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A MODEL FOR THE TRANSPORT

* AND CHEMICAL REACTION OF MOLTEN DEBRIS

IN DIRECT CONTAINMENT HEATING EXPERIMENTS *
,

.

K. D. Marx

Thermofluids Division

Sandia National Laboratories
Livermore, CA 94550

ABSTRACT

.

A computer model is described which simulates the effects of releasing molten debris
into a gas filled container. This work is motivated by studies of direct containment heating due,

to the dispersal of debris produced in certain nuclear reactor accident scenarios. The model
consists of a finite difference scheme for the gas flow coupled with a Lagrangian particle transport
algorithm. It computes the transport of the debris inrough the gas and evaluates radiative and
convective heat transfer effects. It also account? for the chemical reaction of the debris with the
oxygen in the atmosphere, including the concurrent heat release. The resulting computer code
is used to simulate experiments in the Surtsey Direct Heating Test Facility. It is found that the
computational results agree well with experiment for modest debris fluxes. It is further shown
that the simulaDn of configurations with large fluxes can be linproved with better submodels to
describe the deoris behavior. The description of the interaction of the debris with the container
walls is of particular importance.

.

!

* This work was performed at the Combustion Research Facility and supported by the |
-

U. S. Nuclear Regulatory Commission. -
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Executive Summary

This report describes work performed at Sandia National Laboratories, Uvermore under-

the Sandia Direct Containment Heating Program for the U. S. Nuclear Regulatory Commission. A
computer model has been developed which provides a numerical simulation of debris dispersal

"

and heat transfer processes which occur in direct containment heating scenarios. Computational
results are given for simulations of some experiments performed in the Surtsey Direct Heating
Test Facility at Sandia Laboratories, Albuquerque.

The computer code was developed by making extensive modifications to the Kiva code,
which was originally developed at Los Alamos National Laboratory to study spray combust 5n
in engines. The spray modelin the code has been adapted to the treatment of debris particle
transport in the present applications. The resulting computer program will be referred to as
Kiva DCH.

The use of Kiva-DCH to study direct containment heating problems is intended to com-
piement calculations carried out with the CONTAIN code. Kiva DCH is capable of detailed
modeling of relatively small and simple systems (e.g., experiments), whereas CONTAIN is a
lumped-parameter code intended for the simulation of large sys', ems (e.g., reactors). It is ex-
pected that the more accurate results from Kiva DCH calculations will be used to refine the
models used in CONTAIN. The simulation of very large systems is beyond the capabilities of
Kiva DCH due to computer limitations. ;

!The results given in this report pertain to the DCH 1 (small total debris mass) and DCH 2
,

and DCH 3 (large total debris mass) experiments performed in the Surtsey facility, it is seen that
the present version of the Kiva DCH code has the capability of providing a good reproduction
of the experimental pressure histories in these tests if enough detail is included in the physical |.

models. The modeling of the interaction between the debris and the walls of the experimental
vesselis seen to be of particular importance. It is treated in only an ad hoc way at present. i

Future work to be addressed, in addition to debris wall interactions, include the imple-
mentation of more chemical reactions and the modeling of more complex geometries.

J
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1. INTRODUCTION i

|
'

The transport and chemical reaction of debris is a problem of current interest in the study
of certain nuclear reactor accident scenarios.1 In some situations, debris from the core of a re-
actor could be expelled into the atmosphere inside a reactor containment building. The debris.

would then heat the gas, resulting in an increase in the pressure in the containment. Further-
more, the exothermic reaction of the debris with the oxygen in the air would cause additional I
heating of the atmosphere. The present work is part of a study being carried out to determine
whether this heating will be sufficient to place the integrity of the containment building at risk
due to overpressurization. We have developed methods for computer simulation of some of )
the physical processes involved in such direct containment heating (DCH) configurations, in
this report, these numerical algorithms are used to model experiments pertinent to the reactor

,

debris dispersal problem.

We consider multiphase flows in which sma;l liquid and solid particles are dispersed in
a gas filled container. The particles may contain more than one chemical species. They are
typically molten when injected into the gas, and then solidify either while propagating through
the gas, or upon sticking to the surface of the container. In addition to heat transfer and phase
change during transport, some of the constituents of the particles undergo chernical reaction
with oxygen in the gas. The heat release due to this combustion process plays an important
role in determining the gas pressure in the container.

The particle transport and heat transfer phenomena of concern in this work are closely
related to similar processes considered in the study of the combustion of liquid fuel sprays.2-5-

For this reason, we have found it convenient to use a modified version of the Kiva computer
2code to perform our calculations. Kiva has been developed at Los Alamos National Laboratory

to simulate spray transport and ccmbustion processes in internal combustion engines, and its
-

spray model lends itself naturally to adaptation to the present debris model. Hence, this work
provides a good example of application of technology from one area of combustion research to

l
another. The numerical methods employed here are applicable to a variety of additional com.

i bustion modeling problems. These include the transport of aerosols and combustion-generated |

| particulates, and the effects of convection and buoyancy in the propagation of fires.

