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ABSTRACT

An integral part of any probabilistic risk assessment (PRA) is
the performance of an uncertainty analysis to quantify the un-
certainty in the point estimates of the risk measures consid-
ered. While a variety of classical methods of uncertainty
analysis exist, application of these methods and developing new
techniques consistent with existing PRA data bases and the need
for expert (subjective) input has been an area of considerable
interest since the pioneering Reactor Safety Study (WASH-1400)
in 1975. This report presents the results of a critical review
of existing methods for performing uncertainty analyses for
PRAs, with special emphasis on identifying data base limita-
tions on the various methods. Both classical and Baysian'

approaches have been examined. This work was funded by the
U.S. Nuclear Regulatory Commission in support of its ongoing
full-scope PRA of the LaSalle nuclear power station. Thus in
addition to the review, this report contains recommendations
for a suitable uncertainty analysis methodology for the LaSalle
PRA.
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I. INTRODUCTION

This report presents the results of a critical review of methods
for performing uncertainty analyses for Level 1 probabilistic
risk assessments (PRAs). This work was performed in suppott of
the Risk Methods Integration and Evaluation Program (RMIEP)1
as part of the first full-scope probabilistic risk assessment
being performed under the auspicee f the US Nuclear Regulatory
Commission since the Reactor Safet, Study. This work was per-
formed as part of two programs supporting RMIEP: the Dependent

'

Failure Methodology Program and the PRA Methods Development
Program, both of which are sponsored by the Division of Reactor
System Safety. U.S. Nuclear Regulatory Commission. These pro-
grams have the goal of developing new risk assessment methods
and integrating both new and existing methods into a uniform
procedure for performing an in-depth PRA with consistent levels
of analysis for external, internal and dependent failure
scenarios.

As part of RMIEP, a PRA of the LaSalle Nuclear Generating Sta-
tion is being performed. LhSalle is a Mark II BWR/6 commercial
power station. The PRA will include an analysis of the uncer-
tainty in the risk estimates calculated for LaSalle. This

, report presents recommendations for methods to be used in per-
forming the RMIEP uncertainty analysis for LaSalle.

; There are three major facets of an uncertainty analysis:
(1) identification and characterization of the uncertainties in
the inputs, (2) propagation of these uncertainties through the
systems models to arrive at a measure of the uncertainty in the
output, and (3) identification of the significant sources of
uncertainty with respect to the result. In general, we are

j interested in the quantification of system fault trees and
accident sequence equations. The inputs for which uncertain-
ties are generally provided are the parameters which are used,

to derive estimates of basic event probabilities. The outputs
are system unavailabilities, accident sequence frequencies, and
core damage frequency.

Another type of input uncertainty that may be addressed is
modeling uncertainty. Where it is not clear, for example, I

which assumptions about success criteria, or the effects on !
certain components of a particular environmental condition, are I
appropria te, alternative hypotheses can be explored by making |
different assumptions, j

l
This report presents a summary of uncertainty analysis methods |
applicable to risk analyses. In the context of this repott,
risk refers to estimates of core damage frequency. The methods
reviewed will be pr^sented in two parts: methods for propagat-

,

ing the uncertainty in basic event model parameters (and also 1

I uncertalaty due to alternative modeling hypotheses) through
system and accident sequence models, and methods for character-
izing the uncertainty in the basic event model parameters and
modeling assumptions.

,

_ _ _ _ _ _ _ _ _ _ _
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Input uncertainty characterization methods reviewed are:

Plant-Specif.'c Data Analysis
Bootstrapping Method
Bayesian Update Approach
Use of Expert Opinion

The uncertainty p:opagation methods reviewed are:

Method of Moments
Method of Moments Using Tchebyschev's Inequality
Propagation of Discrete Probability Distributions
Maximus/ Bounding Approach
Monte Carlo Methods j

Latin Hypercube Sampling Methods

The uncertainty analysis method recommended for RMIEP is the
1

Latin hypercube sampling technique which uses stratified
sampling of the basic event probabilities, initiating event
frequencies, and alternative modeling hypotheses for quanti-
fication of the top event uncertainty. Uncertainty in basic
event probabilities is characterized using probability distribu-
tions derived in three different ways: when sufficient plant-
specific data on individual components or component types
exist, a Bayesian analysis using non-informative priors may be
used; Bayesian updating of generic parameter estimates may be
used for components for which only limited plant-specific data
exist; expert opinion is used to characterize parameter
uncertainty when data are limited or nonexistent. Expert
opinion is, of necessity, the only method available for the
quantification of uncertainty with respect to alternative
modeling hypothesis. Expert opinion is used generally to
develop uncertainty representations from literature cutveys.
Delphi surveys, and non-nuclear experience.

The approach recommended Cor RMIMP and discussed in this report
is intended to cover all aspects of the uncertainty analysis of
accident sequence frequencies and core damage frequency. Very
similar (but somewhat generalized) techniques will be used for
the uncertainty analysis of containment failures, source term,
and health and consequence modeling calculations. These aspects
are being considered in the NRC-sponsored Probabilistic Risk
and Uncertainty Evaluation Program (PRUEP).2 Appendix A
presents a discussion of the interface between these two sets
of calculations, and it is shown there that the data and model-
ing techniques used in the accident sequence / core melt uncer-
tainty analysis are directly compatible with the accident
progression and health and economic modeling, process.

-2-
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II. UNCERTAINTY METHODS FOR PROBABILISTIC RISK ASSESSMENT |
!

In this section, methods used in PRA analyses for uncertainty |
are briefly reviewed. Top event uncertainty methods are treat 6d !
first, then component parameter uncertainty specification tech-
niques will be considered.

i

11.1 A Perspective on Uncertainty Analysis

Before discussing methods for performing uncertainty analyses,
it is worthwhile to examine the goals of performing such an
analysis, and to consider the sources of uncertainty we ' are
trying to characterize. Clearly, the goal is to assess un-
certainty in the estimate of the frequency and sensitivity
measures of some top event given a characterization of the
uncertainty in the input (independent) variables or assumptions. .

In the context of a PRA, the analyst is interested in assessing
the uncertainty in computed risk measures (such as accident
sequence frequency, core melt frequency, and plant damage state
frequency) as a function of-uncertaintles in the interpretation -

of data and the parameter estimation process as well as uncer-
tainties inherent in the modeling process-itself. Tr.e ultimate
goal, however, is to be able to make meaningful comparisons
between measures of risk so that robust decisions regarding the
margin of safety and allocation of resources to increase safety
can be made. A crucial aspect of selecting any method of
uncertainty analysis is to identify the comparisons to be made,
and to assure that tne selected uncertainty analysis methodi

] will provide the information needed to make those comparisons.

11.1.1 Uncertainty Analysis Goals

In the context of a PRA for a nuclear power plant, we ulti-
mately wish to make the following comparisons and assessments
after the PRA is completed:

,

| !

1. Compare one plant's risk measures with those of other
,

plants to assess relative level of safety. '
,

i
2. Compare relative risk contributions due to the various

,

sources of risk modeled in the PRA (random initiating
events, fires, earthquakes, etc.) to identify any
particular vulnerability which may exist at the plant
in question.

' 3. Compare health and economic consequences of hypo-
thesized accidents at the plant with cimilar conse-.

] quence measures due to other sources of risk (e.g.,
aircraft crashes, chemical releases, etc.) to which the

i public is unavoidably subjected.
I ;

;

)
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4. Compute both abest estimate" and "worst case" measures
of risk and consequence to allow informed societal
decisions as to "acceptable" level of risk to be made.

5. Compare the contributions of different component
failures to the plant risk measures to determine those
components for which an increase in reliability would
result in the greatest reduction in plant risk and,
thus, provide a basis for an effective allocation of
resources.

6. Compare the "best estimate" accident-induced loads
(e.g., pressures, thermal forces, earthquake ground
accelerations, floor spectra, etc.) with the "conserva-
tive" deterministic loads used in the design of the
plant to assess the "margin of safety" of the various
components, structures, and safety systems and to
identify any areas where changes in design procedures-

could result in a more uniform level of "margin of
.

,

safety" throughout the plant. I

: Thus the goal of performing an uncertainty analysis is to qual-
ify the conclusions made as a result of point estimate evalua-
tions, so as to identify those conclusions which are robust when
considering uncertainties in the analysis. It should also be
used to identify where improving the state of knowledge can lead '

to maximum benefit with respect to an accurate assessment of
1

risk.J

4

In particular, an uncertainty analysis should identify those
,

) components or models whose uncertainty is "driving" the overall
uncertainty in the plant risk measures, so as to identify any
components or models whose uncertainty is preventing any desired
comparisons (as discussed above) to be made, and hence identify
those components or models for which a reduction in uncertainty
(even without a change in our perception of their point esti-,

mate) would result in upgrading our decision-making capability.
11.1.2 Uncertainty and Physical Variability L

; it is important to distinguish between the concepts of uncer-
'

; tainty and variability. The nature of the events considered in
a PRA (such as initiating events, component failures, operator

i"

actions, etc.) is such that they are treated as being random
processes, and modeled through the une of probabilistic models.

i

lt is this use of probability which gives the PRA its name. !

|

Sources of random variability are incorporated directly in the
i PHA models. As examples, the random nature of component

failure times is incorporated by assuming a constant failure4

; cate model for those components. The randomness of operator I

recovery times is incorporated by establishing a relationship |

between time and the probability of recovery. The randomness (

in the magnitudes of earthquakes in a given seismic region is |
!

-4-
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' |

incorporated through the use of a relationship expressing i
'

frequene" of occurrence as a function of magnitude. These
sources of variability then directly affect the evaluation of
the frequency of the events of interest, such as core melt
frequency.

However, due to lack of data, cc a lack of detailed under-
standing of the physical phenomena being modeled, the relation-
ships that are used to de tsc r ibe the variability are not known
precisely. This can be reflected in a lack of precision in the
value of a component failure rate, or in the provision of
alternative mathematical formalisms. This lack of knowledge is
the uncertainty that is of interest here, and which leads to
the lack of precision in the predictions of the PRA. An
increased level of knowledge will not change the fact that a -

,

PRA is a probabilistic model, but it will give greater
confidence in the predictions of that model.

II.1.3 The Representation of Uncertainty,

) There are two basic types of uncertainty to be addressed: the
first is that associated with the values of the parameters of
the input models, the second is that associated with the
possibility of alternate modeling hypotheses.

In the case of parameter values that are estimated on the basis
of data, there are two basic statistical approaches; the so-
called classical approach, and the Bayesian approach. Given

j sufficient data, they both produce numerically compatible
results, but due to differences of interpretation, propagation
of uncertainty measures in the Bayesian approach is easier than
in the classical approach.3

(a) Classical Statistical Measures of Uncertainty
|

| For parameters that are assumed to have the same constant value
'

for all members of the population being sampled, we can compute
a statistical confidence interval, which is an interval about
the computed parametet value that is "reasonable" considering
the data from which the parameter estimate was derived. For
example, consider a component with a history of x failures in n

|
demands. Assuming that the demand failure cate is constant and
that the Binomial distribution is an appropriate model for the
occurrence of such failures, the point estimate of the demand
failure rate is given by j

i.

p,X (1) i

n

i

1

-5-
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The cumulative binomial distribution iunction is given by

*1

(x)p(y,p)n-x (2)
n x

F(x1,n p) =

x=o
|

| which gives the probability of X < x1 for a known value of p.
From the component failure history, we know the number of
failures x and number of demands n, _ so we can solve equation
(2) f or values of p such that the observed value of x lies in
the central region of the~ distribution, i.e., would be likely

,

'

to have been observed. Hence, if we sought values of p which |
would imply the measured value of (x.n) to lie in the central |
95 percent of the distribution, we would solve the pair of |
equations )

|x

(n)p gy,p )n-x = 0.025x

o
'

(3)
!

x t

(n)P (1-p2) = 0.975
~

2
'

i o

and obtain two values, pi, p2, between which we would -

(loosely speaking) expect the true value of p to lie with 95
percent confidence.*

j Figure 1 gives the solution to this pair of equations for
! various values of x and n. The number attached to each curve
4

is also n, the number of demands. The ordinate gives the 95
percent confidence intervals for any value of x/n. Similar

'

curves could be constructed for any other desired level of
confidance.

!J

r

*More precisely, a (1-a) percent confidence interval is
defined by (Ref. 4), "If, in a series of very many repeated ',

experiments an interval such as the one calculated were |obtained, we would in the long run be correct (1-a) 100 ,

percent of the time in claiming that p is located in the i

interval."
|

i

s

-6-
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Figure 1. Chart Providing 95 Percent Confidence Limits for p
in Binomial Sampling, Given a Sample Fraction x/n.

I Different curves represent different sample sizes n.
'

Values on ordinate represent 95 percent confidence
9 bounds on p. (Reference 4).
!

!
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It is important to note from this figure that as n becomes
large, the confidence limits approach the point estimate
p = x/n. Thus, by accumulating more and more data, we can know
the value of p as closely as desired (with 95 percent confi-
dence). Thus, the confidence interval is a measure of the
sampling uncertainty in determining a constant parameter from
data.

Note also that pi and P2 are not points on any distribu-
tion, for the failure rate is, by definition, a constant and
not a random variable, and thus no distribution can be attached
to it. In particular, it is not valid to assume pt, p2 to
be the 5th and 95th percentiles of some (unknown) distribution
for p.

I
Even though, as discussed earlier, the effect of variability
arising from the inherent randomness of the processes modeled

;

is generally incorporated directly into the frequency evalua- 1

tion, it is useful to discuss here the representation of
variability because it is a concept raised later in the
consideration of pooling of data from different populations.

In dealing with a quantity which is a random variable with a
known distribution, we state the variability in terms of a
probability or tolerance interval taken directly off the prob
ability distribution for the quantity. Thus, we can ' identif y
the 5th and 95th percentiles of the probability distribution
which characterizes the random variability and state that there
is a 90 percent probability that any randomly selected value
lies between these two limits. When the parameters of the
distribution are not known exactly, but are inferred from a set
of n observations (such as the sample mean and sample standard
deviation for a normally distributed random variable) we can
compute a _ statistical tolerance interval, which is an interval
"within which we can state with a given confidence of being
correct that a prespecified portion of values from a sampled
distribution are located" (Reference 4). The probability of
being correct, of course, increases with increasing number of
observations.

(b) Bayesian and Subiectivist Measures of Uncertainty

The subjectivist interpretation of probability as a measure of
an analyst's degree of belief in some proposition allows the
following approach to the characterization of a parameter value
uncertainty. Suppose a probability density function f(K)
exists, such that the integral

A

[c f(K)dk = c

|
i

!

-8-
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!

represents the analyst's degree of belief that the true value
of the parameter is less than Ke, then (0, Kc) is a

Bayesian probability interval. While it has the same intent as i

the classical confidence interval, i.e., to represent the

analyst's uncertainty in the value of the parameter, the
,

mathematical formalism adopted does allow the combination of ,

measures of uncertainty in different parameters in a straight- ,

| forward manner. This is discussed in several references (see,
for example, the review paper by Parry and Winter, Reference -

3), and will not be elaborated on here.

,

There are often several parameters in a PRA model for which
i data do not exist from which to make estimates, and engineering

judgment is used. If uncertainties on parameter values are to
be characterized in a manner consistent with that for these
parameters for which data do exist, the Bayesian framework
provides a mechanism for doing so. By contrast, classical ;

statistics does not provide a means of providing such estimates
or uncertainty measures. ;

In addition, the subjectivist approach allows a probabilistic
characterization of modeling uncertainty, whereac there is no
equivalent classical statistical method. The value of perform-
ing such a characterization is a function of the purpose for
which the PRA is being performed. Since the assignment of
consistent probabilities is not trivial and is analyst- *

dependent, some have found the Bayesian approach to probability i

unacceptable.
,

II.1.4 Data Availability Constraints
!
| The availability of data as to type, quantity, and applicability

is the second crucial aspect in choosing an uncertainty analysis
; method for any given application. In the context of a PRA of a ,

| nuclear power plant, we are (in most cases) dealing with rare j
i events. For example, random failures of components at any i

j given plarat are quite infrequent, and the analyst is usually |

i forced to merge the experience of a number of plants to obtain |

a data base which covers the full spectrum of components needed |

| in a PRA. Similarly, the occurrence of earthquakes is a rare
i event anywhere, while the occurrence of an earthquake in the
J vicinity of a plant (close enough to at least trip the plant)

is even more rare. A similar situation exists with respect to<

I pipe break frequencies (for LOCA initiators) and the occurrence
; of significant in-plant fires.

2 Given the sparseness of the data, the analyst is usually forced
to merge the data from several plants together and to group 1

similar (but not identical) components into generic classes so 1

|i as to pool their data. Engineering judgment is required to
1 determine the applicability of the data and to perform the i

i aggregation of the different sources of data into the generic !
| groupings,

i
J

-9-
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Even in the case of the simplest type of data--component failure
rate in time or per demand--true "data" in the sense of a set of
measurements of the quantity in question does not exist.
Typically, in the literature, one has a record of a number of
components failing in a given span of years. From this the
failure rate may be estimated by computing the ratio

Number of Component Failures
J * Hours of Exposure or Number of Demands *

The data are often taken at a number of different plants and on
components in different systems having different operating
environments, test intervals and demand histories. Typically,

,

the denomination is not known precisely and in many data sources I

; engineering judgment has been used to determine reasonable
average exposure times, demand histories, etc.

Thus, in addition to a component type's inherent (irreducible) 1

variability in failure history * due to randomness in materials '

used in construction, tolerances in part sizes, etc., we also
have variability which is due to data source differences:

Plant-to-plant differences (type, location, climate,*
'

mode of plant operation, age of plant, vendor, etc.).
t

In-plant differences (component manufacturer, age of I*

component, location in plant, mode of usage during ,
operation). !

Generic grouping,e
j

i

e Mode of failure (electrical vs. binding vs. leakage, i
etc.) '

This type of variability is often termed systematic, because we
|

,

1 could (in theory) reduce or eliminate this variability given
j enough time and money for testing or monitoring the particular

!
component of interest. However, this variability becomes a
source of uncertainty when data from several sources are applied

'

to the analysis of a particular plant, as is the case with
RMIEP.

