Title:	HCLPF for Quad Cities Bl	ock Walls					
Project:	Quad Cities USI A-46 a	IND IPEEE					
Method	Appendix A of NP-6041	1					

Accepta	nce Criteria: ACI 531-1979	9					
Remark							
cemark							
Kemark	S						
кетагк	S						
Kemark	S						
		REVISI					
No.	Description	Ву	Date	Chk.	Date 1/2/96	App.	
				Chk.	Date 11/2/96	App.	
No.	Description	Ву	Date	Concernance of the second second			Dat "/2/9
No.	Description	Ву	Date	Concernance of the second second			
No.	Description	By Mirgsmg Li	Date 11/2/96	Concernance of the second second	"/2/96		"/2/9
No.	Description	By Mirgsmg Li	Date 11/2/96	Concernance of the second second	"/2/96	a)	"/e/q

ſ

Sa	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #1 of 5 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Introduction

This calculation documents the seismic screening spreadsheet for the two block walls in the Quad Cities Station part of the IPEEE evaluation. They are the Main Floor Partial Walls of Turbine Building and the Floor Partial Walls of 125 VDC Distribution Panel.

The basis of preliminary screening is to consider the block walls as a two-way slab or a one-way slab spent vertically. Reference 3 shows the details of screening basis and is attached in Appendix A.

In conclusion, the two masonry block walls in this calculation have been qualified to levels in excess of the RLE in-structure demand and may be screened out at the 0.3g, PGA HCLPF level.

References

- 1. Sargent & Lundy, Block Wall Capacities, Calculation 5570-31-TB-04, October, 1983.
- Quad Cities Drawings of Turbine Building Main Floor Partial Walis, Drwgs. No. F-170, Rev. D, B-1772, Rev. G and B-1775, Rev. E.
- 3. S&A, "Block Wall Screening Spreadsheet", Cal. No. 95C2873-C001, Rev. 0, August 1995.
- 4. Jack R. Benjamin & Associates, et. al., A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Rev 1), EPRI NP-6041-SL, August 1991.
- 5. American Concrete Institute, ACI 531-1979 ACI Manual of Building Code Requirements for Masonry Structures
- Sargent & Lundy, "In-Structure Seismic Response Spectra for SMA Commonwealth Edison Company Quad Cities Nuclear Power Station Units 2 & 3, Quad Cities Nuclear Power Station, Units 1 & 2", Project No. 09630-016, Report SL-8.11.6-2, Rev. 0, May, 1995
- 7. Robert Blevins, "Formulas for Natural Frequency and Mode Shape", 1979.

Sa	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #2 of 5 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Wall Name:	125 VDC Di	stribution	Panel - Block Wall Separation
Reference Calculation:			
User Input:			Remark
Height (H)	12.5	ft	Total unsupported height of block wall
Span (W)	15	ft	Unsupported horizontal span
Weight (q)	80	lb/ft^2	
Nominal Depth	8	in	
Sa Top	1.923	g	Top spectral acceleration
Sa Bottom	1.254	g	Bottom spectral acceleration
Sa	1.5885	g	Average spectral acceleration (5% damping)
Constant Fields:			
Cover Thickness	1.5	in	
Poisson's Ratio	0.2		
fm	1270	psi	Mortar compressive strength
fy	60000	psi	Steel yield strength
Steel Area (As)	0.0375	in^2/in	#7 bar @ 16"
PGA	0.3	g	Peak Ground Acceleration for FRS
Em	952500	psi	750 * fm
Es	29000000	psi	
n	30.45		
an a			
Calculated Fields:			
Actual Depth (D)	7.625	in	3/8" less than nominal
d	3.8125	in	
lg	28.14	in^4/in	Section moment of inertia
Sg	7.38	in^3/in	Section modulus
fT	89.09	psi	Flexural strength
Mcr	0.66	k-in/in	Cracking moment
x	2.02	in	
It	6.42	in^4/in	
le	6.45	in^4/in	
Frequency (f)	7.89	Hz	Fundamental frequency
a	2.084	in	
Mv	5.61	k-in/in	
Mh	0.87	k-in/in	
Beta1	0.0411		Moment coefficient
My	1.18	k-in/in	Maximum vertical moment
Beta	0.0311		Moment coefficient
Mx	0.89	k-in/in	Maximum horizontal moment
HCLPF	0.295	g	

