TRAC Support Software

R. P. Jenks
V. Martinez

Manuscript submitted: April 1988
Date publishied: June 1988

Prepared for
Division of Reactor Accident Analysis Office of Nucleur Regulatory Research US Nuclear Regulatory Commission
Washington. DC 20555

NRC FIN No, A7016

```
8808120057 880630
PDR NUREG
CR-5071 R PDR
```

Prepured by Wendy Rowley, Group N-9

An Affirmative Action/Equal Opportunity Employer

This report toas prepared as an account of work sponsored by an agency of the
United States Government. Neither the UInited States Government nor any agency there or any of their employees, makes any toarranty, expressed or implied, or assumes any legal liability or responsiblity for any thind party's use, or the results of such use, of anty information, apparatus, product or process disclosed in this report, or represents that its wse by such third party teould not infringe pricately owned rights.

CONTENTS

LIST OF FIGURES vi
LIST OF TABLES vi
ACKNOWLEDGMENTS vii
ABSTRACT ix
I. EXCON I-1
A. Introduction |-1
B. Basic Concepts And Capabilities I-1
C. User Information 1-3
D. Programming Details I-6
REFERENCES I-6
II. TRAP II-1
A. Introduction II-2
B. Basic Concepts and Capabilities II-3
C. Using TRAP II-3
D. Syllabus of TRAP Commands II-6
E. Slice Options II-26
F. Extended Function Capability II-26
G. Superposition of Auxiliary Data II-30
H. TRAC Dependent Variables Names and Descriptions II-33
I. Programming Guidelines II-36
J. Examples II-37

1. Examples of Code Execution II-37
2. Examples of Option Use II-54
REFERENCES II-59
III. EXTRACT III-1
A. Introduction III-1
B. Basic Co cepts and Capabilities III-3
C. Using EXTRACT III- 3
D. TRAC Dr gramming Guidelines to Preserve Independence of EXTRACT III-4
REFERENCES III-21
IV. CVRT DESCRIPTION IV. 1
A. CVRT Input and Execution IV-1
Conversion Tasks Currently Performed By CVRT IV-2
C. Conversion Tasks Not Per' $2 r m e d$ By CVRT IV-2

FIGURES

1-1. Structure of COMPij files 1-7
1-2. Structure of P block 1-8
1-3. Structure of Q block 1-9
1-4. Structure of LCDATA block |-10
1-5. Output from flow program |-11
II-1. TRAP program data flow II-4
II-2. Program subroutine function entry II-38
TABLES
II-1. LISTING OF EXTFNC II-31
II-2. AUXFIL DATA II-52
II-3. GUTPUT FROM USING DVNAMES COMMAND II-57
II-4. OUTPUT FROM USING SUMMARY COMMAND II-58
III-1. DUMP-FILE OVERALL STRUCTURE III-2
III-2. EXAMPLES FOR EQUIVALENCING THE NAMELIST AND FLT VARI- ABLES TO THE DUMMY DVLT ARRAY IN ROUTINE DMPIT III-6
III-3. EXAMPLES FOR READING THE DUMMY DVLT ARRAY FROM A DUMP FILE AND REASSIGNING THE VARIABLE TO THE NAMELIST AND FLT TABLES CORRECTL IN THE RDREST ROUTINF III-9
III-4. EXAMPLES FOR [^UIVALENCING THE VLT P PTL VARIABLES TO THE DUMMY DVLT ARRAY FOR A PIPE COM, IENT IN THE DPIPE ROUTINE III-12
III-5. EXAMPLES FOR READING THE DUMM DVLT ARRAY FROM THE DUMP FILE AND REASSIGNING THE VARIABLES BACK TO THE VLT ARRAY FOR A PIPE COMPONENT III-19

AUTHORS AND ACKNOWLEDGMENTS

Many people contributed to the TRAC Support Software development and to this report. Because it was a team effort, there was considerable overlap in responsibilities and contributions. The participants are listed according to their primary activity. Those with the prime responsibility are listed first.

PRINCIPAL INVESTIGATORS: Richard P. Jenks and Jay W. Spore
EXCON: Victor Martinez and Mike Turner
TRAP:
EXTRACT:
CVRT:
REPORT COMPILATION:
REPORT TYPING:
Ann Barker-Wohletz, Victor Martinez, and Mike Turner
Victor Martinez
Jay W. Spore
Wendy M. Rowley. Victor Martinez, and Richard P. Jenks
Wendy M. Rowley and Gloria E. Mirabal
In addition to those listed above, we acknowledge all others who contributed to earlier versions of the software. We also thank all Los Alamos use's and external users, both domestic and foreign, who supplied comments and suggestions for this manual.

TRAC SUPPORT SOFTWARE

by
R. P. Jenks and V. Martinez

Abstract

This manual provides users of the Transient Reactor Analysis Code (TRAC) with information about computer codes that can be used to support their analysis efforts. These codes are collectively referred to as TRAC support software.

Specifically, documentation is provided to allow users to implement, apply, and interpret the output of the support software hat is available. The TRAC code is an advanced best-estimate code for analyzing transients in thermal-hydraulic systems. Considerable input data are required for modeling a large thermal-hydraulic system and considerable output data are produced from the computer calculation for analysis; the support software assists users in their management of both the input and the output data.

Initially, this document contains sections that describe EXCON. TRAP. EXTRACT, and CVRT, major support software used routinely at Los Alamos National Laboratory. Later sections will be provided as other support codes are documented or as additional support software is developed. In this context, the document is dynamic, growing with time, need, and resource availability.

The first four codes described are central to the efficient and effective use of the TRAC code. EXCON is a TRAC graphics file postprocessor that converts the TRAC graphics outpi" files into component-n - ated input d ' 7 files for use with TRAP. TRAP is an extensive plotting package that allows users to produce a range of plots from quick draft-quality graphs for fast examination of results to final presentation-quality graphics for more formal documentation requirements. EXTRACT is a powerful support cocie that read a TRAC dump file and generates "extracted information" for building TRAC input decks with the latest values for system conditions. EXTRACT is particulariy useful and cost effective for analyses that require multiple parametric calculation- CVRT converts TRAC-PF1/MOD1 and early-version MOD2 input decks into current TRAC-PF1/MOD2 input decks.

I. EXCON

The EXCON computer code is a TRAC postprocessor which reads the graphics files produced by TRAC and writes individual COMPij files, that a user selects. The COMPij file contains all the geometry and time edit data for just the ij component, where ij corresponds to the user assigned component number. The COMPij files are then used as input to TRAP for a variety of TRAC-graphics tasks.

A. Introduction

The Extract Component Number Code (EXCON) directly supports the Transient Reactor Analysis Code (TRAC) (Ref. I-1) program at Los Alamos National Laboratory under the sponsorship of the US Nuclear Regulatory Commission (NRC). It was developed to extract selected data from the TRAC graphics files (TRCGRF) for further postprocessing by TRAP. Some early versions of the EXCON code shared large blocks of coding with TRAC. Both TRAC and EXCON were maintained by the CDC-UPDATE program, which is similar to HISTORIAN, and the shared blocks of coding were grouped into comdecks. The comdecks would first be extracted from the TRAC program library and then inserted into the EXCON program library. which meant that both codes had identical coding. Most of the comdecks contained the common blocks of variables that were used to write and read data to the TRCGRF files. By sharing the same common blocks it was guaranteed that EXCON would read the variables in the same order that TRAC wrote them, but code sharing also meant that EXCON was version dependent on TRAC. Every time a new version of TRAC was generated, a new version of EXCON was also required.

The current version of EXCON, which includes added capabilities, is not version dependent on TRAC. That means that EXCON needs to be updated only when new components are added to TRAC, when improvements are made, or when errors discovered in the present code are fixed. This drastically reduces the amount of effort required to maintain the code. Some of the added capabilities include the ability to create a separate component file for all system-dependent variable data and the signal and control-block data. The current version of EXCON will also rename all the signal and control variables by suffixing the numerical value to the end of the variable name, thus creating a unique name that can then be requested in TRAP for plotting.
B. Basic Concepts And Capabilities

The following list describes the different operations EXCON will perform on TRCGRF files:

Create a history file called HIS \ddot{i} that documents the names of the update error correction files used to produce the version of TRAC that in turn produced the TRCGRF file. This file may be plotted along with the other component files created at the time. Creation of the HIST file is automatic, although it may be destroyed if desired. TRAP will automatically plot the data in this file if it is not destroyed, unless the NCOMP option is enabled in TRAP.

Merge the data from as many as 30 TRAC graphics files. EXCON will also merge/extend an existing component file with the component data from a new TRCGRF file. This feature saves the user the inconvenience of retrieving all the TRCGRF files that were used to create such a component file.

Select specified time domains from any graphics file containing more than one time domain (e.g., a graphics file produced during a PWR initialization). This option can also te used to override the default when multiple graphics files have overlapping time domains.

Time shift all time values from any input file by any specified amount.
Input an EXCON data file, which contains all the input data that is requested during a normal interactive EXCON session. This file is not to be confused with TRAC input graphics files. Its purpose is to instruct EXCON which graphics files to use, and to provide corresponding time shifts, time domains, edit frequencies, overall start and stop times, and component information. This is an ideal way to run EXCON in a batch mode.

Delete rod data from VESSEL components, unless rod data are desired, in which case only rod data are included. If your VESSEL component corresponds to component number 1 and you wanted only the rod data. you would request component 1 R. If you want both vessel and rod data you would request components 1 and 1 R. The VESSEL component is the only component that is split into two separate files. This is done to reduce the size of each file.

Assigns unique names to the signal and control block variables written to the COMP00 file. Since TRAC assigns the variable name SV to all the signal variables and $C B$ to all the control block variables. TRAP would be unable to determine which signal or control block variable a user was requesting. EXCON therefore renames all the SV and CB by suffixing a numerical value beginning with 1 to the variable name and inc'ementing the value by 1 in the order that the SV or CB variables are encountered. For example, if five signal and four control block variables exist (SV, SV, SV, SV, SV, CB, CB, CB, CB), EXCON would rename them as follows (SV1, SV2, SV3, SV4, SV5, CB1, CB2, CB3, CB4). If the user wanted to plot the second signal variable using TRAP, he would request dependent variable SV2 on the DE command iine. This variable name would be unique to all the other signal variables. The label portion of each signal or control block variable would furnish the correspondence
between the user-assigned number used in TRAC and the renamed SV and $C B$ variables.

Writes all dependent variables that do not identify with a given component into the COMP00 file. The variables in this file are known as system parameters or global variabies. The file is requested within EXCON and TRAP just like any other component file.
C. User Information

EXCON is a TRAC graphics file postprocessor that converts the TRAC graphics output files (TRCGRF1, TRCGRF2. . . .) into component-oriented input data files for TRAP (COMP01. COMP02, ...).

To understand the purpose of EXCON, first consider the natural order in which graphics data are output from TRAC:

Time-Point	Data T_{1}
	Component 1
	Component 2
	Component 3

$\mathrm{T}_{1} \quad$ Component 1
Component 2
Component 3

Thus, at every time step, we find the data for all the variables for each component. It is necessary to rearrange the data into the following format:

Data	Time-Point
Component 1	T_{1}
	T_{2}
	T3
Data	Time-Point
Component 2	T_{1}
	T 2
	T3

This is (albeit oversimplified) the format of the component files (COMPij) produced by EXCON. Each component is described in a separate file containing data pertinent only to that component. Data are also arranged chronologically.

EXCON normally expects the following information:

1. Names of all TRAC graphics files (default is TRCGRF)
2. Time shifts for each file (default is 0.0)
3. Beginning and end times (default is full range)
4. Edit frequency (default is every point)
5. Component numbers (mandatory)
6. Merge time at end of existing component (default is normal end).

If the user runs EXCON in an interactive mode, a choice may be made between an abbreviated input session or a fully detailed session. In the abbreviated session, only the component numbers are required, and EXCON defaults everything else. In the detailed session. EXCON prompts the user for all five categories, allowing a null return to signify a default value.

To initiate the abbreviated session, enter: EXCON GO/tv
To initiate the fully detailed session, enter: EXCON / t v
To initiate EXCON using an input file, enter: EXCON fname / t v
If the user decides to create an input command file, a minimum of five lines is required. corresponding to the first five lines above. The start/stop time and frequency lines may be blank, as can the merge time line. The component name/number line must have entries. All other lines may have a single "E" or "END" to get the default values. In addition, the input file can be any name except GO.

To initiate EXCON in the command file mode, enter:
EXCON fname/tv.
EXCON will create an input command file "EXLIST" (analogous to the TRAP-created command file "LANGFL") from either interactive or command file input. The input command file format allows for multiple-line entries. There is an example of an input file on the following page. Note that comments may be included for clarity and convenience.