A number of modifications have been made to Kiva to perm,t its use in the debris simulation
problem. These include the following: (1) The characteristics of the liquid dropiets were changed
from a single species of evaporating liquid fuel to a multispecies distribution of nonevaporating
metal particles. The injected liquid particles are allowed to solidify by implicitly including the
heats of fusion in the enthalpy tables. (2) The algorithm for injecting the fuel droplets into the
gas was modified to accommodate the specification of the initial species concentrations within
the debris particles and the distributions of particle sizes and injection velocities. (3) Provision
was made for the inflow of a compressed gas to drive the debris into the container. (4) A method
for allowing the bouncing and trapping of particles at walls was introduced. (5) Algorithms were
provided to account for radiative heat transfer, and for that component of convective heat transfer,

which occurs at length scales too small to be resolved on the finite. difference grid. (6) Allowance
was made for chemical reactions between some of the chemical species in the particles and
the oxygen in the atmosphere. (7) A model was included which permits the retention of debris '.

mass on the upper surface of a container and its later dripping from that surface.<

t

1
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The resulting modified version of Kiva will be referred to as Kiva DCH. It has been applied
8to.the simulation of experiments performed in the Surtsey facility at Sandia National Labo- .

ratories in Albuquerque, New Mexico. (See Figure 1.) The calculations have thus far been
used only for the analysis of these experiments. However, it is expected that Kiva-DCH can
also influence the development of models used in CONTAIN,7 which is a lumped-parameter -

code being implemented in studies of full-scale reactor containment buildings. Kiva DCH and
CONTAIN will complement each other; Kiva DCH can provide detailed studies of small, simple
geometries which will help to define the capabilities and limitations of CONTAIN.Then CONTAIN
can apply these results to improve the models that it uses in lumped parameter simulations of
full scale containments, which could not be performed with Kiva DCH because of the excessive
computational resources required.

Some of the characteristics of the Kiva DCH code are briefly described in Section || be-
low. The most important of the modifications and additional physical models which have been
included in the code to make it suitable for the debris simulation problem are described in Sec-
tion 111. Section IV provides a brief discussion of the Surtsey facility, in section V, we exhibit :

!results of the computer calculations, and compare them with data from Surtsey experiments.
Conclusions and proposed future work are presented in the final section.

II. COMPUTER CODE AND TURBULENCE MODEL

The basic Kiva code is described elsewhere.2 In the interest of brevity, the equations
which are solved by the code to describe the gas phase and its coupling to the debris are
relegated to Table I and will not be discussed in detail here. The identification of the variables -

,

,

involved appears in the List of Symbols on Page xi. Some of the features of the equations and
the numerical solution are outlined below. For further physical and computational details see

i Reference 2.

The Kiva code uses finite difference approximations to solve Eqs. (1)-(5) (see Table 1)
for two or three dimensional flows; the present calculations are performed in two-oimensional
axisymmetric cylindrical coordinates. .

The gas temperature T is computed from the specific energy I by assuming that the
,

species enthalpies hg are functions only of T. Diffusion of mass and heat in the gas are ac-
counted for by the terms involving the mean diffusion coefficent D and the thermal conductivity
kr. We are neglecting differential species diffusion by using an average value of diffusion coef-#

ficient D.<

4

8The eddy viscosity is obtained from the k-r turbulence model as described in Jones and
Rodi.8 Although Jones specifically addresses the question of compressible flows,it should be
noted that turbulence models for compressible flows are not well developed. Hence, the choice .

of the standard k e modelin this situation cannot be regarded as definitive. The laminar viscosity
is obtained from Sutherland's formula with appropriate coefficients, but is actually negligible in
our calculations. The coefficients C , Cn, and C , and the Schmidt number e, are modeling -

p 2
8constants. These constants have been tuned for agreement with certain experiments, with

; 2
.
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Figure 1. Schematic of the Surtsey Direct Heating Test Facility (taken from Reference 6). The
DCH 1 apparatus is shown; the chute was removed for the DCH 2 experiment, but was in place

-

for DCH 3.
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TABLEI.

Reynolds averaged equations for gas flow used in this work. .

*

Mass conservation:

+ V - (p,u) = V - DV(p,/p) + p,, (1)

p={p, (1a)
i

Momentum conservation:

6(pu) + V - (puu) = -Vp + V a + F (2)p6t

Energy conservation:

'

A V - (plu) = -pv u + V - krVT + pD hgV(p,/p)

+ hp + 4, + pc (3)
'

Transport, production, and dissipation of turbulent kinetic energy:

6
g(ph) + V -(pku) = a:Vu + V - (pVk)- pc (4)

Transport, production, and dissipation of turbulence dissipation rate:

(pe) + V -(peu) = Cn{a:Vu)f + V -( # Ve) - '' ,# # (5)

Ideal gas law:
.

pRT
P= - (6)w

.

4
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TABLEI

(cont.):.

.

.

Associated formulas:

'

E = P&/P (7)k

2 2Tcr = 5pk6 + Vu + Vu g(V u)6 (8) |

4 = #2 + #r (9) i

!

k2
#r = Cg P -- (10)

'

i

l

kr = Pr (11)
;#"#

r
.

#D= (12) iSPc7 ,

|

Boundary conditions on turbulence parameters at walls:

Zero normal flux condition on k:

1

Vk . n = 0 (13) |
.

Law of the wall condition on e:

3u
e=- (14)ny

u. = C 3/4ki/2p

.

* I

i

5

i
i
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optimum values C = 0.09, C , = 1.92, C , = 1.44, and a, = 1.3. Turbulent Prandtl and Schmidty 3 2

numbers Pr and Sc are introduced (see Eqs. (11) and (12)) to model the turbulent heat andr r ,

mass transfer in the gas. We have used Pr = Sc = 0.70.

All the computations employ an Eulerian method on a grid with rectangular cells. The
: axis coincides with the axis of the experimental facility to be modeled. In the con putations -

presented in this report, the grid consists of 10 points in the (radial) r direction by 20 points in
the (axial) 2. direction. This is a very coarse grid; it suffices only to resolve the largest eddies in
the flow. We have investigated the numerical accuracy by refining the grid spacing for a typical
problem by 50% The resulting change in peak pressure was only 3% Hence, the coarse grid
suffices for the present calculations, in which the system is dominated by debris transport and
heat transfer, and the large-scale gas flow plays a secondary role.

In the Kiva code, the boundary conditions on tangential gas velocity are obtained by
implementing the law of the wall for turbulent boundary layers.2,10,21 To this end, the tangential
velocities at the walls are not set equal to zero, but are allowed to vary to account for fluid
momentum in the wall grid cells, which are in the boundary layer. The boundary conditions on
k ar,c e are are given in Table I.

