the mail. The experts’ estimates
and reasoning are made anonymous and then circulated to the experts to allow
them to consider this data in revising their estimates. This process can be
continued until consensus, if it is desired, is achieved. The structured
interactive method permits the face-to-face meeting of experts but structures
their interactions. For example, the experts may be alloved to speak to one
another only at specific times during 'heir meetings. Their estimates may be
aggregated mathemathically or through achieving consensus during the
elicitation sessions. The interactive group method consists of a group of
experts vho are interacting in a spontaneous fashion in a face-to-face
situation. This method employs fev controls and, thus, resembles the meetings
that commonly take place in work settings. Estimates obtained from this
method can be combined by either method, although mathematical aggregation is
recommended. In particular, simple aggregation schemes, such as medians, are
suggested (Martz et al., 1985)., (For a more complete description of these
elicitation methods, see Meyer ot al., 1982).

At the basis of these four methods lie two views of interaction between
experts, One view holds that intecactions are tn be avoided or limited
because of their affect on the judgment process. For example, the staticized
group method avoids any inter-expert interaction, while the Delphi method
permits only limited and controlled interaction. The Delphi wethod, developed
by Rand Corporation, vas designed to prevent bias arising from group dynamics
in a face-to-face setting. One common problem arising from group dynamics is
the group think phenomenon, also called the follow-the-leader effect (Janis,

1972). To avoid having experts consciously or unconsciously adjust their
judgments to agree with those of the leader(s), the Delphi keeps experts
physically separated. Their judgments are sent to a central location where

any distinguishing features are removed. The nevly anonymous judgments are
then recirculated to all the experts, who are alloved to change their previous
estimates.

At the other end of the spectrum, are approaches like the interactive
group methods that encourage group interaction in the belief that the best
quality ansvers come from the interaction of knowledgeable persons in a face-
to-face setting (Seaver, 1976). Some interactive methods, like the structured
interactive group, employ structure to minimize the effects of group dynamics.
A fev examples of this structuring would be: having everyone state their view,
one at a time, while no one else is alloved to comment; having the natural
group leaders give their thoughts last; and having the individuals record
their judgments as a means of encouraging them to anchor te their own
judgments. The interactive group method can be structured to any degree as
time permits.

Elicitation methods are usually selected on the basis of the analyst’'s
belief as to wvhether interaction between the experts is desirable or not. The
analyst frequently makes this decision because the literature has not been
conclusive as to which method produces the best, the least biased, results.
The authors favor a structured interactive group method because of the
synergistic effect of discussion on the judgment process. Techniques, such as
mentioned in Reducing or Countering Bias, can be used to mitigate the biases
that occur in an interactive group setting.

Any of the basic elicitation methods can be structured to different
degrees., For example, the interviewing of the experts in the staticized group
can be done informally or in a structured manner. The structured manner could
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involve presentin each expert with the assumptions or definitions that

are to use in solving the problem and then monitoring their use of these.

a general rule, the more structure imposed on the method, the more time
required.

Generally, it 1is best to gather expert opinion in a structured and
controlled manner for several reasons: 1) to knov wvhat considerations have
entered into the experts’ estimates, 2) to defend the gathered data, and 3) to
update or modify this data (Meyer, 1984).

Some considerations that enter into the experts’ estimates are their
definition of the problem; their interpretation of directions; their
assumptions or boundary conditions; and the calculations or heuristics used to
solve the problenm.

Expert data may require aefense against critics of the elicitation and/or
the conclusions. The method of elictation needs to be considered valid by
current theory in communications, cognition, and psychology. Often, if th
elicitation is properly conducted, the experts will feel positively enough
abtout the study to defend it,

Frequently, there is a need to update or modify the expert data (e.g., if
circumstances have changed). [f the elictation method has beer: structured
properly, there is a greater chance of knoving which factors relating to the
estimate have been affected by the change cnd therefore, howv to modify the
data acordingly. It is recognized that most expert opinion is biased, one wvay
or another. The challenge is ‘s know which vay so that a counter-bias can be
employed (Payne, 1951; Meyer, 1984).