The automatically created EXLIST file will have the EXCON internally generated numbers for time domains and shift values. These values may be input using the input file "fname," but a single blank line as in the example will cause the default values to be generated.

Note that if one desires to merge an existing component file, the name of the file must be entered, and not just the number. In the example, components COMP02 and COMP03 would be created from TRCGRF7 only, and an existing COMP22 would be merged with the new component 22 data in TRCGRF7.

If a component is to be merged in an interactive session, the user will be prompted for additional merge information. If desired, all the time points in the last two records of the component can be printed, and the user can choose any one of the values as the beginning merge time for the new data. Normally the same time would be used for all components. but EXCON will prompt the user to indicate whether he or she wants individual file-merging times, in which case EXCON repeats the merge information prompts for each component file.

One word of warning is in order concerning printing out the time points of the last two records of the component file. TRAC. TRAP, and EXCON all use the BFIN/BFOUT triplebuffering subroutines, which have record sizes of 2048 words (including two pointer words). Thus, the last two records of a component file could contain as many as 4094 usable words. If the component involved has short time blocks (such as a one-cell break), then a printout of several hundred lines might follow. Normally, a printout of from 6 to 50 lines might be expected.

NOTE: EXCCN will accept and creace component files with a three-digit identifier.
All COMP files are written in binary format and structured according to Fig. 1-1. A further breakdown of the P and Q blocks is included in Figs. I-2 and I-3. The LCDATA block on Fig. 1-4 contains data that are unique to a given type of component and do not exist for most one-dimensional components.

```
* SAMPLE EXCON INPUT COMMAND FILE
*
* NOTE THAT AN ASTERISK IN COLUMN 1 FOLLOWED
* BY A BLANK INDICATES A COMMENT LINE.
*
* OUTPUT GRAPHICS FILE(S) FROM TRAC
```

TRCGRF
7
E

* TIME-SHIFT VALUES

E

* TIME DOMAIN NUMBERS

E

* START TIME, STOP TIME, AND EDIT FREQUENCY $-1.0 \mathrm{E}+991.0 \mathrm{E}+991$
* COMPONENT NUMBERS OR NAMES

23 COMP22
E

* COMPONENT MERGE TIME (OVERRIDES THE DEFAULT LAST TIME)
280.0

The following file is functionally equivalent to the above:
TRCGRF

$$
\begin{aligned}
& 7 E \\
& E \\
& E \\
& 23 \text { COMP22 E } \\
& 280.0
\end{aligned}
$$

NOTE: If the last entry (280.0) were missing, then EXCON would begin merging COMP22 after the last time found (in the existing COMP22), and not after 280 s .

D. Programming Details

The EXCON code is maintained using HISTORIAN, which is like the CDC UPDATE utility. HISTORIAN will also allow us to export the program library to outside sites in a machine-independent form. The receiving site is also required to process HISTORIAN to convert the ASCI file back to a program library.

We use a subset of the *DEFINE options defined in the TRAC manual. EXCON has not been fully tested on other systems but its relatively small size (~ 2510 lines) does not present major problems for users who want to implement the code at their sites.

Figure l-5 outlines the calling sequence of the EXCON code.

REFERENCES

1. Safety Code Development Group. "TRAC-PF1/MOD1: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis," Los Alamos National Laboratory report NUREG/CR-3858, LA-10157-MS (July 1986).

80-30,	(1 word)	Beginning-of-component-delimiter.
P Block Header	(19 words)	Fixed header (contains start and end times plus title).
Q Block Header	(2 words for COMP00)	Varies for the other type of components.
EOHEOH		End-of-header symbol.
First Time Edit		Packed data for first TIME EDIT.
EOTEOT		Time-edit separator (end-of-time).
Last Time Edit		Packed data for last TIME EDIT.
EOTEOT		
EOCEOC		End-of-component delimiter.

Fig. 1-1.
Structure of COMPij files.
(19 words)
File Name
Start Time

End Time

Title 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
Title 16

(1 word) Name of component COMP00, COMP01, etc.
(1 word) Starting time of COMPij file.
(1 word) Ending time of COMPij file.

Title 16 words long.

Fig. 1-2.
Structure of P block.

NDEPV	Number of dependent variables on filie.
LTIME	Packed length of dependent variable data in a time edit block. (The EOTEOT symbol not included.)
LDLEN	Zero or the packed length of the vessel level data.
INUM	User assigned component ID number.
TYPE	Component type (vessel, pipe, etc.) hollerith variable.
ID	Computer code assigned ID number
NCELLS	Zero or total number of cells in component.
LCDATA BLOCK	Additional data needed when type $=$ (VESSEL, STGEN. TEE, PLENUM, CORE, ROD, SLAB).
Geometry Block	Geometry data, varies or does not exist depending on component type.
NAME - NAME ${ }_{\text {NDEPV }}$	Dependent variable names.
IPTR - IPTR ${ }_{\text {NDEPV }}$	Dependent variable poisters.
NWRDS - NWRDS ${ }_{\text {NDEPV }}$	Length of dependent variable.
$\mathrm{LABEL}_{1,1}-\mathrm{LABEL}_{3,1}$	Three word label for first dependent variable.
LABEL $_{1, \text { NDEPV - LABEL }}^{\text {3,NDEPV }}$	Three word label for last dependent variable.

Fig. 1-3
Structure of Q block.

Vessel
NWORD
NCLX
NASX
NRST
NTSX
NCSR
NODES
NZMAX

Number of words in block.
Number of cells per axial level.
Number of axial levels.
Number of radial rings.
Number of asmuthal segments.
Number of cell source connection.
Number of rod radial heat transfer nodes.
Maximum number of axial fine mesh levels.

STGEN
NWORD
NCELL1
NCELL2
NSCMP
NODMX
NCLP
STYPE $_{1}-$ STYPE
NCLS $_{1}-$ NCLS $_{10}$
NCLT $_{1}-$ NCLT $_{10}$

Number of words in block.
Number of cells in primary side.
Number of cells in secondary co:mponent.
Number of components that makeup secondary flow path.
Number of radial heat transfer nodes.
Number of cells in side leg (if tee) of primary component.
Secondary component types (pipe, tee).
Number of cells in main tube of secondary component.
Number of cells in side leg of secondary component.
TEE

NWORD
NCELL1
NCELL2

Number of words in +
Number of cells ir ide
Number of cel side.
PLENUM

NWORD
NPLJN

Number of words
Number of junctions.
CORE

NWORD
NDRDS
NRODS
NZMAX

Number of words in block.
Number of radial heat transfer nodes.
Total number of fuel rods.
Maximum number of axial fine mesh levels.

ROD OR SLAB
NWORD
NODES
NZMAX
NRODS

Number of words in block.
Number of radial heat transfer nodes. Maximum number of axial fine mesh levels Total number of fuel rods

Fig. 1-4.
Structure of LCDATA block.

Fig. 1-5.
Output from flow program

1	9get sym	called by excon
2	fexist	called by excon
3	rename	called by excon
4	exit	called by excon
5	ljust	called by excon
6	getufl	called by excon
7	qassign	called by excon
8	close	called by: excon
9	chiklun	called by excon
	Qdstroy	called by excon
11	ucopy	called by excon
12	runit	called by excon
13	getlen	called by excon
14	famsiz	called by excon
15	skipf	called by excon
16	compact	called by excon
17	memadj	called by seticm
18	exita	called by error
19	rjust	called by gname
20	runjs	called by repl
21	runje	called by repl
22	runjf	called by repl

Fig. 1-5 (cont).

II. TRAP

The TRAP computer program is a versatile postprocessor routine that performs a variety of TRAC-graphics tasks. TRAP (TRAC Plot) can graph curves, surfaces, and component structures, and can be extended easily to more complex applications. Users communicate with TRAP by a sequence of command language statements that allow a high degree of flexibility in defining plot requests. Output media for the resulting plots include $16-\mathrm{mm}$ movies, $35-\mathrm{mm}$ film (black and white or color), $105-\mathrm{mm}$ (fiche) film, 11 - in. and 36 - in. electrostatic plotters. and direct imaging on a Tektronix or similar CRT terminal. Items and commands in italics are of special interest to Los Alamos users only.

A. Introduction

The TRAC (Ref. II-1) computer program outputs nuclear reactor parameters and fluid flow variables, which we call dependent variables, at selected times in the calculation. Because these variables aiso may change with respect to position within the reactor components, we represent them by either $F(p, t)$ or $\underline{F}(p, t)$. Here, F denotes a scalar-valued function (such as liquid density). while F denotes a vector-valued function (such as liquid velocity). The symbols p and t denote, respectively, spatial and time independent variables, where, for example. $p=(r, \theta, z)$ represents a point in cylindrical coordinates within a VESSEL component.

The TRAP graphics program basically produces computer-generated plots of dependent vs independent variables in a variety of useful combinations, including curve and surface displays. On option, curves can be drawn smoothly (that is, with continuous slopes). Also. several curves can be drawn on a single frame. Surface displays erase hidden lines, and users can vary viewing position for such purposes as stereo pair plotting. Examples of the plotting capabilities are given in Sec. J.

Users communicate their plot requests to TRAP by employing a simple yet powerful set of TRAP graphics commands. They either can give these statements to TRAP interactively. thereby sesponding to program queries, or they can run the program in a noninteractive mode by supplying the name of a previously prepared file of commands.

Interesting features of TRAP include a MOVIE option. MACRO-component displays in which individual components are drawn horizontally and vertically VESSEL SLICE and SLAB displays, and a USRDRW option analogous to the SLICE options (in which users define a loop or system diagram by supplying cell boundary coordinates). Also, there exist EXTENDED FUNCTION capability, in which users define specific dependent variables as mathematical and logical combinations of those supplied by TRAC: superposition of auxiliary data, in which data in a peripheral file are co-plotted on the current frame for data comparison applications: direct on-line creation and manipulation of auxiliary files: and formatted data file preparation. Another useful feature is the FORMAL command, which puts TRAP into a mode that produces publication-quality plots, character styles, and variable descriptions

One of the guidelines in developing TRAP has been to construct a program capable of handling basic graphics as well as special plotting applications. For example, it is relatively easy to add a particle-pushing movie program (Ref. II-2). where certain combinations of density. velocity, and void fraction dependent variables are used to depict two-phase fluid flow in a reactor vessel. Such extensions provide more realism and drama in the graphics.

B. Basic Concepts and Capabilities

Recall the function representation of dependent variables, $F(p, t)$. mentioned previously Many tasks given to TRAP can be organized conceptually by considering the extent of the domain variable p. For instance, consider the following cases:

1. p is not defined (for example, component-valued functions or global variables such as teactor power). where
POWER $=f(t)$.
2. p is one-dimensional (for example, a PIPE component with geometric coordinate x). where
PRESSURE $=f(x, t)$.
3. p is two dimensional. For example, a rod with TEMPERATURE $=f(r, z, t)$
where
$r=$ node radial coordinate and
$z=$ axial coordinate.
4. p is three dimensional: for example, a VESSEL component with

VOID FRACTION $=f(r, \theta, z, t)$.
where
$\theta=$ azimuthal coordinate.
$r=$ vessel radial coordinate, and
$z=$ vessel axial coordinate
The current TRAP implementation includes functions that are cell-center valued (such as pressure). cell-edge valued (such as velocity). component valued (such as reactor power). or rod valued (such as average rod temperature), and system-valued parameters such as the signal and control block variables.

For one-dimensional components such as PIPES, the specific plotting combinations are:

Function Description

f vs t curve
f vs x curve/USRDRW graphic diagram
f vs (x, t) surface
$f(x)$ vs $g(x)$ correlation curve
$f(t)$ vs $g(t)$ correlation curve
Here we specify only the free independent and the dependent variables. The fixed independent variable is not explicitly named because it is easily inferred. Independent variables are either fixed or free, where free indicates the variable that traverses a curve or surface: that is, it appears as an abscissa coordinate. The fixed independent variable serves as a general index in a set of plotted curves. For each such fixed value. a separate curve is generated. The curves can be members of a family all appearing on one frame: or the individual curves can be plotted on distinct frames. For example. plot $y=f(x, t)$. where t is free and x is fixed at the first through fifth cells of the component. This produces five separate curves, one for each cell in the range one through five. The abscissa variable for each of these curves is time.

Correlation curves are actually parametric curves with the free variable acting as the defining parameter for the points. These curves are not necessarily one-to-one off either axis, and in fact may self-intersect. An example is to cross-plot vapor temperature (TV) vs liquid temperature (TL) over the range 0.0 to 1.0 at intervals of 0.2 s . Here. six values of $T L\left(T L_{1} \ldots . . T L_{6}\right)$ define the abscissa coordinates in a two-dimensional plot and six values of TV (TV $\ldots .$. TV $)$) define the ordinate coordinates. The pairs ($T L_{i} . T V_{1}$) define points on the correlation curve, where ($T L_{1}, T V_{i}$) corresponds to the time value $=0.2 \cdot(i-1)$, for $i=1.2 \ldots .6$.