Ill. PHYSICAL MODELS UNIQUE TO THE PRESENT CALCULATIONS

The previous section dealt primarily with the numerical model for the gas flow. Various
terms appear in the fluid equations to account for the coupling to the liquid or solid phase, .

i.e., the debris particles. In this section, we discuss a number of physical models which were
implemented for the purpose of the DCH simulations. Most of these have to do with the debris

particles, although the definitions of the coupling term /g will be given and the method for -

treating gas to wall heat transfer will be discussed.

Debris Partic!ss

The behavior of the debris is modeled by defining computational debris particles, referred
to as "parcels. 2 A parcel behaves exactly as an individual debris particle v.ould; however, the
number of actual debris particles represented by the n'h parcelis a number N{, which is usually
larger than unity. When computing the influence of the particles on the gas, the effect of the
n'h particle is multiplied by N{. In this way, the debris can be represented statistically by a
computationally feasible number of parcels. We let each parcel represent the same total debris
mass as every other parcel. The associated particlo diameter dn varies from parcel to parcel.
Hence, N{ is, in general, different for each parcel. In this work it varies from around unity to

8nearly 10 .

The mass of the k'h species in the particle represented by the n'h parcelis denoted Afan.
The macs 3fn of the particle is obtained by summing Af ni over all k. In the present work, we
consider the 3 species Fe,FcO, and Al O . The equation of motion of the particles is given2 3 .

by

dv

3fn di
CW" u + u' - v | (u + u' - v ) + 3Ing (15)

'
n

n n
2

6
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The first term on the right is the drag force and the second is the gravitational force. For the
purpose of computing the drag coefficient Co (and the heat and mass transfer rates discussed

,

below), the particles are assumed to be spherical.

The drag force term in Equation (2) is then written as
.

f | u + u' - v | (u + u' - v )NPFp=- n n

I

where hcell means that the summation is to be carried out only over particles in the finite- l
difference cell where F is to be evaloated, and AV,,ig is the volume of the cell.p

Chemistry

Thus far, the particle treatment is similar to that appearing in 'he original Kiva code, j
except that in this case we are dealing with multispecies particles, rather than single species fuel

|
spray droplets. We now tum to the chemical reactions and heat transfer; these effects provide |

additional coupling between the debris and the gas, and require some new approaches.

The chemical reaction considered here is

|
,

*

2Fe + O2 ---+ 2Feo
1

Reaction of the iron in the debris with the oxygen in the atmosphere can be broken into two,

steps wherein (1) the oxygen molecules diffuse to the surface of the particle, and (2) the oxygen '

diffuses through the particle and oxidizes the metal. Hence, one can identify two diffusion limits
to the reaction rate, referred to as the gas side limit and the drop side limit. It is assumed
that these limits dominate any imposed by kinetics. Our method of evaluating the reaction rate
subject to the diffusion limits is based on that discussed in Reference 1. The rate at which
oxygen diffuses to the surface is assumed to be given by the following standard mess transfer
formula.1,12 (He.iceforth, the parcel index n will be dropped for simplicity whenever possible.)

Ifo, = xdDo,Shpo, (16)

where Ifo, is the mass of O2 per unit time arriving at a single particle surface, d is particle

diameter, Do, is the coefficient of diffusion of oxygen in air, po, is the density of oxygen in the
ambient atmosphere surrounding the particle, and the Sherwood number is given by 12

~

Sh = 2.0 + 0.6Rej/'Sc /8 (17)
3

The quantities Rep and Se are the relevant molecular Reynolds and Schmidt numbers for the
"

.

particle and the ambient air.

7

,
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Given this rate of oxygen diffusion to the particle, a time constant 7, can be defined
,

describing the gas side limit to the reaction rate:1 ,

1 wo, Afra
(18)7, = -

2 wr, ifo, .
, ,

The drop side limit to the reaction rate is approximated by studying solutions to the diffu-
sion equation for a spherical particle.3 It has been determined that reasonably good resuhs can
be obtained by assigning a time constant

.

'

Cg,d2
Td ' Wgp

!

where C , = 0.01107 is an empirical constant, and Dp s the diffusivity of the particle, in all ourid
lwork to date, we have used

10-s m/s T > 1200K2
p

Dp=
0 T < 1200Kp

(Hence, the reaction is cut off when the particle temperature falls below 1200K.)

; The gas side and drop-side diffusion rates are implemented in the chemical reaction rate
for a particle by writing

*
,

dhir, Sir, i
3 (20)=-

di r,
,

) where the effective reaction time constant 7, is obtained from the following combination of the
! gas side and drop side diffusion times:

r,=g[rj+rj (21)
i

; Strict mass conservation under chemical reactions is achieved by setting the rate for i

formation of Feo equal to

'

dhirao , _ w,.,o dhir,
di w ,. , di

and by defining the mass source term for oxygen in (1) as -

|'
!

!
'

i

| 8

1
t

b
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o, y ce!IdMren y"p {23)
1 w

,

Pros 2hVeell w f di
.

(The factor 2 is the appropriate stoichiometric coefficient.),

Heat Release and Particle Heat Transfer

Conservation of energy during chemical reactions and heat transfer between particles and
gas is accounted for by the equation

hra(T ) ' + hrao(T ) ''"+hb,(T) ' + [M c s = (c + yr (24)
'

g &pp p

k

The h'3s are the specific enthalpies of the indicated species with the heats of formation present
to account for the chemical heat release. These enthalples are assumed to be functions of
the particle or gas temperature, as appropriate. The term dMb,/df describes the rate at which
oxygen is transferred to a single particle. The summation over species k in the rate of change of
sensible heat refers only to the particle species; i.e., the mass and specific heat of the oxygen
which is diffusing into the particle are neglected. Finally, y, and y, refer to convective and

'

radiative heat transfer from the particle, which we now address.