RESPONSE MODE AND DISPERSION MEASURES

' 'ﬁgjquse mode: 1he ponse mode is the form in which the expert is
requested to give his jut nt. Probabilities, odds, logs, intervals, paired
omparisons, and rating: and Stillwvell 1983; Comer et al., 1984) are a
fev of the only use response modes. Selection of a response mode
involves two issues: obtaining the experts’ judgments in a form that can be
analyzed or used in a model, and avoiding bias. For example, the analyst may
prefer probabili s and request the expert’s judgments in this form. If the
data 1is to serve as input to a model, the experts’ judgments will need to be
given in a compati form or to be converted later. Associated with these
onsiderations S the question of whether the expert can encode his thoughts
into the requested response mode.

)

lypically, the focus in expert opinion has been on the practical issue
obtaining the experts’ judgments ig the needed f rather than on
experts ability to encode their th 1ts into that form. The later invol
the problem of bias. Bias can be defin as occurring when: 1) the expert
underlying judgments or vreporting of ¢t is altered by the elicitat
process; and 2) when the expert’ estimates do not follow normati
statistical or logical rules (Mey 1987). The response mode can lead
either type of bias. For example, the expert y not be able to express
exact thinking 1in the requested response mode - 1 the

judgment to an acceptable response, his ]

too, experts can give estimates t! o not follow

rules governing their use. For example, probabiliti , jtually
exhaustive events should sum to 1.0 and the expert’s probabilities may

[

Some of the bias may stem from the expert’s unfamiliarity
responsa mode, ;enerally, substantive experts (those with expertise
field) are not accustomed to couching their judgments in the
logarithms, intervals, percentiles, or even probabilities,
expertise does not guarantee normative expertise (expertise




response mode). Another contributor to bias may be the way in vhich the human
mind works.

Hogarth (1980) has attributed many biases to our "limited, sequential,
information processing.” The human mind is not a miniature calculator.
Because of its limited memory space for information processing, the mind
resorts to short cuts, heuristics, to solve problems. These heuristics can
result in a skeving, biasing, of the ansver from what it should be
mathematically. For example, in solving a complex problem an individual may
form an initial impression of what the ansver should be and then consider
components of the problem one at a time. In solving each part of the problem,
the individual may mentally adjust up or down from his last impression. This
heuristic, anchoring and adjustment, tends to produce a final estimate which
is biased tovards the individual’'s initial impression. (See Hogarth 1980 for
oilier biases stemming from the wvay in which ve think.)

It is advisable to avoid the use of response modes with which
individuals are reputed to have difficulty, such as percentiles and
probabilities, in favor of simple linear scales. Difficult response modes are
defined here to mean those that lead frequently to estimates that do not
follov normative statistical or logical rules. A continuous linear scale is a
number line vith defined endpoints. These endpoints should represent extreme
values and be labeled with text or numbers. The scale also includes tick
marks or intermediate values. The expert is instructed to mark his ansver at
or betveen any of the jelineations on the scale.

The experts find these scales convenient to use and the results of their
use are easily interpreted for analysis. Some advantages of this scale are:
1) it requires very little definition from the interviever; 2) it does not
restrict the range of response possibilities like a raltiple choice response
mode; 3) it provides the opportunity for responses in the extremes values; 4)
it relies on linear thinking, a mode that most humans use naturally (Kahneman
and Tversky, 1982); and 5) it is easily converted to numerical, continuous
variables for analysis.