Sa	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #3 of 5 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Continuation on Wall:	125 VDC D	istribution	Panel - Block Wall Separation
		1	Remark
L	150.0	in	
Weight (q)	0.556	Ib/in^2	
Mv	5.61	k-in/in	Vertical Moment Capacity
Shear Capacity	0.14	k/in	2 rows of 3/8" CEA @2'-3" c.c. staggered
Calculated Fields:			
Frequency	4.56	Hz	Fundamental frequency
Sa	1.275	g	Average spectral acceleration (5% damping and 10% uncertainty)
My	1.99	k-in/in	Maximum vertical moment
Shear	0.05	k/in	@ top and bottom of wall
HCLPF of My	0.845	g	
HCLPF of shear	0.782	g	
HCLPF	0.782	g	

Sea	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #4 of 5 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Wall Name:	Turbino Bui	ding Mai	S&A Calculation 95C2873-C001
Reference Drwgs:	Turbine Building Main Floor Partial Walls F-170, Rev. D, B-1772, Rev. G and B-1775, Rev. E		
ricici de Diwys.	1-170, Kev.	0, 6-177	2, Rev. G and B-1775, Rev. E
User Input:			Remark
Height (H)	20	ft	Total unsupported height of block wall
Span (W)	30	ft	Unsupported horizontal span
Weight (q)	100	lb/ft^2	Weight per unit area (assume 2/3 grouted and density = 125 pcf) = 50.7+2/3*(121.1-50.7) = 98 psf
Nominal Depth	12	in	
Sa Top	1.07	g	Top spectral acceleration
Sa Bottom	1.07	g	Bottom spectral acceleration
Sa	1.07	g	Average spectral acceleration (5% damping)
Constant Fields:			
Cover Thickness	1.5	in	
Poisson's Ratio	0.2		
fm	1350	psi	Mortar compressive strength
fy	60000	psi	Steel yield strength
Steel Area (As)	0.0375	in^2/in	#7 bar @ 16"
PGA	0.3	9	Peak Ground Acceleration for FRS
Em	1012500	psi	750 * fm
Es	29000000	psi	
n	28.64		
Calculated Fields:			
Actual Depth (D)	11.625	in	3/8" less than nominal
d	5.8125	in	
lg	76.89	in^4/in	Section moment of inertia
Sg	13.23	in^3/in	Section modulus
fT	91.86	psi	Flexural strength
Mcr	1.22	k-in/in	Cracking moment
x	2.62	in	
It	16.94	in^4/in	
le	17.06	in^4/in	
Frequency (f)	3.94	Hz	Fundamental frequency
а	1.961	in	
Mv	9.79	k-in/in	
Mh	1.62	k-in/in	
Beta1	0.0348		Moment coefficient
My	3.35	k-in/in	Maximum vertical moment
Beta	0.0189		Moment coefficient
Mx	1.82	k-in/in	Maximum horizontal moment
HCLPF	0.266	g	

Sea	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #5 of 5 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Continuation on Wall:	Turbine Bu	ilding Mair	Floor Partial Walls
	Turbino Du		Remark
L	240.0	in	
Weight (q)	0.694	Ib/in^2	
Mv	9.79	k-in/in	Vertical Moment Capacity
Shear Capacity	0.42	k/in	2 rows of 3/8" CEA @ 9" c.c.
Calculated Fields:			
Frequency	2.67	Hz	Fundamental frequency
Sa	0.864	g	Spectral acceleration (5% damping)
My	4.32	k-in/in	Maximum vertical moment
Shear	0.07	k/in	@ top and bottom of wall
HCLPF of My	0.680	g	
HCLPF of shear	1.731	9	
HCLPF	0.680	g	

ATTACHMENT C "HCLPF for Quad Cities Block Walls" Calculation 93C2806.03 Revision 0 SVP-98-286

Ser	JOB NO. 93C2806.03 SUBJECT: Quad Cities IPEEE (ComEd) Calculation No. C-003	SHEET #A1 Revision 0
Stevenson & Associates a structural-mechanical consulting engineering firm	HCLPF for Quad Cities Block Walls	By: MSL 11/2/96 Chk. WD 11/2/96

Appendix A: S&A, "Block Wall Screening Spreadsheet", Cal. No. 95C2873-C001, Rev. 0, August 1995.