12The convective heat transfer is given by
,

NuhS
ge = - p Tv - D (25)
.

g

where A is the thermal conductivity, Sp = xd2 is the particle surface area, and the Nusselt
number is (see the analogous Equation (17) for the Sherwood riumber)

|

|

Nu = 2.0 + 0.6Re|*Prlls |*

1

with Pr denoting the molecular Prandtl number for the gas.
)

| We use the following model for the radiative term:

hr = -fpa 7p - N)S (26)s3 p

where ep is the emissivity of the particles (assumed to be a single constant throughout the,

calculation), and a,, is the Stefan Boltzmann constant. This formula requires that the optical
,

thickness of the gas be great, so there is no appreciable radiation from the particles to each !

other or to the walls in fact, the gas itsellis not necessarily optically thick in these experiments;.

however, there is a significant amount of aerosol suspended in the gas which renders it opaque.

1 9
;
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(The aerosol rnass is only a few percent of the total debris mass, so it does not contribute
significantly to the total debris heat capacity.) For the purposes of this paper we have assumed ,

that the particles are black bodies,i.e., ep = 1. The resulting particle radiation modelis believed
to be reasonable,33 but it should be recognized that it is only an approximation.

'

Using (22) and a similar formula for d3fg/dt, along with (25) and (26), Equation (24)
provides an equation for the evolution of the particle temperature:

p-T),hisc sdT' = An d3fr'
f NuX h

+ea T, (2D-( g r sep g, g,

where

her = hra(Tp) - hrao(T ) + 'hQ(T) (28)p

and

T,3 = T' + T2 T+T (29)p p

The term d3fr,/df in (27) is given by Equation (20). The energy source term Qp in (3) is -

obtair:ed by applying energy conservation to the preceding formulation.

.

Debris Wall Interaction

We have used only an ad hoc treatment of the interaction of the debris particles with the
walls. When a particle strikes the lower surface (floor) of the container, it always stays there and
is taken out of the calculation. If it strikes any other surface,it is trapped on the surface with a
probability p,,,,, in the fraction (1-p,,,,) of all encounters in which it is not trapped, it undergoes!

specular reflection, but with its reflected velocity reduced by a factor f6

Except for those particles which strike the upper wall (the dome of the facility), the fraction
p,,,, of particles which are trapped on waiis are taken out of the calculation in the same way as
those which strike the floor. However, it has been observed that debris material which strikes
the dome has a tendency to remain there for a short period of time and then drip down. In
anticipation of this, we have implemented the following special treatment for particles trapped
on the dome in some calculations. When a debris particle is trapped on the dome,it is collected
in a "dripping pool' with probability p,,,,. In other words, the probability that a particle trapped
on the dome is taken completely out of the calculation is 1 - p,,,,, but for a fraction pg,,, of
all such particles, the materialin the particles will be part of a drop that falls later. (See Figure .

2.) The diameter of these drops is an input parameter Do,. The drop materialis collected until
there is enough to form a drop of this size. Furthermore, in any case, the drop is retained on
the dome until a time t , elapses from the time the first particle which goes into the formation *

o
of the drop strikes the dome. in practice, we have chosen t , =2s, the debris injection time iso

10
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Figure 2. Schematic representation of the debris wall interaction currently used in the calcu.
lations. Particles are always trapped when they strike the floor (p,,,, = 1 there). Dripping is
allowed only from the dome (p,,,, = 0 elsewhere). The time i at which a drop falls is t , later*

f o
than the arrival time f of the first particle to go into the formation of the drop.
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0.64s, and the particle transit time from chute to dome is of the order of 0.1s, so no drops fall
before the collection into the trapping pool is complete. ,

Provision has been made for the debris to give up energy to the dome while stuck in the
trcpping pool. Materialin the particles is allowed to cool with a time constant fro. (However,

*

the time constant has been set to infinity for all the results presented in this report.)

The quantities p,,,,, f6 P,,qi fos DD,,and r used thus far have only been estimates.ro
This is clearly a crude (and temporary) model. We will return to this subject below.

Heat Transfer from Gas to Walls

Finally, we describe the heat transfer from the gas to the walls. As pointed out in the
discussion following Equation (26), it is assumed that there is sufficient aerosol suspended in
the gas to cause i,t to appear optically thick. Hence, for the radiative contribution, we simply set
the source term Q, in (3) equal to

Q, = 8 T - Tj, (30)
88 4
,

whem A is the total surface area of the container walls, V is the container volume, Tu, is the
wall temperature, and r, is the effective emittance of the aerosol. laden gas. (Strictly speaking,
for (30) to hold, the absorptance of the gas to radiation from the walls should be equal to e, .

as well.H) We have used e,=0.8 for the present calculations.15 in effect, use of Equation (30)
amounts to applying a formula for a radiating gas in thermal equilibrium" by assuming that the

i iequilibrium value of T is equal to the average value of T and then computing the volumetric -

4source term Q, with a T weighting. This approximation yields good results when computed
cooling rates are compared with those observed in experiments in the Surtsey facility. (See
Section V.)

In principle, a fluid dynamics code should take care of convective heat transfer automat-
ically by simulating the convective flux, in practico, in a configuration such as this, thermal
boundary layers appear on the wa!Is which are much too thin to resolvo on a practical finite-
difference grid. In the present problem, heat transfer through these boundary layers accounts
for about half the heat loss from the gas. (The radiative contribution makes up the other half.) To
accommodate this effect, we have implemented the following scheme,in which energy is taken
out of finite difference cells next to the walls in a way consistent with results from experiments
on turbulent boundary layers.

For free convection, an appropriate correlation for the Nusselt number for a turbulent
18thermal boundary layer on a wall is

Nu, C Raf (31)

where ci s an empirical constant, and Ra, is the Eayleigh number based on r, the distencei a

along the wall from the origin of the boundary layer. (Subscript r refers to that distance.) When

12
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formulating the heat flux to the wall q,, from this Nusselt number, the distance z cancels out,
and one obtains,

C, A(T - T.)i
9,= (32)f.