In practice, for failure data on nuclear power plant components,
3

*

one must use the existing data with its systematic variability, |

and the questions become: '

i

*It should be remembered that this variability is accommodated |
J by the treatment of failures as random occurrences. The adop- !

| tion of a constant failure rate or constant failure probability' ;is equivalent to making an assumption about the appropriate |

probabilistic model to describe the failure history. f
t

-10-
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r

a. How to characterize the uncertai.nty in order to reflect :s

lthe systematic variability,

b. How to reconcile generic data (from many sources) with
more limited plant-specific data (if available).,

The specific choices one makes in answering these questions
will play an important and often limiting role in determining a

'suitable method for performing an uncertainty analysis. Some
of the considerations involved are discussed in more detail in
Mosleh5 and Parry.6

One resolution, which has been adopted in several PRAs to date, c

is to define a generic group of components for which the failure
rate with time or on demand are assumed to be a fixed value.
Then, data from other plants are used to derive a probability ,

distribution that reflects the plant-to-plant variation in the
value of the parameter for the equivalent group of components. ,

This probability distribution, which represents a measure of
physical (systematic) variability can be regarded as a con-'

fidence interval measure for the parameter value for a
particular plant of interest, under the assumption that the
plant is one of the general population that has been sampled. ;

Thus, for example, in the WASH-1400 study,7 the data on valve ;

failure rates from 10 different sources were plotted in |
i cumulative distribution form to obtain the lognormal t

|
distribution shown in Figure 2.

,

When no plant-specific data are available, the generic prob-
ability distribution can be used unmodified. When plant- i

specific data are available, the generic distributions can, in -

the Bayesian method, be modified, using it as a prior distribu-
tion, and utilizing the plant-specific data to specify the c

'

likelihood (see later). This is discussed, for example, in
Apostolakis et al.8 and Kaplan.9 This use of generic data .

has, important implications for the propagation of uncertainty
measures as discussed in Section 111.1.3 Incorporation of i-

Correlation, j

It may also be desirable to include other sources of variability :

in deriving the probability distribution. For example, the
'

distribution may be chosen to reflect both plant-to-plant and !
system-to-system or component-to-component variability. This i
distribution should, however, be used to represent uncertainty I
in the component's failure characteristics only if there is no |
consistent system-to-system variability at all plants. If there
is a significant consistent system-to-system variability, the
components from different systems should not be grouped into the
same population, but rather each system should be treated sepa-
rately by constructing a plant-to-plant distribution for com-
ponents of that system.

-11-
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Figure 2. Lognormal Distribution--Valves (from Reference 7)
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II.2 Methods for Propagatino Component Uncertainty _Through PRA
Models

Several methods have been proposed for the propagation of
uncertainty on parameter values through the PRA analysis, to
provide uncertainty measures on the PRA results. Of the methods
discussed below, the first is directed toward the classical
statistical approach, the others are appropriate where a proba-
bility distribution is used to characterize uncertainty and
thus can only be used in conjunction with a Bayesian approach.
II.2.1 Maximus/ Bounding Approach

The Maximus/ Bounding method by Spencer and Easterling (Refer-
ence 10) has two components to its propagation of parameter

- uncertainty through fault tree models: statistical confidence
interval estimation (as discussed in Section 11.1.2), and a
bounding analysis. Data on component failures are divided into
two categories. Data derived from designed experiments are
classified as obiective data. The contribution to top event
uncertainty due to parameters based on objective data is
modeled by a confidence interval estimate calculated using the
Maximus technique. Parameter estimates that do not fit the
objective category (e.g., expert opinion) are classified as
subiective. Uncertainty due to subjective parameter estimates
is exhibited by a bounding analysis and a seven point pictorial
format.

The bounding analysis is accomplished by selecting a range of
values for each subjectively defined parameter. The accidentsequences are then quantified for the following three cases--all
subjective parametets are fixed at their low estimate, nominal
estimate, and high estimate. The uncertainty of the objectively
estimated parameters is propagated through the sequence model
(in each case) using the Maximus method for each set of sub-
jective parameters.

The Maximus method of confidence interval calculation is anapplication of the tinstrom-Madden theoremll and applies to
failure data that art binomially distributed. In essence, for
each series or parallel group of components, rules are pre-
scribed from which "equivalent" binomial data (n-failures in a
tests) can be derived. From this equivalent data, approximate
binomial confidence limits for the accident sequence are derived
in the usual way, using equations (3).

Note that, in application, a reliability block diagram of the
system must be generated, as the method cannot be applied
directly to fault trees or cutsets. Further, the algorithm
applied to serial components is exact, while the algorithm
applied to parallel components is heuristic, but has been
tested over a wide variety of situations. Finally, it should

-13-
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be noted that the results of the Maximuc calculation depend on
the set of values which have been selected for the subjective
parameters.

After the accident sequence confidence intervals have been
determined for each set of subjective parameters, the Maximus/
Bounding approach provides three different perspectives of the

: top event uncertainty; subjective uncertainty, statistical
uncertainty, and overall uncertainty. The subjective uncer-
tainty le calculated by f ix) ng all objective parameter values

; at their nominal estimates based on the data. The range of the
* top event value due to uncertainty of the subjective parameters

is calculated by varying the subjective parameter values from
their low values to their high values. The statistical confi-
dence limits of the top event are calculated by fixing all
subjective parameter values at their nominal estimates. A
Maximus calculation is then performed using the objective param-
eter data to calculate a confidence interval. The overall
uncertainty is estimated by setting the subjective parameter |
values fixed at two different values, their low value and their I

high value. At each set of flxed subjective values, a Maximus !
calculation is performed on the objective parameters. Recall
from earlier discussion that the Maximus solution will vary for
different values of the subjective parameters. An example of
the three types-of uncertainty intervals estimated by Maximus/
Bounding is shown in Figure 3.

Comparisons of the Maximus/ Bounding approach with a Bayes'/
Monte Carlo approach (using assumed distributions) for a typical
pRA systems model have shown12 that the Maximus approach leads
to wider confidence bounds (as expected) but that the upper
bounds of both methods are in reasonable agreement.

The advantages of the Maximus/ Bounding approach are:

"

1. No assumptions need be made concerning the distri-
butional form of the basic event probabilities, since
failure rates are assumed to be constant parameters,

j 2. Once the systems models are in series / parallel block
diagram form, the method is straightforward and simple
to apply.

Disadvantages of the method are:

1. The typical pRA systems model in fault tree format must
; be converted to a block diagram format.
1

2. A certain degree of arbitrariness exists when generating
"equivalent" data for groups of like components.

,

3. The Maximus "rules" for parallel configurations cannot
| be proven with mathematical rigor, although extensive
! demonstration calculations substantiate their heuristic

foundations. ,

,
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11.2.2 Method of Moments
J

The Method of Moments propagates the basic event uncertainty
through PHA models by generating lower order moments, such as
the mean and variance, of the distribution of the top event,

i from the moments of the basic event distributions. In essence,
one is using a Taylor series expansion of the variation of the
top event value with respect to variations in the independent

] variables (the basic events). The coefficients of the Taylor
j series are related to the moments of the distributions of the
'

basic events,
a

in theory, if sufficient terms of the expansion are generated,
the distribution of the top event can De determined completely.
In practice, only a few lower ordered terms are generated. For
example, if one has estimates of only the means and variances
of the basic events, one can approximate the mean and variance
of the distribution of the top event. However, with the Method
of Moments, once the top event attributes (mean and variance)
have been calculated, it is necessary to make an assumption
about the form of its distribution so that other attributes,
such as 95th and 5th quantiles, can be estimated. A more
detailed treatment of this method is covered in a comparison
study of various uncertainty analysis methods.13 Techniques >

also exist that include the use of higher order moments as
,

well.14,

i

Advantageous of the Method of Moments are: !
:

1. The mean and variance of the top event can be approxi-
mately determined even if only means and variances of
the basic events are known, rather than their complete !,

I distributions.

2. For simple top event functions with derivatives that [;

can be determined analytically, the Method of Moments ;

is simple to apply.

Disadvantages are:

1. For functional relationships between the top event and
the basic events which are significantly nonlinear, the
use of only lower-ordered terms in the Taylor series
expansion can lead to significant inaccuracies.

2. For complex functional relationships (Or which analyti-
cal derivatives cannot be easily obt'ined, some form of
experimental design is required to nt irically determine-

the coefficients of the Taylor-series expansion.,

l

3. For large systems models of the type usually encountered t

in PHAs, this approach has been found to be unwieldy in,

application.
,

I

1

16 I
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11.2.3 Method of Moments Using Tchebyschev's Inequality '

In this technique, the mean and variance of the top event dis-
tribution are calculated from the basic event moments as in
Section 11.2.2. However, to arrive at uncertainty intervals.
Tchebyschev's inequality is used instead of assuming a form for 1

| the top event's distribution. Tchebyschev's inequality is a

| theorem in probability theory which states, "for ADI distribu-
tion with finite mean and variance, at least (1-k-2) . loo
percent of the probability is in the range of ie around thek 1

mean," (Reference 4). Thus, for example, this inequality
implies that at least 89.9 percent of the probability lies in

1 o. Such tolerance intervals calculatedi the interval of u 3

! with Tchebyschev's inequality tend to be very conservative. i

)
j II.2.4 Propagation of Discrete Probability Distributions

IPropagation of Discrete Probability Distributions (DPD) is a
;' technique in which the basic event distributions are discre-

tized, and a discrete analog of the top event distribution is
calculated. Each distribution is divided into some number of

' intervals, say n. A value for each basic event probability is
chosen for each interval (usually the mean of the basic event
probability in th,t interval), and the probability that the
basic event probability occurs in each interval is calculated.

! Thus, the distribution of each basic event probability is ,

2 discretized into n values, each value with a corresponding
; probability. The top event is evaluated nk times where k is
| the number of independent variables. The result of each evalua- i

j tion has an associated probability equal to tne product of the !

| probabilities of the independent variables. Thus, a discrete ,

probability distribution can be constructed from these values. !

J

| The DPD technique is, in theory, a valid method for functions
| of many variables. However, the technique can become quite
l cumbersome with respect to computer storage, and the propagation i

| must be performed in stages with intermediate re-discretization,
j Incorporation of correlation is then quite awkward. More dis-
! cussion of this method can be found in Reference 15. '

1 !

II.2.5 Monte Carlo Method
i ,

| The Monte Carlo approach is the most fundamental approach to
q uncertainty analysis. Monte Carlo simulation consists of making
j repeated quantifications of the top event value. For each
; quantification or Monte Carlo run, each random variable basic
j event is sampled using a random number generator to select a
'

value from the basic event's distribution. This procedure is '

s repeated numerous times, and the various top event outcomes are !

! sorted to obtain empirical estimates of the desired top event !

j attributes such as mean, median, 95th, and 5th quantiles. |
:

I

I I

! t
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As more and more Monte Carlo samples are made for a top event
equation, the precision of the empirical quantile estimates of
the top event distribution improves. Ilowever, the rate of

,

'

convergence to the true distribution tends to decrease as the
number of samples increases.13 Of course, the validity of
the result is only as good as that of the input.

i
| Advantages of the Monte Carlo method are:

1. Complete flexibility in the selection of basic event
' distributions,

i 2. Any specified precision of the top event attributes can
be achieved (limited only by cost and cour. doff-error).

3. The method is reasonably easy to implement.

Disadvantages of the Monte Carlo method are- !

|
1. Probability distributions must be defined for all )

'parameters.

2. Computer costs can become significant for large
problems.

3. Sensitivity measures of the basic event uncertainties
contribution to the tot event uncertainty are not
directly obtained.

11.2.6 Latin liypercube Sampling

Latin hypercube sampling (Liis) was developed to improve upon
the accuracy and precision of Monte Carlo simulations in
estimating functions of multiple random variables.16 L}{s is
a stratified sampling technique, where n different values are
selected for each basic event. The values are selected by
dividing each basic event's probability distribution into n
intervals, each of equal probability. Within each interval,
one value of each basic event's probability is randomly
selected. The n values of a particular random variable are
then combined (in a manner which keeps the pair-wise correla-
tions near zero) with the n values of the other basic events.
The result is an n x k matrix (k is the number of sampled basic
events) where the ith row of the matrix contains specific
values of each random variable to be used in the ith run or
calculation of the top event value. The top event's distribu-
tion and quantiles are empirically estimated from the n runs.

Lits has the same advantages as associated with Monte Carlo
methods. Additional advantages include:

!
I
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1. The accuracy in modeling the top event uncertainty is
improved with respect to direct Monte Carlo methods for
the same number of samples.

2. Use of Liis ensures that thu tails of the basic event
distributions are included in the propagation of uncer- I

tainty.

Disadvantages of the Lits method may be:

1. Possible bias in result, particularly for small sample !

sizes.

2. 12 not suitably automated, this procedure can be
cumbersome and time-consuming.

3. Being a relatively echnique, all of its properties
may not be f ully un: ' sod.<

'11.3 Method Recommended for 9MIEP

| Following a review of the various methods for uncertainty
propagation, and in view of the recommendation that uncertainty
in parameter values should be represented by di .e;butions (as
discussed in 11.1.3), an approach based on U. in hypercube ,

sampling (Liis ) and Monte Carlo simulation is to. aendad for
'

RMIEP. This approach was chosen for the following reasons:

1. This approach can conveniently accept any form of
distribution for each basic event, and thus the effect
of different distributional assumptions could be
assessed.

2. This approach can be applied directly to the output of
typical fault tree analysis codes (e.g., SETS, FTAP, !

etc.), i

3. This approach allows a direct assessment of the effects
of correlation between uncertainties for components in |
generic categories. |

!

4. The approach has been found to be relatively simple and
inexpensive for large systems models.

The choice of Lits as the method for propagation of uncertainty
will allow flexibility in characterizing basic event uncer-
tainty. Any method of basic event uncertainty characterization
which establishes a distribution for the failure probability j
can be used in conjunction with Liis. '

i

1
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Ill. ELEMENTS OF RECOMMENDED' APPROACH FOR UNCERTAINTY
PROPAGATION

The Latin hypercube/ Monte Carlo approach recommended for HMIEP
will be implemented using the Top Event Matrix Analysis Code
(TEMAC).17 This computer code . can accept the samples gen-
erated from either an LHS routine or a Monte Carlo simulation.
III.l. Propagating Uncertainty Through RMIEP Models

The following sections describe the codes which are recommended
for use in the Latin Hypercube-Gampling procedure for propaga-
tion of uncertainties through the RMIEP systems models. Code
output capabilities and sensitivity measures computed are also
described.

I11.1.1 Latin Hypercube Sampling

The TEMAC code requires a set of sample vectors chosen in
accordance with the stratified sampling approach. A Latin
Hypercube Sampling (LHS) routine 16 is used to generate the
input sample vectors by sampling basic event probabilities from
their distr'butions. The output of the LHS will be read
directly into TEMAC, which is designed to take simulations
(either pure Monte Carlo or Latin hypercube samples) of
paramete' values and quantify a top event equation. The LHS
and TEMAC codes permit flexibility in uncertainty modeling by
allowing for different probability distributions to be used in
the same computer run. This eliminates the necessity of
assuming all random variables have the same type of
distribution.

An introduction to the LHS technique, with a brief discussion
of the theory of LHS and a simple example demonstration is
included in Appendix B. The example and discussion are taken
directly from Reference 16, the LHS user's guide.

111.1.2 Quantification of Top Event Attributes

Oace the Latin hypercube sample matrix has been generated for
the basic event probabilities, it is read into T F,M A C , along '

with the top event equation. TEMAC evaluates the equation for
each sample vector in the matrix.

TEMAC generates a variety of attributes of the top event's
distribution as a result of the propagation of basic event
parameter uncertainty through the model. These include esti-
mates of the top event's mean, median, standard deviation, 5th
and 95th quantiles and a nominal estimate of the top event's
value calculated with the nominal estimates of the base events.
Four importance measures of basic event contributions to the
top event's value are calculated--partial derivative of the top
event equation with respect to each basic event, risk reduction,

L
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risk increase, and a measure of an event's uncertainty contribu-
tion to the variance of the top event distribution called uncer-
tainty importance. For each measure, the basic events are

ranked in order of contribution. These measures are briefly
described in Section I11.1.4.

111.1.3 Uncertainty Correlation in Sampling

It is recommended that uncertainty correlation be included in
the LHS samples. The need for this is discussed below. When
components are grouped together into a single generic category,
the assumption is made that each component in that group has
the same failure rate or probability. Thus suppose that an
accident sequence ACC is given in terms of basic event proba-
bilities as

b (4)ACC = ala2 + al 2 + a2b1+bbi2 e

where at is the failure unavailability of component i of the
group identified by the letter ai and similarly for bi.
Since each component within the group has the same unavaila-
bility, ACC can be rewritten as

ACC = a2 + 2ab + b2 (5),

where a represents the unavailability of a component in generic
group a and similarly for b.

In performing an uncertainty analysis, it is equation (5), must
be used to evaluate the probability distribution on ACC. This
gives different results from using equation (4), as can be seen
from taking the expected value. In using the first expression,
the ai are treated as independent so that

E(ACC) =E2(a) + 2E(a)E(b) +E2(b) (6),

whereas in the second it is

+ 2E(a)E(b) + E(b2) (7)E(ACC) = E(a2) ,

I

where E(x) is the expected value of x. |

The necessity of including the so-called uncertainty correlation
was discussed, in a Bayesian context, by Apostolakis and Kaplan |

l
4
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in Reference 18. They pointed out that the values of the al
and a2 (and bl and b2) must be regarded as being the same
since the analysts state of knowledge about them is identical.
Thus in a Monte Carlo analysis, when in one sample a random
valua from the probability distribution on al is chosen, the
same value must be used for the value of ag, and so on. It

-is in this sense that the values are correlated.

Consideration of uncertainty correlation can be important when
screening is performed. The fact that the expected value of ACC
using equation (5) is greater than that using equation (4) means
that extra care has to be taken when using point estimates
directly in the equation for ACC as a screening method for
identifying dominant cut sets. This is particularly important
when there are more than two components from a single group in
a cut set and/or the uncertainty on the value of the component
availability is large, when

E(an) >> En(a) .

|

It may thus be desirable, unless it is easy to identify in a
general way the possibility of such cut sets, to accept some
sort of second screening where, for example an is replaced by
a whenever the former appears in a cut set, to guarantee saving
the potentially troublesome cut sets. This would mean, in the
current example, calculating the unavailability (for screening
purposes) as

ACC = a + 2ab + b .

Any cut sets that reviewed this second screening would also be
included in a full uncertainty analysis, (expressed of course
in their original form).

For the final quantification and uncertainty analysis, the
TEMAC code can incorporate this uncertainty correlation
directly, since the Latin hypercube sampling program permits the
specification of full correlation between arbitrary numbers of
variables in t.h e top event Boolean equation. (In fact, these
codes permit the spccification of any degree of correlation
less than full correlation also.) It is recommended, however,
that full correlation be used for failure rates of components
in the same generic category (and same failure mode).