For three-dimensional components the following combinations are available:

Function	Description
f vs r	curve
f vs θ	curve
f vs z	curve
f vs t	curve
f vs (r, z)	surface/slice/USRDRW graphic diagiam
f vs (r, θ)	surface/slice/USRDRW graphic diagram
f vs (θ, z)	surface/USRDRW graphic diagram
$f(r)$ vs $g(r)$	correlation curve
$f(\theta)$ vs $g(\theta)$	correlation curve
$f(z)$ vs $g(z)$	correlation curve
$f(t)$ vs $g(t)$	correlation curve

The surface displays are three-dimensional perspective views of the surface with hidJen lines eliminated, or horizontal and vertical cross-sections (slices) of the vessel geometry. shaded or colored in quantized levels of the dependent variable.

C. Using TRAP

TRAC produces a graphics file. TRCGRF which is converted into a set of reorganized component data files by program EXCON (Sec. 1). These ("COMPij" files) are indexed by integers between 1 and 999, corresponding to the number defined by the user. There are three exceptions to the naming convention of the COMPij files: if vessel rod data are to be plotted, then the component file name must have an "R" as the right-most character (for example. COMP01R). Also, EXCON automatically creates a file named HIST, which contains information about the updates (if any) used to create the version of TRAC. which was used to produce the TRCGRF file. TRAP will automatically output (if the HIST file is local) this information as the first plot produced. If the file is not local. TRAP will forget about it. and continue. Also, EXCON will generate a COMPOO file if a component 0 (zero) is requested. This file will contain all the system global variables such as CPUTOT and all the signal and control tlock variables. Reserving component 0 (zero) does not create any problems since users are not allowed to define a component number 0 (zero) in the TRAC input. Program TRAP employs the COMPij files as a data base for its work in that it extracts appropriate geometry and physical variables from them in preparation for producing plots (Fig. II-1). TRAP also may use an LBLIST file of X and Y axes labels that can be modified by the user

The user communicates with TRAP either in an interactive mode or by a prepared file of plot commands. If the commands are given in a file, then they appear exactly as they would in an interactive terminal session, except for the prompt symbol "?". See Sec. I for examples.

Fig. II-1.
TRAP program data flow.

Comments can also be inserted in the command file by beginning the line with an astric (*). In either mode, a user gives the program a set of language statements forming a plot request. A language statement. or command. consists of an ordered set of space-delimited arguments. such as

FIXED RADIUS 13

The first argument is a command primary keyword. It may be followed in the string by othe, secondary entries that define arguments to the command. Here, the keyword FIXED tells TRAP that a fixed independent variable is being defined. Also, the phrase

FREE RADIUS 15

tells TRAP the independent variable is the VESSEL radius that ranges from the first through the fifth radial cell. At Los Alamos National Laboratory. several commands can be entered on one line if they are separated by an "escape" control character. Command syntax varies according to command type. A list of available TRAP commands is given in Sec. II.D. where the specific format of each is defined.

The command entries are used by the program to assemble a definition of the plot task for dependent and independent variable specifications, component ID, etc. The order of the language statements is flexible, because the program accumulates a plot request (or plot problem definition) by analyzing entries independently. When the user is satisfied with the definition, the DISPLAY command is entered to terminate the plot request. TRAP then checks the current set of commands supplied by the user for completeness and consistency. and if
satisfied. TRAP extracts all pertinent data from the component files and creates the necessary plot frames.

Execution line arguments (order-independent) may be specified in addition to FILE FILENAME. These include device release coder n execution time flag, plot title option, and two formatted output file options.

The device and film choices are
$11-\mathrm{in}$. electrostatic plotter
$36-\mathrm{in}$. electrostatic plotter
$35-\mathrm{mm}$ black and white slides
$35-\mathrm{mm}$ color slides
$16-\mathrm{mm}$ black-and-white movie
$16-\mathrm{mm}$ color movie
$105-\mathrm{mm}$ microfiche

To enable these options, enter $11,36,35,35 \mathrm{c}, 35 \mathrm{cs}, 16,16 \mathrm{c}$, or 105 , respectively: or specify TEK on the execution line if direct Tektronix screen output is required. If KEEP is specified. then the graphics routines define a plot file (specifically. a CGS met file)* that can be viewed at a CRT terminal using the PSCAN (Ref. II-3) or PTEKT (Ref. II-4) utility upon termination of TRAP. This file can later be released to the system for film production by employing the PFILM (Ref. II-5) utility

> PFILM / tv

Eleven-inch or 36 -in. electrostatic plotter output can be obtained by employing the PESP (Ref. II-6) utility.

PESP FORMAT $=11$ ORIENT $=-90 \quad$ IMAGE=(LIMITS O. 9. 05 7.4545)
If GIVE is specified on the TRAP execution line, then the film file is automatically released, and is no longer available to the user. PSCAN. PESP, and PFILM options such as IMAGE. MODEL. ORIENT, etc., can be entered by means of the command input file for use by the GIVE option. Parameters are required, aithough detailed output formatting for these ontions is automatic. If intermediate execution-time information is desired, then type TIME on the execution line. If TITLE is entered on the execution line, then TRAP uses the title supplied in the just line in the command language file as a plot title for each frame.

Two keywords. TRACIN and AUXFILE. may also appear in the execution line options Each of these keywords causes TRAP to create a formatted output file (named TRCIN or AUXIN. respectively) instead of graphic output. When the keyword TRACIN is specified, the data requested by the user are written to the TRCIN file in the TRAC input load format. Keyword AUXFILE causes the data to be written in the TRAP INCLUDE input format for plotting as data points. The two keywords are mutually exclusive and TRAP will act on the last one specified if both are accidentally included. Use of these keywords limits the specification of data to a single independent and a single dependent variable, as well as to

[^0]single values of all fixed variables. The TRACIN keyword produces both independent and dependent variable values if the independent variable is spatial. Thus, the output can be included in a TRACIN file directly as either boundary conditions (by a time-de, endent FILL or BREAK) or as initial conditions for a renoded component. The AUXFILE keyword always produces both independent and dependent variable values, with corresponding error bar halfwidths set to zero.

The defaults for the execution line arguments are
(a) enter language statements in an interactive mode.
(b) KEEP release code
(c) do not create an intermediate timing printout.
(d) use the title from the COMPij file as a plot title, and
(e) create a CGS (graphics) metafile

An example of the use of execution line arguments follows:
TRAP 35CS FILE TRAPIN GIVE TITLE / 11.2
File "TRAPIN" is structured as follows
TEST CASE
etc.
Here.
(1) each frame has TEST CASE as a main title.
(2) 35 mm color slides are generated,
(3) TRAP processes a previously prepared file of commands, and
(4) the CGS metafile produced by TRAP is automatically given to the system

As TRAP processes a set of command statements, it writes a peripheral file, named LANGFL, which contains every user entry. If the user submits commands one per line, then TRAP does not vrite given commands that are in error. If the user submits multiple commands per line, then any command in the line that is in error causes TRAP to omit writing all of the commands in this line to LANGFL. This provides the opportunity to edit a command file created in the query mode and reuse it directly. However, if a user wishes to reuse LANGFL. the name must be changed because a file name conflict would occur when a new LANGFL was automatically created

D. Syllabus of TRAP Commands

The following is a complete list of currently implemented TRAP commands. The comimands, independent variable names, or secondary keywords can usually be abbreviated to the first two letters in their names (this is indicated by underlining). In the following list. all keywords. abbreviations of keywords, parameters, etc. enclosed in \{ . . . \} are mandatory. and the remaining keywords and/or parameters are optional. TRAP has the property of "file
memory," remem ering the user commands from one plot request to another. All previous entries are retaine, except for the one replaced unless the CLEAR command is given (see description of clear command below). Comments can be placed after the last numerical entry of any line. Comments must be separated from the last numerical entry of the line by at least one space.

ADJUNCT $\{N\}$
Sets up TRAP internal logic to handle the adjunct components of a steam generator (as opposed to the main PIPE or main TEE component). These components are PIPEs or TEEs, depending on the problem input deck. The N^{\prime} component will be selected by the above command. This component. if it is a TEE, will have a main tube and a side tube which may be selected by MAIN (default if SIDE is not enabled) or SIDE. The DVNAMES command will czase detailed information about the component types and cell structure to be printed out. CLEAR ADJUNCT or CL AD will cause TRAP to revert to the main PIPE or main TEE of the steam generator.

AVERAGE
Averages a fixed dependent variable over the cell range N1-N2. The averaged dependent variable replaces the original dependent variable in the plot huffers. This option is limited in that only one independent variable may be fixed. (For averaging VESSEL dependent variables, the WRAUX and OPAUX cominands could be used to output and average auxiliary file data).
For example
COM M
FREE TIME 25
DEF DV
FIXED \times N1 N2
AVERAGE
DISPLAY
will compute each point $d v_{i}$ of DV as follows

$$
d v_{i}=\frac{1}{N} \sum d v_{1}(k)
$$

where : (the k^{\prime} th cell value) ranges from cell N 1 through cell N 2 . and $\mathrm{N}=\mathrm{N} 2$ N1 +1 is the total number of cells to be averaged

AXES (See stgument description below)
Defines the number of decimal places plotted at the tick marks on the X and/or Y axes. There are three formats:

> AXES \{NXSTEPS NXDEC NYSTEPS NYDEC $\}$ HEIGHT
> AXES X NXSTEPS NXDEC $\}$ HEIGHT
> AXES \{Y NYS TEPS NYDEC $\}$ HEIGHT

The first format modifies both axes, while the second and third formats modify just the X and Y axes respectively. Parameters are:

$$
\begin{aligned}
\text { NXSTEPS }= & \text { number of divisions on the } X \text {-axis } \\
\text { NXDEC }= & \text { number of decimal places (} X \text {-axis) } \\
\text { NYSTEPS = } & \text { number of divisions on the } Y \text {-axis } \\
\text { NYDEC }= & \text { number of decimal places (} Y \text { axis) } \\
\text { HEIGHT }= & \text { character height of tick-mark numbering. } \\
& \text { (Default value is } 0.175 \text { inches.) }
\end{aligned}
$$

NOTE: If NXDEC or NYDEC is negative scientific notation is implied. Also. FORMAL is enabled by this command, if not already enabled.

BORDER

Draws a border around the overall page. This option is useful for PESP output and the SLICE and USRDRW options. Also, the appearance of color presentation slides is enhanced by this option.

CLEAR $\{X\}$ Y Z etc.
Clears options or variables X,Y, and Z. etc. Also, "CL ALL" an be used to clear all options and variables previously set with the following exceptions which are not affected by CLEAR ALL (but can be individually cleared): BORDER. CLIP. DU. ALAXIS, FNUM, rORMAL, NBOX, NLOGO, NUMBER. TRANS, and XTRANS.

CLIP \{OPT\} DVMIN DVMAX
Forces data within the specified limits. OPT must be provided, and may have one of the following forms:

$$
\begin{array}{ll}
\text { "ALL" } & \text { (Clip all TRAC data and auxiliary file data) } \\
\text { "AUX" } & \text { (Clip only auxiliary file data). } \\
\text { "TRAC" } & \text { (Clip only TRAC data.) }
\end{array}
$$

If no DVMIN and DVMAX are provided, the data will be scissored between the plot area frame boundaries. If either DVMIN or DVMAX is desired, then they must both be provided. This feature is particularly useful when producing plots containing spikes or spurious data which would if scaled to fit the spikes, cause a loss of resolution in the data surrounding the spikes. Using the CLIP feature, the data may be scaled to any value desired without having the curve running off the plot area

NOTE: The abbreviation for CLIP is CP, not CL. TRAP allows a $3 / 4$-inch "grace" runoff margin for unclipped data. This option should not be confused with the SCALE option.

COMPID \{N\}
Defines component $n o . N$ as the current component from which plots are to be generated

NOTE: The abbreviated command for COMPID is COM, not CO.

COPIES $\{N\}$

COPIES is used in the TRAP GIVE mode to define the total number of complete output copies desired from the TRAP run.

NOTE: There is no abbreviation for this command

DCURVE

Deletes connecting lines between auxiliary curve points. This feature is useful when plotting calculated data versus scattered empirical data, or when the auxiliary file has only a few points.

DEP \{DV1\} DV2 etc.
Defines dependent variables DV1. DV2, etc. No more than two may be defined. unless EXTEND is enabled, in which case five may be defined. If two variables are defined and if EXTEND is not enabled, then TRAP produces correlation plots. Each use of DEP clears the dependent variables from previous definitions.