7,

where

2 IIyTi
L= (33)6 , Prg(T - T. .i

and v and T are the kinematic viscosity and the temperature of the gas outside the boundaryi
layer.

The original Kiva code is set up to evaluate the wall flux by applying Reynolds' analogy to.

a law-of the wall boundary layer (i.e., forced convection). We evaluate gf, by taking T as thei
temperature in the finite difference zone next to the wall, and then set the wall flux equal to

;

9w = max (gf,,g,,) (34)

where q,, is the law of the wall formula. In the present case, qf, nearly always dominates, except,

at early times when T ::: T, and the velocities are high.i

*

Blowdown Gas i

To model the inflow of the nitrogen gas which is used to help drive the debris through
the chute into the facility, appropriate boundary conditions are implemented at the mouth of the :

chute. The blowdown gas velocity there was obtained from information provided by Reference
17. Simulations of experiments with two different total input debris masses will be discussed |
below. The velocity history imposed for simulations of the experiment at lower total mass (DCH. )
1) is given in Figure 3. The velocity for the experiment at higher mass (DCH 2/DCH 3)is identica! |

in form to that shown, but is increased by a factor of 1.8.

IV. THE EXPERIMENT

6The Surtsey facility is illustrated in Figure 1. It basically consists of a cylindrical vessel
10 m high by 3.7 m in diameter. In our finite difference model it is assumed to be a right
circular cylinder, i.e., the rounded surfaces at the ends are taken to be flat. In the experiments.

conducted in the facility thus far, the debris has been formed in a melt generator positioned as
|

Shown. The melt generator is filled with a thermite mixture consisting of magnetic oxide, Fe30, I4

and powdered aluminum. When the thermite is ignited, it reacts to form a molten mixture of*
'

iron and alumina, Al O , and this debris is ejected out through a cavity into the atmosphere of |2 3

13
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Figure 3. Blowdown gas velocity versus time used in simulations of the DCH-1 experiment. .

That used for DCH-2/DCH 3 consisted of the same function multiplied by a factor of 1.8.
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the facility. The ejection is driven by compressed nitrogen gas which is released into the melt
generator. (The inflow of the driving gas is simulated in our computations.),

Measurements have indicated that the mass of the irijected debris is distributed among
8liquid droplets with a log normal distribution in particle diameter having median diameter 0.55

mm and standard deviation 4.2. This distribution is employed in the injection routine in the code,*

except that a lower and upper cutoff in particle diameter is assumed at d=0.04 mm and d=4
mm. The Sauter mean diameter of the particles is then 0.27 mm.

,

V. RESULTS
r

In this report, computational results will be compared with those from two experiments.
,

in the first8 (denoted DCH 1) the total mass of the injected debris was 9.5 kg. The flow of i

debris out of the cavity was directed upwards by means of the chute shown in Figure 1. In;

the second18 (denoted DCH-2) the mass of the debris was 80 kg, and the chute was removed,
so that the debris flow was directed toward the wall of the facility. This latter configuration is )
3-dimensional. Our simulation is 2 dimensional, with the debris directed upward as if the chute

,

were in place. Hence, it is actually a better simulation of Experiment DCH 318, and the results '

may be compared with DCH 3 data when the latter are available. |
|
|

Results foi ).c DCH 1 Experiment I.

The parameters which were used to model Experiment DCH 1 are given in Table 11. Pres- ;

sure histories from calculat;ons with and without chemical reactions are shown in Figure 4; ),

appropriate experimental data are given in Figure 4 for comparison. (Note: p = 0; !.e., 1

g

] dripping from the dome was not allowed in this calculation.) Heat release from oxidation is i

! seen to increase the peak pressure by about 40% (This effect would be even more dramatic
if the more exothermic reactions involving zirconium from a reactor core were involved.) The
differences observed between computed and exper; mental rise times and peak pressures are
modest, considering the complexity of the processes involved. The causes of these discrep.

j ancies are currently unknown. Corresponding particle plots and isotherms from the calculation
'

with chemical reactions are provided in Fgure 5. A key point to note in Figure 5 is that the
temperature rise of the gas is not dramatic; high temperatures are confined to a small core on,

the axis. This reason for this is that the total heat capacity of the particles is relatively smallin,

! this case; a significant fraction of their heat is removed during one transit through the container.
In particular, most cf them freeze before striking a surface.

I

A Simple Model for DCH 1
1 4

We will now demonstrate that one can obtain a fairly good estimate of the above results for I.

peak pressure in DCH 1 by performing a simple calculation based on thermal equilibration of the
i

; debris and gas. Let the total mass, specific heat, and initial temperature of gas be M ,c,,, and |g
'

. T , respectively. Similarily, the corresponding quantities for the debris will be denoted Mg,c die

and Tao. Let the heat released per unit mass of iron oxidized be ahD. Further denote the initial

15
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Table 11.

Parameters Used in the Calculations -

.

Initial gas temperature T, 300K
initial gas pressure po 0.083 MPa;

Driving gae N2
Peak driving gas inflow velocity 172 m/s (DCH 1)

310 m/s (DCH 2/DCH 3)
Driving gas inflow temperature 450K
Driving gas blowdown time 1.5 s ;

initial debris composition (by weight) 47% Al O !2 3
. 53% Fe ;'

Initial debris temperature T o 2500K !p
Total debris mass 9.5 kg (DCH 1) '

80 kg (DCH 2/DCH-3) -

Mean debris inflow velocity 72 m/s
Debris injection time 0.64 s1

,

Debris Sauter mean diameter D, 0.27 mm
' ,

Standard deviation of random
debris injection angle a, 11.4* (exception noted below)

"

Trapping probability p,,,, 0.05 (DCH 1) . t

0.5 (DCH 2/DCH 3 w/o drippiM -

2 0.9 (DCH 2/DCH 3 w/ dripping) .
Reflected velocity fraction f6 0.8 i.

