
..

i~: e

.

DESIGN, VERIFICATION, AND VALIDATION PLAN

FOR THE

SOUTH TEXAS PROJECT

QUALIFIED DISPLAY PROCESSING SYSTEM

:

Design Specification Number 955842

Rev. 4

i

L

|

i
|

0371G:1/M/785-

8805060288 880429
PDR ADOCK 05000498
P DCD

'

__ _ _ . _ _ . . - - _ . . . _ - _ _ _ . _ _ _ _ _ _ _ . , _ - _ _ - _ _ . - . _ , _ _ _ _ , . . . - . . _ _ _ _ _ . _ _ _ _ _ _ _ - _ _ , _ . . _ - -

'

! '
TABLE OF CONTENTS

'
'

1.0 Introduction

1.1 Purpose

1.2 System Functions

1.2.1 Data Acquisition and Display

1.2.2 Qualified Control

1.2.3 Steam Generator Water Level Compensation / Temperature
'

Averaging Scheme

1.3 System Architecture

2.0 References

3.0 Definitions

4.0 System Development

5.0 System Verification

5.1 Introduction

5.2 Verification Philosophy

5.3 Verification Techniques

5.3.1 Reviews

! 5.3.1.1 Design Specification Reviews

5.3.1.2 Source Code Reviews

5.3.1.3 Functional Test Reviews,

|

5.3.2 Software Testing

5.3.2.1 Structural Testing

5.3.2.2 Functional Testing

5.4 The Verification Matrix

5.4.1 Classification

5.4.2 Demonstrability of System Functions.

5.4.3 Hierarchical Level of Sof tware Components

| 0371G:2/M/785
|
|

1
l

. . .

'

'. l',

5.4.4 Justification of Matrix Elements i

5.4.5 Application of the Matrix to the QDPS !

I6.0 System Validation

6.1 Validation Philosophy
|

6.2 Validation Testing Overview

6.3 Validation Testing of Software Modifications
|

7.0 Drganization

7.1 Development Team

7.1.1 Chief Programmer

7.1.2 Programmers

7.2 Verification Team

7.2.1 Chief Verifier

7.2.2 Verifiers

7.2.3 Librarian

I

|
,

0371G:3/M/785
|

.

'

.,

process variable characteristics that must be
displayed. Examples of variable characteristics
determined by the review of the guidelines
include the following: value, range, prediction,
trend, and pattern recognition. Grouping the
variables and factoring in the location of the
00PS displays on the control board determined
the structure of the displays that needed to be
developed. Many iterations occurred with the
South Texas Operations Department during this
development process. Utilizing the plant ERGS
and the input from operations personnel ensures
that the QOPS will present the data in a clear
and concise form.

1.2.2 Qualified Control
.

The second subsystem, Qualified Control, performs the
valve control functions, including control for the steam
generator Power Operated Relief Valves (PORV), the
Auxiliary Feedwater Throttle Valves, the Essential Cooling
Water Flow, and the' Reactor Vessel Head Vent Valves. The
control units will be channel oriented in exactly the same
way as the RPUs and will share the same cabinets with the
RPUs. However, operation of the control unit will be
independent of the RPU.

1.2.3 Steam Generator Water Level Compensation / Temperature
Averaging Scheme

The third subsystem includes the Steam Generator Water
Level Compensation Subsystem (SGWLCS) and the Temperature
Averaging Scheme (TAS). The SGWLCS temperature
compensates steam generator narrow range water level
channels for level induced errors as a result of changes
in reference leg temperature. The TAS calculates the loop
average hot leg temperature from the three narrow range
fast response RTO's per loop. The SGWLCS/TAS subsysteme
are housed in the same cabinets with the RPUs and the
Qualified Control units. Like the Qualified control
subsystem, the operation of SGWLCS/TAS are independent of
the RPU.

1.3 System Architecture

A block diagram of the QDPS system is shown in Figure 1. Each of
the hardware units depicted contains one or more microprocessors.
Each Auxiliary Process Cabinet (APC) shown on the left of Figure 1
contains an RPU, a Qualified Control unit and a SGWLCS/TAS unit as
shown in Figure 2. Figures 1 and 2 illustrate the various
inputs, outputs and data comunication paths associated with the
00PS subsystems.

0371G:6/M/785

'
Response Facility computer Systema RPU
communication is via isolated, rodundant RS-422
data links. l

The Database Processing Unit (DPU) is an
intelligent microprocessor based unit that

ireceives isolated data link inputs from-each RPU i

and uses the data to provide:
'

Analog outputs to drive conventional-

indicators and recorders

Contact outputs to provide qualified status-

information

Datalink outputs to drive the display-

modules and recorder demultiplexer

The DPU performs redundant sensor algorithms and
other necessary calculations. Each RPU
transmits its data to both DPUs in the system.
Therefore, each DPU maintains the entire
database. Either DPU can provide the operator
with the best information available from the
entire data base. Comparison of the data
between DPUs prevents the possibility of
erroneous display information.

The display modules are qualified
graphic / alphanumeric devices which provide
comprehensive displays without requiring large
amounts of control board space. Each display
module interfaces to both Database Processing
Units to provide full redundancy and meet single
failure requirements. The display itself 4.s at

512 by 512 dot matrix plasma display (with an,

' active area of approximately 8.5 inches square)
providing a flat screen, extreme ruggedness, and -

easy to read orange-on- black images that are
,

: flicker free.

The display module is human engineered for ease
of operation and provides functional pushbuttons

t for individual display selwetions. The
functional keys allow the operator to movet

l easily from one page to another to display
specific information.

| During the design of the graphic display pages,
! South Texas Nuclear Plant Operations personnel

have been involved in the estabibhmesseof
criteria and mimic design. A checklist was
developed that was based upon a review of the
Westinghcuse Owner's Group Emergency Response
Guidilines (ERG's) which stipulated the plant

i

. 0371G:5/M/785
l

L
_

.

!