111.1.4 Sensitivity and Importance Measures Computed in TEMAC

Th. TEMAC code calculates various measures of the sensitivity
of the top event estimates to changes in the estimates of the
basic events. These measures enable the basic events to be
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ranked aa _to their contribution to the top event values and
enhancr. intarpretation and comparison of the PRA results.

In TEMAC, the mathematical representation of a Boolean equation
consisting of m cut sets, each of which consists of k events,
is written as

m a a a
5 5E X Xg(X) *k (8)= *** ,

1 2j=1

1 if the ith event, Xi, is contained in thewhere ai) =

jth cut set, otherwise aij = 0.
The basic event Xi may be either a component failure rate de-
scribed in probabilistic terms, or an initiating event repre-
senting a frequency of occurrence and expressed as a certain
number of occurrences during some time period. Thus, g(X)
expresses the frequency of the top event.

The sensitivity and uncertainty measures available are computed
(for each simulation) from this equation as described below.

Partial Derivative

The partial derivative is a measure of the sensitivity of
a function to changes in a parameter's value at a specific
point. The partial derivative of the top event g(X) given
with respect to Xi is

m a a
5ag(X)/8X E X X

g = j=1 1 2
***

(9)

g) X)ij~
#
k)Xa

k !
... *

Note that the partial derivative expressed above will
never contain the variable Xi since a value of ai3 =

0 eliminates the term from the partial derivative and a
value of aij 1 generates an exponent of zero for Xi.=

-23-
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Risk Reduction *

Risk reduction is a measure of the maximum potential
reduction in the top event value if a basic event failure

). rate is reduced to zero. Risk reduction identifies com-
ponents for which improved reliability could yield signi-
ficant improvement in risk. Improved concepts in system-
designs and operator procedures are types of insights
possibly gained here.

The measure is calculated by setting the nominal value of
an event, Xij, equal to zero in g(X) and subtracting
the resulting value from the nominal evaluation of g(X):

Risk Reduction for Xj = g(X) - g(X|Xj = 0) (10).

Risk Increase *

Risk increase is a measure of the maximum potential in-
crease in top event frequency if a basic event's proba-
bility increases to one. Risk increase yields insights
of critical components and procedures which, if allowed
to become less reliable or effective, could result in a
worsening of the risk profilu at a plant. The importance
of improvements in preventative measures, such as
maintenance and testing, are types of insights derived
from increase measures. The measure is calculated by:

*

1) - g(X) (11)Risk Increase for Xj = g(XIX) = .

Uncertainty Importance

Uncertainty importance, a new measure, is a measure of the
significance of a basic event's uncertainty to the uncer-
tainty of the top event. This measure gives insight into
which basic event probabilities, due to their own uncer-
tainty, are driving the uncertainty of the top event
estimate. Areas of need for improved data analysis or
increased data gathering can be identified by this
measure. Uncertainty importance, UIj, for event Xj,
is calculated as:

[ Var (X3)]l/2(ag(X)/8Xj) (12)UIj = .

*The risk increase and risk reduction measures in TEMAC are in-
terval estimates. Ratio estimates can also be defined and are
useful in certain applications. See Reference 19.

-24-



Note that each of these sensitivity and uncertainty measures are
computed for each simulation, so that sample distributions are
also available for each of the sensitivity measures as well as
for the Boolean equation being evaluated.

The risk measures calculated by TEMAC provide a set of measures
which enhance resolution of safety issues from various regula-
tory perspectives. Insights to design improvements, operational
improvements, and critical factors for reactor integrity and
accident consequences can be gained from the TEMAC output.

1I1.1.5 Inclusion of Modeling Uncertainty

As discussed in Section I.1, modeling uncertainty is that which
arises because of the existence of plausible alternative models
or hypotheses concerning the basic events being analyzed.
Thus, for example, one might wish to include the uncertainty
due to the fact that two alternative models for a reactor
coolant pump seal failure exist, and it is not possible to
exclude either model due to limited experience with the
phenomena.

Incorporation of such modeling uncertainty can be directly ac-
complished with the Latin hypercube sampling routine and the
TEMAC code, provided one can assign a relative likelihood to
each alternative. Thus, for example, if a modeling alternative
consists of two hypotheses A and B, and if hypothesis A is
assigned a 10 percent likelihood and hypothesis B is assigned a
90 percent likelihood, then in choosing N vectors of samples
for the TEMAC uncertainty analysis, the LHS routine will select
0.lN of the vectors utilizing hypothesis A, and 0.9N of the
vectors utilizing hypothesis B. More generally, the LHS routine
has the capability of considering multiple (more than two)
alternatives for a given basic failure event, provided relative
likelihoods are prescribed for each alternative (and, of
course, these relative weightings sum to unity). By this
method, the uncertainty in the top event will include both
uncertainty in the basic event parameters as well as uncer-
tainty due to alternative modeling parameters. In addition,
for this simple case, regression modeling can be used to rank
the various modeling issues with respect to their impact on the
top event, and to rank the alternatives within each issue. An
example as iication of this approach is given in Reference 20.'

In the more general case, the LHS sampling code and the TEMAC
code can, in principle, be used to incorporate modeling
uncertainty into the distribution of the accident sequence
frequency (or other top event of interest). To illustrate,
consider a simple accident sequence involving these basic
events:

(13)=CCC3ACC I 2 .
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Each of the basic events has an associated uncertainty dis-
* tribution. Modeling uncertainty can enter in if there is

significant uncertainty with respect to the parameters of the
associated distribution, say the mean. Thus, for example, due
to lack of knowledge of the physics of the situation, the mean
may be assured to take on one of two discrete values correspond-
ing to two different failure modes. Further, based on experi-
ence on expert judgment we may associate a discrete probability
with each of the two alternatives. The existence of two (or
more) plausible alternatives (with associated probabilities)
will result in greater uncertainty in the sequence frequency.
A second source of modeling uncertainty results when there is-

uncertainty in the Boolean expression for the accident sequence,
due to uncertainty in the success criteria for safety systems.
Thus a plausible alternate to the sequence might be

ACC =C1+CC3 (14)2

and again, we must associate some probability (degree of belief)
with the validity of each of the plausible Boolean expressions.
Again, this uncertainty in modeling the success criteria will
increase uncertainty in the accident sequence.

These two types of modeling uncertainty can, in principle, be
modeled using the LHS sampling code and the TEMAC code. Thus
we can form the "super" sequence

ACC* =ACCC3 + (1-A) [C1+ CC3] (15)t 2 2

and assert that the new variable A takes on the value 1.0 a
specified percentage of the time, and a value of zero for the
remainder of the time. In effect, the variable A .becomes a
switch characterized by two deterministic values with associated
probabilities of occurrence.

To incorporate the modeling uncertainty associated with the
variables C1, C2 and C3 one must make multiple LHS sample
code runs to generate the sample vectors for input to the TEMAC
code. Since there are (in this case) two levels associated with
each of three variables, there are 23 8 distinct combina-=

tions to be considered. Each combination has an associated
probability determined from the probability of occurrence of
the basic event "*tevels" themselves. Thus if

(Cf")Prob =P ty
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Prob (Chigh) ,p

Prob (Chigh) ,p

Then, assuming independence of the levels,

high high)(CfU"Prob and C and C ,p p p

if, however, the levels of the variables are not independent,
then the degree of correlation must be specified. Thus, for
example, if the "high levels" of variables C2 and C3 always
occur together, then they are fully correlated (p=1) and

highProb (C and Chigh) = Min (P Pg)g.

rather than equal to P22 P32 as in the independent case.
Any degree of correlation can, in principle, be considered.

In any case, the probability of each distinct combination of
levels can be computed, and the total number of LHS sample runs
is subdivided in properties to the computed probabilities of
occurrence of the varicus combinations.

As an example, consider each of the two accident sequences to
be equally likely and the level of basic event C1 to be
independent of C2 and C3, but the events C2 and C3 to
be fully (positively) correlated. Further, assume the levels
of each of the three events to be equally likely. Thus

(Cf")Prob = 0.5

Prob (C ) = 0.5

U"
Prob (C and C U") = 0.5

Prob (C and C ) = 0.5

Prob (C and Chigh)"
= 0.0

-27-
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and hence we.have four distinct combinations

Prob.(C and C and C U") 4 0.25" U"

high
(CfU" and C and C ) = 0.25Prob

high high)high . and C and C = 0.25Prob (C

9Prob (C and-C and C ) = 0.252 3

Thus, if we intended to generate 1000 LIIS samples, we would !

generate samples of the bas.ic events C1, C2, C3 according j
to the relative proportive given in Equation 2. That is, 250 ; ;
sample vectors with random variable Ct sampled from its

distribution with the low mean, but variables C2 and' C3
sampled from their corresponding . means set at their high mean
value, etc.

Further, in this set of 250 sample vectors, the switch A would
be treated as a variable, and set to 1.0 in 50 percent of the
vectors and to zero in the temaining 50 percent of the vectors.
Finally, the four sets of 250 sample vectors would be input to
the TEMAC code, which would evaluate the "super-sequence" in
Equation 1 for each sample vector,. and generate an empirical
dis *.ribution for the accident sequence frequency.

'

The above example illustrates how modeling uncertainty can be
incorporated in the core damage frequency evaluations. In
application, the problem is one of scale, for the number of
"lovel" combinations into which the' Lits samples must be parti-'

n where m is the number of levels associated withtioned is m
each variable and n is the number of variables. Clearly, a
number of sensitivity runs should be potCormed prior to evalu-
ating the empirical distribution of the top event to eliminate
as many variables as possible, llowever, the generation of LilS
samples for core damage accident sequences is relatively effi- t'

cient and inexpensive, so that incorporation of modeling
uncertainties using the LilS and TEMAC codes is quite feasible.

3

'

.

.

i

i
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IV. DATA AND DATA ANALYSIS .

1

As has been discussed earlier, the methods for performing uncer- i
'

tainty analyses are inextricably linked to the data available
in the following, the data needed in performing a Level 1 PRA
are described, and current sources of data are outlined.

IV.1 The Parameter Value Estimation Process

The development of generic basic event probability estimates and
uncertainty is a vital component in performing any uncertainty
analysis. Limited operating experience forces the analyst to
rely on information compiled from other plants. The data de-
velopment process is usually interative, with the initial
accident sequence evaluations performed using a set of conser-
vative, screening input data. The screening values are then
reviewed and adjusted as appropriate for the development of a

,

finalized set of parameter values. The process of developing

|
the screening values and adjusting them to final values is

' discussed in this section.

IV.1.1 Component Definition and Classification of Failures

A vital link in developing parameter estimates is the coordina-
tion of the available information with the needs of the plant
models. At the start of any PRA project, the analyst has a
general idea of the level of detail and type of basic events he
will incorporate into his system models. As the systems
analysis progresses, the nature of the basic events--actual
components modeled, failure modes, human errors of interest,
recovery actions--become better defined and understood.
However, the available data and generic estimates do not always
correspond to the models an analyst may develop. The actual
definition of component boundaries and the groupino ef 1' f orma-
tion into failure categories can vary between oc a sources.
Component boundary and failure mode definitions are not always
appropriate for the data analyst's needs. Problems in finding
useful information on certain component failure modes can
arise. While many of these component failure modes will be
matched with well-documented, well-founded generic parameter
estimates, usually several component failure modes will arice
that represent areas where little or no data collection has*

4

occurred.

IV.l.2 Screening Quantification of Component Failures

Once the component boundaries and failure modes are defined, a
set of conservatively estimated values are developed for the
screening analysis based on a review of published data. A
nominal estimate for each component failure mode is made. A
conservative or high estimate is also made. In most cases, any ,

difference between nominal and conservative values reflects I

differences in published values. In some cases, though, it

-29-
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might reflect analyst judgment of uncertainty. The conserva-
tive values may become a foundation for modeling parameter
uncertainty in the final basic event probability models. An
initial screening analysis of the sequences is enformed using
these conservative screening point estimates. For the screening
analysis, no attempt is usually made to determine or select
distributions for the parameters. This is undertaken during
the finalizing of the parameter value estimates. However, care
must be taken so that the screening estimates are sufficiently
conservative that components which might contribute to the se-
quence' uncertainty analysis are not screened out of the analysis
due to their point estimate value. To check this, the analyst
should examine those cutsets in the dominant accident sequences
whose numerical value is close to the truncation value used in
the screening process.

Incorporation of common cause failure events and associated
screening values requires additional consideration in that an
appropriate conservative model of common cause failure must be
chosen. A rather complete treatment of these issues and recom-
mendations for screening procedures is given in Reference 21.

IV.l.3 Finalizing of Parameter Estimates and Uncertainty

After the initial screening of the accident sequences has been
completed, additional data is sought for the remaining basic e

event failure or unavailability frequencies, and probability
distributions on these frequencies must be developed. The goal
is to provide nominal values (usually means), which are best-
estimate to the extent possible, and to characterize the uncer-
tainty in these nominal values to reflect the full range of
sampling, plant-to-plant and modeling assumption uncertainties
inherent in the estimates.

Both site-specific and generic data are sought. The generic
data sources are reexamined, and the generic failure frequency
estimates are refined to the extent possible, based on a closer
examination of the failure events in the data sources. The
FRAC data attribute analysis code 22 developed at Los Alamos
National Laboratory is a tool that can be used to develop com-
ponent failure rates applicable to specific reactor types, spe-
cific component subgroups or specific failure modes--limited
only by the degree of detail in the failure event reporting.

Site-specific data are sought to augment the generic data bases.
In some cases, it may be possible to base a components failure
or unavailability rate on site-specific data above. The more
common situation is that the site-specific data is utilized in
conjunction with the generic failure rate estimates. For
failure modes for which little or no data exist, recourse to
expert judgment must be made. In any case, probability distri-
butions muet be developed for the failure rates.

-30-
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In the following sections, data needs, data sources and methods i
for developing uncertainty distributions from various combina- I
tions of site specific data, generic data and expert judgment 1

are described.
|

IV.2 Data Needs and Data Types
,

1

For evaluation of accident sequences in the internal event
analysis, point estimates and uncertainties are needed for the
following:

a. Initiating Events
b. Component Unavailabilities
c. Recovery Terms
d. Common Mode Failure Model Parameters

Each of these are discussed below.

| a. Initiating Events

|
A variety of LOCA and transient-inducing initiating
events are identified for the p' ant under considera-
tion. For example, a total of 30 !aitiating events are
being treated for the LaSalle plant in RMIEP, as shown
in Table 1. The choice of initiating events is based
on a review of plant-specific occurrences plus an
evaluation of initiating events occurring at similar
plants which may be applicable to the site in question,
and a detailed examination of plant support systems.

b. Component Unavailabilities

Components may be unavailable due to a wide variety of
causes. In general, the component unavailability may '

be computed from (some or all) of the following expres- |sions as appropriate:

Qp Demand Failure Unavailability j

T I

Ks-f Standby Failure

KR T Failure to Runm

XM TR Unavailable Due to Unscheduled
Maintenance i

Unavailable Due to Failure to'

pg[2k P t Restore After Unscheduledg
Maintenance
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Table 1

LaSalle Unit 2 Initiating Event Categories

Transients (General)

1. Turbine trip with turbine bypass available

2. Turbine trip with turbine bypass unavailable

3. Total main steam isolation valve closure

4. Loss of normal condenser vacuum

5. Total loss of feedwater

6. Trip of one feedwater or condensate pump

7. Inadvertent opening of a safety-relief valve
(stuck)

8. Loss of offsite power

Transients (Special)

9. Loss of 125 Vdc bus

10. Loss of 4160 Vac bus

11. Loss of instrument air

12. Loss of drywell pneumatic

13. Loss of 100 drywell pneumatic

14. Complete loss of reactor vessel narrow range

15. Loss of Channels A and C of reactor vessel
narrow range level instrumentation (false high
level indications)

LOCA (Inside Containment)

16. Small LJCA inside containment (s 0.005 square 1

'ft. for liquid, 1 0.1 square ft. for steam)

17. Medium LOCA inside containment (0.005 to 0.3
square ft. for liquid, 0.1 to 0.3 ft, for steam)

-32-
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Table 1

LaSalle Unit 2 Initiating Event Categories (Concluded)

18. Large LOCA inside containment (1 0.3 square ft.)

19. Reactor vessel rupture

LOCA (Outside Containment)

20. Steamline LOCA outside containment

LOCA (Interfacing System, Outside Containment)

21. RHR or LPCS LOCA outside containment without
isolation

22. CRD LOCA outside drywell without isolation

ATWS

23. Turbine trip with turbine bypass available
combined with reactor protection system failure

24. Turbine trip with turbine bypass unavailable
combined with reactor protection system failure

25. Total main steam isolation valve closure
combined with reactor protection system failure

26. Loss of normal condenser vacuum combined with
reactor protection system failure

27. Total loss of feedwater combined with reactor
protection system failure

28. Trip of one feedwater or condensate pump
combined with reactor protection system failure

29. Inadvertent opening of a safety-relief valve
(stuck) combined with reactor protection system
failure -

'

30. Loss of offsite power combined with reactor
protection system failure
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K T Unavailable Due to Test
t gg

Outage

K P T Unavailable Due to Failure tog7
Restore After Test

/or any specific component, not all sources of unavail-
ability are important, but this must be determined for-
each component. The parameters are defined as:

Qu = Demand failure probability
Kg = Standby failure rate
Tt = Average time between tests that would detect the

standby failure
K ' Running failure rater
Tm " Mission time following demand that component

must perform satisfactorily
Km * Frequency of unscheduled maintenance
Tr = verage repair time for components due to un-

scheduled maintenances
P m ' Probability of failure to restore component tof

service following unscheduled maintenance
= Average time between ter.ts which wouldTt
detect the failure to restore error

t = Frequency of scheduled testingK
T o * Average test outage timet
P"ft = Probability of failure to restore component

to service following testing
T" = Average time between tests which would detect

the failure to restore error

In general, we need both point estimates and uncertain-
ties for each term above.

The demand, standby and running failure rates are de-
termined using plant-specific component failure records
and/or generic data. The process of combining plant-
specific and generic data is described explicitly in
Sections IV.4.2 and IV.4.3.

The fcoquency of scheduled testing is obtained directly
from the plant test and maintenance procedures. No un-
certainty is usually associated with this parameter.