Turbulence parameters Pr and Sc 0.70r 7,
~

Particle emissivity ep 1.0 i

Gas emittance e, 0.8
,

Calculation with dripping only:
i

l

j Dripping probability p,,,, 0.5 ;

Dripping delay time f,, 2se .

Drop diameter D,, 0.25 cm ;

3 Drop cooling time 7 0.25 cm70
Standard deviation of random>

! debris injection angle as 5.7* (exception noted below)
;
i

.

I

j i.

! |

: 'e !
i |

1
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Figure 4. Results of simulations of the DCH-1 experiment. A coreputation made with the
chemical reactions turned off is shown to illustrate their importance. Experimental data taken at-

Level 4 in the Surtsey facility (see Figure 1) is shown for comparison.
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(The line dividing the two pbts in each figure is the z axis of the axisymmetric configuration.)
The particle plots represent computational parcels (see text) existing within a thin pie shaced .

wecge (the wedge angle is 0.50). Only half of all the parcels are shown. Particles trapped on
surfaces are displayed in the plot, but are removed from the calculation. The temperature IcVels
of the isotherms are separated by 250K. The dashed isotherm represents 180CX, approximately .

the melting point of iron. The index n denotes the number of time steps elapsed.
i
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!

mass fraction of iron in the debris by Yr, and assume that a fraction f[/ of this is oxidized. Now
assume that the debris and the gas are mixed and come to thermal equilibrium without cooling.,

Assuming that all quantities are approximately invariant with temperature, energy conservation
results in tne following equation involving the final temperature T :

f
.

g rg(Ty - To) + Af c,a(T - Tao) = fo{'Yvehfahh,FeAl e g f t

or

.

T = bl c,,To + Afsc aTao + f[/Yrahiabh,Feo r t

f (35)hi e,g + Afac,ag

The ideal gas law (6) can then be used to evaluate the equilibrium pressure pf.

For the DCH 1 experiment, wo nave Af = 98 kg, Ala = 9.5 kg, Yr, = 0.53, andg

To = 300 K. Reasonable estimates for the other quantities (which are less easily determined)
are c , W 720 J/(kg K), c d 21300 J/(kg K), Tao = 2500 K, and Ah[,' = 4.9 x 10 J/kg.8

e e

From (35) and (6) we obtain the following results which bracket the effects of chemical
reaction:

P

f[/=0 p, = 0.090 MPa gauge-+.

f[/ = t p, = 0.172 MPa gauge
* -+ .

From the numerical calculation with oxidation (solid line in Figure 4), it is found that the final
oxida' ion fraction is f[/ = 0.37. An a posteriori(9fculation thus yields

f[f = 0.37 p, = 0.121 MPa gauge---+

This is close to the peak value of 0.115 MPa given by the solid line in Figure 4. Such closa
aoreement is actuapy somewhat fortuitous. We arrived at Equation (35) by making a number of

!approximations. Among others, we ignored the fact that the injection of the driving gas would
increase the final pressure. (A crude calculation plar9s the magnitude of this effect at about
15% of the final absolute peessure.) The point is, however, that one can make a reasonably

; good estimate of the direct heating eficct in this case.

Results for the DCH 2/DCH 3 Experiments
; . >

As noted above, the other experiments (DCH 2 and DCH 3) for which a simulation was I

performed is similar to DCH 1, except that 80 kg of debris was injected into the container, the ;
amount of driving gas was increased (see Table 11), and in the case of DCH 2 the debris was*

ejected toward the s!de wall, Results of a direct application of the sama model used for DCH 1

19
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to a simulation with debris rnass of 89 kg are shown as the dashed curve in Figure 6. (Note in
particular that p,,9 is still set equal to zero in this case.) We see that the calculation predicts a ,

very h!gh peak pressure compared to experiment. But we know that it is not consistent to use a
trapping probability of 0.05 in this case, because (contrary to DCH 1) the computation predicts
that a significant amount of the debris mass is still molten when it strikes the surfaces of the .

conteiner. (The reason for this is that the total heat capacity of the debris is much greater in.

DCH 2: see the discussion to follow.) There is evidence" that molten debris will predominantly
stick to surfaces, at least for some period of time. Because of the low trapping probability,
the amount of hot debris wh!ch remains in transit through the gas after striking the walls is
overestimated, and the heat transfer to the gas is accordingly overpredicted. Note that this
overestimation is a result of debris wall interactions and heat transfer, and is not particularly
sensitive to the difference in geometry (i.e., absence of the debris directing chute).

To reflect the fact that in reality more debris will adhere to the walls than predicted above,
another calculation was carried out for DCH 2/DCH 3 with p,,,, increased to 0.5. The pressure
history (see Figure 6) is now closer to the experimental result. Figure 7 shows the corresponding ,

particle plots and isotherms. The region in which the gas temperature exceeds the melting point
of iron is much more extensive than that shown in Figure 5. This is not surprising; we note it
here to reinforce the pnint that the debris in this case will remain molten when it strikes the

,

surfaces of the container. The much higher total heat capacity of the particles in this case has
resulted in a thermal saturation effect. Not only will the temperatures remain higher because
of the increase in the ratio of the heat capacity of the detris relative to that of the gas, but

I the rate at which the debris is cooled by the gas will be diminished, especially because of the . .

4nonlinearity (i.e., the T term) in the radiative cooling law. -

i

'

The Effect of Dripping from the Dome

As noted above, it is believed that appreciable amounts of debris stick to the dome of the
facility and then drip down after a orief delay time. To illustrate the effect of such behavior, a '

DCH 2/DCH 3 simulation was carried out with p,,,, = 0.9, p,,, = 0.5, f , = 2s, D , = 0.25y o
cm,and 9, = oc, in this calculation, the debris ejection cone at the mouth of the chute was
also narrowed. This was done by reducing the standard deviation of the randomly sel?cted
injection angle q from 11.4* to 5.7 '

'

The resulting pressure history is given as the chain dashed line in Figure 6. Particle plots
i and isotherms appear in Figures 8 and 9. The velocity field at t = 0.585 is shown in Figure 10.