0.4	JOB NO. 95C2873-C001	SHEET #2	
S&A	SUBJECT NMP1 IPEEE	OF 9	
STEVENSON	Block Wall Screening Spreadsheet	Revision	
& ASSOCIATES		By TMT 7/26/95	
a structural-mechanical consulting engineering firm		Chk. MSL 8/23/95	

Eackground

This calculation documents the seismic screening spreadsheet for the block walls in the Nine Mile Point 1 stationas part of the IPEEE evaluation. Page 1 of the spreadsheet provides the basis for preliminary screening. If the block walls do not pass the preliminary screening, page 2 can be used which allows the wall to drift during an earthquake.

The block walls in NMP1 are typically made of 8" and 12" hollow blocks reinforced by #4 bars @32" [4]. The reinforced cell is filled with concrete. Wall bottom is reinforced with existing dowels @ 16" spacing. The walls are reinforced horizontally by Dur-O-Wall, or 3/16" deformed side rods at 16" spacing [4]. The sides of the walls are tied in to precast concrete with two 1/4" threaded rods into inserts.

The walls are considered well anchored at the ends. In the pre-screening, only the out-of-plane bending moment at the center of the wall is checked. The in-plane loading is neglected. The slight beneficial effect due to the gravity is also ignored.

Solution Methodology

The solution is mainly based on EPRI NP-6041 [1] Appendix R without taking advantage of the permissible drift. In addition to the methodology of [1], two-way plate action is considered in both the frequency estimation and the maximum moment estimation.

Elastic Frequency

Instead using the formula in [1], the two-way rectangular plate frequency formular from [3], p. 258 will be used. The wall is assumed to be simply-supported on all four sides,

$$f = \frac{\lambda^2}{2\pi W^2} \sqrt{\frac{E_m I_e g}{q(1 - v^2)}}$$

where

$$\lambda^2 = \pi^2 \left[1 + \left(\frac{W}{H}\right)^2 \right]$$

W = Width of the wall H = Height of the wall

- q = Weight per unit wall area
- v = Poisson's ratio

 E_m = elastic modulus of masonry $\approx 750 f'_m$ (psi) I_e = Effective moment of inertia

$$= I_{T} + \left(\frac{M_{CR}}{M_{CDFM}}\right)^{3} \left(I_{g} - I_{T}\right) \leq I_{g}$$

 I_g = Gross moment of inertia I_T = Cracked section transformed moment of inertia

0.1	JOB NO. 95C2873-C001	SHEET # 3 OF 9	
S&A	SUBJECT NMP1 IPEEE		
STEVENSON	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95	
& ASSOCIATES			
a structural-mechanical consulting engineering firm		Chk. MSL 8/23/95	

 $M_{CR} = Cracking moment = f_T S_g$

 $f_T = \text{Cracking tension in flexure} \approx 2.5 \sqrt{f_m'} \text{ (psi)}$

 S_g = Gross section modulus = $2I_g / D$

Since the walls are hollow, it is grouted only at the reinforcement, the moment of inertia will calculated using the concrete block cover only.

$$I_{\nu} = bt(D-t)^2/2$$

where b = unt width of the wall, and t = thickness of cover. For the cracked section, the location of the neutral axis from the compression face can be estimated by solving

$$x\left(\frac{x}{2}\right) - nA_s(d-x) = 0$$

where

$$n = \frac{E_s}{E_m}$$

 E_s = elastic modulus for rebars

assuming x does not exceed t, the cracked section moment of inertia

$$I_T = \frac{bx^3}{3} + nA_s(d - x)^2$$

Vertical Moment Capacity

$$M_{\gamma} = 0.9 M_U = 0.9 A_s f_y \left[d - \frac{a}{2} \right]$$

where

 A_S = steel area per unit width

 f_V = yield strength of rebar

d = depth from the compressive face to the center of steel = D/2

D = Depth of wall

$$a = \frac{A_s f_y}{0.85 f_m}$$

 f_m = specified compressive strength of masonry (psi)

0.4	JOB NO. 95C2873-C001	SHEET # 4 OF 9	
S&A	SUBJECT NMP1 IPEEE		
STEVENSON	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95	
& ASSOCIATES			
a structural-mechanical consulting engineering firm		Chk. MSL 8/23/95	

The vertical moment capacity is defined as the larger of the M_V or the cracking moment M_{CR} defined in the previous section.