The frequency of unscheduled maintenance is determined
by examining plant documents such the control room log
and maintenance request records or data from similar
plants. These data will define a distribution on the
frequency, again often taken in a lognormal form.
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The mission time is determined for each accident
sequence by identifying the time required for the
component to function (following its demand) in order
to mitigate the off-normal situation. Often, this is
defined explicitly by success criteria for the safety
system of which the component is a part. It is usually
treated as a parameter with no uncertainty.

The average time to repair and average test outage
times are determined from plant records (control room,.
log, etc.). These times are used to define distribu-
tions (often lognormal) from which average values and
uncertainty measures can be taken.

T" define the times be-The terms Tt, Tt,
tween scheduled testing or routine evaluation which
would detect the components unavailability due to
failure of restoration of the component. These times
may or may not be the same. They are, however,
ider.t if ied from the plant test and maintenance
procedures.

Finally, the probabilities of "failure to restore" are
determined both from plant-specific histories of such
occurrences, generic models and theoretical models.
These human error probabilities are themselves treated
as random variables, with uncertainty distributions
assigned to each.

c. Recovery Terms

Recovery terms are appended to the (dominant) accident
sequence cut sets to reflect the probability that the
plant operators will either not correctly diagnose the
accident condition and appropriate mitigating response,
or will not effectively perform the actions required to |
effect the recovery. Models involve simulator data,
generic grouping of recovery actions and expert judgment
in choosing the "most likely" recovery action that the
operator will select for a given accident scenario.
Point estimates and uncertainties are usually provided
by the model selected, hence no separate data gathering
is involved. For the BMIEP PRA of the LaSalle plant, a
new simulator-based recovery model has been developed
(Reference 23). Thus the recovery terms used in this
PRA will be quite plant specific, although indications
are that the new model has wide generic applicability.

d. Common Cause Failure Model Parameters

Often, there are important cut sets that involve
failure of like components in parallel service condi-
tions, i.e., failure of both diesel generators or both
emergency station battery banks. The common cause
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failure of such important components is often expli-
citly modeled in the fault tree as a single basic
event. The probabilities of these common mode failure
basic events are computed using one of several
empirically-based models, such as

1. The beta factor model24
2. The binomial failure rate model25
3. The multiple greek letter model26

Each of these models require data, usually in the form
of the fraction of multiple component failures as a
percentage of the total number of failures.

IV.3 Data Sources

There is a vide variety of component failure rate "data" exist-
ing in the literature, although the amount of actual raw data
is quite limited. Available nuclear component reliability
sources may be categorized as folicws.

1. Collections of actual failure events
2. Statistical analyses of data
3. Generic failure rate data bases

The analyst must be aware that many sources of component failure
characteristics are, in fact, just reanalyses of existing data
and thus are not new or independent data sources. This situa-
tion must always be kept in mind when reviewing the literature
for appropriate "generic" failure rates for use in a PRA. In
this section, we will categorize and summarize the more impor-
tant sources of reliability data for nuclear power plant
components.

As mentioned above, the number of actual data collections
(category 1) is relatively small. Historically, the most
important in the United States are the Licensee Event Reports
(LERs). Summaries of these reports and associated statistics
for different component types are contained in reports generated
at the Idaho National Engineering Laboratory. More recently,

-

the In-Plant Reliability Data System Program at the Oak Ridge
National Laboratory has been collecting and summarizing failure
data from U.S. plants in a systematized format. A third source
of data is the Nuclear Plant Reliability Data System (NPRDS)
produced by the Institute for Nuclear Power Opetations (INPO).
In addition, there have been a number of special Wrpose data
collections related to loss of offsite power, anticipated tran-
sients witnout scram and diesel generator reliability. The
sources of actual failure event compilations are shown in Table
2.

The second category of reliability data sources consist of
reports that have analyzed failure event data from one or more
of the above sources, and produced data-based estimates of the
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Table 2
I

Collections and Summaries of Actual Failure Events

Title Source Reference

1. Licensee Event Reports USNRC
*

2. Licensee Event Report Summaries Idaho National Engineering
Laboratory

Pumps NUREG/CR-1205
Valves NUREG/CR-1363
Electrical Power NUREC/CR-1362
Circuit Dreakers. Protective NUREG/CR-4126

Relays
Initiating Events NUREG/CR-3862
Selected I&C Components NUREG/CR-1740
Control Rods and Drive Mechanisms NUREG/CR-1331

3. In-Plant Reliability Data System Oak Ridge National Laboratory
i

Pumps NUREG/CR-2886
Valves NUREG/CR-3154: Electrical Power (Diesel Batteries. NUREG/CR-1362

Chargers and Inverters)
I

4. Nuclear Plant Reliability Institute for Nuclear Quarterly Reports
Data System Power Operations

1

I- 5. Reactor Safety Study Section USNRC NASil-1400
| III - LER Data for 1972-1973
i

6. ATNS: A Reappraisal Electric Power Research EPRI NP-2330
; Institute

l

7. Loss of Offsite Power at Electric Power Research EPRI NP-2301
. Nuclear Power Plants Institute
3,

) 8. Diesel Generator Reliability Electric Power Research EPRI NP-2433
at Nuclear Power Plants Institute

l
t

9. Clasolfication and Analysis of Electric Power Research EPHI NP-3967
Reactor Operating Experience Institute
Involving Dependent Events

10. PORV Failure Reduction Methods Combustion Engineering CEN-145

i

____-__- _ - - _ _ -- -- .. -



failure or unavailability rates for different components.
Reports often differ as to assumptions with respect to number
of demands, plant down-time or method of statistical analysis,
and thus different reports can arrive at different failure
rates using the same data base of failure events. Table 3
lists a number of such studies which have been found useful.
They differ from the reports in category 1 in that sufficient
information for reanalysis under different assumptions is not
available.

The final category consists of compilations of "generic" com-
ponent failure rates and associated estimates of uncertainty.
These generic values are usually obtained by review of two or
more category 1 or 2 sources, and may also include expert
opinion on component failure rates or probabilities derived
from other (non-nuclear) industrial experience. Table 4 lists
the more important generic data bases in use today. The user
is cautioned that these various generic data bases should never
be construed as being independent, as in no case is this true.
Further, considerable expert opinion has usually been used in !
choosing appropriate generic values. |

IV.4 Data Analysis Methods Available

The techniques discussed earlier are methods of propagating the
uncertainty of basic events through ,a system or accident
sequence model to estimate the uncertainty of the top event.
Methods of characterizing the uncertainty of the individual
basic events of these models in terms of probability distribu-
tions are discussed here.

IV.4.1 Bootstrapping ML hod
s

This is an approach to generating a sampling distribution for
one or more (constant) parameters in a failure model when only
the results of a single sample are available. To illustrate
this method, consider a binomial failure rate model, with data
of x observed failures in n demands. Let p be the observed
failure rate (x/n).

Random samples of the failure rate p are generated by randomly
choosing a probability value P and solving for a value of y i
from the binomial probability distribution equation j

P= (p)Y(1-p)n-y (16).

Thus, we are using the observed values of n and p to generate
random sample values of number of failures y, and thus random
samples of the failure rate p* y/n. From these, a distribu-=

tion on p can be generated.
l

l
1
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Table 3

Statistical Analyses of Data

i Title Source Reference

1. Probabilistic Safety Analysis USNRC NUREG-0666'
of DC Power Requirements
for Nuclear Power Plants

i
2. Reliability Data Book Swedish Nuclear RKS85-25

l Power Inspectorate

s

w
* 3. Statistical Analysis of Nuclear Los Alamos NUREG/CR-3650| '

i Power Plant Pump Failure National Laboratory
| Rate Variability-Preliminary

| Results
i

| In addition, items 2, 3, 5, 7, 8, 9, and 10 of Table 2 present analyses of reported
i data.
!

i
|

I
I
(
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Table 4

Generic Failure Rate Data Bases

Title Source Reference

Reactor Safety Study USNRC WASil- 14 00

Interim Reliability and Evaluation Sandia National NUREG/CR-2778
Program (IREP) Procedures Guide Laboratories

Accident Sequence Evaluation Program Sandia National NUREG/CR-4550
Laboratories

i
Reliability Data Book Swedish Nuclear Power RKS85-25a

? Inspectorate

Station Blackout Accident Analyses USNRC NUREG/CR-3226
- TAD A-44

I

i

1

.
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This bootstrapping process does yield a sampling distribution
on the failure rate parameter which can be used in an uncer-
tainty propagation procedure requiring parameter distributions
as input. It has been found to lead to optimistic (conserva-
tive) results when dealing with components having few (or zero)
failures in the data base used. The interpretation of the
bootstrap-derived distributions may vary greatly depending on
the sources of the data used in constructing the distributions.
The method does not allow the impact of plant-specific data to
be segregated and understood as is the case of the Bayesian
approach and hence the latter is to be performed in those cases.

IV.4.2 Use of Plant-Specific Data in a Bayesian Analysis

In many older plants, data obtained from control room logs,
maintenance request and event reports may be used to develop
plant-specific estimates of failure rates, either for specific
components or for a generic component category. Conversion of
these point estimates into probability distributions can be
accomplished utilizing Bayesian analysis in two ways depending
on the extent of additional (industry wide) data available.

IV.4.2.1 Use of Non-Informative Priors

Ideally, sufficient data would exist so that statistical
analysis of a specific component's actual failure record could
be made so as to yield an experience-based estimate of a
component's failure rate. A Bayesian analysis using a

noninformative prior distribution (see IV.4.2.2) yields a
characterization of the uncertainty in terms of a probability
distribution. Such an analysis could be conducted on individual
components, or on generic families of components, such as all
check valves in a plant. All components or events of the same
family would be modeled with the same distribution. Unfor-
tunately, it is rare in nuclear power experience that plant-
specific data exist in sufficient quantity to produce accurate
parameter estimates i.e., narrow uncertainty intervals.
However, the Bayesian technique should be employed by RMIEP
whenever data is available in appropriate quantity.

IV.4.2.2 Bayesian Updating of Generic Data

Bayusian data analysis allows for incorporation of limited
plant-specific data into past experience or knowledge as
contained in generic data bases to yield improved understanding
or updated distributions of basic event probabilities. Limited
plant-specific data implies that some information on a specific
component or family of components is available, but not enough
for a full plant-specific data analysis as discussed in Section
11.2.1. Bayesian updating utilizes Bayes' theorem which is
discussed in Section IV.5.1.
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In using Bayes' theorem, a basic event's probability may be
modeled by a certain distribution based on past knowledge,
perhaps from . previous PRAs or other experience. This is
referred to as the prior distribution of the parameter in
question. Suppose also that there is some plant-specific data
available for the basic event at hand. Bayes' theorem gives us
a probabilistic relationship between the basic events prior
distribution, the current data, and a new, or updated, distri- e

bution. Thi. updated distribution is called the posterior
distribution tor the parameter, and represents a revision of
the prior distribution based on the available plant-specific
data. The posterior distribution is then used in the PRA
models.

IV.4.3 Expert Opinion

Use of expert opinion or judgment is an approach to estimating
failure characteristics based on tapping into unquantified |
experience. For example, one might seek failure rate data from
personnel in related non-nuclear areas where accurate failure
or repair records are not kept. Or one might seek to infer
failure characteristics for one component (for which little or
no actual data are available) from data on a component of ,

similar design by appealing to the judgment of experts involved
in the design and application of the two types of components.
Or, in the case of simple mechanical failures, one might
calculate a failure rate based on fatigue limit data for
sub-pieces of the component in question. !!e r e again, expert
judgment is used to choose the most appropriate material data
and calculational scheme.

The process of assembling expert opinion usually involves
literature searches of past relate' experience and formal
surveys of "experts" with applicable experience. Often, the
results of formal surveys are combined, summarized and returned
to the experts surveyed so that clarification or revisions are
possible (as in a formal Delphi process). Generic lists of
component failure probabilities or failure rates are a typical
result of this method, such as printed in the Interim
Reliability Evaluation Proqtam (IREP) Procedures Guide 27 or

; the NUREG/CR-4550 document.z8 While expert opinion can yield '

good estimates of means and extreme values, assumptions must'

often be made regarding the shape of distributions. However,
the assumptions on distribution shapes are frequently guided by
expert opinion. Appendix C contains a summary paper prepared
by Los Alamos National Laboratory which describes the results
of an NRC-sponsored research program on the quantification of

I

expert opinion, and presents recommendations for soliciting
such information. '

IV.5 Elements of the Bayesian Updating of Base Event Parameter
Attributes

3 The Bayesian method allows for prior knowledge of a component's
behavior to be revised with a limited amount of plant-specific
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data. Experience from other power plants or data sources can
be updated with the latest contribution to the data pool from
the current component of interest. Use of Bayes' theorem to
achieve this update ensures that the rules of probability theory
are observed.

Bayes' theorem can be used to generate a distribution of a
parameter's value for two different cases: (1) prior knowledge
exists, and (2) no prior knowledge exists, or the analyst
chooses not to use prior knowledge so as to avoid biasing the
analysis. In the first case, a distribution of a parameter's
value which reflects the analyst's beliefs about the parameter's
possible values prior to collecting the current information is
chosen. This distribution is called the prior distribution.
Its form is not theoretically prescribed, but it is possible to
select a prior distribution so that the mathematical calcula-
tions involved in the updating are not too complex. In the
second case, the analyst chooses a "non-informative" prior
distribution. In both cases, the prior distribution is used
along with the current information on the parameter in Bayes'
theorem to derive a new, updated distribution of the parameter's
value. This new distribution is called the posterior distribu-
tion. The posterior distribution is used in whatever sampling
technique is chosen for propagating component uncertainty
through the system or sequence models.

IV.5.1 Bayes' Theorem

Bayes' theorem provides a medium by which some prior knowledge
about a random variable can be updated using new data in a

i

manner such that the rules of probability are observed. A
prior probability distribution is defined for the parameter
value in question. The parameter could be a demand failure
rate for standby components, a time failure rate for standby
components, or a time failure rate for components which must
function for a certain period of time. The prior distribution
will reflect the analysts opinion of the components behavior
based on published analyses of similar failures at other
plants. Licensee Event Reports (LERs), previous PRAs, and
generic failure models are examples of sources of information
used to define prior distributions. Any plant specific
information is then used to update prior distributions.

Bayes' theorem can be expressed as

b(X b) f (M '

f(K|g) (17).

JL(x|K)f(K)dk

where

likelihood that, given a parameter value K, a setL(xlk) =

of observations on some quantity x would result in
the values given by a vector x.

-43-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ - - _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ _ . _ - _ . _ _ ___ _



1

| f(Klx) = posterior distribution on the values of the
| parameter K, given that one has observed the

values x.'

i

f(K) = prior distribution on the value of the parameter K.

The form of the likelihood function is determined by the nature
of the data, binomial (constant failure on demand model) or
poisson (constant failure rate model). The form of the prior
distribution is not necessarily prescribed. However, it is
often advantageous to select a prior distribution which will
simplify the mathematics of using Bayes' theorem. One such
approach is to use conjugate priors, as discussed in Section
II.1. Examples of applying Bayes' theorem to constant-failure-
rate and constant failure on demand models are shown below.

IV.5.2 Constant Failure Rate Model

Many component failures are well described by a model that
estimates the frequency at which failures will occur. The time
period over which a component's failure probability is of
interest may be short--the length of time needed to mitigate an
accident condition, or long--the time between testing of standby
components such as normally open valves. Furthermore, the rate ;

at which a component will fail can be thought of as having a
constant value. Unfortunately, the knowledge associated with
the component's behavior is usually incomplete, and the exact
value for the failure rate is not known. Data on failures of
similar components in other systems and other nuclear plants
may yield a probabilistic range for the value of the failure
rate. This probability distribution is derived from information
on other components of similar design, but different locations,
environments, and maintenance histories. Even so, it serves as
a basis to model the failure rate of a particular component. ;

Bayes' theorem provides a mechanism by which limited plant-
specific data on a component can be incorporated into a distri-
bution characterized by a large body of data pooled from other
plants.

IV.5.2.1 Bayes' Theorem with Conjugate Priors

Suppose that current experience has shown that a particular
component type at a nuclear power plant has failed r times in a
total time period of T. The likelihood function for this type
of data is:

L(r|T,K) RT) r exp(-KT) (18)=
rl .
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The prior distribution for the component failure rate, K, '

when combined with this likelihood function in Bayes' theorem,
will yield a posterior distribution of X of . similar form as '

the prior is We gamma distribution. Suppose that past
experience at other plants shows a failures in a total time
period 8. The prior distribution would be a gamma distribution
with parameters a and 8:

X"~1exp.(-8K) (19)f(K) =p ,

|

where P(a) is the gamma function. The resulting posterior
distribution is also a gamma distribution with' parameters a+T
and 8+T:

+ ) (a4T-1)
p e xp [- ( 8+ T)K] (20)f(Klx) =

.

t

The initial model of the failure rate distribution has thus'

been adjusted to account for the new information at hand.
|
,

While conjugate priors are attractive from a mathematical view- f
point, they are only useful when the existing data justifies i

the use of a distribution of conjugate form. Mathematical
simplicity should not be the primary criterion of selection.

IV.5.2.2 Bayes' Theorem with Non-Informative Priors

If no additional information other than limited plant-specific
data exists, or if the analyst does not wish to bias the
analysis with outside information, a non-informative prior
distribution can be chosen. A non-informative prior is merely
a mechanism by which plant-specific data can be converted into

i a distributional form, and does not necessarily represent any
engineering judgment or experience. As with other priors. |

mathematical simplicity can be enhanced with conjugate dis- !
7

tributions.

A gamma prior distribution with parameters a = 8 0 can be !=

used as a conjugate non-informative prior * for the constant
failure rate model, incorporating r failures in the time period |

i T,

!

.

t
*1t should be noted that the form of the appropriate non- '

informed prior does depend on the censoring scheme for sampling
data as detailed in Reference 29.

|

r
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f(K) 1/K (21)= .

The resulting posterior distribution is also a gamma distribu-
tion with parameters r and T.

IV.S.2.3 Bayes' Theorem with Lognormal Priors

In practice, mathematically convenient priors which are conju-
gates of the likelihood functions of the data are not neces-
sarily an adequate characterization of past experience. More
often, the lognormal distribution is used to represent uncer-
tainty. This distribution is not a conjugate with Poisson
data, but is very useful for many components. Although the
mathematics of Bayes' theorem with lognormal priors is not as
simple as with the conjugate priors, simple numerical integra-
tion techniques can be used to generate an empirical posterior
density function, f(k|r.T) from Bayes' theorem:

g -1 -AT 1 " ~"r
e exp -2

=
_ s -

(22)f(k|r,T)

x#~1 -xT -f ",*~" dxe exp

o

where

u = mean of the natural logarithms of the prior data

o= the standard deviation of the natural logarithms of
the prior data ;

r = number of failures observed

T = component exposure time

This expression is easily evaluated. Thus, it is seen that
prior distributions need not fit conveniently into conjugate
forms in order to benefit from applications of Bayes' theorem.