Note that the computed vele::ity field consists of a rather simple circulation pattem. The eddy,

viscosity computed from the k - e model smooths out any tendency for the flow pattern to form ;

the smaller eddies which exist in the experiment, in principle, the coroputational model accounts [

! for them through the eddy viscosity. As noted in Section 11, we have refined the finite difference

! grid with no significant change in the pressure histories, The reason that the results do not
! depend sensitively on a careful resolution of small eddies is that in the Surtsey configuration,

,,

! the pressure behavior is dominated by thermodynamics and large scale heat transfer. The ,

small scale features of the flow have a lesser effect. I
'

Since blowdown gas is being injected, the flow pattern is not that of an incompressible *

1 gas. (Note, however, that the mass flow rates are weighted by the radius r because of the
i |
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Figure 6. Results of simulations with mass flux and driving gas appropriate to the DCH 2 and
-

DCH 3 experiments, with experimental data from DCH 2 at Level 3. Trapping probabilities equal
to 0.5 or 0.9, rather than 0.05, are more realistic in this case because a greater amount of debris*

remains molten at the time it strikes the surface.
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.

.

is more extensive than it is in DCH 1 (see Figure 5). {
! '
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Figure 8. Particle plots and isotherms at early times from the DCH 2/DCH 3 simulation with
dripping from the dome (For this computation, p,,,, = 0.9, p,,,, = 0.5, and i , = 2s. AJso, theo

i Injection cone was made narrower in this case than in the calculation shown in Figure 7. See.

text.)
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cylindrical geometry. Hence, the small velocity vectors near the outer wall account for a greater '

mass flow relative to the large velocity vectors on the axis than would appear at first sight.)
,

The influence of Oxygtn Depletion on Oxidation Rate,

*

It is if interest to determine whether the depletion of oxygen in regions occupied by debris
*

1 is important in determining the amount of debris oxidized in these experiments. We now present ;

; results which provide some insight into that question. Diagnostics have been implemented in
Kiva DCH which permit the display of the rate of oxidation under eight different assumptions.

; In the remainder of this subsection, these different rates are first defined, and then some repre- ;"

sentative computational results are given,

l The code is run in the usual manner (except that we keep track of the blowdown gas
separately from the ambient nitrogen, as discussed below). At the times at which data dumps

,

are taken for input to the graphics postprocessor, the fo!!owing rates of consumption of oxygen
'

are computed (rates p', have units of mass per unit voiume per unit time):g
.

! t. The actual rate p[, computed and used in the simulation,
l

2. The rate p2,, which would occur if the ratio of the density of 0 to the density of ambient2

N2 was equal to the initial ratio. In other words, the rate is computed under the assumption that i

the density of O is given by |2
'

.

Po,_ (P*o,\
'

2

Pq ;
=<

,-

where superscript o refers to initial values and p is the current computed density of the ambientq
nitrogen. By ambient nitrogen we mean the nitrogen that was originally in the container (exclud.
ing the blowdown gas). We keep track of the ambient and blowdown nitrogere by considering

; them as separate species in the code (but both with the properties of nitrogen).

| This definition of p,2, is equivalent to saying that the mole fraction of O (when the blow.2

! down gas is excluded) is equal to the iqitial mole fraction, it provides a way to assess the effect !

of consumption of O through oxidation on the rate of reaction. Comparison of p ,d and the
2

with p[,2;

shows the difference between the rate which would exist if no oxidation had occurre
! actual rate which does exist. (This ignores, of course, the differences 10 the flow field which

result from the removal of oxygen from the air.)

3. The rata p[, which would occur if the blowdown gas which exists at every point were
1 refaced by a gas mixture with components in the same ratio as those which currently exist,

excluding the blowdown gas. Hence, in this case it is assumed that the density of 0 is2
'

i
*

,

M ,ng;p 2 po, + X o

} where ng; is the particle density of the blowdown gas and X is the mole fraction of oxygen
,

j for the mixture excluding the blowdown gas:
|

j 2e ;

) t

!
'

!
.

f
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3 "*t-X =
.

Ent8

k

The cymbol implies that the sum excludes the blowdown gas; the particl6 densities are

u, = g

Comparison of p , with p[, provides an indication of the effect on reaction rate due to
3

the displacement of the ambient gas by the blowdown gas.

4. The rate pj, which would occur if the density of oxygen were equal to the initial density
of oxygen. Hence, we use

p[, 5 p*,,

During the injection of the debric, not enough time elapses for thorough thermal mixing to
take place. The gas is therefore hotter ard less dei.se in those regions where the det.is is most
dense; this will be seen to be a significant factor in determining the oxidation rate. Comparison

of p[, with p( indicates the effects of the displacement of O due to this thermal expansion
-

2

of the gas as well as the other effects discussed under 2. and 3. above. Comparison of p[,
2

with h,, g vos a good indication of the effect of the temperatuto gradients alone, except near-

the mouth of the chu'e.

5. 8. The rates p[, - p[,, which are rates computed on the basis of 0 densities identical2

to p[, - p[,, respectively, but for which the drop side limits on the reaction rate are ignored. It
will be seen that the drop-side limitation effects the values of pg,.