'
process variable characteristics that cust be
displayed. Examples of variable characteristics
determined by the review of the guidelines

'include the following: value, range, prediction,
trend, and pattern recognition. Grouping the
variables and factoring in the location of the |
00PS displays on the control board determined
the structure of the displays that needed to be
developed. Many iterations occurred with the
South Texas Operations Department during this
development process. Utilizing the plant ERGS
and the input from operations personnel ensures
that the 00PS will present the data in a clear
and concise form.

1.2.2 Qualified Control

The second subsystem, Qualified Control, performs the
valve control functions, including control for the steam
generator Power Operated Relief Valves (PORV), the '

Auxiliary Feedwater Throttle Valves, and the Reactor
Vessel Head Vent Valves. The control units Will be
channel oriented in exactly the same way as the RPUs and
will share the same cabinets with the RPUs. However,
operation of the control unit will be independent of the
RPU.

1.2.3 Steam Generator Water Level Compensation / Temperature
Averaging Scheme

The third subsystem includes the Steam Generator Water
Level Compensation Subsystem (SGWLCS) and the Temperature
Averaging Scheme (TAS). The SGWLCS temperature
compensates steam generator narrow range water level
channels for level induced errors as a result of changes,

'

in reference leg temperature. The TAS calculates the loop
average hot leg temperature from the three narrow range
fast response RTD's per loop. The SGWLCS/TAS subsystemsi

are housed in the same cabinets with the RPUs and the
Qualified Control units. Like the Qualified Control

| subsystem, the operation of SGWLCS/TAS are independent of
the RPU. '

' 1.3 System Architecture

A block diagram of the 00PS system is shown in Figura 1. Each of
the hardware units depicted contains one or more microprocessors.
Each Auxiliary Process Cabinet (APC) shown on the left of Figure 1

i contains an RPU, a Qualified Control unit and a SGWLCS/TAS unit as
shown in Figure 2. Figures 1 and 2 illustrate the various
inputs, outputs and data communication paths associated with the ..

00PS subsystems.

|
|

0371G:6/M/785

'
200 REFERENCES

The following is a list of relevant industrial standards which were
considered in the development of this plan:

1. ANSI /IEEE-ANS-7-4.3.2.-1982, "Application Criteria for
Programmable Digital Computer Systems in Safety Systems of Nuclear
Power Generating Stations"

2. IEEE Std. 279-1971, "Criteria for Protection Systems for Nuclear
Power Generating Stations"

3. IEEE Std. 603-1580, "Criteria for Safety Systems for Nuclear Power
Generating Stations"

4. WCAP 9153, "414 Integrated Protection System Prototype
Verification Program," Westinghouse Electric Corp., August 1977.

5. WCAP 9740, "Summary of the Westinghouse Integrated Protection
System Verification and Validation Program," Westinghouse Electric
Corp.. September 1984.

6. Regulatory Guida 1.97, Rev. 2, "Instrumentation for
Light-Water-Cuoled Nuclear Power Plants to Assess Plant and
Environs Conditions During and Following an Accident," December
1980

7. ANSI /ASME NQA-1-1983, "Quality Assurance Program Requirements for
Nuclear Power Plants"

8. IEEE Std 729-1983, "Standard Glossary of Software Engineering
Terminology"

9. IEEE Std 730-1981, "Standard for Software Quality Assurance Plans"

10. IEEE Std 828-1983, "Standard for Software Configuration Management
Plans"

11. IEEE Std 829-1983, "Standard for Software Test Documentation"

12. IEEE Std 830-1984, "Guide to Software Requirements Specifications"

13. NBS Special Publication 500-75 (February 1981), "Validation,
Verification and Testing of Computer Sof tware"

14. NBS Special Publication 500-93 (September 1982), "Software
Validation, Verification, Testing Technique and Tool Reference
Guide"

15. NBS Special Publication 500-98 (November 1982), "Planning for
Software Validation, Verification and Testing"

16. IEC SC 45A/WG-A3 (January 1984), "Draft: Software for computer in
~ the Safety System of Nuclear Power Stations"

|
0371G:7/M/785

|
|

l

' '
3.0 DEFINITIONS

The definitions in this section establish the meaning of words in the
context of their use in this plan.

COMPUTER SOFTWARE BASELINE - The computer program, computer data and
computer program documentation which comprises the complete
representation of the computer software system at a specific stage of
its development.

1

DEVELOPMENT TEAM - A team of individuals or an individual assigned to i
design, develop and document software as outlined in this plan.
Generally it comprises team coordinator, programmers and a librarian.

DESIGN REVIEW - A meeting or similar communication process in which the
requiremsats, design, code, or other products of a development project
are presented to a selected individual or group of personnel for
critique.

FUNCTIONAL TESTING (FT) - Exercise of the functional properties of the
program as specified in the design requirements.

FUNCTIONAL TEST REVIEW (FTR) - A review which is performed on the
documented functional tests that were run by the developer on his code.

INSPECTION - An evaluation technique in which sof tware requirements,
design, code, or other products are examined by a person or group other
than the designer to detect faults, violations of development standards,
and other problems.

INTEGRATION TESTS - Tests performed during the hardware-software
integration process prior to computer system validation to verify
compatibility of the software and the computer system hardware.

MODULE (M) - Refers to a significant partial functional capability of a
subprogram. Modules are usually stand-alone procedures or routines
which may call other lower level modules or units.

PEER REVIEW - An evaluation technique in which software requirements,
design, code, or other products are examined by persons whose rank,
responsibility, experience, and skill are comparable to that of the
designer.

,

PROGRAM - Totality of software in a system or one independent part of
software of a distributed system.

SOFTWARE DESIGN SPECIFICATION (SDS) - A document which represents the
designers' definition of the way the software is designed and
implemented to accomplish the functional requirements, specifying the
expected performance. An SOS can be for a system, subsystem, module, or,

unit.j .

|
,

I

| 0371G:8/Mn85

l
!

l

1
_-- . -. ,___.___- - - - -- . . - _ - _ - . - ___ - .. .

