TECHNICAL REPORT 88104

NEW HAMPSHIRE YANKEE

INVESTIGATION OF CONCRETE CRACKS
IN THE SOUTH WALL OF THE
SERVICE WATER COOLING TOWER

SEABROOK STATION

APRIL, 1988

Altran Corporation 184 High Street Boston, MA

88104.2

1.0 INTRODUCTION

This report summarizes the results of a study to determine if cracks observed in the south wall of the Seabrook Station Service Water Cooling Tower result from concrete shrinkage or from some other cause. The approach taken is to analyze the wall for tension stresses caused by shrinkage strain while accounting for the sequence in which the wall was constructed. A pattern of predicted cracks is then drawn by assuming cracks to form perpendicular to the principal stress directions. If the analytically derived crack pattern closely follows the existing pattern, it can reasonably be concluded that the cracks were caused by shrinkage and not by some other mechanism.

2.0 ANALYSIS

Specifically, the portion of wall under consideration is that portion which forms the south wall of the cooling tower basin between elevations 22'-0" and 44'-0" (see Figure 31). The analytical model includes the entire 301 foot length of wall, 22 feet high with the base fixed at elevation 22'-0". This height is used because the wall was constructed in five sections, each 22 feet high. By the time additional construction took place, nearly all shrinkage had occurred. The wall has been divided into five sections corresponding to each concrete placement, with the cold joints numbered 1 to 4 (see Figures 1 and 31). This area was constructed over a four month period, with the dates of installation shown in Table 1.

The analysis was carried out using the ANSYS Engineering Analysis System. The wall model consisted of 490 plane stress elements and 610 nodes (see Figures 2 to 10). Elements in Figures 3 to 10 are shown in a reduced plot to provide additional detail. Five separate analyses were performed where each analysis represents a particular phase. The models for each phase consist of the wall sections in place at that time (e.g., Phase 3 model includes Sections 1, 2, and 3). Final stresses and displacements are obtained at the end of each phase by summing results from previous phases. To illustrate, the stress for Element 63 at the end of Phase 3 is given in equation form below:

element _____
$$063,3$$
 (end) = $063,1+063,2+063,3$

In each analysis concrete shrinkage strains are simulated by imposing a temperature differential on each wall section. The relationship for concrete shrinkage versus time is taken from Reference 1, equation 1.10.2. The shrinkage strain is equated to thermal strain which leads to the appropriate

88104.2

temperature values. These temperatures are shown in Table 2. Constraint equations between the sections are imposed to provide connectivity for each phase after Phase 1.

The applied temperatures and constraint locations for each phase are tabulated below:

PHASE	1	LOCATION OF IMPOSED CONSTRAINTS	
1 2 3 4 5	-101 - 9 - 2 - 3 - 30	-68 - 7 -21 -14 -38 -49 -56 -86 -96 -145	None Cold Joint 1 Cold Joints 1 & 2 Cold Joints 1 & 2 Cold Joints 1, 2, 3 & 4

3.0 RESULTS

Deformed shapes of the wall due to shrinkage are shown in Figures 11 to 19. The effect of individual phases are shown in Figures 11 to 15 while Figures 16 to 19 show the combined effect at the end of each phase. To plot crack directions, a tensile stress of 500 psi was selected as a threshold for crack initiation (Ref. 1). This limit was compared to the stress from the end phase results. Elements with a maximum principal stress of 500 psi or greater were plotted (see Figures 20, 22, 24, 26 and 28). These were then overlaid on the principal stress plots (Figures 21, 23, 25, 27 and 29 and Figures 1A to 5A). Beginning with Phase 1, crack patterns were drawn perpendicular to the principal stresses within those elements with stress greater than or equal to 500 psi (see Figure 30). Once a crack pattern was drawn, say for the end of Phase 2, it was not changed, even though the principal stress directions changed at the ends of later phases. This presumes that a crack will form the first time the concrete tensile stress is 500 psi. Comparing Figure 30 to the actual crack pattern, Figure 31, it is observed that the predicted cracks are remarkably close to the actual. This includes some reversals in direction, such as both sides of cold joint 1; and some cracks with kinks, seen at the left side of cold joint 2.

4.0 CONCLUSIONS

The analysis demonstrates that the derived crack pattern induced by concrete shrinkage very closely follows the existing pattern of fine hairline cracks.

This analysis provides additional confirmation that the existing pattern of hairline cracks in the north and south walls occurred during construction as a result of the normal concrete curing process.

5.0 REFERENCE

 Wang, C-K and Salmon, C.C., Reinforced Concrete Design, Harper & Row, 3rd ed., 1979.