Horizontal Moment Capacity

Since the Dur-O-Wall horizontal reinforcement has only 0.028 in² every 16", in addition the splice is only 6", which will not be able to sustain the yield strength of the bars, the bending in the horizontal direction will be governed by the cracking moment of the blocks.

According to [7], Table 6.3.1.1, the allowable flexural tension parallel to bed joint is at least 133% of the tensile strength when stressed normal to bed joints.

$$M_{H} = 1.33 M_{CR}$$

Maximum Moment

The maximum moment in the wall will be determined by the close form solutions presented in [2], Section 30, pp. 113-119 assuming all edges of the wall are simply-supported. The maximum moment occurs at the center of the wall

$$\left(M_{x}\right)_{\nu=0} = \frac{qx(W-x)}{2} - qW^{2}\pi^{2}\sum_{m=1,3,5,\dots}^{\infty}m^{2}\left[2\nu B_{m} - (1-\nu)A_{m}\right]\sin\frac{m\pi x}{W}$$

$$\left(M_{y}\right)_{y=0} = v \frac{qx(W-x)}{2} - qW^{2}\pi^{2} \sum_{m=1,3,5,\dots}^{\infty} m^{2} \left[2B_{m} + (1-v)A_{m}\right] \sin \frac{m\pi x}{W}$$

$$(M_x)_{\max} = (M_x)_{y=0,x=W/2} = \frac{qW^2}{8} - qW^2\pi^2 \sum_{m=1,3,5,\dots}^{\infty} m^2 [2\nu B_m - (1-\nu)A_m] \sin\frac{m\pi}{2}$$
$$= \left(\frac{1}{8} - \pi^2 \sum_{m=1,3,5,\dots}^{\infty} m^2 [2\nu B_m - (1-\nu)A_m] \sin\frac{m\pi}{2}\right) qW^2$$
$$= \beta qW^2$$

$$\left(M_{y}\right)_{\max} = \left(M_{y}\right)_{y=0,x=W/2} = v \frac{qW^{2}}{8} - qW^{2}\pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} \left[2B_{m} + (1-v)A_{m}\right] \sin\frac{m\pi}{2}$$
$$= \left(\frac{v}{8} - \pi^{2} \sum_{m=1,3,5,..}^{\infty} m^{2} \left[2B_{m} + (1-v)A_{m}\right] \sin\frac{m\pi}{2}\right) qW^{2}$$
$$= \beta_{1} qW^{2}$$

where

Q. A	JOB NO. 95C2873-C001	SHEET # 5 OF 9	
S&A	SUBJECT NMP1 IPEEE		
STEVENSON	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95	
& ASSOCIATES a structural-mechanical consulting engineering firm			
		Chk. MSL 8/23/95	

$$A_m = -\frac{2(\alpha_m \tanh \alpha_m + 2)}{\pi^5 m^5 \cosh \alpha_m}$$

$$B_m = \frac{2}{\pi^5 m^5 \cosh \alpha_m}$$

Spectral Acceleration

The spectral acceleration will be extracted from the corresponding Floor Response Spectrum at the bottom and the top of the block wall. The average of the top and bottom acceleration will be used in the spreadsheet.

HCLPF

The HCLPF will be estimated by the minimum of

$$HCLPF_{V} = \frac{\left(M_{y}\right)_{\max}}{M_{v}} \left(PGA\right)$$

and

$$HCLPF_{H} = \frac{\left(M_{x}\right)_{\max}}{M_{H}} \left(PGA\right)$$

Pre-Screening Implementation

The above procedure is implemented in an Excel spreadsheet, BWSCREEN.XLS, sheet BLOCK.