Dispersion Measures: In addition to the single estimate (a central
probability measure), experts are often asked to provide a dispersion measure
such as percentiles, variances, ranges, or error bars. These dispersion
measures are prone to bias (Kahneman and Tversky, 1982) because the experts
are not able to provide the measures that match the prescribed defintions.
For example, the expert may be asked to provide the 5th and 95th percentiles
of his distribution for the probability of an event. He will provide twvo
estimates that he thinks correspond to the 5th and 95th percentiles; hovever,
those two estimates will more likely correspond to approximately the 33rd and
67th percentiles. Humans, in general, tend to underestimate uncertainties.
Even in studies where experts were trained or vere knovledgeable of this bias,
the results wvere still only marginally improved and uncertainty remained
underestimated (Lichtenstein et al., 1982). In addition, humans also tend to
be poor at estimating variances or standard deviations (Kahneman and Tversky,
1982). Humans also have difficulties in estimating extreme values such as the
absolute maximum or minimum values (Martz et al., 1983).

Therefore, asking experts for specifically defined measures of dispe~sion
will yield estimates that cannot be accurately interpreted. The only
interpretation that can be made is that they will underestimate the true
uncertainty. This bias also occurs if the experts are asked to estimate the
dispersion of a distribution of multiple experts’ estimates. This occurs

because each expert is likely to perceive others as having the same values as
he does.

'
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might include some equations, ciiculations, or more general heuristics, such
as mentioned in the Response Mode section.

Recording the problem-solv.ng data offers such benefits as providing
guidance and justification for aggregation and for the elimination of
outliers. Aggregations are frequently performed to combine multiple, and
often differing estimates, into one estimate. A bimodal distribution of
estimates is common but if the analyst does not knov vhy the experts are split
into two camps, he is kandicapped in his decision on how to aggregate (Booker
and Meyer, 1985). An aggregation scheme can be selected on the basis of the
problem-solving information rather than guessvork, if problem-solving data is
elicited. In a Bayesian approach to aggregation, the decision maker has to
decide how to combine the expert’'s estimates vith each other and with his
judgments. Knowledge of the expert’'s problem-solving methods will allow the
decison maker to judge which estimates he wishes to veight most highly (Meyer
and Booker, 1987a).

In the treatment of outliers, the "aberrant observations should be
recorded and the reason for deleting them explained" (Tietjen, 1986). The
problem-solving data can show vhether the experts who supplied the suspected
outliers solved the problem in a different manner and vhether their estimates
can be eliminated. If the suspected outlier appears to be legitimate data
(e.g., the expert did not appear to use unvarranted assumptions or
unacceptable definitions), then this evidence can be stated. In this case,
the outliers could be accomodated by means of a robust estimator.

In addition, it may be a good idea to record some kackground information
such as, the experts’ years of experience, formal ed. tion, previous work
experiences related to the problem area, years since ' 2 expert worked on a
similar problem, and colleagues with whom the expert has .cen associated.

The recording of this magnitude of data can be made easier and more
thorough by the use of a note-taking observer or a tape reccrder. The means
of recording can be chosen by asking vhich will t2 the most convenient,
unobtrusive, and reliable in the particular setting. Whatever means is used
should have as its goal the recording of data in as exa:t man.er as possible.
Filtering, reducing and modeling of the information gathered can be done
folloving the interview; hovever, the results from such screening should
alvays be traceable back to the original data.

REDUCING OR COUNTERING BIAS IN ELICITATION

As a general rule, bias in expert opinio.. can be bandled by anticipating
vhere it is likely to occur, designing the means to counteract it, and then
monitoring the elicitation process. This Lias countering plan can be applied
to the different parts of elicitation, such as the elicitation method, the
response mode/dispersion measure, and the problem-solving interviev. As
mentioned earlier, bias can occur when: 1) the subject’s underlying thoughts
or reporting of these has been altered by some aspect of the elicitation; or
2) when th2 subject’s thinking does not follov normative statistical or
logical rules.

For example, in selecting an elicitation method, one could anticipate the
oceurrence of both types of bias. If, for instance, an interactive group
method was being consideted for use, one could expect the possibility of group
think. With the group think phenomena, the expert’s thinking is altered as he
consciously or unconsciously acquieses to wvhat he believes to be the group
opinion. Then too, in an interactive group method, the experts’ failure to
follov logical or statistical rules could surface. For example, if the
experts were meeting for several sessions, they would be prone to
inconsistency in their thinking. In particular, the definitions or conditions
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[t takes very little time and can be used easily in group :ettings. Asking
the expert to explain his ansver immediately after he has given it will
provide enough data for the receiving the benefits menti-ned in Elication
Methods. If the explanation is unclear or too general, the ethnographic
method can be used to gather additional information.