, .
SOFTWARE TEST SPECIFICATION (STS) - A document detailing th3 tests to be
performed, test environment, acceptance criteria and the test
methodology. Approved receipt of the SDS document by the chief verifier
forms the basis for the STS.

SOURCE. CODE REVIEW (SCR) - A review which is performed on the source
code.

SUBPROGRAM (SP) - Refers to a major functional subset of a program and
is made up of one or more modules. A subprogram is typically
represented by the software executed by a single processor.

STRUCTURAL TESTING (ST) - Comprehensive exercise of the software program
code at:d its component logic structures.

UNIT (U) - The smallest component in the system software architecture,
consisting of a sequence of program statements that in aggregate perform
an identifiable service.

VALIDATION - The test and evaluation of the integrated computer system
to ensure compliance with the functional, performance and interface
requirements

VERIFICATION - The process of determining whether or not the product of
each phase of the digital computer system development process fulfills
all the requirements imposed by the previous phase.

VERIFICATION TEAM - A team of individuals or an individual assigned to
review source code, generate test plans, run tests and document the test
results for a computer system. It is comprised of verifiers led by a
chief verifier.

VERIFICATION TEST REPORT (VTR) - A document containing the test
results. In conjunction with the Software Test Specification it
contains enough information to enable an independent party to repeat the
test and understand it.

|

|

|
|

|

|

|

0371G:9/M/785

l

' '

4.0 SYSTEM DEVELOPMENT
*

The development of the QDPS, as shown in Figure 3, involves four stages: .

1. Definition
2. Design
3. Implementation
4. System Integration and Testing

A brief description of each stage is given below:

The definition stage is characterized by the. statement of the problem to
to be solved, the construction of an initial project plan, and a
high-level definition of the system. During this stage, the overall
functional requirements of the system are identified. Within
Westinghouse, these requirements are brought together in a System Design
Specification.

The design stage is characterized by the decomposition of these System
Design Specifications into Hardware Design Specifications and Software
Design Specifications of sufficient detail to enable the implementation
of the system. The Software Design Specifications for the system are
then further decomposed into subsystem, module and unit specifications.

The implementation stage is characterized by the actual construction of
the hardware and the coding of the various software entities. The
software development team is responsible for the writing, assembling
testing, and documenting the computer code. As the software entities
are completed, beginning at the unit level, they are officially turned
over to the verification team for final independent review and/or
testing as specified in Section 7.0.

Software development can be viewed as a sequence of well-defined steps
similar to system development. The System Design Specification is used
to generate Software Design Specifications which in turn are used to
develop high level language programs. These programs are converted by
the compiler into assembly language, then by the assembler into machine
code. Tha linker combines groups of assembled code with the library to
produce relocatable object code for input to the loader. The loader-

generates the absolute code which is then burned into read only memory
(ROM).

The use of a high level language allows the engineer to express his
ideas in a form that is more natural to him. The computer adjusts to
his language and not he to the language of the computer. Software
written in a high level language is more readily reviewed by an
independent party who may not be familiar with the computer instruction
set. Some features of the high level language aid the development of
reliable software. For example, block structuring helps identify and
reduce the number of possible execution paths.

' '

The system integration and testing stage is where the various hardware
components and software entities are assembled in a stepwise manner with
additional testing at each step to ensure that each component performs
its required function when integrated with its associated components.

0371G:10/M/785

. _ _ . - - _ _ - _ . .- -- .. . - - -. - . - - - . - _ . _ _ - ._

3 *

The final activity associat2d with the system integration and testing
stage is the testing of each subsystem and final testing of the QDPS. A
system test plan is derived from the system functional requirements and
System Design Specifications to confirm that the QDPS exhibits a level
of functionality and performance which meets or exceeds the stated
requirements. This final system test is referred to as the factory
acceptance test.

Several design assurance techniques are utilized throughout all stages
of the development process to ensure that tha hardware and software
components meet the required specifications.

Formal design reviews are held within Westinghouse to ensure that the
System Design Specifications meet the System Functional Requirements.
The design review team consists of a group of multidisciplineary
engineers to ensure that all aspects of the design are reviewed.

During the implementation stage, acceptance testing and review are
conducted by the designers on the hardware components, circuit boards,
and subsystems to ensure they exhibit a level of functionality
consistent with the Hardware Design Specifications and Software Design
Specifications.

The final design assurance technique utilized is the conduct of the
system factory acceptance test to ensure the system performance meets
the system functional requirements and System Design Specifications.

.

[

|

|

|

| 0371G:11/M/785

- _ . . -. _. . . - . - - .- - . . - - _ - - _ - . - . - . - . - - . .-

'
5.0 SYSTEM VERIFICATION

5.1 Introduction

With the applicatica of programable riigital computer systems in
safety systems of nuclear power generating stations, designers are r

obligated to conduct independent reviews of the software
associated with the computer system to ensure the functionality of
sof tware to a level comensurate with that described in the system
requirements.

Section 5.2 provides an overview of the verification philosophy.
Section 5.3 describes the verification techniques utilized in
performing the verification process. Section 5.4 describes the
matrix that the verification team uses for determining the level
of verification that should be applied to each software entity.
The section concludes by defining the application of the
verification matrix to the 0DPS. '

5.2 Verification Philesephy

Figure 4 illustrates the integration of the system verification
and validation process with the system design process. As
discussed in Section 4.0 during the implementation stage, when the
writing, testing, assembling, and documenting associated with each
software entity (beginning at the unit level) is completed by the
design team, the software entity is officially turned over to the
verification team. At this point the verification team perforcis
an independent review and/or test of the software entities to
verify that the functionality of the software entities meet the
applicable Software Design Specifications. After the verification
team is satisfied that all requirements are met, the software is i

configured for use in the final system and subsequent system
validation process.