Block Wall Compression Strength f_m

Based on test results in Ref. [5] and [6], the average compressive strength is 2,920 psi with a standard deviation of 400 psi. Following the guideline of [1], the SMA strength capacity for non-ductile materials should be set the 99% level, therefore, it is recommended that

$$f_{w} = 2,920 - 2.3 * 400 = 2,000 \text{ psi}$$

Weight

Lacking detailed information, the following weight may be used [8] for hollow walls

Wall thickness	Unit Weight
6"	43 lb/ft^2
8"	55
12"	80

S&A	JOB NO. 95C2873-C001 SUBJECT NMP1 IPEEE	SHEET #6
STEVENSON	Block Wall Screeping Spreadsheet	
& ASSOCIATES	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95
a structural-mechanical consulting engineering firm		Chk. MSL 8/23/95

Any attached weight on the wall, including electrical boxes, conduits, etc. should be added to the total weight.

Response Spectra Damping

When retrieving spectral values, 7% damping similar to reinforced concrete structures may be used for the preliminary screening.

HCLPF Based on NP-6041, Appendix R

Alternative to the above elastic solution, the following calculation allowing the block wall to drift based on Appendix R of [1] is presented in a spreadsheet.

Based on the above parameters, the CDFM permissible drift limit is determined by

$$\left(\frac{\Delta_{\nu}}{H}\right)_{CDFM} = \frac{0.005}{c/d} F_c \le 0.04$$

where

$$F_c = \frac{H/d}{30} \le 1.0$$

Seismic Capacity

Based on Ref. [1], for a simply supported uniformly loaded non-load bearing masonry wall, the seismic spectral acceleration capacity is

$$\frac{S_{A_c}}{g} = \left\{ \frac{8M_{CDFM}}{qH^2} - 4\left(\frac{\Delta_u}{H}\right) \right\}$$

Secant Frequency

In determining the seismic demand using the equivalent linear elastic procedure, an effective frequency is required. According to Ref. [1], the secant frequency corresponding to an ultimate nonlinear displacement Δ_{μ} is

$$f_s = \frac{1}{2\pi} \sqrt{\frac{1.5S_{A_c}}{\Delta_{\mu}}}$$

The effective nonlinear seismic demand can be approximated by treating the walls as pseudo-elastic with an effective frequency equals f_s and effective damping β_e at about 6% [1]. Therefore

$$S_{A_n} = S_A(f_s, 6\%)$$

SoA	JOB NO. 95C2873-C001	SHEET #7 OF 9	
D&A	SUBJECT NMP1 IPEEE		
STEVENSON	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95	
& ASSOCIATES			
a structural-mechanical consulting engineering firm		Chk. MSL 8/23/95	

The scale factor to be applied to a reference input spectrum is

$$F_{\mathcal{S}_{j}} = \frac{S_{\mathcal{A}_{C}}}{S_{\mathcal{A}_{DR}}}$$

The HCLPF can then be obtained by

 $HCLPF = F_{s_{s}}(PGA)$

The computation has been implemented in the spreadsheet file BWSCREEN.XLS, sheet DRIFT.

Note that the elastic frequency is lower than that of the pre-screening spreadsheet, because Appendix R of NP-6041 assumes the wall to span one way vertically while in the pre-screening, two-way action is used. The final HCLPF is the maximum within the drift limits in the sheet. In some cases with large drift, the seismic capacity may turn negative. These limiting cases should be ignored.

References

- EPRI NP-6041, "A Methodology for Assessment of Nuclear Power Plant Seismic Margin," Revision 1, Final Report, August 1991.
- 2. Tomoshenko and Woinowsky-Krieger, "Theory of Plate and Shells," 2nd Edition, McGraw-Hill, 1959.
- 3. Blevins, "Formulas for Natural Frequency and Mode Shape," Van Nostrand Reinhold, 1979.
- IP1 Drawing C-18801-C, Rev. 6, Turbine Building Battery Board Room at El. 261'-1", Plane Sections and Des. Ts.
- 5. NMP1 Calculation S6-IE8011-MWR1, Masonry Wall Ref. 1. 1987.
- 6. NMP1 Calculation S6-IE8011-MW, Masonry Walls, 1987.
- 7. ACI 530-92/ASCE 5-92/TMS 402-92, Building Code Requirements for Masonry Structures, 1992.
- 8. AISC, Steel Construction Manual, 8th Edition.