DISPLAY
Computes and outputs the current plot. This option may also be used to change movie highlighting, components, variables, ΔT. etc. during a movie run by making separate DISPLAY commaiads during the movie, each command defining a different label, component variable, ΔT, etc.

DUALAXIS YMULT YSHIFT
Sets up two separate systems of units for the Y-axis scales on the left and right borders. The left border is in SI units, and the right border is in English (sometimes called Engineering) units. User-defined stand-alone units are possible, but normally the user would allow TRAP to draw the plots automatically using the entries found in the LBLIST file. If a stand-alone entry is desired, the right labal may be loaded using an OV LD cornmand followed by the desired variable description. YMULT and YSHIFT (optional) are used to scale and shift from the left unit to the right unit:

$$
\text { YNEW }=Y \text { MUI } T, Y O L D+Y S H I F T
$$

If YMULT is entered. YSHIFT will be assigned a value of 0.0 if defaulted, and TRAP will isnore all scale-related values from LBLIST until another DUALAXIS command (with no additional entries) is encountered. DUALAXIS and TRANS are incompatible options and TRAP will not allow them to be simultaneously enabled.

DVNAMES BRIEF

Lists the dependent variable names and their corresponding definitions as found in the current component defined by the COMPID command. These names are the only dependent variable names that TRAP will recognize, using the DEP command

If BRIEF (or BR) is included with the command only the geometric information relating to the component (type, number of cells, etc.) will be given.

NOTE: The COMPID option must be enabled before to the DVNAMES command

Terminates the branching over TRAP command file statements which was initiated by a JUMP command. Once JUMP is enabled. TRAP will recognize only the EJUMP command unless END is encountered, in which case the program will terminate. Refer to the JUMP command for more detail.

END

Terminates the current TRAP session.
EXTEND $\{N\}$
Calls an extended function (supplied by the user) for computations related to current dependent variable data. Here, N refers to a flag defined by user in his own function subroutine. This option requires at least a partial recompilation of TRAP. Refer to Sec. F for details.

NOTE: The EXTEND command must be enabled before the DEP command.
FILE \{FNAME .
Defines a TRAP command input file "FNAME" to be used for the TRAP run. FILE is usually entered immediately on the execute line. but may also be entered interactively. In the latter case, the user should reset any existing options that are not desired with the CLEAR command before entering the command file mode. TRAP then becomes completely automatic and will not return control to the user.

NOTE: There is no abbreviation for this command.
FIXED \{IDV N1\} N2 N3
Defines the independent variable IDV as fixed from N1 to N2. with N3 increments (N3 is valid only when defining TIME or Z during the ROD mode). Either N3 alone or both N2 and N3 may be null. The independent variable IDV must be RA or RADIUS. TH or THETA. TI or TIME. X. or Z. If IDV is TIME, then N1. N2, and N13 must be floating-point integers. If IDV is not TIME. then all parameters must be integer valued. except when defining rod heights. For example:

ROD 3

$$
\text { FI Z } 3.254 .575
$$

defines rod number 3 at heights from 3.25 meters to 4.57 meters, with 5 equally spaced increments. In this mode, N1 and N2 are floating point integers, and N3 is integer valued. This example would result in five flots if the NOADV option is not enabled. Also,

ROD 3

$$
\begin{gathered}
\text { FI Z 5 FACTOR SHIF T } \\
2.23 .15 .75 .86 .5
\end{gathered}
$$

would produce five plots as before, except that the increments are not equal. In this format. the line following the FIXED command must contain monotonically
increasing (space-delimited) values of Z. The number of Z-values to be input are defined by the inieger (in this example. "5") following FI Z.

FACTOR and SHIF T (optional) operate on the Z-values and can be used to convert Z from meters to other units, while simultaneously performing a linear shift. For convenience, the translation is performed on the Z-values before further data retrieval. Therefore, the user must be certain that the values of FACTOR and SHIFT are correct, so that when TRAP performs the translation, the internal Z-values will be referenced from the bottom of the component, and not the bottom of the core. The values on the third line will be plotted; thus, incorrectly translated Z-values will not necessarily be obvious.

For example:

> ROD 1
> FI Z. 30.02541 .5
> 0.06 .514 .8
references the core at $0.0,6.5$, and 14.8 iriches, assuming the distance from the bottom of the component to the bottom of the core is 1.5 meters. Internally. TRAP would reference the rod data at $1.5,1.6651$, and 1.87592 meters from the bottom of the component.

NOTE: FACTOR must be included with SHIFT, but if only FACTOR is provided. a defauit shift value of 0.0 is assumed.

FLEGEND $X Y$
Re-enables cuive markers for the NBOX mode, and forces the legend to be plotted along with curve data. The legend will begin at the coordinate (X, Y) on the page. If X and Y are omitted, then TRAP will set them to $X=6.5$ and $Y=6.25$ (inches).

NOTE: X and Y ars in page units (inches).
FNUM
Writes "FRAME NO. N " in the lower left-hand corner of the plot. where " N " is increased for each new plot. This option is intended for fiche output. (Also see the NUMBER option)

FORMAL
Formal mode. This option invokes the following features

- Formal variable descriptions are extracted, if possible. from the file "LBLIST."
- DUPLX character style
- Header/Title(s)

NOTE: Any of the above features may be overridden by the user. Refer to the LBCALL command for further description of LBLIST

FORMAL alsn invokes the DISSP:A character sets, fonts, etc. (Refer to the DISSPLA (Ref. II-7) manual for full details). TRAP uses the following conventions:

$$
\begin{aligned}
& =\text { switch to the lower-case alphabei } \\
& =\text { return to the (standard) upper-case alphabet } \\
& =\text { switch to the instruction alphabet }
\end{aligned}
$$

TRAP also internally defines and uses these instruction alphabet flags:
$z=E H .5$
$21=$ EXHX
$\mathrm{Z2}=\mathrm{EH} .5$ 2.EXHX
23 = EH.5 3: EXHX
$\mathrm{Z4}=\mathrm{E} 4$. EX
For example, when FORMAL is enabled, the line
$Y=A \cdot 22) X+M 6) D \cdot M X T$ (LH.5) $\times(X X H X) \cdots($ LOWER) CASE M11) K.MX $F(X) D X)$
would be translated as:

$$
Y=A^{2} X+\Delta T_{x} \cdots \text { lower-CASE } \cdots \int f(x) d x
$$

FREE IDV N1 N2 N3 (See argument description below)
Defines independent variable IDV as free from N1 to N2, with increments of N3 units. The structure of these independent variables is the same as in the FIXED command. For defining rod heights, the usage is similar to the description under the FIXED command. Normally. N1 and N2 must be defined. However, an exception is made for the independent variable "TIME." That is. "FR TI" or "FREE TIME." equivalent to

> FREE TIME TB TE TE-TB
causes TRAP to default to the beginning and end times of whatever component is defined. Also, "FR TI N" or "FREE TIME N" will define a time interval with N points. (Note that the default is 75 points.) The resulting time interval would be equivalent to

FREE TIME TB TE $\frac{\text { TE.TB }}{N-1}$
This feature is particularly useful when running batch jobs. when the run duration is not known at the time the job is submitted

GRID (See argument description below)
The GRID command has two formats, depending on its purpose
GRID DX DY PAGE draws a grid over the entire page
(Used for label positioning.)
GRID NX NY PLOT: draws lines only across the plot area
(Used for graph measuri.g.)
$D X$ and DY are real valued, in page units (inches). NX and NY are integer valued. denoting the number of lines between tick marks. ($N X$ or $N Y$ may br zero.) PAGE and PLOT are keywords spelled out as indicated.

HELP

Provides the user with a detailed description of commands which TRAP reads from the LBLIST file. (See LBCALL for further description of this file.) The full speliring of the command and the abbreviation (when applicable) are accepted. After enabling the HELP command, enter a command or its abbreviation for a detailed deccription of the command format and its usage. To exit the HELP session (and re-enter the interactive command mode). enter a single period.

HISTORY

Plots the updaie history of the vercion of TRAC used to create the user's component files. File HIST must be local; if not, no harm is done. and TRAP continues with the next command.

NOTE: This option is primarily intended to be used in the TEK (Tektronix session) mode, because TRAP automatically outputs the contents of COMP00 in any other mode

IMAGE (See rigument description below).
IMAGE is used in the TRAP GIVE mode for predetermining the plo: or film image size. (For more detail, consult the writeups on PFILM (Ref. II-5) and PESP (Ref. II-6).] The commarid has two formats

```
IMAGE X1 Y 1 becomes IMAGE \(=(E X A C T X 1 Y 1)\) IMAGE X1 \(X_{2} Y_{1}\) Y2 becomes IMAGE=(LIMITS X1 X2 Y1 Y2)
```

NOTE: There is no abbreviation for this command

INCLUDE \{FNAME\} N KRVTYP KOLOR

Draws plot number N of the auxiliary file FNAinE on the current plot area. If N is ero or null, and file FNAME is already open, the next sequential plot is drawn, but if file FNAME is not open, th. ב first plot on the file is drawn. (Note that a plot may be sever 3 curves.) If N is a positive integer, the auxiliary file is rewound, and the first $\mathrm{N}-1$ plots are skipped. If N has a value of zero (for additional line entries), it is treated as if it were biank or null. Curve types and colors may be selected within the auxiliary file itself by extending the number of points anc ar-skip line in the following manner

> NOPTS SKIP KRVTYP KOLOR
where KRVTYP $=0,1,2,3,4,5$ results in SOLID, DASH. DOT. CHNDSH. CHN DOT, and NOCURVE (that is, just the curve markers), respectively, and KOLOR = RED. YELLOW. GREEN. etc. Irefer to the DISSPLA (Ref. I1-7) manual for more detail]. The default curve type is DASH, and the default color is YELLOW. The INCLUDE command mus be respecified before each DISPLAY ccmmand. unless

MOVIE is enabled. When MCVIE is enabled. one auxiliary file should be used (for efficiency) for coplotting with calculated data. The auxiliary file must consist of the same number of plots as the number of movie frames that automaticailly enable the INCLUDE command Of course more than one variable and corresponding auxiliary file may be plotted in the same movie. For further detail, see Sec. G.

The TRANS option creates a problem with handling auxiliary files. For instance. if an auxiliary file is written during the translate mode and is read later during a nontranslate mode, a scale conflict occurs. This problem is resolved in the following manner: TRAP will flag any auxiliary files written during the translate mode by writing "TRANS" as the second entry on the first line of the file. Then, whenever this file is read in while the translate mode is in effect. it will not be translated. The TRANS flag will not affect plots in the nontranslate mode. The manner will always be translated before plotting during the translate mode. Care should be taken wher merging auxiliary files to ensure that plots consist entirely of files in the same uni because TRAP will not check for mixed-mode fiies.

In summary, when INCLUDE is used to plot auxiliary files in a nontranslate mode. the files are ploited as they are, regardless of any internal translate flags. However. when using INCLUDE to plot files in the translate mode, the dependent variable data from all auxiliary files will be translated unless they are flagged as being data fiom files that have already been translated.

The user can use this command to initiate a branth over command file statemerts. TRAP will ignore all subsequent input commands (except END) until an EJUMP command is encountered.

NOTE: The user is cautioned that the LANGFL which TRAP creates in this mode will not necessarily echo the commands that are entered by the user interactively. or are contained in the TRAP input command file.

LABEL \{NL H XC YC XL YL\} ANG

Forces a line or block of text on the current plot. X and Y values are in page units (inches). The parameters are:
$\mathrm{NL}=$ number of text lines (which must follow the command)
$\mathrm{H}=$ character height (0.0 defaults to internal height)
$\mathrm{XC}=$ X-center of label box
$Y \mathrm{C}=$ Y-center of label box
$\mathrm{XL}=$ X-length of label box
$Y \mathrm{C}$

NOTE: If ANG $\neq 0$, and COLOR is enabled then the label lettering is shaded YELLOW. Thus. $A N G=360.0$ would be equivalent to $A N G=0.0$ with YELLOW
lettering (excellent for highlighting). Also. FORMAL is enabled by this command. if not already enabled and only one label command call is allowed per plot.