The code was run with the same input parameters as for the DCH 3 calculation with
dripping. The resulting plots of gas temperature, cell averaged debris temperature, and 0 ,Nf,2

and Nj mass fractions at t =0.58s are given in Figure 11, and the corresponding eight 0 2

consumption rates are given in Figure 12. (Actually the negative of pg, is shown, so that the
plotted quantities are positive.)

|
The time of 0.58s occurs just before the end of injection. The debris particle transit time '

from chute to dome is of the order of 0.1 0.2s. Hence, at t = 0.58s the injection process has !
reached a phase reasonably close to a steady state. (Recali that the trapping protability for the i

dripping case is p,,,, = 0.9, so most of the debris is sticking to the walls. Somewhat less than
*

10% of it continues to bounce or float around.) '

Note also that the narrowness of the injection cone causes the reactions to be very local-
ized near the axis of the container. (The standard deviation of the rendomly selected injection.

angle as was reduced to 5.7: for the dripping case.) The huge spike in the reaction rates in plots j
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Figure 11. Plots of gas temperature (temp), cell-averaged particle temperature (tp), and mass
fractions of oxygen, ambient nitrogen, and blowdown nitrogen (02, n2ambi, n2blowd) for the
DCH 3 simulation at t = 0.5Bs. Note: The graininess in the particle temperature is due to the

.

somewhat random cell by cell existence of computational parcels in some regions.
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Figure 12. Plots of the rate of oxygen consumption at i = 0.58s under various assumptions.
*

3Rates are given in kgf(m s) as follows: (1) Rate computed by using the 02 density actually
occurring in the calculation; (2) without oxygen depletion due to reactions; (3) Rate without
incursion of driving gas; (4) Rate with initial oxygen concentration (all with drop side diffusion,

limits); (5)-(8) Same as (1)-(4), but w;thout drop sido diffusion limits.
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;

i !

!

(2), (4), (6), and (8) in Figure 12 appears to be due to a random occurrence of several particles !

in the finite difference zone there.11 doesn't show up in plots (1), (3), (5), and (7) because the
, ,

!
) oxygen is largely depleted there. '

j The following points can be inferred from Figure 12: h
*1. The rate of oxidation is significantly reduced because of the depletion of oxygen by |

chemical reaction. (Compare plots (1) and (2) on Figure 12.) (4

2. The displacement of 0 by the blowdown gas has a significant effect only near the I2

mouth of the chute. (Compare plots (1) and (3).) This is to be expected. Note also that the,

effect of 0 depletion by reaction is still larger, even near the chute. (Compare plots (2) and! 2

; (3).) It is not clear that this should be the case near the mouth of the chute. Future work should
determine whether the existence of so much O and ambient gas near the mouth of the chute "

2

is due to (a) turbulent diffusion as determined by the eddy viscosity computed from the k - e [
model and if so, if the amount is physically plausible, or (b) numerical diffusion caused by the |
coarse mesh. ,

3. Displacement of gas due to the temperature gradient is significant. (Compare (1) and -

(4) or (2) and (4).) It should be emphasized that this can be an important factor in determining
the gas side limitation on the reaction in those situations where thermal mixing has not had time
to take place. Note that this effect would be even more pronounced if the drop skie Gnitation [
were not important. (Compare (1), (4), and (8).) j

! 4. The drop side limitation has some effect in the present calculations (compare (1)-(4)
,,

4with (5)-(8).) Unfortunately, comparison of plots (1) and (5) is difficult on the scale used in Figure
12, while the rates shown in those two plots are the most pertinent, since the actual computed i

[values of p are used there. We have found from examination of the computer outpi41 that .g

the drop side limit typically reduces the rates by amounts in the range 0-50% (i.e., h( in plot i

(t) is smaller than h in plot (5) by such amounts.) The effect of the drop side limits is much i

more noticeable in comparing plots (2)-(4) with (6)-(8), because in those cases, the effect of !
,

| the gas side limit has generally been reduced by a significant amount. [

A Comment on the Compu%tlonal Results
-

r

The above simulations of the experiments with large (80 kg) total debris mass show the j
trends the data are expected to exhibit in such cases. They have cerved to emphasize the need |

for better models for the interaction between the debris &nd the walls. What are required are t

deterministic methods for describing the sticking of the debris to the surfaces and its subsequent;
"

cooling and dripping from the surfaces. i

:
*

.

i*
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VI. CONCLUSIONS AND FUTURE WORK i

i . .

!

! This report has described a numerical model for the simulation of the transport of molten
! debris through a gas. The modelincludes heat transfer from the debris to the gas and from 8

| gas to walls as well as chemical reactions which occur when oxygen in the gas diffuses into.

the debris particles. The computational methods employed in this work have wide applicability
! to other combustion problems such as the transport of acrosols and particulates, fire research,

spray combustion, and flame acceleration due to obstacle generated turbulence.20 |
'

The model has been applied to the simulation of some large scale experiments relevant to !

the direct heating of atmospheres in nuclear reactors. It has been shown that good agreement !
! can be obtained between computation and experiment when the total debris mass is so low that !

the debris particles are significantly cooled by the gas during one transit through the experimental;

container As the debris mass is increased, thermal saturation results in nonlinear effects of
|

Increasing importance. These effects make accurate simulation strongly dependent on factors '

which are difficult to model. Of particular importance in this regard is the interaction between
i

the debris and the container walls.j
; Besides the debris wall interactions, the studies performed thus far are sensitivo to the
I adequacy of the models for heat transfer and, to a lesser extent, r.hemical reactions. The

,

sensitivity to accurate treatment of the gas flow in this simple geometric configuration is less,

; acute. This will not be the case in more complex situations with, for example, obstructions ;

; placed in the flow. Furthermore, chemical reactions will take on even greater importance when,

more exothermic reactions are involved. Such reactions anticipated in reactor applications are
those involving zirconium and oxygen or steam.

'

Future work willinclude improvements in the models for debris wallinteractions and ra-,

| distive heat transfer. Upcoming experiments with stean, will dictate the inclusion of chemical
I reactions between the metalin the debris and the steam. Finally, we intend to address the i

important question of the behavior of the debris cloud for geometries in which obstructions |,

|| appear. )

1
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