1

i IV.5.3 Constant-Failure-Probability on Demand Model

Many component failure modes are characterized by a constant
probability of failure given that the component is demanded to
function in the appropriate mode. Examples of such component
failure modes are pumps failing to start upon receiving initia- '

tion signals and valves which must change state for system
operation. Just as with constant failure rate models, the,

knowledge of a component's failure probability on demand is
often incomplete. Limited plant-specific data may not be
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sufficient to estimate a component's behavior with a high degree
of confidence. Information pooled from other sources can be
used to derive a probability distribution indicative of the
behavior of similar component failures. This probability dis-
tribution does not represent exactly the possible range of a
particular component's failure probability, since plant-to-
plant differences are incorporated into it. However, it does
provide a foundation for generating a distribution using the
limited plant-specific data.

IV.S.3.1 Bayes' Theorem with Conjugate Priors

Suppose the current information on a component's behavior is in
the form of n failures in N demands. This is binomial data, and
the likelihood function used is:

I

p (1-p)"~ (23)L(n|N,p) =
n!( n)I

|

The conjugate prior for the failure probability, p, for this
likelihood function is the beta distribution. If past experi-
ence has shown 1 failures in m demands, the prior distribution

,

is: i

i

* ~

f(p) p (1-p) (24) '= g)p(

The resulting posterior distribution is also a beta distribu-
tion, with parameters 1+n and m+N-n.

IV.5.3.2 Bayes' Theorem with Non-Inf ormative Priors

As with constant failure rate models, limited plant-specific
data of constant probability on demand can be converted to a ;
distribution even without the use or existence of other infor- '

mation. Mathematical simplicity can bo enhanced by selecting a
,

non- inf o rmed conjugate prior distribution for the availab'e. I
date.

The beta distribution with parameters O and 0 is a commonly used
non-informative prior:

f(p) pg _p) (25)=
.

The resulting posterlot distribution is also a beta distri-
; bution with the parametets n and N-n.

|*
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IV.5.3.3 Bayes' Theorem with Lognormal Priors

Just as with constant failure rate models, conotant demand
probability information often can not justify the use of
conjugate priors. The lognormal distribution has been used
frequently to represent uncertainty .in practice. Numerical
integration techniques can be used to solve for an emp,tical
posterior density function, f(p), from Bayes' theorem:

p*~1(1-p)n-x | _g 'gxp ,.

1- ~

~_p|-f(p|x,n) (26)=

y*-1 ( 1- y) n- x gxp , _
g dy

where
j

u = mean of the natural logarithms of the prior data

o = standard deviation of the natural logarithms of the
data

x = number of failures observed .

n = number of demandsq

,

Again, this expression is easily evaluated. Thus, again it is
1 seen that there ic no need to sacrifice accuracy of models for

mathematical simplicity.

IV.S.4 Development of Prior Distributions from Subjective
Opinion

-

In the above two examples, the parameters of the prior distribu-
tions were assumed to be from past information on component
failures. However, methods exist for incorporating subjective
opinion of component behavior in lieu of data.30 For example,
suppose our prior knowledge of a component's demand rate, p, is
such that we believe there is only a five percent chance that
the value of p will exceed some value, p*, A mean value of p
is also assumed to be known. This pair of quantile estimates,

of p can be used to generate the parameters of an assumed prob--

ability distribution. Tables exist which relate these quantile
estimates to appropriate values of parameters for distributions :

such as the beta and gamma.31 Thus, an analyst's subjective
opinion of an event's probability attributes such as mean and
95th quantile can be used to generate a prior distribution for
the event's failure probability.

i

e

J
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V. CONCLUSIONS

This report has presented the results of a brief review of
available uncertainty analysis methods and deteribed the Latin
Hypercube sampling approach (as embodied in the TEMAC code)
that is recommended for use in the RMIEP probabilistic risk
analysis of the LaSalle plant. One important aspect of this '

approach, which was an important . consideration in its
selection, is its comprehensive sensitivity measure option. It

should be remembered that uncertainty propagation is, of
itself, of limited interest since it is essentially an
integration function. The ability to perform sensitivity
studies through the use of the importance measures and the
ability to identify the parameter estimates whose uncertainties ,

|

| contribute most to the uncertainty in the end result are a key
| feature of the approach adopted here. In addition the method

treats modeling uncertainty in a manner compatible with that >

proposed for the level 2 and 3 parts of the analysis. Thus the
approach to be adopted has the potential for enhancing the
understanding and analysis of the results ot the Level I PRA
both as a stand-alone analysis and as input to a Level 2 and 3
PRA.

The TEMAC code has recently been successf1llly applied in an
uncertainty analysis of the Peach Bottom plant as part of the
Accident Sequence Evaluation Program.32 This application ;

showed that this approach is both effective and relatively
inexpensive with respect to computer cost. Based on the above
considerations, the use of the TEMAC code and Latin hypercube
sampling was deemed the optimal analysis tool for use in RMIEP.

!

,

.

|

!
;

!

:

|
i

!

I
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Appendix A

Interface Between Core Damage Frequency Analysis (RMIEP),
the Accident Progression and Containment Failure2

Analysis (PRUEP) and the Health and4

Economic Consequence Analysis *
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0

As has been indicated, the uncertainty and sensitivity analyses
for the accident sequence and core damage frequency calculations
will be performed using the TEMAC code and limited Latin hyper-
cube sampling techniques. The analysis of accident sequence
frequencies and core damage frequencies is often referred to as
the "fcont end"' analysis.

To complete the full scope PRA, it is necessary to characterize
the accident progression following core damage, and to compute
fission product radionuclide release, and estimate the health
and economic consequences of each accident scenario. These
calculations are typically referred to as the "back end"
analysis, and an uncertainty and sensitivity analysis will also
be performed here. Uncertainty analysis methods to be used in
RMIEP for the LaSalle back end analysis are still evolving, and
work is continuing into 1988.

It is currently planned that the RMIEP front end analysis will
be performed and reported as an entity in itself. Then the
back end analysis for RMIEP will be performed and reported as a
separate entity. Given the planned sequential nature of the
front and back end analyses, it was necessary to examine the
interfaces between the front and back analyses to assure that
no incompatibilities would be present, and that the data needed
for the back end uncertainty calculations would be available in
the proper form. This section discusses the information flow
and compatibility between the front and back end analyses, and
demonstrates that the uncertainty analysis data and methods to
be used in the front end analysis are both compatible and
complementary with those being used for the back end analysis.
Areas are highlighted where careful attention to the interface
is required.

Figure A-1 shows a block diagram representation of the four
main steps in performing a full scope (Level III) PRA. The
first block (accident sequence and core damage analysis)

,

represents the front end calculations (the RMIEP analysis for |

LaSalle). The remaining three blocks together constitute the
back end analysis (as will be analyzed in the PRUEP program for
LaSalle). Each of these blocks of analysis and their interface
requirements is discussed below.

Figure A-2 shows the input and output of the front end acci-
dent sequence analysis. The inputs consist of the plant system
descriptions and operating procedures, plus the failure rate
data which was discussed previously in Section IV. The output I
consists of the dominant cut sets for each of the accident I
sequences defined by the event trees, plus the frequencies and |uncertainties of the accident sequences themselves. Although '

there are a variety of point estimate results, uncertainty
analyses, and sensitivity studies which result from the front
end analysis, there are really only two pieces of output which
are input to the back end calculations, namely.
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ACCIDENT SEQUENCE ANALYSIS: OUTPUTS:
.

* EVENT TREES * CORE DAMAGE CUT SETS ,

* SYSTEM FAULT TREES * ACCIDENT SEQUENCE OR I
llUMAN RELIABILITY ANALYSIS CUT SET FREQUENCIESe : ,

I L* PLANT STATUS
INFORMATION i

CODES: SETS, TEMAC i

o

i
'

INPUT DATA & ASSUMPTIONS:;

4

* PLANT SYSTEM CONFIGURATIONS CORE VULNERABLEi

* PLANT OPERATING PROCEDURES SEQUENCE TREE:

INITIATING EVENT FREQUENCIESi e

EQUIPMENT FAILURE PROBABILITIES*

* COMMON CAUSE FAILURE RATES
ITUMAN ERROR PROBABILITIES*

* RECOVERY ACTION PROBABILITIES

!
!
<

|
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I Figure A-2. Accident Sequence Analysis - Input and Output
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Core damage cut sets*

* Plant ufety systems status information implied by each

] cut set

' of course, all the component failure and test and maintenance
outage data plus their associated uncertainty characterizations
must also be available to the back end analysts. But the only
front end result which is passed to the back end is a listing
of the dominant core damage cut sets. Working together, the

,

front end and the back end analysts will regroup these cut sets
into plant damage states.

.

There is one other aspect of this interface Waich requires
further description, and that has to do with those front end
accident sequences which are denoted as "core vulnerable" 4

rather than "core damage" states. In these accident sequences, |

j the question of whether or not the core is damaged depends on
how the accident progression affects the functioning of safety
systems operating to prevent core damage. To determine which
cut sets in the core vulnerable accident sequencos lead to core
damage, an additional small event tree is appinded to these !

1

sequences. This tree contains phenomenologicil alternatives'

(i.e., does the containment fail, etc.). _his troe and
.

associated split fractions (probabilities) associated with each
option will be provided by the back end analysis team prior to

'

: final accident sequence cut set determination by the front end :

team. .

Figure A-3 shows the inputs and outputs to the accident
i progression calculations. The accident sequence cut sets
' provided by the front end analysis are first resorted into

'
plant damage states. All cut sets assigned to a given plant

I damage state present the same initial and boundary conditions ;

to the accident progression analysis, and thus are propagated [
together through the accident prooression event tree. Cut sets s

from a given accident sequence may be assigned to different |

damage state bins. The definitions of the various damage states
are determined by the first few (ten to 20) questions on the

i accident progression event tree (which is developed for each ;

i plant) and to some degree, with consideration of the important
accident sequences identified in the front end analysis. An'

example of the questions which define the damage states (taken
4 from the draft Grand Gulf PRA NUREG-1150) is given in Table
1 A-1. Taken together, it was found on the basis of these

questions that eight damage states could be defined which would
J cover all the dominant internal event cut sets. Definition of

these plant damage states requires a significant amount of-

interaction with the internal event (front end) analysts to
,

determine the plant systems status for each cut set.

|
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ACCIDENT PROGRESSION ANALYSIS: OUTPUTS:

o PLANT DAMAGE STATES DEFINITION

ACCIDENT o CONSTRUCT ACCIDENT PROGRESSION o ACCIDENT PRO-
SEQUENC E ---*= EVENT TREE ---*- GRESSION BINS
CUT SETS

o ACCIDENT PRO-
GRESSION RIN
FREQUENCIES

CODE: EVNTRE

o

INPUT DATA & ASSUMPTIONS:

o PLANT DESIGN DETAILS
o EQUIPMENT SURVIVABILITY
o SEVERE ACCIDENT PHENOMENA
o EXPERT OPINION

o

ACCIDENT PROGRESSION PHENOMENOLOGY CODE
RESULTS FROM:

o SOURCE TERM CODE PACKAGE (STCP)
o MELCOR
o RELAP-SCOAP
o TRAC-MELPROG
o CONTAIN
o HECTR

q

,

figure A *s. Accident Progression Analysis - Input and Output

A-7

-__



d' -

Table A-1

Initial Questions on the Grand Gulf Accident Progression
Event Tree Used to Define Plant Damage States

Questions Prior Question
Dependencies

'l. What is the ~ initiating event? None

2. What is the level of preexisting None
leakage or isolation failure?

3. What is the level of preexisting None
suppression pool bypass?

4. Is there a station blackout (diesel None
generators fall)?

5. Is DC power not available? None

6. For TC accident sequence, does None
SLC fail to inject?

7. Does HPCS fail to inject? None ;

C. Does RCIC fail to inject? None ;

9. Does the CRD hydraulic system inject? None

10. Does the condensate system fall? None ,

'

11. Do the LPC and LPCI systems fall? 1,4,7,8

*

12. Does RHR fail (heat exchangers not 1,4,11
available)?

13. Does the service watet cross-tie to 1,4,11
LPCI fail?

14. Are the containment (wetwell) sprays 1,4,11 ;

failed?

15. Is ADS inhibited or failed? None

li. Does the RPV remain pressurized? 1.5,7,8,13

17. What type of sequence is this (sum- 1,7,8,16 :

mary of plant damage)?

L

i
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The remainder of the accident progression analysis makes use of
the full accident progression event tree (APET), which has on
the order of 50 to 100 brancn points at which different possi-
bilities of accident progression are evaluated as a function of
the plant systems status and the various phenomenological possi-
bilities and their associated probabilities (split fractions).
Although a logic tree having 50 to 100 branches has potentially
millions of separate branches, these outcomes are grouped into
accident progression bins. As with the plant damage states,
each accident bin presents one unique set of initial and
boundary conditions for the source term calculations of Block
3. Table A-2 is a (partial) list of typical BWR source term
attributes. Each branch of the containment event tree is

i

! numerically evaluated, and each path through the tree cor-

responds to a particular set of values for the source term

attributes. A vast majority of these accident paths are

deleted from further consideration based on

a) negligible frequency of occurrence, and

'

b) negligible consequence of the resulting source terms.

(At least one low consequence bin is always retained to ,

represent those accident sequences with no containment failure,
and hence, low consequence.) The remaining non-negligible

;
' accident paths are then grouped according to the source - term

attributes, and these groupings constitute the accident
sequence bins. Typically, 50 to 200 individual accident bins
result from these groupings for each plant damage state.

The accident progression event tree is a logical enumeration of
all the initial and boundary conditions for the accident pro-
gression as well as all the potential accident paths identified
by results of calculations using more detailed computer code

,'

calculations. The codes used in the phenomenological calcula-
tions are shown as an input on Figure A-3. The containment
event tree is the vehicle for incorporating all the insights ;

gained from these detailed and scmetimes costly code analyses ,
'

of accident paths into a model which can be efficiently
evaluated for use in uncertainty and sensicivity studies.

,

Numerical evaluation of the accident progression event tree is
performed using the computer code EVNTRE. Three important
aspects of this code are that

] a) Multiple branches are allowed at each node of the tree,

l b) Branch probabilities may depend on paths taken through
the tree.2

1

) c) Proper correlation between dependent probabilities can
i be incorporated.

, A- 9
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j Table A-2

Typical BWR_ Source Term Attributes'Used'
to Define Accident Progression Bins'

Initiating Event Type*

Time to Core Cooling Failure -~<2 hr., <10 hr., >10 hr."

RpV Pressure at Vessel Breach -- High.-Intermediate, Low j

Containment Failure Time --

Before Core Degradation
During Core Degradation
At Vessel Breach

] Late |

1

'l Containment Leak Level -- Four sizes considered

Pool Bypass Level -- Three levels considered ;

i

Pool Temperature -- Subcooled. Saturated :

Reactor Building Bypass -- No, Yes

Core Concrete Interaction -- No. Yes with Water, Yes, but dry j

; Containment Sprays -- Always, Never. Early Not Late. Late Not |

i Early ;

;

!

! ,

|
'

I

|

:
'

!

:
, .

i.
f

; A -lO

t
- . - - _ _ _ _ . _ _ _ _ _ __



The output of the accident progression analysis consist of
frequencies of the accident progression bins.

Figure A-4 shows the input and output of the source term
analysis block of the back end analysis. In this analysis, the
flow of fission products released from the fuel is modeled and
analyzed. The numerical analysis will be performed using the
RELTRAC code which utilizes a set of time-dependent rate
equations to model transport, suspension and deposition of
fission products from the fuel, through the reactor vessel and
primary piping, the containment and subsequent release to the
environment. These rato equations are based on the results of
core damage and fission product release calculations and
experiments. The rates used in RELTRAC reflect insight and

| results from calculations using the more time consuming and
detailed codes such as MELCOR. The use of the simpler rate'

equation formulation in RELTRAC results in a code which can be
efficiently used in a sampling mode.

The RELTRAC code is run for each of the accident progression
bins. The result (for each bin) is a vector of released
radionuclide mass as a function of time for each of the nine
radionuclide groups shown on Table A-3. These nine time
histories (resulting from each accident progression bin) are
then further collapsed to a vector of three numbers:

}EEER|IEER
kLR

where

EEER = equivalent mass of 1 2 released in the first two
hours after warning

IEER = equivalent mass of 1 2 released following two hours
after warning

equivalent maes of Cs releasedLR =

The condensation from the vector of nine time histories of mass
release to three constant values of release utilizes studies
reported in NUREG/CR-4467 in which the relative importance of
the various fission product elements and their isotopos were
studied with respect to their radiobiological effect, and
equivalences were established in terms of equivalent masses of
iodine (early biological effect) and cesium (late biological
effect).

A-11
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SOURCE TERM ANALYSIS OUTPUTS:

o PARAMETRIC SOURCE TERM MODELS o SOURCE TERMS

ACCIDENT GIVEN ACCIDENT
. PROGRESSION PROG. BINS

% #4

BINS AND o CLUSTERED

FREQUENCIES SOURCE TERMS

FREQUENCIES

CODE: RELTRAC, CLUSTER

a

INPU1 DATA & ASSUMPTIONS:

o RADIONUCLIDE RELEASE EXPERIMENTS
o RADIONUCLIOE CHEMISTRY
o AEROSOL PHYSICS |

'
o EXPERT OPINIONS

:

d

|
4

DETAILEO SOURCE TERM CODE CALCULATIONS:

o SOURCE TERM CODE PACKAGE (STCP)
o MELCOR
o RELAP-SCDAP
o TRAC-MELPROG

I

!
Figure A-4 L

!
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Table A-3

Radionuclide Groups

1

Group Elements

1 Xe, Kr

2 I, Br

3 Cs, Rb

4 Te, Sb, Se

5 Sr

6 Ru, Rh, Pd, Mo, Tc

7 La, Zr, Nd, Eu, Nb, Pm, Pr

2 Ce, Pu, Np

9 Ba

A-13
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Thus the source term analysis results in- a release effect
vector (EEER, IEER, LE) of three numbers for each accident
progression bin identified as important in the accident
progression analysis. When uncertainties in parameters, models,

and timing are included, a number of different vectors are
obtained for each accident progression bin. These different
vectors may be viewed as different observations for a Monte
Carlo analysis. Thus, if we have 50 accident progression bins
and 100 observations (i.e., resulting vectors) for each bin,
then 5000 different release effect vectors result. Each one of
these vectors could form the input to a single health / economic
consequence calculation (using the MACCS code or equivalent).
However, to reduce the number of such calculations, the release
effect vectors are grouped into clusters, and a single
health / economic consequence calculation is performed for each
cluster. The cluster analysis is performed by considering each
release effect vector as a point in three dimensional space
with coordinates (EEER, EELR, LE}, and using the CLUSTER
code to identify groups of points which are closely spatially
related. Then, a single vector of fission products which
characterizes the cluster is used as input to the consequence
Calculations,

t

The health and econonic consequence calculation block is shown
in Figure A-5. The input is the cource term vector described
above, as well as the site and environment data shown on the
figure. The code to be used for the RMIEP application is the
MELCOR Accident Consequence Code System (MACCS), which
calculates estimatos of population dose and health effects as
well as associated costs. Repeating the MACCS calculations for

.
each input source term vector yields distributions on the

t output values which characterize the uncertainty in the back
.

l end calculation of core damage accident consequences. |
1

t

r

4

:

,

!

|

)

|

A-14

_ _ _ _ _ _ _ _ _ _ _ _ .