For purposes of identifying curves, the LABEL command may also be used to plot a short curve of a specified type (solid. dot. dash. etc.) immediately before the text description. To do this, the first four characters of the label line must be TYPE. followed by an integer identifier as described in the INCLUDE writeup in this section. The integer identifier must be separated by a blank, and the entire line must be in the following format:

$$
\begin{array}{lr}
\text { TYPE NNNNN } & 10 \text { character/word machines } \\
\text { TYPE NNN } & 8 \text { character/word machines }
\end{array}
$$

LBCALL \{VARNAME \}

Communicates with the LBLIST (dependent variable label look-up) file. The name VARNAME is saved to be used by the look-up routine. and the corresponding variable description (found in LBLIST) will be used for the Y-axis label. Thus, the user can make his own variable descriptions to be used by LBLIST. The primary purpose of this option is to save the user the tedium of making multiple redundant Y-axis definitions. Using LBCALL. oniy one definition is necessary for any number of plots. Auxiliary file plots can also be labelled with this command That is, the auxiliary file dependent variable may be defined in the LBLIST label look-up file. This command does not affect the auxiliary file name: it affects only the labelling of the plot. To allow automatic label description look-up. and to accommodate the secondary axis descriptions and units required by the DUALAXIS and TRANS options, the label description look-up file LBLIST includes a primary dependent variable axis unit. a secondary dependent variable axis unit. and the necessary conversion factors to translate from the primary unit to the secondary unit.

NOTE: FORMAL is enabled by this command if not already enabled. LBLIST also contains information used by the HELP option.

LEGEND \{NAME1\} NAME2
Replaces the TRAP-supplied legend box data with NAME1 and NAME2. NAME1 and NAME2 are two 10 -character (or fewer) space-delimited words. These labels may be expanded using the OVERRIDE option into two 80 -character lines, including blanks. This option is intended to be used with only one TRAC curve. However. several auxiliary curves may be included in the plot

MACRO \{N \}

Draws component number N with the X and Y exas lverenced in meters. (This option is not valid for 3D components, but the SLICE options will display mesh cells which are proportionately accurate for measurement purposes.)

MAIN is used to clear the SIDE command for a steam generator or tee component. This command is equivalent to "CLEAR SICE" or "CL SI." but it was created to make switching between the main and sides of a tee component (or subcomponent) easier

NOTE: The abbreviation for MAIN is MN. and not MA.

MOVIE

Puts TRAP into a movie mode. For the run duration, one leader, one caption, and one trailer are scheduled, regardless of the number of individual "DISPLAY" commands which comprise the run. This allows the user to plot several variables and components in various modes during the duration of the movie. The user may choose to slow down the movie (by decreasing ΔT) for perious of greater interest, or to speed up the movie (by increasing ΔT) for periods of lesser interest. Highlighting is accomplished by separating the movie into multiple contiguous time domains, and defining a (usually single-line) label for each domain. TRAP assumes that TIME is the independent variable that indexes the movie frames, so the user must have TIME defined accordingly.

MRGAUX $\left\{S I N K F I L E ~ A U X F I L E, ~ A U X F I L E E_{2} \ldots A U X F I L E_{N}\right\}$

Merges auxiliary files into a designated sink file. This option permits the user to plot separate auxiliary files at the same time. The sink file must not be any of the auxiliary files, although it may be an existing file. In the latter case, it is completely rewritten. N must not exceed 6 . If more than six files are to be merged, repeat the MRGAUX command.

NOTE: Auxiliary file merging is performed immediately upon receipt of the MRGAUX command. DISPLAY does not affect this command

NAMAUX

Assigns on 80 -character title, which must be the next line of text to the next auxiliary tile to be created. The primary purpose of this option is to provide a means of labelling auxiliary files created with the OPAUX and WRAUX commands. The NAMAUX command should immediate'y precede the WRAUX or OPAUX command. NAMAUX is cleared after OPAUX or WRAUX terminates.

NOTE: This file name will overwrite the first (title) line of the TRAP input command file, producing a plot title conflict if TITLE is entered on the execute line.

NCOMP

Prevents the automatic TRAP plotting of the HIST history file if the file is local This option must be enabled before a DISPLAY command is encountered

I:FILL

Prevents color-filling the full page background for an NBOX color plot. That is, the plot area is left untouched by the color ahading and only its border is shaded. This feature is used for plotting curves on color film for any color other than white

Disables the legend box mode, extends the plot area over the previous legend box area, and disables the curve marker mode. Multiple curves are characterized in the following manner

SOLID DASH, CHNDSH, and CHNDOT

(The patterns will repeat in the same order if more than four).
Refer to the INCLUDE option for selecting curve colors in auxiliary files. Refer to the FLEGEND command if a legend and curve markers are desired in this mode.

Suppresses the "LOS ALAMOS" logo on plots when FORMAL is enabled.

Suppresses the automatic frame advance for the current plot. Multiple curves per plot may be drawn by fixing an independent variable with multiple values.

NOTE: The rod radial values are the only exception. Because of the complex and unique structure of the rod component, only one rod radial value may be plotted per request. However, the WRAUX feature may be used to create plots for different rod radial values which may then be merged into single plots using the MRGAUX feature.

Suppresses all but INCLUDE-defined curve(s) for the current plot. This option is used for plotting auxiliary tile data independently.

NOTE: Because any existing computed data will be overwritten by the auxiliary file cleared. computed data must be redefined. The maximum number of points allowed in this mode is approximately 1165

NQUANT \{N\}
Defines N quantized shades and/or colors for the SLICE and USRDRW options. For color. N must be positive, and the next line must have N GPALET colors (ranging from 1-60). If B / W is desired. N may be negative, in which case no further input is expected. Also see the QREV and TABLE commands.

NOTE: Consult the writeup on GPALET (Ref. II-4) for the available colors

Writes a small sequential plot number in the lower 'eft-hand corner of the plot. (Also see the FNUM option)

OPAUX SINK [OPERATION-OPERAND] KRVTYP KOLOR

Where

OPAUX or OP
SINK
|OPERATION-OPERAND|

KRVTYP

KOLOR

The aux command recognized by TRAPI.
The output aux file name. Can be an existing local file name or one will be created with the default number of time points (5000).

The mathematical operation that is to be performed on the aux file "SINK." It can have either of the following two forms

1. It can be any of the following stand-alone operators. which will operate on everything to the left of it:

SMOOTH - The arithmatic average of the data points. The next line must be the begin time, end time, and the desired time for smoothing. The order is mandatory.
RECP - reciprocal of "SINK" (1/SINK)
INT - The point-wise cumulative integral DER. The derivative of "SINK"
Function - where "function" can be any of the following intrinsic functions: ABS. AINT, ALOG. ALOG10, SIN. COS, EXP. TANH, SINH, COSH. ATANH. SQRT. ATAN. ACOS, ASIN. TAN
2. It can also have the "operation-operand" form where "operation" can be any one of the following oper-ations:,,$+- / . ._{, ~ *}$ SET. The operand can be either an integer or real constant or the name of a local AUX FILE

The number of the curve type desired: $0=$ Solid. $1=$ Dash, etc

The name of the color desired: WHITE. YELLOW etc

Example

$$
\{[(1.0-\mathrm{ALPHA}) \times \text { ROHL }+9.801] / 2\}+\text { PRESS1 }- \text { PRESS2 }
$$

can be expressed as
OP SINK SET 10 -ALPHA - ROHL • $9.801 / 2$ +PRESS1 - PRESS2 0 WHITE
1.0. $9.801 .2=$ Real and integer constants. Values like 1.0 e 06 are also permitted

SET $, \ldots, \ldots, /=$ Operators.
The only requirement is that the length of the constant not exceed the number of characters per machine word (8 for a Cray). The "SET" operator resets everything to the left of it to the value on its right. In this case, it resets the data contents of the existing aux file SINK to the value of 1.0 . If the file SINK did not already exist. it would have been created with $i 165$ points. This could result in the SINK and ALPHA files being incompatible as the result of a difference in the number of points.

All of the AUX files used in a given OPAUX command line must be generated with an equal number of points or values.

ORIENT ANG
ORIENT is used in the TRAP GIVE mode. ANG is the orientation of all plots (in degrees) relative to the medium line of direction. Default is 0 degrees.

NOTE: There is no abbreviated form for this command

OVERRIDE \{OP \} HGT

Overrides the title, X - or Y -axis, legend character style, etc. "OP" may be: TI, TI1. TI2. LX, LY, LZ. LD, LE, DE, SI, SC, DU, UNIT, HGT, or LENGTH. TI, TI1, 112. LX. LY. LZ. LD, and LE refer to: Title (3 types), X-label, Y-label, Z-label, dual-axis label, and legend respectively. (A text line must follow each of these commands.) For a two-line title, use OV TI for each line. Also, Ti 1 or $\mathrm{T} I 2$ will replace any existing first or second title line, respectively DE. SI, SC, and DU refer to character styles: DEFAULT. SIMPLX, SCMPLX and DUPLX respectively. Special characters such as mathematics symbols are not allowed with the DUPLX character style. If special characters are desired while retaining DUPLX as the background character style. first invoke the SIMPLX (or SCMPLX) character style: OV SI (or SC). then foliow with OV DU. (Refer to the DISSPLA (Ref. II-7) manual for examples of the various character styles and symbols.] HGT is the character hieight of the override. (Blank or 0.0 defaults to the TRAP-defined height, which varies for the different labels.) Typical values are 0.15-0.22 inches.

UNIT and LENGTH are only used for the USRDRW command, and set the unit reference vector value and the maximum length of the individual cell vectors. Vectors which would exceed the specified length stay at that length. but become dashed to indicate that th ir true lengths are more. In these two cases. the HGT value beconies the unit vector and physical length respectively

NOTE: TRAP will interpret a dollar sign in column one as a blank line. Also. FORMAL is enabled by this command, if not already enabled

PAGE \{format \}

PAGE is used in the TRAP GIVE mode, for PESP (Ref. II-6) only, for defining the page size. Format options are:

STANDARD . . . $2-\mathrm{in}$. space between images
ABUT no space between images
NOTE: There is no abbreviated form for this command.
PAUSE (a one-word message may be associated with any pause)
Interrupts TRAP processing prints PAUSE (message), and waits for the user to press RETURN. When RETURN is pressed, processing resumes with the next command. PAUSE may be used to temporarily interrupt TRAP. especially when auxiliary files are being created, to hand-modify or check these files. The one-word message may not contain embedded blanks.

PORT $\left\{X_{1} X_{2} Y_{1} Y_{2}\right\}$
Allows plotting in constrained areas of the current frame. The numbers X_{1}, X_{2}. Y_{1}, and Y_{2} are floating-point integers, where $X_{1}=$ lower X-value of window. $X_{2}=$ upper X-value, $Y_{1}=$ lower Y-value, and $Y_{2}=$ upper Y-value. All values are in the closed interval $[0,1]$. For example:

$$
\begin{array}{lllllllllll}
\text { PORT } 0.0 & 0.5 & 0.5 & 1.0 & \text { or PORT } & 0.5 & 1.0 & 0.5 & 1.0
\end{array}
$$

cause the plot to be displayed in the upper left quadrant or the upper right quadrant, respectively, of the plane.

QREV
Reverses order of the quantized level shading/colors for the SLICE and USRDRW options. For example. for B/W plotting. the mass flow-rate dependent variable would look more realistic if the low-to-high rates were shaded dark-to-light. Also. reversing the shading for the vapor-fraction-dependent variable gives a more realistic plot. That is, water would have dark shading. and steam would have light shading Also see the NQUANT and TABLE options.

REVIEW

Prints out all commands and abbreviations rerognized by TRAP.
ROD \{N\}
Sets up internal logic for vessel/core rod structure for retrieval of rod number N Command must be enabled prior to any RA, TH, or Z derinitions. Also see th:e description of the formats for Fl;ED Z and FREE Z. when the ROD command is enabled. Rod referenced in meters from the bottom of the vessel or core.

NOTE: Only one radial node may be referenced in any one plot command. See the NOADV command for information on multiple curves per plot

SCALE DV AMIN AMAX (See argument description below)
Forces the scale for the dependent variable DV with AMIN and AMAX as the absolute minimum and maximum scale values for all axes. The user is cautioned that the data are not clipped using this option. If clipping is desired. refer to the CLIP command. If $D V=X$, then the horizontal axis is scaled. If $D V=Y$, then the vertical axis is scaled. WARNING: both axes must be scaled if either is to be scaled. The user can usually get by with scaling only one axis if a previous plot has been made, in which case the unscaled axis uses the previous scale. If DV = ABS, and AMIN and AMAX are null, then the scaling assumes the minimum and maximum of the previous plot. (There is no default: a previous plot must have been made)

NOTE: The DEP command must be enabled prior to the SCALE command if a dependent variable name is to be used in the command. The SCALE command is automatically cleared when the DEP command is encountered

Sets up internal logic for haridling side data for the steam generator and tee components

Sets up logic ior slab geometry for the vessel vertical SLICE option. SLAB is initiated as follows

Enter the SLAB command.
Set the plot up for a vertical SLICE, but enter only one THE A value.
(TRAP permits only one THETA value for the SLAB option, but requires two THETA values for the SLICE option.)