TIMING OF CONCRETE POURS

PHASES 1 THRU 5

PHASE	POUR DATE	A* DAYS	Σ DAYS FROM 1	Σ DAYS FROM 2	E DAYS FROM 3	∑ DAYS FROM 4
1	05/04/79	79	79			
2	07/23/79	79	/9			
3	08/24/79	31	110	31		
		6	116	37	6	
4	08/30/79	1.8	134	55	24	18
5	09/18/79					

*Assume 30 days/month

TEMPERATURE CALCULATIONS

PHASE		END PHASE	END PHASE	END PHASE	END PHASE	END PHASE
1	Σ Days Total Total Total	79 -101 -101	110 -110 - 9	116 -112 - 2	134 -115 - 3	∞ -145 - 30
2	E Days Total T		31 - 68 - 68	37 - 75 - 7	55 - 89 - 14	~ -145 - 56
3	Days Total T			- 21 - 21	24 - 59 - 38	-145 - 86
4	Z Days Total T	*			18 - 49 - 49	-145 - 96
5	2 Days Total T	*				-145 -145

* Total T = 145.45
$$\frac{t}{t + 35}$$

FULL MOSEL - BOUNDARIES

PREPT ELEMENTS ANSYS 4.3 FEB 22 1988 10:59:57 PLOT NO.

DIST-198/ XF=1806 YF=132 ORIG

EDGE

ZV=1

PREPT ELEMENTS

DIST-1981

ORIG ZV=1 XF =1806 YF =132

ANSYS 4.3

10:58.05 PLOT NO.

FLUI WOOM

ACTOR STORM	2015 ZV=1 D127-Z08	XF-132				
No. of the second of the second		7		18	633	\$
	er	35	36	19	82	63
C.	92	E 23	*	54	59	09
20	=	7	32	55	26	57
	22	29	30	52	53	24
0	0.	21	28	64	20	21
	100	25	26	94	7	48
9	9	23	54	£3	*	45
2		21	22	0.	=	42
- 5	2	61	2	7	£ 2	9.6

海 家名で

911.15.114

E + Bicks

ELENENTS 0 00 LE X LE 378 00

	96	*	130		2	156	155	*
	*8	85.55	106	101	13.9	139	91	140
	25	83	104	105	135	136	**	25
	90	- w	102	103	132	133	Te.	134
	87	82	100	101	129	130	12	- 23
	7.6	11	88	66	126	127	3/6	128
	**	75	8	16	123	124	9.9	125
	72	73	÷ .	en o.	126	121	3	122
	22	11	92	93	111	138	20	119
	68	69	06	i i	1:4	95	60	911
	99	10	88	7 2	111	15		113
Γ	*3	59	3.6	18	108	100		110

ELEMENTS 378 01 LE X LE 870.00

ANSYS +. 3

0

FEB 22 :388

PLOT NO. 5 11:03.23

PREF; ELEMENTS NODE NUM

ELEN NUN

ZV=1

DIST-271 XF-624

YF-132

.0

PREPT ELENENTS

NOOE NUM

DIST-270 XF-1115 YF-80

ORIG ZV-1

11:05:16 PLOT NO.

ANSYS 4.2 FEB 22 1988

ELEMENTS 870, 01 LE X LE 1338 00

ANSYS 4.3
FEB 22 1966
11:14:41
PLOT NO. 11
PREPT ELEMENTS
NODE NUM
ELEM NUM

ORIG ZV=1 DIST=270 XF=1561 YF=0

233		1296	212	4	914	- 5
234	203	204		318	318	326
	201	202	Ì	315	316	317
235		<u> </u>			_ 3	
236	199	200	64	312	313	314
~=	-	7		0	0	Le
231	181	198	90	309	310	315
	195	981		306	307	308
238		4	4	20	11 1	9
	183	181		303	304	305
239		00	9	0		9
	161	192		300	301	302
240		9	50			
	185	081		162	298	299
741		\$	1	00		
-	181	188		294	295	296
242		100	9	70	11	
-	18.5	186		291	292	293
243		\$	00	2	11	1 1
	183	184		288	289	290
3.4		4	1			1 1

PREPT ELEMENTS

NODE NUM

DIST-270

ORIG ZV-1 XF-2051 YF-60

PLOT NO. 8

11:09.19

ANSYS 4.3

FEB 22 1988

ELEMENTS 1806 00 LE X LE 2274.00

FEB 22 1988 111:13:26 PLOT NO. 10 PREP7 ELEMENTS

ELEM NUN

NODE NUM

ORIG ZV=1 DIST=270 XF=2497 YF=80

ELEMENTS 2274,00 LE X LE 2742 00

	0 0	484		473	808	808
37.1	312	393	394	425	426	427
369	370	391	392	422	423	424
367	368	389	390	419	420	421
365	366	381	388	416	417	418
363	364	385	386	413	* 11*	415
361	362	383	3.94	410	411	412
359	360	381	382	407	408	604
357	358	379	380	404	405	406
355	356	311	378	401	402	603
353	354	215	316	396	349	00*
351	352	313	*116	308	396	301

PREPT ELEMENTS

NODE NUM

P. OT NO. 12

ANSYS 4.3 FEB 22 1988 11:15:59

ELEMENTS 2142 01 LE X LE 3234.00

Ö

13

ANSYS 4.3 FEB 22 1988

ELEMENTS 3234.01 LE X LE 3612 00

FIGURE 11

DMAX-, 179

. DSCA-250

DIST~1987

ORIG ZV-1 XF=1806 YF=132

PLOT NO. 2

11:37:17

POSTI DISPL.