Figure 5 illustrates the philosophy utilized in conducting the
verification process. The verification process begins at the unit
software level, i.e., the simplest building block in the
software. After all software units that are utilized in a

| software module are verified, the verification team proceeds to
verify that module. Not only is the software module verified to
meet the module Software Design Specification, but the L

verification team ensures that the appropriate units are utilized'

in generating the software module.

; After all software modules necessary to accomplish a software
subprogram are verified to meet the applicable Software Design
Specifications, the verification team proceeds to verify that
subprogram. As in the case of the software module, the
verification team not only verifies that the subprogram meets the

. applicable Software Design Specifications, but the team verifies
that the appropriate software modules were utilized in generating
the subprogram entity. This verification philosophy ensures that
the verification team tests and/or reviews the interface between
the sof tware unit, module and subprogram entitles.

0371G:12/M/785

| . .-_-- --. .-__- - - . - . - . - . - - . - - - . - . . - - - - _ -

'
Depending upon the hardware implementation, the verification
process may utilize the actual target hardware or a test jig that
accepts target software in the verification of the software
modules and subsystems.

5.3 Verification

Verification techniques used in software development fall into two
basic categories: review and testing.

5.3.1 Review

There are three types of reviews used in the verification
of software: Design Specification reviews, code reviews
and functional test reviews.

5.3.1.1 Design Specification Review

This activity involves the comparison of a
Software Design Specification for a subsystem,
module, or unit to the Design Specification of
the component above it to ensure that all of the
performance requirements stated in the higher
level document are met.

5.3.1.2 Source Code Review

Source code review, as opposed to code testing,
is a verification method in which the software
is examined visually. The operation of the
software is deduced and compared with the
expected operation. In effect, the operation of
the software is simulated mentally to confirm
that it agrees with the specification.

Source code reviews will be used to verify the
transformation from a Design Specification into
high level code. High level code is easy to
read and understand, and therefore full
inspection at that level is feasible.

5.3.1.3 Functional Test Review

A functional test review is a review by the
verifier of the documentation associated with
the functional tests which were performed by the
designer. This review will provide a high
degree of assurance that the software performs
the functions specified in the design
requirements.

.

5.3.2 Software Testing

Software tests can be divided into two categories:
structural and functional.

0371G:13/W785

.

' *

5.3.2.1 Structural Tcsting

Structural testing, which attempts to .

comprehensively exercise the software program
code and its component logic structures, is
usually applied at the unit level. The
functionality of the program is verified along
with the internal structure utilized within the
program to implement the required function. The
expectation is that most of the errors will be
discovered and corrected at this level, where
the cost of doing so.will be minimal.

Structural testing requires that the verifier
inspect the code and understand how it functions
before selecting the test inputs. The test '

inputs should be chosen to exercise all the
possible branches within the software entity.
If this is not possible, the test inputs should
be chosen to exercise every statement within the
software entity. For example, if a
trigonometric function is calculated in several
different ways, depending on the range of the
input argument, then the test inputs include
tests for the argument in each of these ranges,
as well as on the boundaries between ranges. In
particular, they exercise the upper limit, the
lower limit, and at least one intermediate value
within each range.

5.3.2.2 Functional Testing

In the functional approach to program testing, '

the internal structure of the program is ignored
during the test data selection. Tests are
constructed from the functional properties of :
the program which are specified in the Design :

Specification. Functional testing is the method
most frequently used at the module or subsystem ;

level. Examples of functional testing include
random testing and special cases by function.

Random testing is the method of applying a test
input sequence chosen at random. The method can ,

be used in the following circumstances: to'

simulate real time events that are indeed
random; to increase the confidence level in the
correctness of a very complex module; to test a
subsystem or a system where it is not necessary
to test all the possible paths; to get some
quantitative measure on the accuracy of a ,,

numeric calculation; or to get a measure of the |
'

average time required by some calculation.

.

0371G:14/N/785
,

,- --w-,,er.~-,,----- ,, , , , , . ,,-,.--.---,_.-,.,...--,.-n---,-,.,.nn---,---..--,-n---,. , -, ,.w---..,--,..,,c-., .- - , - - , - - -

Special cases by function <:an be daduced from ;
the Design Specification of the module and will
determine some test cases. For example, a
subroutine for matrix inversion should be tested
using almost-singular and ill-conditioned
matrices. Subroutines which accept arguments
from a specified range should be tested with
these arguments at the extreme points of the
range. An arithmetic package should be tested
with variables which have the largest and
smallest mantissa, largest and smallest
exponent, all zeroes, and all ones.

5.4 Verification Matrix

The choice of particular verification techniques to be utilized
on a system component is a function of the following parameters:

1. The safety classification of the system

2. The demonstrability of the system functions : Visual or
non-Visual

3. The hierarchical level of the software component (unit,
module or subprogram)

5.4.1 Safety Classification

The safety classification of an item is defined according
to IEEE-279-1971 and IEEE Std 603-1980. In general, the
safety classification of the system establishes the
verification requirements for the system. However, since
all the components contained in the system do not
necessarily perform equal safety functions, a higher or
lower level of verification may be assigned to specific
system components depending on the exact functions
performed. If a different level of verification is
assigned to a component, the interactions between that
component and the other components in the system must be
carefully considered and reviewed.

5.4.2 Demonstrability of System Functions

The method of testing for a software item depends upon the
visual demonstrability of its function within the system.
If the system function can be illustrated by a simple
model as in Figure 6, then the method of testing required
need not be as comprehensive as that for software items
whose functions cannot be visually recognized. The
verification team will be responsible for determining<

whether a component has a visual or non-visual function.
,

0371G:15/M/785

'.
.

5.4.3 Hierarchical Level of Software Components

For software that is organized in a hierarchical
structure, the intricacies of the actual code can not be
easily grasped at the upper levels. For all but simple
systems it is prudent to approach verification in a
progressive manner, beginning at the unit level. It is at

the unit level that the code can be most easily inspected
or comprehensively tested.