NOTE: The abbreviated command for SLAB is SB, not SL

Displays a horizontai or vertical section of the three-dimensional vessel, shaded or colored by a quantized table of dependent variable values (default is five levels) Both horizontal and vertical slice displays are enabled by this command. Also see the NQUANT. QREV. SLAB, and TABLE options, which pertain to this command. Horizontal and vertical are distinguished by selecting the following variables:

```
Horizontal
    FIXED TIME T
    FIXED Z N
    FREE RA M1 M2
    FREE TH N1 N2
    SLICE
Vertical
    FIXED TIME T
```

FIXED TH N1 N2
FREE RA N1 N2
FREE Z N1 IN2
SLICE

SMOOTH

Applies a spline fit to the current curve. (SMOOTH also applies to auxiliary file curves.) The curve is, specifically, a parametric cubic spline developed originally by Ferguson (Ref. II-8) and implemented by ISSCO for DISSPLA (Ref. II-7).

SUMMARY

Prints out all commands enabled, parameter settings, !imits, etc.
NOTE: X and Y are in page units (inches)

TABLE.

Defines the shading of the N quantized levels (not necessarily linear) for the SLICE and USRDRW options. The following line must be $N+1$ boundaries in percentages (that is, $0.0-100.0$). References must be with respect to the scaled minimum (0.0%) to the scaled maximum (100.0%) of the dependent variable. Also see the NQUANT and QREV options.

THICKLIN $\{N\}$
Causes TRAP to draw curves N thicknesses wide (instead of 1). This feature is useful for making color plots on a colored background. For most purposes, a thickness of two or three is adequate. If N is four or more, sharp peaks become severely exaggerated.

NOTE: The abbreviation for THICKLIN is TK, not TH

TRANS YMULT YSHIFT

Sets up a secondary axis scale (like the DUALAXIS option), but this scale is the only one plotted. That is the SI scale is ignored, and the secondary scale is plotted in its place. YMULT and YSHIFT have the same meaning and application as in the DUALAXIS option. TRANS and DUALAXIS are incompatible options and TRAP will not allow both to be simultaneously enabled.

TSCALE \{YLOW YHIGH\}
Sets an absolute scale for the translated dependent variable. The low and high values must be in the same units as the translated variable. This the user can scale his translated plots in the desired units without having to precalculate the SI scale (to use with the SCALE command) beforehand. Use this option only with TRANS since the DUALAXIS scale is predetermined by the SI scale on the left side of the graph

Displays, graphically, a simultaneous color-quantized diagram of a system of connected c imponents (such as a loop. tee and/or steam generator with both primary and secondary sides, etc.). This option is particularly useful when producing 16 mm color movies.

Actually the components need not be connected. The only way TRAP can determine the variable assignments for eaci cell is completely determined by the user: hence the name USRDRW. It is essential that the user define his cell sequence in exactly the same order that TRAP will extract the respective cells. This applies also to the location of blocks of cells pertaining to components

To set up the plot, a set of cells from a component must be defined as free. For example:

FREE X 110
If the component is a vessel, one or two of the three variables (RA.TH.Z) may be defined as free. To understand the order in which TRAP will extract the variables. consider the variables as one single multi-indexed variable

$$
D E P V=V(R A \cdot T H \cdot Z)
$$

(To remember the order of RA. TH. and Z. simply alphabetize them). Then, as in FORTRAN, the inside or leftmost variables vary faster than the variables to the right. For example, if either of the following are defined.

$$
\begin{array}{lllll}
\text { FR } & \text { RA } & 1 & 5 \\
\text { FR } & Z & 1 & 11 \\
& \text { or } & \\
\text { FR } & Z & 1 & 11 \\
\text { FR } & R A & 1 & 5
\end{array}
$$

TRAP would extract the variables in the following order for V(RA,Z)

$$
V(1,1), V(2,1), \quad . . V(5,1), V(1,2), V(2,2), \ldots . . V(5,2), \ldots V(5,11)
$$

After setting up the component variable definitions for each component, but before defining the last component. the command
USRDRW (or US)
must be given to signal TRAP to create a corresponding component scratch file containing the dependent variable values which will be ploited. The above procedure must be used for all but the last component of the system. When the last component (or the first, if only one) is reached, the USRDRW command is given along with the name of eauxiliary file which contains the cell boundaries (that is
vertexes) of the system in the proper order. For movie purposes. some additional options are available and are included

USRDRW \{file VECTORS MOVAVG N MDEP M SHADES
Before explaining the additional options, note that MOVAVG N and MDEP M occur in pairs. In the above example. TRAP would perform a moving average over 2 N movie frames and plot only the averaged "middle" frame.

For example, if N were 10 , and the movie frames were normally produced at 20 frames per second, then each frame under the MOVAVG 10 mode would be plotted one per second (representing an average of $20 \times 0.05 \mathrm{~s}$ each).

MDEP M is used only with the Extended Function output. and informs TRAP of the total number of output dependent variables to be used in the movie.

SHADES instructs TRAP to color-quantize the individual cells according to the same type of scheme as used in the SLICE options. SHADES and VECTORS may be simultaneously enabled.

The cell boundary file must have the following format:
NCELLS
NCELL 1
$X_{1} \quad Y_{1} \quad X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \cdots X_{\text {NCELL }} \quad Y_{\text {NCELL }}$
NCELL 2
$X_{1} \quad Y_{1} \quad X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \ldots X_{\text {NCELL }} \quad Y_{\text {NCELL }}$

NCEI.L ${ }_{\text {NCELLS }}$
$X_{1} \quad Y_{1} \quad X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \cdots X_{\text {NCELL }} \quad \cdots$ ents $Y_{\text {NCELL }}$
where NCELLS is the total number of cells to be plotted (maximum 100): NCELL ${ }_{1}$ is the number of vertexes (maximum 10) of the first cell: etc. The order of the cell boundaries should be clockwise, and the values should be floating-point values. The scale is arbitrary, since TRAP will normalize before plotting. Note that the cells need not be rectangular: a convex polygon will suffice. Using all of the 10 vertexes, cell boundaries which are rounded can be drawn.

Dispiays, graphically a sinrultaneous color-quantized diagram of a system of connected components (such as a loop. tee and/or steam generator with both primary and ; condary sides, etc.). This option is particularly useful when producing 16 mm color movies.

Actually, the components need not be connected The only way TRAP can determine the variable assignments for each cell is completely determined by the user: hence the name USRDRW. It is essential that the user define his cell sequence in exactly the same ordes that TRAP will extract the respective cells. This applies alsc to the location of blocks of cells pertaining to components.

To set up the plot, a sct of cells from i component must be defined as free. For examiple

FREE X 110
If the component is a vessel, one or two of the three variables (RA. TH. Z) may be defined as free. To understand the order in which TRA.P will extract the variables. consider the variables as one single multi-indexed variable:

$$
D E P V=V(R A \cdot T H \cdot Z)
$$

(To remember the order of RA. TH. and Z. simply alphabetize them). Then, as in FORTRAN, the inside or leftmost variables vary faster than the variables to the right. For t. -mple, if either of the following are defined.

FR RA 15
FR Z 1111
or
FR Z 111
FRRA 15
TRAP would extract the variables in the following order for $\mathrm{V}(\mathrm{RA}, \mathrm{Z})$

$$
V(1,1), V(2,1), \ldots . . V(5,1), V(1,2), V(2,2), \ldots V(5,2), \ldots V(5,11)
$$

Afte: setting up the component variable definitions for each component. but before defining the last component, the command
USRDRW (or US)
must be given to signal TRAP to create a corresponding component scratch file containing the dependent variable values which will be plotted. The above procedure must be used for all but the last component of the system. When the last component (or the first. if only one) is reached. the USRDRW command is given along with the name of the auxiliary file which contains the cell boundaries (that is.
vertexes) of the system in the proper order. For movie purposes, some additional options are available and are included.

USRDRW \{file\} VECTORS MOVAVG N MDEP M SHADES
Before explaining the additional options, note that MOVAVG N and MDEP M occur in pairs. In the above example. TRAP would perform a moving average over 2 N movie frames and plot only the averaged "middle" frame

For example, if N were 10 , and the movie frames were normally produced at 20 frames per second, then each frame under the MOVAVG 10 mode would be plotted one per second (representing an average of $20 * 0.05 \mathrm{~s}$ each).

MDEP M is used only with the Extended Function output, and informs TRAP of the total number of output dependent variables to be used in the movie.

SHADES instructs TRAP to color-quantize the individual cells according to the same type of schems as used in the SLICE options. SHADES and VECTORS may be simultaneously enabled.

The cell boundary file must have the following format

NCELLS

NCELL,
$X_{1} \quad Y_{1} \quad X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \cdots X_{\text {NCELL }}, Y_{\text {NCELL }}$
NCELL ${ }_{2}$
$X_{1} \quad Y_{1} \quad X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \cdots X_{\text {NCELL }} \quad Y_{\text {NCELL }}$

NCELL ${ }_{\text {NCELLS }}$

$X_{1} Y_{1} X_{2} \quad Y_{2} \quad X_{3} \quad Y_{3} \cdots X_{\text {NCELL }_{\text {HCELLS }}} \quad Y_{\text {NCELL }}$ NCELLS
where NCELLS is the total number of cells to be plotted (maximum 100): NCELL ${ }_{1}$ is the number of vertexes (maximum 10) of the first cell: etc. The order of the cell boundaries should be clockwise, and the values should be floating-point values. The scale is arbitrary. since TRAP will normalize before plotting. Note that the cells need not be rectangular: a convex polygon will suffice. Using all of the 10 vertexes, cell boundaries which are rounded can be drawn

VECTOR $\left\{X_{i} Y_{f} X_{1} Y_{t}\right.$ TYPE $\}$ MODE

Causes a vector to be drawn from $\left(X_{f}, Y_{f}\right)$ to $\left(X_{t}, Y_{t}\right), X$ and Y are in page units (inches). MODE may be SOLID (default). DASH. DOT. CHNDSH, or CHNDOT.

TYPE=wxyz deiermines the type of vector

$$
\begin{aligned}
& \mathrm{w}=\text { ratio of width to length } 0 \leq \mathrm{w} \leq 5 \\
& \mathrm{x}=\text { line thickness } 0 \leq \mathrm{x} \leq 6 \\
& \mathrm{y}=\text { form: } \\
& 0 \rightarrow \text { solid } \\
& 1 \rightarrow \text { white } \\
& 2 \rightarrow \text { open } \\
& 3 \rightarrow \text { closed } \\
& z=\text { location of arrowhead: } \\
& 0 \text { no arrowhead } \\
& 1 \text { at }\left(X_{t}, Y_{t}\right) \\
& 2 \text { at both ends } \\
& 3 \text { both ends pointing to }\left(X_{t}, Y_{t}\right)
\end{aligned}
$$

Up to 10 vectors can be defined by repeated VECTOR commands
VIEW $\{x$ Y $Z\}$
Defines the viewpoint for a perspective view of a surface. (X, Y, Z) is the viewpoint. where the workbox is considered a rectangular solid of dimension $\{(x \max -\mathrm{xmin})$. $(y \max -y \min) .(2 \max -2 \min)\}$.

WALL

Sets up internal logic for handing wall temperatures. In this option, "FI RA N" refers to the Nth wall node. The steam generator effective wall temperatures have only one node.
WRAUX \{FNAME\} FORMAT KVRTYP KOLOR NOMARK
Creates an on-the-spot auxiliary file "FNAME" from the data currently residing in the graphics plot buffers. If format="E15," the auxiliary file will be written in 2(1PE15.8) (extended) format. If format is omitted, or anything else. the auxiliary file will be written in 2(1PE10.3) format. KRVTYP $=0,1,2.3 .4$. or 5. (Refer to the INCLUDE command for more detail). KOLOR = WHITE. GREEN. etc. If the sixth entry is "NOMARK," the point-skip value of the auxiliary file is set to zero (causing no curve markers to be plotted. unless overridden by the INCLUDE command itself). If any optional parameter is desired. all preceding parameters must be included, even if meaningless (for example. "DUMMY") mnemonics must be used.

NOTE: The auxiliary file is created inmediately upon receipt of the WRAUX command. DISPLAY does not affect this option

XTRANS \{XMULT XSHIFT\}

Performs an analogous operation to TRANS on the X-axis. The user, for example. can shift the origin of a vessel rore to 0.0 m (instead of the height above the component bottom). by entering a multiplication factor of 1.0 and a linear shift factor of the (negative) height of the lower plenum.

3TITLE

Plots a third title line (text line must follow). This command sets up a small title line immediately above the plot area.

E. SLICE Options

The user can plot a graphic display of the three-dimensional vessel component using the horizontal and vertical SLICE options. Refer to the USRDRW option for a similar type of graphics plot. For example.