STEP=1 ITER=1

FEB 22 1988

WSYS 4.3

PHASE 1 DAY 0 TO DAY 79

ANSYS 4.3

FEB 22 1988

11:38.04

PLOT NO. 3

POSTI DISPL.

STEP~2

ORIG

1-AZ

DIST-1987

XF =1806

TF=132

BMAX¹⁴. 141

. DSCA-250

PHASE 2 DAY 79 TG DAY 110

F-16,0RE 12

ANSYS 4.3

FEB 22 1988

11:40:32

PLOT NO. 4

POSTI DISPL.

ITER-1

ORIG

ZV=1

DIST-1981

XF=1806 rF=132

DMAX-. 0344

DSCA-250

F160RE 13

ANSYS 4.3 FEB 22 1988 11:42.56 POSTI DISPL.
SIEP.

PLOT NO. 5

27-1

DIST-1987

XF-1836

1F-132 DMAX-. 087 . DSCA-250

FIGURE 14

PHASE 4 DAY 116 TO DAY 134

POSTI DISPL.

STEP=5 ITER=1

11:45:20 PLOT NO. DIST-1987

OR16 2V=1 XF=1806 rF=132 DMAX-, 257

. DSCA-250

ANSTS 4.3

PHASE 5 DAY 134 TO TODAY

POSTI DISPL.

10.12.59

PLOT NO.

STEP-0999

ITER-1

DIST-1987

ORIG

ZV-1

XF-1806 1F-132 DMAX=, 215

. DSCA-250

ANSYS 4.3

ANSYS 4.3

FEB 23 1968

PLOT NO. 5

10:15:52

POSTI BISPL.

STEP-6999

RIG

ZV=1

01ST-1987

XF-1806 YF-132 DMAX=. 222

. DSCA-250

F19085 17

DIST-1967

ORIC ZV-1 XF-1806

IF=132

DMAX=, 235

DSCA-250

PLOT HO. 6 POST1 DISPL.

STEP-0999

116.8-1

10:18.24

ANSYS 4.3 FEB 23 1988

ANSYS 4.3

CEB 23 1958

10.21.09 PLOT NO. 7

POSTI DISPL.

STEP-9999

ITER-1

ORIG

ZV=1

01ST-1987

XF-1806

YF-152 DMAX-, 33 . DSCA-250

F1941RE 19

F16,086 20

ANSTS 4.3

MAR 1 1986

16.33.10

PLOT NO. 1

POST1 ELEMENTS

. DIST-1981

OR16 ZV=1 • XF-1806

EDGE

END PHASE I ELEMENTS WITH STG1 GE 500

DIST-1987

ZV=1

XF-1806

fF=132

ARSYS 4.3 FB 22 1988 POST1 VECTOR

STEP=1 ITER-1 SIG1-2184

PDIR

EP-N373

ORIG

PLOT NO.

15:19.59

PHATE I DAY 0 TO DAY 79

FIGURE 21

END PHACE 2 ELEMENTS WITH STG1 GE 500

ZV=1
ZV=1
. GIST=1987
. XF=1806
. YF=132
EDGE

POSTI ELEMENTS PLOT NO. 2

ANSYS 4.3 MAR 1 1968 16 34:51

POST1 VECTOR
STEP=4999
ITER=1
PDIR
STG1=2831
ELEM=39
CRIG
ZV=1
DIST=1961
XF=1606
FF=132

9.45;38 PLOT NO. 1

ANSYS 4.3

END PHASE 3 ELEMENTS WITH STG1 GE 500

MAR 1 1968

ANSYS 4.3

POSTI ELEMENTS PLOT NO. 3

16.37:03

ORIG

. DIST-1987

ZV-1

• XF=1806 • YF=132 EDGE

DIST-1967 27~1 XF=1806 YF=132

ANSYS 4.3 FEB 73 1988 PLOT NO ? POST1 VECTOR

91 69 4

STEP-0999

ITER-1

PDIR SIG1=2958

ELEN-39

END PHASE 4 ELEMENTS WITH SIGH GE 500

POST1 VECTOR

STEP-0999

TTER-1 POIR SIG1-3172 ELEM-39 ORIG ZV-1
DISI-196/

XF=1806 YF=132

PLOT NO.

9.55.09

ANSYS 4.3

PLOT NO. 5

16.41:17

MAE 1 1868 ANSYS 4.3

3081×38

POSTI WELTER

60500d316

THE ROLL

STG3~4820

ELT SP-196

PLOT NO.

15.34.29

ANSYS 4.3 FEB 22 :988

PREDICTED CRACK PATTERN

.

ELEVATION SEE

SERVICE WHITER COOLING TOWER
SOUTH WHILL

FIGURE 31

8804290254-01

OVERSIZE DOCUMENT PAGE PULLED

SEE APERTURE CARDS

NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARDS

6

APERTURE CARD/HARD COPY AVAILABLE FROM RECORD SERVICES BRANCH, TIDC FTS 492-8989