. - .. .

.

P

I

L

CONSEQUENCE ANALYSIS: OUTPUTSt

MELCOR ACCIDENT CONSEQUENCE POPULATION DOSE !

CODE SYSTEM HEALTH EFFECTS

RELEASE OFFSITE COSTS

E F F ECT ---4> : REPLACEMENT !

VECTOR POWER COSTS
r

CODE: MACCS
, ,

i

a

:

?

!
'

INPUT DATA & ASSUMPTIONS:
f

'

o SITE METEOROLOGY
o SITE DEMOGRAPHY |4

o 0051 METRY'

|o RADIATION INDUCED HEALTH EFFECTSa '

o ENVIRONMENTAL TRANSPORT
o EMERGENCY RESPONSE

,

l

i
|

!
2 ,-

4

| |

|
'

t

figure A-5. Consequence Analysis - Input and Output
,

a ,

'
,
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Appendix B

Latin Hypercube Sample Demonstration

E

I

|

)
I
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Latin Hypercube Sample Demonstration

The following discussion and demonstration of Latin hypercube
sampling are taken directly from the LHS users guide.

Iman, R. L., Shortencarier, M. J., 1984, A FORTRAN 77
Proccam and User's Guide for the Generation of Latin
Hypercube and ]igndom Samples for Use with Computer
Models. NUREG/CR-3624, SAND 83-2365, Sandia National
Laboratories, Albuquerque, NM.

This appendix describes the latest version of a computer
program for the generation of multivariate samples either
completely at random or by a constrained randomization termed
Latin hypercube sampling (LHS). This program has been
developed at Sandia National Laboratories and replaces the
previous program described in Iman, Davenport, and Zeigler
(1980). Every attempt has been made to make the present
program portable and user-friendly while, at the same time,
expanding the capability of the program to include additional
sampling distributions. ,

The situation addressed by the computer program is the follow-
ing. There is a variable of interest. Y, that is a function of
othat variables X, X2'1 XK. This function may be |** >

quite complicated, for example, a computer model. A question
to be investigated is: How does Y vary when X's vary according
to some assumed joint probability distribution? Related
questions are: What is the expected value of Y? What is the
99th percentile of Y? etc.

A conventional approach to these questions is Monte Carlo. By
sampling repeatedly from the assumed joint probability density
function of the X's and evaluating Y for each sample, the
distribution of Y, its mean, percentiles, etc., can be
estimated. This is one option provided by the program for
generating the X's. The program output, say for n Monte Carlo
repetitions, is a set of k-dimensional vectors of input
variables.

An alternative approach, which can yield more precise estimates,
is to use a constrained sampling scheme. One such scheme, de-
veloped by McKay, Conover, and Beckman (1979), is Latin hyper-
cube sampling (LHS). LHS selects n different values from each
of k variables Xg in the following manner. TheX,1 ....

range of each variable is divided into n nonoverlapping inter-
vals on the basis of equal probability density in the interval.
The n values thus obtained for X are paired in a random man-
ner (equally likely combinations)1 with n values of X2 These
n pairs are combined in a random manner with the n values of
X3 to form n triplets, and so on, until n k-tuplets are
formed. This is the Latin hypercube sample. It is convenient

B-3
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to think of the Liis , or a random sample of size n, as forming
an n x k .aatrix of input where the in row contains specific
values of each of the k input variables to be used on the in
run of the computer model.

The Lits technique has been applied to many different computer
models since 1975. The results of an application of LilS to a
large computer model can be found in Steck, Iman, and Dahlgren
(1976). A more detailed description of LilS with application to
sensitivity analysis techniques can be found in Iman, lle l t o n ,
and Campbell (1981, 1981b). A tutorial on LilS may be found in
Iman and Conover (1982b). A comparison of LilS with other
techniques is given in Iman and llelton (1983).

To help clarify how intervals are determined in the LilS ,
consider a simple example where it is desired to generate a Lits
of a size n = 5 with two input variables. Let us assume that
the first random variable Xi has a normal distribution
concentrated on the range from A to B. In this program, the
following interpretations (not subject to change by the user |
without modifying the code) are given to A and B for both the I

normal and lognormal distributions, namely

P(X1 s A) .001 and P(X1 s B) .001,= =

where P(E) denotes the probability of event E. That is, A is
defined as the .001 quantile and B is defined as the .999
quantile of the distribution of Xt. Thus, P(A g X1 5 B) =

.998, so both the normal and lognormal distributions are
truncated slightly in the program. That is, the sampling
procedure excludes values outside the interval [A, B). These
definitions of A and B imply that the mean of the normal
distribution is given by u . (A 4 B)/2 and since for a
standardized normal variable Z,

P(Z s -3,09) .001,=

it follows that the standard deviation of the desired truncated
normal distribution is given (to a close approximation) by

o- (B - u)/3.09 (B - A)/6.18.=

With the parameters u and a thus defined, the endpoints of
the intervals are easily determined. The intervals for n = 5
are illustrated in Figure B-1 in terms of both the density
function and the more easily used cumulative distribution
function (cdf). If the distribution were not truncated, then
the intervals in Figure B-1 would satisfy

P(A 1 X1 s C) = P(F s X1 s B) = .198

P(C 5 X3 s D) = P(D 5 X) s E) P(E s X t i F) .2.= = =

B-4
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To account for truncation requires dividing these probabilities
by .998. Thus, for all practical purposes, the five intervals
correspond to 20% probability.

We shall assure in thin example that the second random
variable, X2, has a uniform distribution on the interval from
G to 11 . The corresponding intervals used in the LilS for X2
are given in Figure B2 in terms of both the density function
and the cdf.

The next step in obtaining the Ll!S is to pick specific values
of X1 and X2 in each of their five respectivo intervals.
This selection should be done in a random manner with respect
to the density in each interval, that is, the selection should
reflect the height of the density across the interval. For
example, in the (A,C) interval for X1, values close to C will
have a higher probability of selection than will those values
close to A. Next, the selected values of X1 and X2 are
paired to form the required five input vectors. In the orig-
inal concept of Lils as outlined in McKay, Conover, and Beckman

f(sl >
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1 | |.

; ; |
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Figu r e B- 1. Intervals Used with a I.lis o f Size n = 5 in Terms
of the Density Function and Cumulative Distribution
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Figure B-2. Intervals Used with a Lits of She n 5 in Terms t

of the Density Function and Cumulative Distribution |
Function for a Uniform Handom Variable '

l

i

(1979), the pairing was done by associating a random permu- i

tation of the first n integors with oach input variable. For
purposes of illustration, in the procont example consider two
random permutations of the intogors (1, 2, 3, 4, 5) as follows:

Permutation Set No. 1: (3 1, 5, 2, 4) f

Permutation Set No. 2: (2, 4, 1, 3, 5)

By using the respective position within thoso permutation sets
as interval numbers for Xi (Set 1) and X2 (Sot 2), the .

following pairing of intervals would be formed.

Interval No. Interval No. fComputer Run No. Used for X1 Used for X2 j

1 3 2
2 1 4 !
3 5 1

'

4 2 3
5 4 5 j

!
i
I
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Thus, on computer run number 1 the input vector is formed by
selecting the specific value of X1 from interval number 3 (D
to E) and pairing this value with the specific value of X2
selected from interval number 2 (1 to J), etc. Once the
specific values of each variable are obtained to form the five
input vectors, a two-dimensional representation of the LilS can
be made such au given in Figure B-3.

Note in Figure B-3 that all of the intervals for Xi have been
sampled, 'and the same is true of X2 In general, a set of n
1.11 S points in k-dimensional Euclidean space contains one point
in each of the intervals for each of the k variables,

i

|
\

~

H
e

|
|

( > =. -

GE

X i; e
'

* K -
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O
uJ *O; J . _ _ _ _ ._

Z
< *

i E
I . _ . _ _ . . _

i *g

A C D E F B

R /.N G G O F X ii

Figure B-3. A Two-Dimensional Representation of One
| Possible i.liS of Size 5 Utilizing Xt and X2
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To illustrate how the specific values of a variable are
obtained in a Lits, consider the following example. Suppose it

5 from a normalin desired to obtain a Liis of size n =

distribution on the range from 0.0 to 10.0. Recall that these
two limits are taken to represent the lower and upper .001
quantiles, respectively. Therefore, the random variable has a
mean of five and a variance of 2.618 as indicated in Figure 4.

These points together with the density characteristics of the
normal distribution allow for the definition of the equal
probability interval endpoints. These endpoints are shown in
Figure 4 in terms of a density function. The next step is to
randomly select an observation within each of the intervals.

; This colection is not done uniformly within the intervals shown
in Figure 4, but rather it is done relative to the distribution
being sampled (in this case, the normal distribution). This ;

means that the sampling is done uniformly _o_n the vertical axis <

o,f_the cdf as shown in Figure B.4.
-

Therefore, to get the specific values, n 4 5 randomly selected
1, 2, 3, 4, 5) are obtaineduniform (0, 1) numbers (Um, m =

to serve as probability levels. These probabilities are then
scaled by

+ (m - 1)(.2) m=1, 2, 3, 4, 5Pm * Um(.2)

Thic ensures that exactly one probability, Pm, will fall ,

within each of the five intervals (0, .2), (.2, .4), (.4, .6),

(.6, .8) and (.8, 1). The values Pm are used with the inverse
normal distribution function to produce the specific values to
be used in the LilS. Note that exactly one observation is taken
from each interval shown in Figure B-4. The entire process is
shown in Table B.1. Figure B-4 makes it clear that when
obtaining a Liis , i t. ic casier to work with the cdf for each -

variable. This is the approach used in the computer program,
rather than defining the ondpoints of the intervals on the
x axis.

The above illustration shows how one input variable having a
normal distribution is sampled with LilS . This proceduto is ;

repeated for each input variable, each time working with the
'

corresponding cumulativo distribution function. If a random
sample is desired, then it is not necessary to divide the
vertical axis into n intervals of equal width. Rather, n
random numbers between 0 and 1 are obtained and each is mapped
through the inverse distribution function to obtain the
specific values. The final step in the sampling process
involves pairing the selected values,

it should be noted that even though two variables are sampled
,

independently and paired randomly, the sample correlation l

coefficient of the n pairs of variables in either a random
sample or a Lits will, in general, not equal zero, just due to
sampling fluctuations. In order to obtain a sample in which
the sample correlations more nearly match the assumed, or

B- 9
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Table B.1

One Possible Selection of Values for a Liis of Size 5
from a Normal Distribution on the Interval (0,10)

Scaled Corresponding Corresponding
Probabilities Standard Normal N(5,2.618)

Interval Uniform (0,1) Within the Interval Value (z-score) Observation
Number Random No. Pm = Um(.2)+ From the Inverse Within the

U_ (m-1)(.2) Distribution Intervalsm m

1 .080 .016 -2.144 1.529

5 2 .610 .322 -0.462 4.252

3 .525 .505 0.013 5.021

4 .935 .787 0.796 6.288

5 .620 .924 1.433 7.319

|
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intended, correlations, Iman and Conover (1982a) proposed a
method for restricting the way in which the variables are
paired. The effect of this restriction on the statistical
properties of the estimated distribution of Y, its mean and
percentiles, is not known, but is felt to be small. . The
pairing of variables in the program can be done either randomly
or by the restriction procedure through use of an input
parameter which is explained in the next section.

Additionally, the restricted pairing procedure of Iman and
Conover can be used to induce a user-specified correlation
among selected input variables through use of another input
parameter explained in the next section. However, it should be
pointed out- that such induced correlations are based on the
non-parametric technique known as rank correlation. Such a
measure is used since it remains meaningful in the presence of
non- normal distributions on the input variables.

As a final note if a correlation structure is pg specified by
the user, then the program computes a measure for detecting

,

I large pairwise correlations. This measure is known as the

| variance inflation factor (VIF) and is defined as the largest
element on the diagonal of the inverse of the correlation
i4trix. As the VIF gets larger th.tn 1, there may be some
uidesirably large pairwise correla ans present. Marquardt and
Snee (1975) deal with some very Arge VIPS (> 2 x 106) and
provide a very readable explanation on reasonable sizes of
VIPS. Marquardt (1970) indicates that there can be serious
collinearity (i.e., large pairwise correlations present) for
VIF > 10. Thus, there is certainly no problem as long as the
VIF is close to 1. The VIF appears as part of the computer
printout when the user requests the correlation matrix to be
printed, given that no correlation structure has been specified
by the user.

!

l

l

l
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ELICITATION OF EXPERT OPINION--SOME GUIDELINES

J. M. Booker and M. A. Meyer
Los Alamos National Laboratory

This appendix outlines some guidelines and issues of importance to
eliciting expert opinion data. It is intended to provide a brief overview.
However, it offers references for those interested in more detailed 1

information. :
Some of the concepts discussed below are 1) the nature of expert opinion

data; 2) means of selecting and motivating experts; 3) basic methods for |
eliciting expert opinion and tradeoffs in selecting one; 4) selection .of a |
response mode and means of measuring dispersion; 5) how much data to elicit
and record; and 6) reducing or countering the occurrence of bias in ielicitation methods, response modes, or requests for problem-solving data; and '

7) analyzing the information.

EXPERT OPINION DATA
Expert opinion data consists of expert's _ subj ective judgments.

Typically, it has been gathered where experimental data is sparse or
unavailable such as in risk analyses or reliability assessments. The use of
expert opinion data is wide spread in Probabilistic Risk Assessments (PRA)
applications and ranges from those formally elicited to those which are done
as part of the PRA process. Most people think of the formal use of expert
opinion such as in the requesting of probabilities of rare events. However,
expert opinion also includes the less formally elicited judgments that are
made by engineers and analysts at various stages of the PRA. Some examples
are which systems vill be included; what vill be used as a lover bound on
screening the cut sets; vhat features vill be included in the accident
sequence or fault tree; who vill serve on the review board of the PRA; who
vill be on the PRA team; and what data vill be used in the PRA7.

Until recently, many scientific disciplines viewed expert opinion, as
being lover in quality than data gathered by observations or measurements.
This view had been most common in fields, such as engineering, where even
measured data that was probabilistic in nature ("fuzzy" or uncertain) was not
readily accepted. In these environments, .information that -vas not
deterministic or totally quantitative in nature tended to be regarded as other
than '; al data" or as unanalyzable. This philosophy has been changing and
nov even the data purists seem to be more amenable to utilizing all the
information available, including that from human beings.

The current trend is one of acceptance of "fuzzy" or probabilistic data,
whether from measurements or observations, and of concentration on better,
more consistent ways of handling it. Expert opinion fits into this viewpoint
because it is observational data, can be both quantitative and qualitative,
and has a probabilistic structure. Like any other type of data, care is
needed in its elictation, analysis, and interpretation. The "care" that is
needed is in the use of consistent and valid procedures for handling this
data. This appendix focuses on the use of such procedures in the elicitation
process.

Although expert opinion ranges from those formally to informally
elicited, none of these judgments need be gathered in an ad-hoc fashion. All
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varieties of expert judgment can benefit from careful elicitation. Adherrance
to simple guidelines on eliciting and recording is usually sufficient to

providing vell-documented and consistent procedures for handling expert data
in PRAs. Some of these suggestions are given below.

SELECTING AND MOTIVATING EXPERTS
An expert is anyone especially knowledgeable in the field and at the

level of knowledge being elicited. For example, one level of knowledge could
be core damage frequency for a group of plants ; and a more detailed lovel
could be the risk of direct containment heating at the Surry Plant. Expertise
can be of two types: normative and substantive. Substantive expertise is
having knowledge in the field in question such as on nuclear reactors or
seismology. Normative expertise is based on having knovledge related to the
response mode (i.e., the form in which the experts are asked to encode their
judgments). Substantive expertise is no guarantee of normative expertise.
For example, because the experts are asked frequently about the probabilities
of events, an expert could have substantive knowledge of the field at the
necessary level of detail required but not normative knowledge of the rules
of probabilities.

In selecting experts, normative expertise, substantive expertise, and
knowledge at the needed level of detail are always important. In addition,
such factors as the reputations and diversity of the experts can beco'ne

,

important. Selecting experts who are vell known and respected among their
peers or the public can lend greater credibility to the study as vell as
provide motivation for other experts to participate. Diversity among experts
is desirable when trying to counter anticipated correlation or dependency
among experts (Seaver, 1976).

Motivating experts can be done by communicating the intrinsic benefits of
participation or by offering renumeration. The authors recommend motivating
through communication because paying the experts is costly, may attract one
type of participant (Gordon, 1980:118), or may detrimentally affect their viev
of the study (Baron and Byrne, 1974:122). Some aspects of the study which
could be presented as motivating to the experts are: the chance for
recognition; the opportunity to contribute to the development or improvement
of a process; and the experiencing of something new or, at least, different
from their usual vork routine.

In general, how the aspects of the study are communicated to the expert
vill affect his desire to participate. Usually, more individuals vill respond
positively to a request delivered in person than by mail. For this reason, it
is recommended that the experts be contacted, initially, in person or via the
telephone. Guidelines abstracted from communications theory (Stroud 1981;
Gorden, 1980) and the authors' interviewing experiences suggest that
particular items of information be communicated and in the following order: 1)
why the experts are being contacted (the purpose of the study and why they are
needed); 2) who is conducting or sponsoring the study 3) how much time and
effort their participation vill involve; 4) how they were selected; 5) What
tasks vill be required; 6) how confidentiality vill be handled; 7) vhether
participation is voluntary or reauired; 7) vhat the product of the study vill
be and whether they vill have access to the results (Heyer and Booker,1987b).