As the sof tware is built up into higher level components
during the integration stage, it becomes possible to
demonstrate complete processing functions. This process
allows the validation of functional performance
requirements. Thus, validation testing assumes a
functional theme, with the main emphasis on the
interaction between subsystems and their interfaces. ,-

At the system level, subtle errors resulting from the
complex interaction between pieces of :Sof tware never

4before interconnected may be exposed. The deterrent to Nany major problems in this phase of testing is thorough
and comprehensive verification at lower levels.

f
5.4.4 Justification of Matrix Elements

Considering the parameters detailed above, different
verification methods are required for different subsystems

-

and software ecmponents. Figure 7 illustrates, in tabular
form, the levels of verification being proposed for
various systems. The safety classification column
identifies different categories of subsystems in relation
to their safety classification. The software component t

columns identify the levels of software found within each
system. Each element of the matrix specifies the type of
testing or review that will be performed on the software
component within that safety classification. The

justification of each matrix element follews.

The sof tware associated with actuation and/or
implementation of reactor trip and engineered safeguards
(IEEE-279-1971) must receive the highest level of
verification identified. As such, all software at the
unit level must be structurally tested to ensure that all

t

| lines of the unit indeed meet the intended design
specification. Since the control room operators rely upon
the automatic actuation of the plant reactor trips and/or
engineered safeguards actuations, the highest level of
confidence must be afforded the operator. Examples of the
South Texas Project syste:n application that meets this
definition are the SGWLCS/TAS, the Essential Cooling Water
Flow control loop, and the auxiliary feedwater throttle

| valve qualified control loop.I

0371G:16/M/785

__ _ . _ _ _ _ . - . = _ .-..

J * D:pending upon tha demonstrability of the identified
modulo and subprogran s gments, these s:gments must either
be structurally or functionally tested. Generally, if the
module level becomes too complicated, one or more
additional unit segments will be identified, which
incorporate many of the operations included in the
original complicated module or subprogram segment.
Therefore, the subdivision will be designed to maximize
the demonstrability of the module and subprogram
segments'. If the verifiers are successful in this task,
the module and subpro
functionally tested. gram tasks are only required to beIf the module and/or subprogram
segments are visual, a functional test provides
essentially the same level of verification as a structural
test. Furthermore, for the verifiers to make an
appropriate decision concerning the demonstrability of the
module and/or subprogram, a detailed source code review
(SCR) must be conducted which necessitates a thorough
review of each line of code.

Regulatory Guide 1.97, Rev. 2 Type A, B and C Category 1
variables are A fined as those key variables which are
necessary for the eparator to: (1) diagnose the accident;
(2) take the preplanned manually controlled actions for
which no automatic control is provided; (3) take the plant
to a safe shutdown condition; (4) monitor the status of
the plant critical safety functions; and (5) monitor the
potential for breach of a fission product barrier. These
variables are identified as only those necessary for the
operator to achieve and maintain the plant in a safe
shutdown condition. Even though no automatic actuation of
plant protective functions results from these variables,
the control room operators use these variables to initiate
the appropriate manual actions (based upon the Emergency
Operating Procedures) in order to achieve and maintain a
safe shutdown condition. For example, RWST to containment
sumo switchover; isolation of auxiliary feedwater flow to
one or more steam generators following a secondary high
energy line rupture; and switchover to alternate secondary
source of water.

Because of the importance of these variables to the
operator for taking appropriate manual actions, the same
level of verification is required for R.G. 1.97 Type A, B i

and C Category 1 variables (IEEE-603 1980, Paragraph
5.8.1) as for those associated with automatic actuations.
That is, the unit level must be structurally tested and
the module and subprogram segments must be either
structurally or functionally tested, dependent upon the
level of demonstrability.

i

0371G:17/M/785

.

- - - - , - - - - - - - ,,__-e_,.,- - - . , , , , , , , - - - - , ,,---,.,_,,--------.,a --.,----.--,n-- - , , . , , n .__.----g .,. ---- -- - - -

2 *
The n:xt catcgory of software that must be addressed is

,

that associated with the qualified centrol functions of 1

head vent valve control and steam generator PORV valve .1
Icontrol. Even though the hardware associated with these

functions is qualified, meets the single failure criteria
and is Class 1E powered, the operator is not required to :

implement theue functions to mitigate a des'gn basis-)
accident. The control room operators have the option of.

maintaining the plant in a hot shutdown or hot standby
condition until conditions in the piant warrant a normal
plant cooldown sequence. As such, the level of i

verification of the software associated with these
functions is relaxed when compared to those discussed

,

above. The unit level of the qualified control function i

must either be structurally or functionally tested,
dependant upon.the demonstrability of the software. If

the software is not visual, the unit level software must
be structurally tested. However, if the software is
visual, f0nctional testing will be adequate. Note again
that a thorough SCR must be conducted on the software to
determine the level of demonstrability. With a thorough
review and/or testing of the unit level software, the
verification required on the module and subprogram
segments is merely functional testing.

Observe that for all three software functions associated
with IEEE-279 1971; IEEE-603 1980, Paragraph 5.8.1; and
qualified control,the level of verification at the
software unit level is greater than or equal to the
verification performed at the module ~ level. Furthermore,
the level of verification at the software module level is
greater than or equal to the verification performed at the
subprogram level. Because of the safety significance of
these plant functions, the verifiers must ensure that the
unit level software is tested thoroughly to provide the'

highest level of confidence to the plant operating staff
that these safety grade systems will work as specified in
the system design document.