In addition to designing or structuring elicitation methods to counter
bias, it is advisable to monitor the sessions. For example, during an
interactive group session, one could vatch for any indication of a group think
phenomena. The lack of any dissenting viewvs could be an indication of a group
think situation. By monitoring the elicitation sessions, one can gauge the
presence of bias and employ further countermeasures, if necessary.

ANALYZING THE DATA

~ There are several analytical problem areas vorthy of mention. These are
discussed in Meyer and Booker (1987¢) and include recommendations on: 1) how
to handle the large amounts of data gathered; 2) hov to handle the
qualitative/quantitative data mixture; 3) hov to formulate models at the
desired level of generality; 4) hov to deal with the correlation among
experts, if any exists; and 5) hov to aggregate estimates or dictributions
from multiple experts. Whether the approach taken is a Bayesian or classical
one, these problems are likely to be present. Each is discussed briefly
below.

Many multivariate statistical techniques exist for handling the large
amounts of data. Cluster nd correlation analyses zan provide means for
identifying relationships betwveen the variables and the response data.
‘ocedures are suggested for handling the
‘(ture to avoid the making of assumptions about

tions are not usually normal or multivariate normal).
The level of generality is an important assumption made in these
analyses. All analysts deal with this problem in designing and analyzing

X .
pr

experiments. Usually, the experiments are lesigned to gather the specific

information required to ansver the research questions. In expert opinion, the

int
information gathered cannot alvays be done in such a entrolled environment.
This is why the authors recommend that the analyst gather all possible

i
information first and screen, filter, and m lel vhat is needed later. It is
at this point that the level of generality must be decided. How finely will
nformation be screened? What granularity will be assumed? It should be

that the conclusions drawn only apply to the level of generality used in
tne modeling prncess. Conclusions an be different for different levels

Booker, 1987¢).

the

.
L

@ importance of the level of generality can be found in
N

the 1issue of correlation among experts. a general level of problem
olving, correlation among experts wvas found (Meyer and Booker, 1987a).
Hovever, at a more detailed level of analysis, this source of correlation vas
not evident (Meyer and Booker, 1987¢). Inter-expert correlation seems to
exist only at certain levels of modeling the problem solving processes. Thus,
the correlation issue may not be as prevasive or troublesome as previously
thought
[ £ rrelation among experts is not a problem, then mbining expert
estimates )L jistributions together oecones i easler process. veighting
factors or distribut an De assumed and used in many aggregation schemes
(see Martz et al., 1985). The aggregation can be done in a Bayesian framework
ing prior and lihood distr tiens for data and for ov;e}';, )r by the
formulation £ ingle distribution from the multiple experts. ision
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1) ABSTRALT 200 words o et

An integral part of any probabilistic sk assessment (PRA) is the
performance of an uncertainty analysigto quantify the uncertainty in
the point estimates of the risk meag#frd considered. While a variety
of classical methods of uncertaintyfanalksis exist, application of
these methods and developing new chniq@es consistent with existing
PRA data bases and the need for gffpert (s¥jective) input has been an
area of considerable interest sjfice the pi eering Reactor Safety Study
(WASH=1400) in 1974, This repgft presents Rhe results of a critical
review of existing methods fopf performing u ertainty analyses for
PRAs, with special emphasis identifying d§ta base limitations on

the various methods., Both assical and Bays§an approaches have been
examined, This work was fjhded by the U.S. N¥lear Regulatory Commission
in support of its ongoing#full-scope PRA of thW LaSalle nuclear power
station., Thus, in addit$on to the review, thig report contains

recommendations for a gffitable uncertainty anal¥eis methodology for
the LaSalle PRA.
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