0.4	JOB NO. 95C2873-C001	SHEET #8		
S&A	SUBJECT NMP1 IPEEE	OF 9		
STEVENSON	Block Wall Screening Spreadsheet	Revision		
& ASSOCIATES a structural-mechanical consulting engineering firm		By TMT 7/26/95 Chk. MSL 8/23/9		

Wall Name:	Diesel Gener	rator Area	Block Wall #29 (Example)		
User Input:			Remark		
Height (H)	36.8	ft			
Span (W)	40	ft	Total unsupported height of block wall		
Weight (q)	79	a contract of the second second	Unsupported horizontal span		
Nominal Depth	and the first of the second	lb/ft^2	Weight per unit area		
Sa Top	12	in			
Sa Bottom	0.41	9	Top spectral acceleration		
	0.36	g	Bottom spectral acceleration		
Sa	0.385	9	Average spectral acceleration (7% damping)		
Constant Fields:					
Cover Thickness	1.25	in			
Poisson's Ratio	0.15				
fm	2000	psi	Mortar compressive strength		
fy	40000	psi	Steel yield strength		
Steel Area (As)	0.00625	in^2/in	#4 bar @ 32"		
PGA	0.13	g	Peak Ground Accleration for FRS		
Em	1500000	psi	750 * fm		
Es	29000000	psi			
n	19.33				
Calculated Fields:					
Actual Depth (D)	11.625	in	3/8" less than nominal		
d	5.8125	in			
ig	67.28	in^4/in	Section moment of inertia		
Sg	11.57	in^3/in	Section modulus		
fT	111.80	psi	Flexural strength		
Mor	1.29	k-in/in	Cracking coment		
x	1.07	in			
It	3.13	in^4/in			
le	67.28	in^4/in			
Frequency (f)	4.01	Hz	Fundamental frequency		
а	0.147	in			
Mv	1.29	k-in/in			
Mh	1.72	k-in/in			
Beta1	0.0416		Moment coefficient		
My	2.02	k-in/in	Maximum horizontal moment		
Beta	0.0361		Moment coefficient		
Mx	1.76	k-in/in	Maximum vertical moment		
	0.000				
HCLPF	0.083	9			

C . A	JOB NO. 95C2873-C001	SHEET # 9		
S&A	SUBJECT NMP1 IPEEE	OF 9		
STEVENSON & ASSOCIATES a structural-mechanical consulting engineering firm	Block Wall Screening Spreadsheet	Revision By TMT 7/26/95 Chk. MSL 8/23/9		

Drift Calculation Bas	ed on EPRI I	NP-6041, Ap	pendix R			
Cotinuation on Wall:	Diesel Gene	erator Area B				
As	0.00625	in^2				
d	5.81	in				and the second s
ρ	0.00108					
а	0.147	in				
С	0.173	in				
c/d	0.030					
L	441.6	in				
Fc	1	Participants of	NP-6041 Eq. R-14			
Δu / L	0.040		NP-6041 Eq. R-15			
Δu	17.66	in	CDFM Permissible Dri	ft Limit		
W	0.549	lb/in^2				
MPΔ	2.14	k-in/in				
MCDFM	1.29	k-in/in				
Drift Ratio	Drift	Frequency	Reference Demand	Capacity	Scale Factor	HCPLF
Δu / L	Δu (in)	f (Hz)	SADR (g)	SAC (g)	Fsi	g
Elastic	0.00	2.158	0.281	0.097	0.34	0.045
0.005	2.21	0.713	0.092	0.077	0.84	0.109
0.01	4.42	0.434	0.057	0.057	0.99	0.129
0.02	8.83	0.166	0.025	0.017	0.68	0.088
0.03	13.25	#NUM!		-0.023	#DIV/0!	
0.04	17.66	#NUM!		-0.063	#DIV/0!	
HCLPF	0.129	g		and the second		