The level of verification for the Regulatory Guide 1.97,
Rev. 2 Type D Category 2 variables is also specified
(IEEE-603 1980, Paragraph 5.8.2). These variables are
defined as those that (1) monitor the status of plant
cafety systems and; (2) monitor the status of those plant

; systems normally used to achieve a safe plant shutdown,
The Type D Category 2 variables are not required to be

t

monitored by the plant operating staff to achieve a safeI

! shutdown condition. Furthermore, these variables are not
required to be reiundant, or Class 1E powered. However,
some of the Type L Category 2 variables are Class 1E
powered, but not redundant. Hence, the icvel of ,, ,

i verification required for the software associated with the
|

|
|

| 0371G:18/M/785

:

_ . _ . _. - . _ - _ _ _ _ - - - - _ _ _ . _ _ _ _ _ _ .- - -. - __. ---

.

i- ,
,*

Type D Category 2 variables is made a function of the
|power supply pedigree, but for eithOr case, significantly i

relaxed. For those Type D Category 2 variables that are
Class 1E powered, the subprogram, module and unit software |
1evels need only be functionally tested. However, for the !
Type D Category 2 variables that are non-Class 1E powered, lall three software levels need only receive a separate '

review. Depending upon the demonstrability of tie unit
and module levels, the software must either be source code
reviewed or functional test reviewed. The subprogram
level must only have a functional test review.

5.4.5 Application of the Matrix to the QOPS

To understand the verification levels to be used on the
QDPS, a discussion of the architecture and functions of
the system is in order. An overall block diagram of the
system is presented in Figure 1. Each box on the figure,
except for the APC's, represents a digital subsystem
containing one or more subprograms. Within each box is
the indicated level of verification to be performed on
that subsystem. The levels of verification have been
assigned in accordance with the highest safety
classification of the functions performed by each of the
boxes. For example, a Database Processing Unit (DPU) is a
Class 1E cabinet which processes information to meet the
requirements of Regulatory Guide 1.97, Rev. 2 Categories 1
and 2. Since a DPU processes Category 1 variables, it has
been assigned a verification level 1. Similarly, since
Remote Processing Unit (RPU) N is a non-1E cabinet which,

processes only non-1E Category 2 variables, it h:s been
assigned a verification level 4.

Since each Auxiliary Process Cabinet (APC) contains three
subsystems, an additional block diagram of an APC has been .

included in Figure 2. The RPU, which processes Regulatory
Guide 1.97 Category 1 variables, has been assigned a
verification level 1. Likewise, SGWLCS/TAS, which must
meet the requirements of IEEE-279 1971, must also be
verified to the level 1 requirements. The qualified
control system, which processes three control loops, has
also been assigned a verification level of 1 since one of1

the loops it controls (Auxiliary Feedwater Control) must
also meet the requirements of IEEE-279 1971. '

;

,

f

!

.

0371G:19/H/785

!

- - --. .---- .

' ' *
6.0 SYSTEM VALIDATION'

6.1 Validation Philosophy .

Whereas the system verification process verifies the
functionality of the software entities beginning from the
smallest software entity and progressing to the program level,
the system validation process is performed to demonstrate the
system functionality. By conducting the system validation
test, the testing results demonstrate that the system design
meets the system functional requirements. Hence, any
inconsistencies that occurred during the systems development in
this area that were not discovered during the software
verification activities discussed in section 4 would be
identified through the validation process.

6.2 Validation Testing Overview

During the sof tware verification process, a bottom-up
microscopic approach is utilized to thoroughly and individually
review and/or test each software entity within the system.
This requires a significant effort and verifies that each
software element performs properly as a stand alone entity.

Validation compliments the verification process by ensuring
that the system meets it functional requirements by conducting
top- down testing, first from the subsystem level and then for
the integrated system. This is illustrated in figure 5.

The major phases of the validation process include the
following:

a. Top-down functional requirements testing
b. Prudency review of the design and implementation
c. Specific Man-Machine Interface (MMI) testing

The macroscopic top-down functional requirements phase of
validation testing treats the system as a black box while the
prudency review phase requires that the internal structure of the
integrated software / hardware system be analyzed in great detail.
Due to the dual approach, validation testing provides a level of
thoroughness and testing accuracy which enhances the possibility
of detection of any deficiencies that occurred during the design
process but not discovered during verification Validation is
performed on verified software residing within the final target
hardware or test jig as shown in figure 4.

.

0371G:20/M/785

.

L *,'';
' The validation process utilizes a methodology that defines a ;

serics of top-down functional requirement r; views and tests
which compliment the bottom-up approach utilized during the
verification testing phase.

a. Functional requirements testing - ensures that the final
system meets the functional requirements. A
comprehensive functional requirements decomposition is ,

conducted on all system functional requirements from !

which the validation test requirements originated,

b. Abnormal mode testing - ensures that the design operates
properly under abnormal operating conditions.

c. System Prudency Review / Testing - ensures that good
design practice was utilized in the design and ,

implementation of critical design areas of the system.
These tests. require that the internals of the system
oesign and implementation be analyzed in detail.

d. Specific Man-Machine Interface testing - ensures that
the operator interface utilized to modify the systems
data-base performs properif under normal mode and
abnormal mode data entry sequences. This is a critical
area requiring special attention due to the impact on
the software of the system level information which can '

be modified via a man-machine interface this interface.

Following specification of the above defined tests, detailed
validation test procedures are written which specify the j
detailed engineering tests and required system responses. The '

tests are then ct.,nducted on the system target hardware or a
,

test jig which incorporates the system verified software. ~

Deviations between the system response and the desired result
are identified and officially recorded as a Validation Trouble

,

Report. These trouble reports are then returned to the design '

group for resolution by one or more of the following j
techniques: software change; hardware change; validation test i

modification; functional requirements / decomposition !
modification; or no problem identified. If a software or1 ,

! hardware change is required, any revised softwaro must be :
' reverified followed by a validation retest. ;

6.3 Validation Testing of Software Modifications
4

At their discretion. the Validators may choose to perform the (
validation testing on a test jig, rather than upon the QDPS

,

; itself. The basis for the use of a test jig lies in the fact
,

i that the QOPS is made up of multiple independent microprocessor
; based subsystems. The independence of these subsystems allows |a test jig to be made up of a partitioned set of the entire set -
3

; of subsystems, as long as the data flowing into the subset |'

exactly simulates the data flow in the actual QOPS with respect ;
to timing, content, and organization.