ELICITATION METHODS
There are about four methods commonly used for elicitation the

staticized (also called the "nominal") group, the Delphi, the structured
interactive group, and the interactive group. These vary in terms of the
degree of interaction that they allov between the experts and how the expert's
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estimates are combined. For example, the staticized group method allows no
interaction either by mail or in person between the experts. In this case,
estimates tend to be mathematically aggregated. The Delphi method involves
limited interactions between the experts via the mail. The experts' estimates
and reasoning are made anonymous and then circulated to the experts to allow
them to consider this data in revising their estimates. This process can be
continued until consensus, if it is desired, is achieved. The structured
interactive method permits the face-to-face meeting of experts but structures
their interactions. For example, the experts may be allowed to speak to one
another only at specific times during their meetings. Their estimates may be
aggregated mathemathically or through achieving consensus during the
elicitation sessions. The interactive group method consists of a group of
experts who are interacting in a spontaneous fashion in a face-to-face
situation. This method employs few controls and, thus, resembles the mee' tings
that commonly take place in vork settings. Estimates obtained from this
method can be combined by either method, although mathematical aggregation is
recommended. In particular, simple aggregation schemes, such as medians, are
suggested (Martz et al., 1985). (For a more complete description of these
elicitation methods, see Meyer et al., 1982).

At the basis of these four methods lie two views of interaction between
experts. One view holds that interactions are to be avoided or limited

i because of their af fect on the judgment process. For example, the staticized
I group method avoids any inter-expert interaction, while the Delphi method

permits only limited and controlled interaction. The Delphi sethod, developed
by Rand Corporation, was designed to prevent bias arising from group dynamics
in a face-to-face setting. One common problem arising from group dynamics is
the group think phenomenon, also called the follov-the-leader effect (Janis,
1972). To avoid having experts consciously or unconsciously adjust their
judgments to agree with those of the leader (s), the Delphi keeps experts
physically separated. Their judgments are sent to a central location where
any distinguishing features are removed. The newly anonymous judgments are
then recirculated to all the experts, who are allowed to change their previous
estimates.

At the other end of the spectrum, are approaches like the interactive
group methods that encourage group interaction in the belief that the best
quality ansvers come from the interaction of knowledgeable persons in a face-
to-face setting (Seaver, 1976). Some interactive methods, like the structured
interactive group, employ structure to minimize the effects of group dynamics.
A few examples of this structuring would be: having everyone state their viev,
one at a time, while no one else is allowed to comment; having the natural
group leaders give their thoughts last; and having the individuals record
their judgments as a means of encouraging them to anchor to their own
judgments. The interactive group method can be structured to any degree as
time permits.

Elicitation methods are usually selected on the basis of the analyst's
belief as to whether interaction between the experts is desirable or not. The
analyst frequently makes this decision because the literature has not been

iconclusive as to which method produces the best, the least biased, results. I
The authors favor a structured interactive group method because of the

,synergistic effect of discussion on the judgment process. Techniques, such as i

mentioned in Reducing or Countering Bias, can be used to mitigate the biases
that occur in an interactive group setting.

,Any of the basic elicitation methods can be structured to different I
degrees. For example, the interviewing of the experts in the staticized group I
can be done informally or in a structured manner. The structured manner could

)
:
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involve presenting each expert with the assumptions or definitions that they
are to use in solving the problem and then monitoring their use of these. As
a general rule, the more structure imposed on the method, the more time
required.

Generally, it is best to gather expert opinion in a structured and
controlled manner for several reasons: 1) to knov vhat considerations have
entered into the experts' estimates, 2) to defend the gathered data, and 3) to
update or modify this data (Heyer, 1984).

Some considerations that enter into the experts' estimates are their
definition of the problem; their interpretation of directions; their
assumptions or boundary conditions; and the calculations or heuristics used to
solve the problem.

Expert data may require oefense against critics of the elicitation and/or
the conclusions. The method of elictation needs to be considered valid by
current theory in communications, cognition, and psychology. Often, if the
elicitation is properly conducted, the experts vill feel positively enough
about the study to defend it.

Frequently, there is a need to update or modify the expert data (e.g., if
circumstances have changed). If the elictation method has been structured
properly, there is a greater chance of knowing which factors relating to the
estimate have been affected by the change cnd therefore, how to modify the
data acordingly. It is recognized that most expert opinion is biased, one way
or another. The challenge is 'o knov which vay so that a counter-bias can be
employed (Payne, 1951; Meyer, 1984).

RESPONSE MODE AND DISPERSION MEASURES
Response mode: The response mode is the form in which the expert is

requested to give his judgment. Probabilities, odds, logs, intervals, paired
comparisons, and ratings (Seaver and Stillvell 1983; comer et al.,1984) are a
fev of the commonly used response modes. Selection of a response mode
involves two issues: obtaining the experts' judgments in a form that can be
analyzed or used in a model, and avoiding bias. For example, the analyst may
prefer probabilities and request the expert's judgments in this form. If the
data is to serve as input to a model, the experts' judgments will need to be
given in a compatible form or to be converted later. Associated with these
considerations is the question of whether the expert can encode his thoughts
into the requested response mode.

Typically, the focus in expert opinion has been on the practical issue of
obtaining the experts' judgments in the needed form rather than on the
experts' ability to encode their thoughts into that form. The later involves
the problem of bias. Bias can be defined as occurring when: 1) the expert's
underlying judgments or reporting of these is altered by the elicitation
process; and 2) when the expert's estimates do not follow normative
statistical or logical rules (Heyer, 1987). The response mode can lead to
either type of bias. For example, the expert may not be able to express his
exact thinking in the requested response mode -- In the translation from his
judgment to an acceptable response, his judgment may be misrepresented. Then
too, experts can give estimates that do not follow the mathematical or logical
rules governing their use. For example, probabilities for mutually exlusive,
exhaustive events should sum to 1.0 and the expert's probabilities may not.

Some of the bias may stem from the expert's unfamiliarity with the
response mode. Generally, substantive experts (those with expertise in their
field) are not accustomed to couching their judgments in the form of
logarithms, intervals, percentiles, or even probabilities. Their substantive
expertise does not guarantee normative expertise (expertise in the use of the
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response mode). Another contributor to bias may be the way in which the human
mind works.

Hogarth (1980) has attributed many biases to our "limited, sequential,
information processing." The human mind is not a miniature calculator.for information processing, the mindBecause of its limited memory space
resorts to short cuts, heuristics, to solve problems. These heuristics can
result in a skeving, biasing, of the answer from what it should be
mathematically. For example, in solving a complex problem an individual may
form an initial impression of what the answer should be and then consider
components of the problem one at a time. In solving each part of the problem,

Thisthe individual may mentally adjust up or down from his last impression.
heuristic, anchoring and adjustment, tends to produce a final estimate which
is biased tovards the individual's initial impression. (See Hogarth 1980 for
other biases stemming from the way in which we think.)

It is advisable to avoid the use of response modes with which
individuals are reputed to have difficulty, such as percentiles and

probabilities, in favor of simple linear scales. Difficult response modes are
defined here to mean those that lead frequently to estimates that do not

follov normative statistical or logical rules. A continuous linear scale is a
number line with defined endpoints. These endpoints should represent extreme

| values and be labeled with text or numbers. The scale also includes tick
,

marks or intermediate values. The expert is instructed to mark his answer at
or between any of the delineations on the scale.

The experts find these scales convenient to use and the results of their

easily interpreted for analysis. Some advantages of this scale are:use are
1) it requires very little definition from the interviewer; 2) it does not
restrict the range of response possibilities like a caltiple choice response
mode; 3) it provides the opportunity for responses in the extremes values; 4)
it relies on linear thinking, a mode that most humans use naturally (Kahneman
and Tversky, 1982); and 5) it is easily converted to numerical, continuous
variables for analysis.

Dispersion Measures: In addition to the single estimate (a central

probability measure), experts are often asked to provide a dispersion measure
such as percentiles, variances, ranges, or error bars. These dispersion

measures are prone to bias (Kahneman and Tversky, 1982) because the experts
are not able to provide the measures that match the prescribed defintions.
For example, the expert may be asked to provide the 5th and 95th percentiles
of his distribution for the probability of an event. He vill provide two
estimates that he thinks correspond to the 5th and 95th percentiles; however, |

those two estimates vill more likely correspond to approximately the 33rd and |
'

67th percentiles. Humans, in general, tend to underestimate uncertainties.
|Even in studies where experts vere trained or vere knowledgeable of this bias,

the results were still only marginally improved and uncertainty remained |
underestimated (Lichtenstein et al., 1982). In addition, humans also tend to i

be poor at estimating variances or standard deviations (Kahneman and Tversky, |

1982). Humans also have difficulties in estimating extreme values such as the
absolute maximum or minimum values (Martz et al., 1985).

Therefore, asking experts for specifically defined measures of dispdon
vill yield estimates that cannot be accurately interpreted. The only .

interpretation that can be made is : hat they vill underestimate the true |

uncertainty. This bias also occurs if the experts are asked to estimate the
dispersion of a distribution of multiple experts' estimates. This occurs I

because each expert is likely to perceive others as having the same values as
!he does.
|
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One solution is to elicit some specified measure (e.g., the 5th and 95th
percentiles), and then to double or triple the range of values knowing that
the provided ranges vill underestimate the true uncertainty. Then the
question becomes how much adjustment is needed. There is no clear answer to
this question because there is no vay of knowing what is actually represented
by the ranges given.

A second solution is to elicit only the central tendancies and to use
multiple experts to form a single distribution. The problems with this are
twofold: 1) a large number of expert estimates is required; 2) the resulting
distribution is usually multimodal which leads to the question of how to
interpret the mixture of distributions.

A third solution is to elicit the central tendancies and to allow the
expert to volunteer an undefined range of values around it. This undefined
range could also be requested; however, in such a case, the expert vould need

definition of the range being requested and the analyst is faced again witha
the problems in solution one. The volunteered dispersion also lacks a
specific interpretation; however, it can be interpreted as defining a set of
values that the expert felt like specifying. This set of values could then be
used as multiple estimates from the same expert allowing the expansion of a
usually sparse data set, or it could be interpreted as some middle quantiles
(e.g., 40th and 60th percentiles) for formulating expert prior or likelihood
distributions.

Iae specified and volunteered dispersion measures both have the same
interpretation problem when using them to formulate expert distributions. The
one advantage of the volunteered measure over the specified one is that the
volunteered measure is free from any biases imposed by the interviewer in
requesting and defining it. The volunteered estimates fit into the elictation
philosophy of attempting to minimize bias.

H0V HUCH DATA TO ELICIT AND RECORD
A variety of data can be elicited and recorded the estimate with a

dispersion measure, if elicited; data on how the expert arrived at his answer
(e.g., information considered and heuristics used in solving the problem); and
some of the characteristics of the expert's professional background (e.g.,
education, vork experiences, and experience with similar types of problems).
The question of how much data to gather arises when the researcher veighs the
possible benefits of gathering more data than the estimate against the
additional time that this vould take. Many researchers do not know how an
expert's reasoning could be used or how this qualitative data could be
analyzed by itself or in combination with the expert's estimates. For these
reasons. data on how the experts arrived at an estimate has generally not been
gathered in the field of expert opinion. The fev exceptions to this rule can
be found in studies where the expert has asked that one of his considerations,
such as a caveat, be recorded to clarify his answer (Benjamin et al.,1986).
In addition, data on the experts' background is either not elicited or not
printed to protect the experts' identities. For example, in an earlier
seismic study, not only were the expert's names not linked to their judgments
but their names were not identified (Baecher, 1979).

The authors suggest that data on how the experts solve the problem be
elicited and recorded. Each expert should be observed and asked to name any
information that they are using in solving the problem. For example, the
expert may say that he is considering the conditions of state or the
definitions given in the background to the problem. In addition, the expert
should be asked to explain how he is solving the problem. His description
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might include some equations, enculations, or more general heuristics, such
as mentioned in the Response Mode section.

Recording the problem-solving data offers such benefits as providing
guidance and justification for aggregation and for the elimination of
outliers. Aggregations are frequently performed to combine multiple, and

often differing estimates, into one estimate. A bimodal distribution of
estimates is common but if the analyst does not know why the experts are split-

into two camps, he is handicapped in his decision on how to aggregate (Booker
and Meyer, 1985). An aggregation scheme can be selected on the basis of the
problem-solving information rather than guesswork, if problem-solving data is
elicited. In a Bayesian approach to aggregation, the decision maker has to

decide how to combine the expert's estimates with each other and with his
judgments. Knowledge of the expert's problem-solving methods vill allow the
decison maker to judge which estimates he wishes to veight most highly (Meyer
and Booker, 1987a).

In the treatment of outliers, the "aberrant observations should be
recorded and the reason for deleting them explained" (Tietjen, 1986). The

problem-solving data can shov vhether the experts who supplied the suspected
outliers solved the problem in a different manner and whether their estimates
can be eliminated. If the suspected outlier appears to be legitimate data
(e.g., the expert did not appear to use unvarranted assumptions or

unacceptable definitions), then this evidence can be stated. In this case,

the outliers could be accomodated by means of a robust estimator.
In addition, it may be a good idea to record some background information

such as, the experts' years of experience, formal ede tion, previous work
experiences related to the problem area, years since t+2 expert vorked on a
similar problem, and colleagues with whom the expert has wen associated.

The recording of this magnitude of data can be made easier and more
thorough by the use of a note-taking observer or a tape recorder. The means
of recording can be chosen by asking which vill b2 the most convenient,
unobtrusive, and reliable in the particular setting. Whatever means is used
should have as its goal the recording of data in as exact manaer as possible.
Filtering, reducing and modeling of the information gathered can be done
following the interview; however, the results from such screening should

always be traceable back to the original data.

REDUCING OR COUNTERING BIAS IN ELICITATION
As a general rule, bias in expert opinio*, can be bandled by anticipating

where it is likely to occur, designing the means to counteract it, and then
monitoring the elicitation process. This bias countering plan can be applied
to the different parts of elicitation, auch as the elicitation method, the
response mode / dispersion measure, and the problem-solving interviev. As

mentioned earlier, bias can occur when: 1) the subject's underlying thoughts
or reporting of these has been altered by some aspect of the elicitations or
2) when thi subject's thinking does not follow normative statistical or
logical rules.

For example, in selecting an elicitation method, one could anticipate the
occurrence of both types of bias. If, for instance, an interactive group
method was being considered for use, one could expect the possibility of group
think. Vith the group think phenomena, the expert's thinking is altered as he
consciously or unconsciously acquieses to what he believes to be the group
opinion. Then too, in an interactive group method, the experts' failure to

follov logical or statistical rules could surface. For example, if the
experts vere meeting for several sessions, they vould be prone to

inconsistency in their thinking. In particular, the definitions or conditions
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that the group has agried to use are likely to under go subtle changes and
reinterpretation in the minds of each expert. Because the expert's judgments
are based on such info *21 tion, these changes can affect their ansvers.

The elf:itation method can be designed to counter the anticipated biases.
For example, in the case of the interactive group method, group think could
be countered in several ways. One way would be to have the experts record
their thoughts and tiien, one at a time, present these to the group. (Other
vays are given in the section, Elicitation Methods, or in Meyer, 1984.) To
counter inconsistency, in part, one could conduct a review of the definitions
or conditions at the beginning of every session.

In attempting to counter bias in the use of response modes and dispersion
measures, selection is the key. As mentioned in the Response Mode section,
people do not use the modes and measures, statistically or logically, as they
should. Humans not natural Bayesians nor are they good assessors of
encertainty. Ve recommend the use of simple response modes, such as linear
scales, which are not as prone to bias. <

If the expert is to be intervieved on how he solved the problem, the
phrasing and timing of these questions is critical in avoiding bias. The
major bias to occur in this form of elicitation is the influencing of the
expert's thoughts or his descriptions or these. To avoid introducing this
source of bias, the authors recommend several techniques: verbal protocal from
educational psychology (Belkin et al., 1986), the ethnographic method from
cultural anthropology (Spradley, 1979), and a type of verbal probe from
psychology (Ericsson and Simon, 1980). These techniques work best in
individual interviews but they can be adapted to interactive group situations.

Vith the verbal protocal method, the expert is instructed to think aloud
as he progresses through the problem. The verbal protocal is believed to

deliver the data that the subject currently possesses in his short-term memory
(Ericsson and Simon, 1980). Because the interviewer does not ask questions
but simply records the subject's verbalizations, there is little chance of his
affecting the subject's thoughts. The method of verbal protocal need not be
used, if sufficient information can be obtained using the ethnographic method
and serbal probe, described below. A disadvantage of the verbal protocal
method is that it can slow the expert's progress on solving the problem. Then
too, it does not vork on very complex problems because the expert stops
thinking aloud to concentrate.

The ethnographic method involves restating the expert's words into
questions (Heyer and Booker, 1987a). Thus, it does not insert the
interviever's thoughts and bias the expert's account. The ethnographic method
can used to pursue, in greater depth, elements that the expert mentioned in
his thinking aloud.

The verbal probe is used immediately after the expert has given his
solution to gather additional data on how the expert solved the problem. This
probe is asked immediately because the needed information is only available
in an individual's short-term memory for a brief period of time. Thereafter,
the individual is likely to be able to retrieve only portions of what he had
in his short-term memory and to have to fill in the gaps by guessing (Ericsson
and Simon, 1980). A simple phrasing of the probe is used, such as "Vhy did
you give this ansver," as opposed to a check-list phrasing. An example of a
check-list phrasing would be, "Did you consider factors X, Y, and Z?" The
simple phrasing is preferrable because it is less prone to bias. Vith the
check-list phrasing, the subject is more likely to say that he considered
these factors when he did not and to believe that he should consider these in
his future problems. The authors recommend that the verbal probe be used to
obtain data on the expert's problem solving, even if no other method is used.
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It takes very little time and can be used easily in group settings. Asking
the expert to explain his ansver immediately after he has given it vill
provide enough data for the receiving the benefits mentioned in Elication
Methods. If the explanation is unclear or too general, the ethnographicmethod can be used to gather additional information.

In addition to designing or structuring elicitation methods to counter
bias, it is advisable to monitor the sessions. For example, during an
interactive group session, one could vatch for any indication of a group think
phenomena. The lack of any dissenting views could be an indication of a group
think situation. By monitoring the elicitation sessions, one can gauge the
presence of bias and employ further countermeasures, if necessary.