COMPID 42

FORMAL
BORDER
FIXED TIME 0.75
FIXED Z 9
FREE RA 15
FREE TH 18
SLICE
DEP TL
DISPLAY
3nd
COMPID 42
FORMA!
BORDER
FIXED TH 14
FREE RA 15
FREE $\begin{array}{llll} & 11\end{array}$
SLICE
DEP TL
DISPLAY
Set up SLICE plots (horizontal and vertical, respectively). The second plot displays two "wedges." namely those for $\mathrm{TH}=1$. and $\mathrm{TH}=4$. A slab model can be plotted using the SLICE option. For SLICE plots. TH must have two values defined, and for SLAB plots. TH must have only one value defined

F. Extended Function Capability

A user may be interested in plotting dependent variables that are combinations of the variables on a COMPij file. He wishes to transform a given set of dependent variable functions (by a subroutine EXTFNC, supplied by the user) to another set

$$
\text { EXTFNC: } \mathrm{D}_{1} \ldots . \mathrm{D}_{k} \quad \mathrm{E}_{1} \ldots . . \mathrm{E}_{m}
$$

where the domains for the functions D_{i}, E_{j} are given in the plot request.
For example, consider a vessel and the following set of TRAP commands (EXTENC is a flag for the extended function option)

COM 42
FI TH 1
FI RA 1
FIZ 1
FR TI 0.1. 1
EXTEND
DEP ALPHAP TL
DI
EN
In this example, the actual dependent variable appearing in the plot is

$$
\text { NEWVAR }=A L P H A^{2} \cdot P / T L \cdot R_{1}
$$

and the plot would involve NEWVAR vs TIME at the (1.1.1)th TH. R. Z cell. The function domains are all identical as specified in the plot request. Additionally. the user needs geometric information because the first radial width. R_{1}. occurs in the equation above.

The command language statements that enable the extended function option are:
EXTEND N
DEP $D_{1} D_{2} \ldots D_{k}$.
where each D_{i} is a dependent variable name and is defined over the same spatial and time domains given in the plot request. "N" is a flag available to EXTFNC as an internal switch for equation selection. Subroutine EXTFNC is a subroutine that transforms a given set of dependent variables to another by special mathematical and logical relations of interest to the user. It is written by him and recompiled into TRAP. EXTFNC is enabled by TRAP repeatedly each time required

The calling sequence for EXTFNC is
CALL EXTFNC (LENX, DX, LENZ. DZ. LENR. DR.
LENTH. DTH. VOL. FA. MDEP.
DEPIN1. DEPIN2. DEPIN3. DEPIN4. DEPIN5.
DPOUT1. DPOUT2. LABL1. LABL2. NAM1. NAM2. ICODE).
where
LENX = Length of array given in plot request
DX $=$ Array of values, length LENX
! ENX $=$ length of array given in plot request
DZ $\quad=$ array of values. length LENZ
LENR $=$ length of array given in plot request
DR \quad array of values. length LENR
LENTH = length of array given in plot request

DTH = array of values. length LENTH
VOL $=$ array of volumes. 1 D or 3 D component
FA $\quad=$ array of flow areas. ID (LENX +1) or 3D component
MDEP = number of incoming dependent variables on input: number of outgoing dependent variables on output
DEPIN1 = first input dependent variable array
DPOUT1 $=$ first dependent variable output array
LABL1 = axis label for DPOUT1. 2 words: output
NAM1 = DPOUT1 mnemonic: output
ICODE = input flag set by user in EXTEND command, which is available for use by subroutine EXTFNC

Five incoming dependent variables can be used along with any or all of the available DEPIN arrays, depending on how the DEP command is entered in the plot request. Also, two dependent variable output arrays exist.

The structure of the dependent variable data arrays depends on component type and on the nature of the plot request. specifically the independent variables definition. If the component is one-dimensional, then the values in the dependent variable arrays are ordered for increasing cell number. If the component is three-dimensional, then the dependent variable values are ordered first for increasing θ-cell value, then for increasing R-cell value, and finally for increasing Z-cell value. The dependent variable values in thie DEPIN arrays exist only over the spatial independent variable ranges, as given in the plot request.

For example, if the component is a pipe, the plot request is

```
TITLE
COM 7
FIX46
FR TIO. 1. 1
EX
DE TL
DI
EN
```

The dependent variables are ordered as follows
DEPIN1(1) - TL at 4th cell
DEPIN1(2) - TL at 5 th cell
DEPIN1(3) - TL at 6 th cell
If the component is a vessel, the plot request consists of the following command statements
TITLE
COM 42
FI RA 34
FI TH 17
FIZ 45
FR TIO.1.1
EX

DE TL
DI
EN
The dependent variables are ordered as follows
DEPIN1(1) - TL at TH. R. Z cell $(1,3,4)$

DEPIN1(7) - TL at TH. R. Z cell (7, 3, 4)
DEPINL (8) - TL at TH. R. Z cell $(1,4,4)$

DEPIN1(14) - TL at TH. R. Z cell $(7,4,4)$
DEPIN1(15) - TL at TH. R. 2 cell $(1.3,5)$

DEPIN1(21) - TL at TH. R. Z cell $(7.3,5)$
DEPIN1(22) - TL at TH. R. Z cell (1.4 .5)

DEPIN1(28) - TL at TH. R. Z call $(7,4,5)$
TRAP performs all SCM/LCM data transfers and manages the time edit blocks as they are given to EXTFNC. TRAP enacts the EXTFNC subroutine after it interpolates dependent variable data at time values supplied by the user. TRAP also checks for full SCM/LCM buffers as well as for the movie option. This minimizes the programming involvement for the user. An example of the subroutine EXTFNC follows. Let

$$
D=\left(D_{1} / D_{2}\right) \cdot V,
$$

where

$$
\begin{aligned}
& D_{1}=\text { first dependent variable. } \\
& D_{2}=\text { second dependent variable. } \\
& V=\text { cell volume. and } \\
& D=\text { transformed dependent variable. }
\end{aligned}
$$

Specifically, we are considering a vessel and are interested in the case in which

$$
\begin{aligned}
& D_{1}=\text { pressure and } \\
& D_{2}=\text { liquid temperature }
\end{aligned}
$$

Our command set to TRAP is
COM 42
FI RA 1
FI TH 1
FI 21
FR TI 0.1
EX
DE P TL
DI
EN
This produces a plot of (P/TL). VOL vs TIME at the (1.1.1) th vessel cell. The EXTFNC listing for this simple example is given in Table II-1. TRAP mast be at least partially compiled for this option, and if any common blocks in CLIFILE)* are modified, then a full compilation is mandatory.

To generate a partial compilation using a new EXTFNC (extended function) subroutine. first compile the new EXTFNC subroutine separately to produce a relocatable binary file. Then, in the LDR (loader) utility, use the relocatable binary file from the new subroutine and the relocatable binary file from a prior compilation of TRAP as input to the loader by the BIN directive.

$$
\text { LDR BIN }=(\text { NEWSUB. } \text { TRAPBIN }) \cdots, \text { etc. }
$$

The order of the binary files is important if a subroutine exists in more than one binary file. If that is ine case, then the first one encountered is the one that gets loaded.

G. Superposition of Auxiliary Data

1. The INCLUDE operation co-plots data in a auxiliary file with data supplied by the TRAC computer program, or the auxiliary file can be plotted by itself using the NPLOT option. Scaling is automatic, unless specified by the SCALE command. The user is responsible for consistency

The format for the auxiliary file is (mandatory parameters in brackets)
\{1\} J T
$\{K L\} M N$
\{WORDS\}
$\left\{X_{1} Y_{1}\right\} W_{1}$
$\left\{X_{m} Y_{m}\right\} W_{m}$
where the entries per line are defined as follows

[^1]
TABLE II- 1

LISTING OF EXTFNC

```
I
$ LENTH.DTH.VOL.FA.MDEP
$ DEPIN1.DEPIN2 DEPIN3
$ DEPIN4.DEPIN5.DPOU\1.DPOUT2.LABL1.LABL2
$ NAM1.NAM2.ICODE)
C
C DUMMY PROGRAM-USER SUPPLIES HIS OWN IN CASE
C THE EXTENDEL FUNCTION OPTION IS USED
C
* NOTE THIS SUBROUTINE IS CALLED FROM OVERLAY 2.0 (2C0). *
*'CALL COMMNO
* CALL COMMN1
*CALL.COMMN7
* CALL COMMN13
    DEPNEW = DEPIN1/DEPIN2 *VOL
C
C USED IN CONTEXT OF EXTENDED FUNCTION CAPABILITY
C
C THIS IS TEST VERSION ONLY
C
1 .
REAL DX(1),DZ(1),DR(1) DTH(1),FA(1).
    $ DEPIN1 (LENTH.LENR.LENZ). DEPIN2 (LENTH LENR.LENZ)
    $ DEPIN3 (LENTH. LENR, LENZ), DEPIN4. (LENTH.LENRRLENZ)
    $ DEPIN5 (LENTH.LENRLENZ), DPOUT1 (LENTH.LENR.LENZ)
    $ DPOUT2 (LENTH.LENR.LENZ) I DL (LENTH LENR.LENZ)
        INTEGER LABL1{2), LABL2(2)
C
C**TRANSFORM VARIABLES
        DO 10 K=1.LENZ
        DO 10 J=1. LENNR
        DO 10 !=1. LENTH
        DPOUT1(1.JK)= DEPIN1(1.J.K)/DEP(N2(1.J.K)*VOL(1.J.K)
        10 CONTINUE
    (**DEFINE LABELS & MNEMONICS
        LABL1(1) =9H(P/T)*VOL
        LABL1(2) = 1H
        NAM1 = 7HP/T*VOL
        MDEP = 1
        RETURN
        END
```

$1=$ Number of curves in the file.
1 = Format: "E15" implies 2(E15.8) format. Blank (or anything else) implies 2(E10.3) format.
T $=$ Translate Flag: if $T=$ "TRANS", then the current auxiliary file will not be translated if TRAP is plotting in the TRANS mode.
$K \quad=$ Number of points in the curve.
$\mathrm{L} \quad=$ Point skip indicator: the program plots error bars at every L -th point. If $\mathrm{L}=0$. no curve markers or error bars are plotted.
M $\quad=$ Curve type: $0=$ solid. $1=$ dash. $2=$ dot. $3=$ chaindash. $4=$ chaindot, and $5=$ no curve drawn between points.
$\mathrm{N}=$ Color (white, green. yellow, etc.)
(NOTE:I, K. M are entered as space-delimited integers, J and N are ASCII or blank).
WORDS $=$ Curve descriptor (2A10). (May be a blank line). JPLAX will give up to 15 characters to an auxfile.
$(\mathrm{X}, \mathrm{Y})=$ Rectangular coordinates of error bar centers.
W $\quad=$ Half width of error bar. (May be blank or zero).
X. Y. W are given in format $3(E 10.3$) [or $3(E 15.8)$ if $J=E 15$].
2. Auxiliary files can be created on the spot operated on, and displayed in a single session.

For example.

```
COM 42
FIXED RA 4
FIXED THETA 2
FIXED Z }
FREE TIME }7
DEP P
WRAUX LEV9 E15
```

would create an auxiliary file "LEV9" containing 75 time-points (in the AUXFILE format). with extended-accuracy 2 (E15.8) format

The user might continue with

FIXED Z 8
 WRAUX LEV8 E15

to create a second auxiliary file "LEV8." These two files may then be subtracted (or some other linear operation) to form a third:
OPAUX LEV9M8 + LEV9 - LEV8 O WHITE

TRAP

Here, "LEV9M8" represents the pressure differential between level 9 and level 8, for the above defined values of RA. TH. and Z. Finally, the resulting pressura differential could be plotted by itself.

INCLUDE LEV9M8
 DISPLAY

Note that NPLOT was enabled to exclude any currently defined data in the plot buffers.

H. TRAC Dependent Variable Names and Descriptions

Following a list of all dependent variable names and descriptions as found in the LBLIST file. Each description refers to the primary axis unit (SI). To illustrate the techniques and symbols reguired to invoke the DISSPLA upper case and lower case, special symbols, and different alphabets, the descriptions are printed just as they are stored in file LBLIST. The user can construct his own descriptions using this list as a guide.