0371G:21/M/785
|

_ - . -

' ' ' The rational for doing the validation on a test jig for'

software modifications is that some software modifications
only affect one or more of the QDPS subsystems. So long as
the interactions with the other portions of the system are
well understood, and are detormined to have no impact on
previously performed testing, validation testing on a subset
of the QDPS will be as effective in assuring correct system
performance as such testing on the integrated system.

In order that the independence of the validation test be
maintained, and the traceability of the validation test to the
actual system be assured, the following is required of a test
jig:

a. The configuration of the test jig will be defined by the
validation group .This avoids the conflict of the testing
being constrained by a hardware configuration specified by
system designers,

b. The hardware environment under which the software under
test must operate shall be configuration tracable to the
original system. This means that the microcomputer board
set, the PROMS, the bus environment, etc. shall be the
same as the in the original 00PS. Input signals to the
subsystem shall be defined so as to appear to the software
to be actual QDPS signals. Any use of hardware boards (
CPU, memory) different from the actual QDPS shall be
analyzed to demonstrate that their use does not affect the
validity of the testing.

c. A documented configuration of the test jig shall be
maintained and referenced in the validation test plan to
provide an audit trail for the testing performed.

. .

0371G:22/M/785

!

'; e

7.0 DEVELOPMENT AND VERIFICATION TEAM ORGANIZATION |

During the system development process, two independent software j
teams will be utilized, one for development and one for
verification. The software development team receives the System i

IDesign Specification, generates the Software Design4

Specifications, and then designs, develops, tests, and documents
the code. The verification team receives the released code and
its documentation from the design team, performs the required
reviews and tests dictated by the Software Verification Level
5, thin the South Texas Verification Matrix and produces a
Verification Test Report (VTR).

This kind of organization has several advantages. The use of two
independent teams introduces diversity to the process of software
generation and reduces the probability of undetected errors.
Another benefit is that such a scheme forces the designer to
produce sufficient and unambiguous documentation before
verification can take place.

Team independence is essential to achieve these goals. In
particular, the two teams will have separate team leaders.
The chief verifier will report to a different supervisor than
the developer. The separation guarantees that the
verification team is free from pressure by the development

,

!

team to compromise on testing. Note that the development team i

submits the code for verification only after the development
team has confirmed the code to its satisfaction. Errors
discovered during the development phase testing are not '

required to be documented by the verification team.

The use of the above procedures does not preclude the
possibility that the developer of one module may be the
verifier of a different module, as long as that person did not
participate in the design or coding of the module he is
verifying.,

7.1 Development Team

The composition of the development team is dependent upon the
functions that are required to be performed by the team.i

Typical team functions include the following: :1

7.1.1 Chief Programmer |

This is the team leader who is responsible for the
software technical matters. The duties of the chief
programmer include:'

I a. Software Design Specification
-

.

| The chief prograntner has the responsibility for the
; development of the Software Design Specifications, which

e a based on the System Design Specification.
,
- :

0371G:23/M/785
.

9

-,,,,-.-,,v,,-y_,.-_ ,vme,,y ,,,,--,w--.-, .m.,----- -n .-_-,-m,._--.y-., ._,---c,-____.7.__ _ , . _ _ ---_---m.,,,-.- -,

_,
-

_ , . . .

' ' '
b. Architecture'

Global decisions on the structure of the software, .

decomposition and data base are made by the chief
progranmer.

c. Coding

Some critical sections of the programs (both in terms of
importance and complexity) can be coded by the chief
prograsner.

d. General

The chief programmer supervises the rest of the team in
.

software technical. matters.

7.1.2 Programmers
.

It is anticipated that there will be more than one
programmer, and that at least one programmer will function
as a back-up to the chief progranrner. The programmers'
tasks are to develop the code for modules and/or
sub-systems as directed by the Software Design
Specifications.

,

1

7.2 Verification Team

The functions of the verification team are as follows:

7.2.1 Chief Verifier

Team leader who is responsible for all technical matters.
His main duties are:

a. Check the Software Design Specifications received from
the development team for completeness and unambiguity.

b. Check verifiers' Software Test Specifications for
completeness.

c. Oversee verification of critical sections in the
software.

d. Supervise and consult with the verification team.
I

j e. Review Test Reports

f. Write the system validation test plan.

.

.

0371G:24/W/785

|
t

.n - - - - - - . - - , _ . , _ _ _ _ - . . _ , _ _ , . _ . . - - . _ _ _ _ _ _ _ . _ . _ - . _ ._
.

' ' '

7.2.2 Verificrs'

a. Perform source code inspections and review Software
Design Specifications.

b. Write Software Test Specifications.

c. Run tests on subprograms, modules and units,

d. Write' test reports.

e. Perform system validation test.

7.2.3 Librarian

The Librarian performs the following duties in the
maintenance of the Verification Software Library:

a. Responsible for the storage and configuration control
of the computer software being verified as fol.ows:

(1) Establishes identification of each software
element (i.e. unit, module, subprogram) within
the Computer Software Baseline (CSB)

(2) Enforces procedures for software and documentation
changes during reverification effort

(3) Maintains configuration control of the current CSB

b. Controls the transmittal of computer software to
authorized personnel only

c. Ensures no unauthorized changes occur to the CSB

' 0371G:25/M/785

.

.

.

. ' o
*

-

.

-

. -
_

euN 7- .-

I
*

Y 'l Y . Y F Y I Y I Y I Y I Y IA A A A A A AL81 LB L8L LP L L L8 L A. 8 L LP L
.

.

SM m
PCE PC PCE PSE E PCE eCE PSESM V iSM V SAV V SuV SWV SAVE.
I I E I E I E I E I ED D L D L D L D L D L D L D L

EII I E
": ,- - = - O-- = L = .- -[- =.

|

.

-' T
R -

I 4 4)EX X x ,IEU L pUL Su L C
i

.

M. V
F E sM E Cu E LO L

gE
[E JAEV WEVCM V M EE E DE DEE L L L

F V.