ANALYZING THE DATA
There are several analytical problem areas vorthy of mention. These are

discussed in Meyer and Booker (1987c) and include recommendations on: 1) howto handle the large amounts of data gathered; 2) how to handle the
qualitative / quantitative data mixture; 3) hov to formulate models at the
desired level of generality; 4) how to deal with the correlation among

: experts, if any exists; and 5) how to aggregate estimates or distributions
from multiple experts. Vhether the approach taken is a Bayesian or classical
one, these problems are likely to be present. Each is discussed brieflybelow.

Many multivariate statistical techniques exist for handling the large
amounts of data. Cluster and correlation analyses can provide means for
identifying relationships between the variables and the response data.

Non-parametric and rank procedures are suggested for handling the
qualitative / quantitative data mixture to avoid the making of assumptions about
data distributions (which are not usually normal or multivariate normal).

The level of generality is an important assumption made in these
analyses. All analysts deal with this problem in designing and analyzingexperiments. Usually, the experiments are designed to gather the specific
information required to answer the research questions. In expert opinion, the
information gathered cannot alvays be done in such a controlled environment.
This is why the authors recomnend that the analyst gather all possible
information first and screen, filter, and model what is needed later. It isat this point that the level of generality must be decided. Hov finely vill
the information be screened? What granularity vill be assumed? It should be
noted that the conclusions drawn only apply to the level of generality used in
the modeling process. Conclusions can be different for different levels(Heyer and Booker, 1987c).

An example of the importance of the level of generality can be found inthe issue of correlation among experts. At a general level of problem jsolving, correlation among experts vas found (Heyer and Booker, 1987a). |However, at a more detailed level of analysis, this source of correlation was ;not evident (Heyer and Booker, 1987c). Inter-expert correlation seems to iexist only at certain levels of modeling the problem-solving processes. Thus,
Ithe correlation issue may not be as prevasive or troublesome as previously Ithought.
!If correlation among experts is not a problem, then combining expert

estimates or distributions together becomes an easier process. Veighting
factors or distributions can be assumed and used in many aggregation schemes
(see Martz et al., 1985). The aggregation can be done in a Bayesian framework
using prior and likelihood distributions for data and for experts, or by theformulation of a single distribution from the multiple experts. Decision
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analysis techniques can be used in either framevork to incorporate the effects
of the decision maker (Booker and Bryson, 1982).

SUMMARY
The benefits of using the suggested techniques for elictation outveigh

the efforts required to implement them. 1) A consistent and structured
methodology for elicitation can be established and used. 2) As situations
change, old information can be updated if it has been properly documented. 3)
Information can be compared from different studies. 4) Defense against
critics can be given with confidence. 5) Futher avenues of research and
development can be discovered and implemented thus, adding to the field of
knowledge and improving the methodology.

REFERENCES
Most of these references are available, upon request, from the authors:

J. M. Booker or M. A. Meyer at Los Alamos National Laboratory, P.O. Box 1663,
MS F600, Los Alamos. NM, 87545, USA.

Baecher, G.B. (1979), "Correlations Among Experts' Opinions," Unpublished
manuscript, Massachusettes Institute of Technology, Boston, MA.

Baron, R.A. and Bryne, D. (1974), Social Psychology: Understanding Human
Interaction, Allyn and Bacon Inc., Boston, MA.

Belkin, N.J., Brooks, H.M., and Daniels, P.J. (1986), "Knowledge Elicitation
Using Discourse Analysis," Proceedings from the Knowledge Acquisition for
Knowledge-Based Systems Vorkshop, Banff, Canada, pp. 3,0-3,16.

Benjamin, A.S., Kunsman, D.M., Villiams, D.C., Boyd, G.J., and Murfin, V.B.
(1986), "Evaluation of Severe Accident Risks and the Potential for Risk
Reduction: Surry Power Station, Unit 1," SAND 86-1309, Sandia National
Laboratory, Albuquerque, NM.

Booker, J.M. and Bryson, M.C. (1985), "Decision Analysis with Applications to
Proj ec t Management: State-of-the-Art Survey and Bibliography," American
Journal of Mathematical and Management Sciences, 5, pp. 1-62.

Booker, J.M. and Meyer, M.A. (1985), "Sources and Effects of Correlation of
Expert Opinion," LA-UR-85-1879, Los Alamos National Laboratory, Los Alamos,
NH.

Cleaves, D.A. (1986), "Cognitive Biases and Corrective Techniques: Proposals
for Improving Elicitation Procedures for Knowledge-Based Systems," Proceedings
from Knowledge Acquisition for Knowledge-Based Systems Vorkshop, Banff,
Canada, pp. 9,0-9,11.

Comer, M.K, Seaver, D.A., Stillvell, V.G. and Gaddy, C.D. (1984), "Generating
Human Reliability Estimates Using Expert Judgment," NUREG/CR-3688, SAND 84-
7115, Sandia National Laboratories, Albuquerque, NH.

Ericsson, K.A. and Simon, H.A. (1980), "Verbal Reports as Data," Psychological
Reviev, 87, 3, pp. 215-250.

Gorden, R.L. (1980), Intarvieving: Strategy, Techniques, and Tactics, Dorsey
Press, Homevood, ILL.

C-12

.

. .

- - - - _ - _ _ _ _ _ _ _ _ _ - _ _ _ _ _



- _ _ _ _ _ _ _ _ _ _ _ _

l

Hogarth, R. (1980), Judgment and Choice: The Psychology of Decisions, Viley-
Interscience, Chicago, IL.

Janis, I.L. (1972), Victims of Group Think: A Psychological Study of Foreign
Policy Decisions and Fiascos, Houghton Mifflin, Boston, MA.

Kahneman, D. and Tversky, A. (1982), "Subjective Probability: A Judgment of
Representativeness," D. Kahneman, P. Slovic, and A. Tversky (eds.), Judgment
Under Uncertainty: Heuristics and Biases, Cambridge University Press, NY., pp.
32-47.

Lichtenstein, S., Fischhoff, B. and Phillips, L.D. (1982), "Calibration of
Probabilities: The State of the Art to 1980", D. Kahneman, P. Slovic, and A.
Tversky (eds.), Judgment Under Uncertainty: Heuristics and Biases, Cambridge
University Press, NY., pp. 306-334.

Martz, H.F., Bryson, M.C. and Valler, R.A. (1985), "Eliciting and Aggregating
Subjective Judgments--Some Experimental Results," Proceedings for the Tenth
Annual SAS Users Group International Conference, SAS Institute Inc., Cary, NC.

Heyer, M.A. (1984), "Human Factors Affecting Subjective Judgments," LA-UR-84-
3176, Los Alamos National Laboratory, Los Alamos, NM.

Meyer, M.A. and Booker, J.H. (1987a), "Sources of Correlation Betvten Experts:
Empirical Results f rom Two Extremes," LA-10918-MS, NUREG/CR-4814, Los Alamos
National Laboratory, Los Alamos, NM.

Meyer, M.A. and Booker, J.M. (1987b), "Selecting and Motivating Experts," A
Guide for the Elicitation and Analysis of Expert Opinion, draft for book, Los
Alamos National Laboratory, Los Alamos, NM.

Meyer, M.A. and Booker, J.M. (1987c), "Problems with Expert Data in Studies of
Inter-Expert Correlation," Invited paper to be presented at the Joint
Statistical Meetings, Aug 17-20, 1987, San Francisco, CA.

Meyer, M.A. (1987) "Handling Human Bias in Acquiring Knowledge for Knowledge-
Based Systems," LA-UR-87-1221, Los Alamos National Laboratory, Los Alamos, NH.

Heyer, M.A., Peaslee, A.T. and Booker, J.M. (1982), "Group Consensus Method
and Results," LA-9584-MS, Los Alamos National Laboratory, Los Alamos, NH.

Payne, S. (1951), The Art of Asking Questions, Princeton University Press,
Princeton, NJ.

Seaver, D.A. (1976), "Assessments of Group Preferences and Group Uncertainty
for Decision Making," Social Science Research Institute, University of
Southern California, Los Angeles, CA. ,

|

Seaver, D.A. and Stillvell V.G. (1983), "Procedures for Using Expert Judgment
to Estimate Human Error Probabilities in Nuclear Power Plant Operations," ,

INUREG/CR-2743, SAND 82-7052, Sandia National Laboratories, Albuquerque, NM.

Spradley, J.P., (1979), The Ethnographic Interviev, Holt, Rinehart and
Vinston, New York, NY.

C-13 !

|
|

_ -_
_ _ _ . _ _ _ _ _ _ _ . , _.



. _ - _ _ _

.

.

..

Stroud, H. (1981), "Communication Strategies: Strategies to Improve the
Transfer of Knowledge," Communication Strategies for Advanced Technologies,
Albuquerque, NH.

Tietjen, G.L. (1986), A Topical Dictionary of Statistics, Chapman and Hall,
New York, NY.

.

C-14

_ _ _ .



- _ _ _ ____

|
Distribution |

US Government Printing Office
Receiving Branch (Attn: NRC Stock)
8610 Cherry Lane
Laurel, MD 20707

320 copies for RX'

James Abel (10)
Commonwealth Edison Co.
35 1st National West
Chicago, Illinois 60690

B. B. Agrawal
US Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
5650 Nicholson Lane
Rockville, MD 20852

H. Banon
EQE Inc.
3300 Irvine Ave., Suite 345
Newport Beach, CA 92660

Patrick Baranowsky
US Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation
Washington, DC 20555

i

Robert A. Bari
Brookhaven National Laboratories
Building 130
Upton, NY 11973

Richard J. Barrett
US Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation
Division of Radiation Protection
and Emergency Preparedness

Washington, DC 20555

Doyle Batt
NRC Risk Analysis Unit
EG&G Idaho, Inc.
P. O. Box 1625
Idaho Falls, ID 83415

Barbara Bell
Battelle Columbus Laboratories
505 King Avenue
Columbus, OH 43201

Dist-1



_____

R. C. Bertucio
Energy Incorporated
1851 So. Central Place, Suite 201
Kent, WA 98031

Dennis Bley
Pickard, Lowe & Garrick
2260 University Drive
Newport Beach, CA 92660

Gary Boyd
Safety & Reliability Optimization
Services

624 Glen Willow Dr.
Knoxville, TN 37922

Robert J. Budnitz
Future Resources Associates
734 Alameda
Berkeley, CA 94707

Gary Burdick
Division of Reactor and Plant Systems
US Nuclear Regulatory Commission
5650 Nicholson Lane
Rockville, MD 20852

N. G. Cathey
Idaho National Engineering Lab.
P. O. Box 1625
Idaho Falls, ID 83415

Frank Coffman
US Nuclear Regulatory Commission
Division of Reactor and Plant Systems
Office of Nuclear Regulatory Research
Washington, DC 20555

George Crane
1570 E. Hobble Creek Dr.
Springville, Utah 84663

Garth Cummings
Lawrence Livermore Laboratory
L-91, Box 808
Livermore, CA 94526

Mark A. Cunningham
US Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555

Dist-2
|

__



Peter Cybulskis
Battelle Columbus Divisien
505 King Avenue
Columbus, OH 43201

Richard S. Denning
Battelle Columbus Division
505 King Avenue
Columbus, OH 43201

Ed Dougherty
Science Applications International Corp.
P. O. Box 2501
Oak Ridge, TN 37831

Adel El-Bassioni
US Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation
Division of Radiation Protection and

Emergency Preparedness
Washington, DC 20555

Karl Fleming
Pickard, Lowe & Garrick
2260 University Drive
Newport Beach, CA 92660

J. B. Fussell
JBF Associates, Inc.
1630 Downtown West Boulevard
Knoxville, TN 37919

Norman L. Graves
2114 Sparrow Ct.
West Richland, WA 99352

Lon N. Haney
Human Factors Organization
EGtsG Idaho, Inc.
P. O. Box 1625
Idaho Falls, ID 83415

G. William Hannaman
NUS Corporation
16835 West Bernardo Drive
Suite 202
San Diego, CA 92127 '

'

Steven Hodge
Oak Ridge National Laboratories
P. O. Box Y
Oak Ridge, TN 37831

|

Dist-3

-_ _ - ,- _ _ __



___ _ .

.
.

.

.

I

Peter Humphreys
US Atomic Energy Authority
Wigshaw Lane, Culcheth
Warrington, Cheshire
United Kingdom, WA3 4NE

Brian Ives
UNC Nuclear Industries '

P. O. Box 490
Richland, WA 99352

Alan Kolaczkowski
Science Applications Int. Corp.
2109 Air Park Rd. SE
Albuquerque, NM 87106

Jim Kolanowski
Commonwealth Edison Co.
35 1st National West
Chicago, Illinois 60690

George Klopp
Commonwealth Edison Co.
P. O. Box 767, Room 35W
Chicago, Illinois 60690

Dave Lappa
Lawrence Livermore National Labs
7000 E Avenue
Livermore, CA 94550

Josette Larchier-Boulanger i

Electricte de France
Direction des Etudes Et Recherches
30, Rue de Conde
65006 Paris, France

Peter Lohnberg
Expresswork International, Inc.
1740 Technology Drive
San Jose, CA 95110

.

Herbert Massin
Commonwealth Edison Co.
35 1st National West
Chicago, Illinois 60690

Andrew S. McClymont
IT-Delian Corporation
1340 Saratoga-Sunnyvale Rd.
Suite 206
San Jose, CA 95129

Dist-4

_ _ _ _ _ _ _ _ _ _ - _ _ _ _ _



Joseph A. Murphy
Division of Reactor Accident Analysis
US Nuclear Regulatory Commission
5650 Nicholson Lane
Rockville, MD 20852

Gareth Parry
NUS Corporation
910 Clopper Rd.
Gaithersburg, MD 20878

Blake Putney
Science Applications Int. Corp.
5150 El Camino Real, Suite C31
Los Altos, CA 94022

David Pyatt
US Nuclear Regulatory Commission
office of Nuclear Regulatory Research
Washington, DC 20555

d

Dale Rasmuson (10)
Division of Reactor and Plant Systems
US Nuclear Regulatory Commission
5650 Nicholson Lane, NL-005
Rockville, MD 20852

M. K. Ravindra
EQE Inc.
3300 Irvine Ave., Suite 345
Newport Beach, CA 92660

Tom Ryan
Division of Reactor and Plant Systems
US Nuclear Regulatory Commission
5650 Nicholson Lane
Rockville, MD 20852

1

Paul Shemanski
US Nuclear Regulatory Commission
office of Nuclear Reactor Regulation
Washington, DC 20555

Stephen Sholly
MHB Technical Associates
1723 Hamilton Ave.
Suite K
San Jose, CA 95125

Desmond Stack
Los Alamos National Laboratory
Group Q-6, Mail Stop K556
Los Alamos, NM 87545

Dist-5

r
_ _ _ _ _ _ _ _ _ -



Alan D. Swain
712 Sundown Pl. SE
Albuquerque, NM 87108

Steve Topp
EI DuPont DeNemours & Co. Inc.
Savannah River Laboratory
Aiken, SC 29808-0001

Stephen D. Unwin
Department of Nuclear Energy
Division of Safety and Risk Evaluation
Brookhaven National Laboratory
Building 130, Brookhaven Lane
Upton, NY 11973

William E. Vesely
Science Applications Int. Corp.
2929 Kenny Rd., Suite 245
Columbus, Ohio 43221

Jim E. Wells
Lawrence Livermore National Labs
7000 E Avenue
Livermore, CA 94550

3141 S. A. Landenberger (5)
3151 W. L. Garner
6400 D. J. McCloskey
6410 N. R. Ortiz
6412 A. L. Camp
6412 W. R. Cramond
6412 S. L. Daniel
6412 D. M. Kunsman
6412 K. J. Maloney
6412 L. A. Miller
6412 A. C. Payne, Jr.
6412 T. T. Sype
6412 T. A. Wheeler
6412 D. W. Whitehead
6413 E. Gorham-Bergeron
6413 F. T. Harper
6415 J. C. Helton
6415 R. L. Iman
6440 D. D. Dahlgren
6447 M. P. Bohn (25)
6513 D. D. Carlson
8024 P. W. Dean

Dist-6



4.C70RW336 U $. NUCL La ktGVLITomT Coeses,SS,oq t *t'o* Y 49 88" 8dat*** 8* I'oc see vs 4s . ,r ears

NUREG/CR-4836*@ BUOGRAPH!C DATA SHEET,

SAND 87-0871in .% 1.uct,o~,o,t .sv .s
.......o..... . ..... ...

Approaches to Un rtainty Analysis in
Probabilistic Risk ssessment

.o.n. c.,ce p ieo
y u...o%v.

December g 1987i s.ui-oms.

Michael P. Bohn, Timo y A. Wheeler, Se.n p ar,uvio
~~

Gareth W. Parry ,f |wo*'= "aa

Decembe# 1987
,n..o....oo.:.wa.i.os. . .~o...t.so.oo s ow i. c , . .oncv ,.s. e . vvi w .. .

__

IV
Sandia National Laborator s ,,,,0,c, 4 w ...
Albuquerque, New Mexico 87 5 ff

F A1384
Y

k.n"o'"'o*'
",, , c o o. so o.s.e ,.1,o , ... .so.,.4.so .co.isi m c-

Division of Reactor and Plant ystems
? FinalOffice of Nuclear Regulatory R earch [

N[/
U.S. Nuclear Regulatory Commiss.t n * " " * c o " " 8 o "*""'"

Washington, DC 20555
_

! o ,a. 1.. . ~o r u f
f
-

. , . s , . e , ,a . , ., y
An integral part of any probabilistic sk assessment (PRA) is the
performance of an uncertainty analysi to quantify the uncertainty in
the point estimates of the risk meagpr considered. While a variety
of classical methods of uncertaintypana sis exist, application of
these methods and developing new chnigt s consistent with existing
PRA data bases and the need for port (s bjective) input has been an
area of considerable interest sj ce the pi eering Reactor Safety Study
(WASH-1400) in 1974. This rep t presents he results of a critical
review of existing methods fo performing u ertainty analyses for

PRAs, with special emphasis . assical and Bay an approaches have been !

identifying d ta base limitations on ;
the various methods. Both .
examined. This work was f ded by the U.S. Nt lear Regulatory Commission
in support of its ongoinc ull-scope PRA of th LaSalle nuclear power
station. Thus, in addi n to the review, thi report contains
recommendations for a e itable uncertainty anal, is methodology for
the LaSalle PRA.
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