L OEF

L

5s _-- = : Om~ z -' = -[- 5 g
,

.

.

=

.

'

.

_
y

, _'- [

O

_
l

4
9N , D C D

I g

L L L L LUE CE CE CE CEN' E ,V PV PV PV
V

,E AE AE AEL L L L L

2' g2 ..

@N$xE3 g h 0- g3
,

.

! ! |i|1,' I: | ,!I ,1 1)! 4{i! i |i||, |
-

-- - .

_. .

*-,m p.
y *

.

-
. ., -..

,

.

,

'

Analog Outputs
= =----

Deta Linka to ERF (2)
'

--- s\
*

.=

Data Link Outputs to DPU A.C. ASP +MCB
\c ---%

% .
,

%
1.97 inputs from Other Cabinets

: . - - - - - - + RPU C

Analog inputs e# Level 1
: ----s f .

DigitalI/O / *
e : : -- /

l D D
A A
T T
A A

.

M N^ * = ' - '
= =______.

Digital I/0 . Quellfled
'

-

: 4------+ Control
Analog Outputs . t ,,i g

-

- Analog inputs
.

F SGWLCS/TAS
-

j

. paio, o...t.
- ;: : : : : - ' 'i-

,
.

BASIC FEATURES AND1/O OF A CLASS IE AUXILIARY *

PROCESS CABINET (APC)
,

*

Figure 2
SeeT3908480t

CD
, .r -

ei

.

6'; s' t

.
.

OM M M
e y

EL!DEMNr5

M
..

. -

. . m
*

EE3%IN
MM

*
.

) CESDN CEIIM 6--

4 PEC M 6-

.. ..

4 EE3M IIIIM h
,

tP t.

- ~
CD6TR.CTIIN OIDE WC
#C TE3TDG r'eus arms --

).

'
IwunwrAT2tM

.

M M M M

ftT11N -

INTE3%T1tN
.

#C TERTDG ,,
,

Eat 3M
#C SYSTDI

1ENT*

%e

e

.m .

USDESIGNPROESS

-

.

F!OME 3
,

.

-r, , _ _ . , - - ..,,s -.-____, . , , _ , . _ _ _ _ - _ - - _ _ , , _. _ ,, ,.,_,,___my - ,m.._._.--_7y.. ,. - - . . -.-- --r-- -w- - - -

i.

. . .

J4 y *
.

.

4

. - eg
1pDA.E sWWT\ I exTI st. . .

1 suausens
e

1 - 4 m_____________. .
,

- _ _ - _ _ _ ,
- _+ sumamens. -

. , e .,' ,

e) EE
SEFTWE I

.

.m e" ~~d| ~ "pg- M FTCATT&i i.

g ---> r,ccxzs *g*bs
I ,

I l"
g .

.
, 1 I.

I |

g : eMDWE EFT &T ,4 | gIIIIm II3Im g v,m.
|WIEE M |

1 i | SFTWE I *I

I aNIaATm :WDfW StFTWE I
| CDmQ. *

IIIIM CE3IM | |
I

g
~

l e. .a e i
gogg EFTWE I '

| *

ggs7ps CEDDe we -4 i I
IIkome l ,,

I e
, | vmT!m

ft37 I' * 3 .

_ _ _ 0'W um I____4___.,_______

su:.EE l e'

I.

b ,,

I
MITW *

DG3%TIIN g
-

I *
,

Ise *

811TM I
e. TIIT I

-

I .

I,
"

| ..N
SVTTIM I.

.
l

k- __I *

1
*i

'' '
e

VMT!!N

GDPSDESIGNVERIFICATIONANDYALIDATIONPROCESS imE.1
"

-

-

-

.

e

. - _ _ _ _ _ - _ _ _ _ _ - _ _ __

.- _ .

- _ _ . . . _

l. . .

| n' ? .

-
,

l

. _ _ . ,

) 1

.

.
.

4

.-
,

'
e

* .
,

-..

*

.,

|
i

YtRIFICATION YALIOATION,
,

25Im.

IIEDBC CDRNNT b h
3 Ea-

smR ''

NCTIDW. E25EENT M
--------- - . , ,' .

32S5 9
NCTIDW. PE21IEMNT

PMS . CDmt1. . SDLCF TAS.. .-

SA559 25Im WEC
- ---- .

, . ,

. .. .
d'gglu.

,,
e- e- e- .a e- -.. .i,

Mk

3r $r ,,. ,,
..-.m. ., ,, .,

*
.

I
e

.

._

1

.

4

e

| .

_

'

't'
_.

:
TI O

...........> pg,

Either(1) The system function has only one input and one output and for each
input value/ state there is one and only one expected output value
or state, The transfer function in this case could be either
linear or non-linear.

or (2) The system has more than one input and/or more than one output but
they are disjunct and only specific inputs contribute to a
specific output or a cluster of outputs and for each input cluster
of values / states there is one and only one expected output value
or state for a specific output or an output cluster. The
inputs / outputs relationship can be represented in a simple tabular
form and easily understood.

,

Figure 6. Model of a Visual Function

,

I

b

:

.

(

0371G:25/N/785

.

.. _.

S: Jf -

a+

Software Safety Software Component
Verification Classification
Level

.
Unit Module Subprogram

...........,_.....................-........ ...__.....
*

IEEE 279
..........

1 IEEE 603 ST ST/FT ST/FT
Para. 5.8.l.

...

Qualified Independent
2 Controllers- ST/FT FT FT Testing

.................................
,

IEEE 603-

,

3 Para. 5.8.2 FT FT FT
Class IE

.................................

IEEE 603
4 Para. 5.8.2 FTR/SCR FTR/SCR FTR Separate

Non-Class 1E Review

FT = Functional Testing
ST = Structural Testing

SCR = Source Code Review
FTR = Functional Test Review

XX/XX = Non-Visual / Visual

i

i

Figure 7. South Texas Verification Matrix

;

0371G:26/N/785