ALPHA	V (OID) F RACTION
ALPHAP	P UMP) V OID F F RACTION
ALREAC	V (OID)-F RACTION R EACTIVITY)
ALV	H(EAT) T RANSFER) C (OEFFICIENT) ALV (W/K)
AM	A(IR) M (ASS $(\langle K G))$
AREA	V (ALVE $A(R E A)(192)$ Z2)
AVRODTMP	R (CD) T (EMPERATURE)
BSA	1 (NTEGRATED) A (IR) M ASS) F LOW $($ (KG))
BXA	A(IR) M (ASS) F (LOW) ($K G / S$))
CB	C(ONTROL) B LOCK)
CEMFR	C(ORE)-O UTLET) M (ASS) F (LOW) $(\langle\mathrm{KG} / \mathrm{S}))$
CHTI	H (EAT) T RANSFER) C, OEFFICIENT) CHTI (N / K)
CIMFRL	C ORE - \langle (NLET) L (IQUID) M ASS F LOW ($\mathrm{KG} / \mathrm{S})$
CIMFRV	C(ORE)-1 (NLET) V (APOR) M (ASS) F (LOW) (KG/S)
CMASS	C(ORE) L IQUID) M ASS $)($ KG/S))
CMFLOW	C(ORE)-1 (NLET) M ASS) F LLOW) (KG/S))
COMFRL	
COMFRV	C(ORE)-O UTLET V (APOR) M ASS) F LOW $(\langle K G / S)\}$
CONS	S(OLUTE) C(ONCENTRATION) (KG/KG LIQCID))
CPOW	H(EATER) P (OWER) (W)
CPUTOT	T/OTAL) CPU T (IME) (5))
CRLIQFR	C(ORE) L (IQUID) V (OLUME) F (RACTION)
CRPRESS	C(ORE) A (VERAGE) P(RESSURE) (P A)
DBREAC	D (ISSOLVED)-B ORON R EACTIVITY)
DCFELOW	D (OWNCOMER) M ASS) F LOW $(\mathrm{KG/S})$
DCLQVOL	D (OWNCOMER) L (IQUID) V OLUME) F RACTION
DELT	T(IME)-S TEP) S (12E) (S))

```
DSLTAP P(UMP M6)D MY)P (P(A))
DMASS D(OWNCOMER) L(IQUID) M ASS) (KG))
DPRMAX M (AXIMUM) F RACTIONAL) P(RESSURE) C(HANGE)
DR
DTHETA
DTLMAX M(AXIMUM L IQUID) T EMPERATURE) C(HANGE) (K)
DTRMAX M(AXIMUM) R(OD)-T EMPERATURE; C(HANGE) (K)
DTSMAX M (AXIMUM; S LAB)-T EMPERATURE) C(HANGE) (K)
DTVMAX M(AXIMUM) V APOR)-T EMPERATURE) C(HANGE) (K)
DX M6 D:MX X{(M)}
DZ
EFFSTG S(TAGE) E (FFICIENCY)
FA F(LOW)A(REA) (M):Z2))
FLOWAREA F(LOW) A REA) ({M):Z2))
FRICIZ A (XIAL) INTERFACIAL)S (HEAR) C(OEFFICIENT)
HEAD F
HEIGHT W (ATER\rangle L{EVEL\rangle ((M))
HILG I NSIDE) L(IQUID) H(EAT)-T RANSFER) C(OEFFICIENT) (W/(M) 22Z4 K)
HIVG I(NSIDE) V (APOR) H(EAT)-T RANSFER) C(OEFFICIENT) (W / M < 222.4)K)
HL L(IQUID) H(EAT).T(RANSFER) C(OEFFICIENT)(W/(M) 22Z4) K)
HLV (NTERFACIAL) H(EAT)-T RANSFER) C(OEFFICIENT) (W/K)
HOLG O(UTSIDE) L(IQUID) H(EAT) ? RANSFER) C(OEFFICIENT) (W/(M):22Z4)K)
HOVG O(UTSIDE) V (APOR) H(EAT) T (RANSFER) C(OEFFICIENT) (W/(M):Z2Z4)K)
HTLSCI I(NSIDE) H(EAT) L(OSS.) (W)
HTLSCO O(UTSIDE) H(EAT; L(OSS) (W)
HTLSGI S(TEAM).G(ENERATOR) I NSIDE) H(EAT) L(OSS) (W)
HTLSGO S(TEAM)-G(ENERATOR) O UTSIDE) H(EAT) L(OSS) (W)
HV
ICJ
IDGHI
IDGHO
IDR
IDRGR R(OD) & EAT).T RANSFER) R(EGIME
IDRGS S LAB) HEAT)-T RANSFER)R(EGIME
IHTF R(OD): (EAT)-T (RANSFER)R(EGIME)
IMFLOW I NTEGRATED)M (ASS) F(LOW) (KG))
ISRC S SOURCE) C(ELL) N UMBER)
ISRF S(OURCE) F (ACE) N UMBER;
ISRL S(OURCE) L(EVEL) N(UMBER
MFLOW M(ASS) F(LOW) (KG/s))
MFRL L(IQUID) A(XIAL) M ASS) F(LOW) (KG/S))
MFRLR L(IQUID) R(ADIAL)M(ASS) F(LOW) (KG/S))
MFRLT L.IQUID) A(ZIMUTHAL) M(ASS) F(LOW) (KG/S))
IFRLZ L(IQUID) A(XIAL) M ASS) F(LOW) (KG/S))
```

```
MFRV
MFRVR
MFRVT V APOR) A(ZIMUTHAL) M ASS) F(LOW) (KG/S))
MFRVZ V(APOR) A XIAL)M ASS) F(LOW) (KG/S))
NSRL
OMEGA
P
PA
PDC
PFLOW
PGREAC
PLP
PMASS L(IQUID) M ASS) B ELOW) D(OWNCOMER) (KG))
POWER P(OWER) (W)
POWR1 H(EATER)P(OWER) (W)
POWR2 H(EATER)P(OWER) (W)
POWSTG
PUP
QRD
QRDTOT
QSL.
QSLTOT
RDAN
RHOL
RHOM M (IXTURE) D(ENSITY\rangle (\langleKG/M\rangle:Z3\rangle)
RHOP
RHOV
RMCKN
ROAN M ACROSCOPIC) A(IR) D(ENSITY) (KG/M):Z3))
RODTMP
RPOWER
SMOM
SOLID
SV
TCILMF
TCIVMF I(NTEGRATED) C(ORE)-1 (NLET) V APOR) M(ASS) F(LOW) (\langleKG\rangle)
TCOLMF I NTEGRATED) C(ORE)-O(UTLET) L(IQUID) M(ASS) F(LOW) (KG))
TCORE C(ORE) A(VERAGE) L IQUID) T(EMPERATURE) (K)
T LOVMF I(NTEGRATED) C(ORE).O(UTLET) V (APOR)M(ASS)F(LOW) ((KG))
TCREAC C'OOLANT).T (EMPERATURE) R(EACTIVITY)
IDC D OWNCOMER) A(VERAGE) L(IQUID) T(EMPERATURE) (K)
TFREAC F(UEL)-T (EMPERATURE) R(EACTIVITY
TIMET T(RANSIENT)T(IME) i(S))
TL
    V (APOR) A(XIAL)M(ASS) F(LOW) (KG/S))
    V (APOR) R ADIAL) M ASS) F(LOW) (KG/S))
    S OURCES ON LIEVEL
    S(PEED (RAD/S))
    P RESSURE (P A))
PA A IR P(ARTIAL P(RESSURE) (P(A)
    D (OWNCOMER) A VERAGE) P(RESSURE) (P(A))
P(UMP) M ASS F(LOW) (KG/S))
PROGRAMMED REACTIVITY
    L(OWER)-P(LENUM A (VERAGE) P(RESSURE) (P(A))
    S(TAGE) P(OWER) O UTPUT) (W)
    U(PPER)-P(LENUM) A(VERAGE) P(RESSURE) (P(A))
    R(OD) H(EAT) T(RANSFER) (W)
    T(OTAL) R(OD) H(EAT) T RANSFER) (W)
    S (LAB) H(EAT) T RANSFER) (W)
    T(OTAL) S LAB) H(EAT) T (RANSFER) (W)
    M(ACROSCOPIC) A(IR) D(ENSITY) ({KG/M) Z3))
L(IQUID D ENSITY (KG/M):Z3))
    M IXTURE D ENSITY) (KG/M/.23)
    P(UMP) M IXTURE)D(ENSITY) (KG/M Z3))
V (APOR) D ENSITY) ({KG/M):Z3))
    R(EACTOR) M ULTIPLICATION C(ONSTANT) \K\rangle
    R(OD) T(EMPERATURE) (K)
    C(ORE) P(OWER) (W)
    P(UMP) M (OMENTUM) S OURCE) ((M/S) 22))
    P(LATED) S(OLID)/C(ELL) V OLUME) (KG/M),Z3))
    SIGNAL V ARIABLES)
TCIVMF I(NTEGRATED) C(ORE)-1 (NLET) V APOR)M MSS) F(LOW) (\langleKG))
    (gONSID) TEMPERATURE)
    L(IQUID) T(EMPERATURE) (K)
```

```
TLP L(OWER)-P(LENUM) A(VERAGE) L(IQUID) T(EMPERATURE) (K)
TNSTEP T(OTAL) T(IME) S (TEPS)
TORGUE P(UMP)T\langleORQUE) (\langleKG):24(M):Z2)/\langleS\rangle:Z2\rangle)
TRAMAX M (AXIMUM) A(VERAGE)-R OD T(EMPERATURE) (K;
TRBSIG T(URBINE) G(OVERNING) S(IGNAL)
TRHMAX M (AXIMUM) H{OT)-R{OD) T(EMAPERATURE) (K)
TSAT S (ATURATION) T (EMPERATURE) (K)
TSCORE (SORE) A(VERAGE) S (ATURATION) T(EMPERATURE) (K)
TSDC D(OWNCOMER) A(VERAGE)S (ATURATION) T<EMPERATURE) (K)
TSLP L(OW:R)-P(LENUM) A(VERAGE) S (ATURATION)T EMPERATURE) (K)
TSUP U(PPER).P(LENUM) A(VERAGE) S (ATURATION) T EMPERATURE) (K)
TUP U(PPER)-P(LENUM) A(VERAGE) L(IQUID) T(EMPERATURE) (K)
TV V AAPOR\rangle T EMPERATURE\rangle (K)
TW W (ALL) T (EMPERATURE) (K)
TWGI E(FFECTIVE) W(ALL) T(EMPERATURE) (K)
VFLOW V (OLUMETRIC }\rangleF{LOW) ((M):Z3),\langleS\rangle
VFLOWP P(UMP) V (OLUMETKIC) F(LOW) ((M):Z3)/(S))
VL L{IQUID) V ELOCITY \ ((M/S))
VLN-R L(IQUID) R(ADIAL) V ELOCITY) (M/S))
VLN-T L(IQUID) A (ZIMUTHAL) V (ELOCITY) ((M/S))
VLN-Z L(IQUID) A XIAL) V ELOCITY) ((M/S\rangle)
VLOSS L{IQUID) V OLUME D (ISCHARGED) ((M):Z3))
VLPLIQ L(OWER)-P(LFNUM) L(IQUID) F(RACTION)
VLPLM L(OWER)-P(LENUM) L(IQUID)M(ASS) (\KG))
VMASS V ESSEL) L(IQUID) M (ASS) {\KG))
VMFR V (APOR) M (ASS) F (LOW) (,KG/S))
VOL
    V (OLUME) ((M):23))
    V(ESSEL) M(ASS) F(LOW) (KG/S))
VUPLIQ U(PPER)-P(LENUM) L(IQUID) V (OLUME) F(RACTION)
VUPLM U(PPER)-P(LENUM) L{IQUID) M (ASS) ({KG))
VV V (APOR) V ELOCITY })(\langleM/S\rangle
VVN-R V(APOR)R(ADIAL) V ELOCITY) (M/S))
VVN-T V(APOR) A(ZIMUTHAL) V(ELOCITY) ((M/S))
VVN-2 V(APOR)A(XIAL) V ELOCITY) ((M/S))
ZHT A\langleX|AL\rangle P(OSITION\rangle ((M))
```


I. Programming Guidelines

The TRAP code was developed and is currently mainianeu' + Los Alamos with a maintenance utility called HISTORIAN. which is proprietary scftware of OPCODE. Inc. The selection of HISTORIAN as our maintenance code provides us with the capability to be upwardly compatable with the CDC UPDATE utility and with the flexibility to transmit the program library to other installations which have HISTORIAN and still preserve the history of the corrections.

The TRAP code has been structured with some degree of portability by the use of conditional directives (.IF DEFs) placed in the code s program library. Here at Los Alamos
the TRAP code has been run on a CDC 7600 using the LTSS operating system and on a CRAY machine which uses the CTSS operating system. The respective compiler-ready FORTRAN source for the systems mentioned above can be extracted from the program library using the following UPDATE/HISTORIAN . DEFIN : options

CRAY	CDC. 7600
CRAY	L7600
EIGHTB	VDM
NOLCM	TENB
VDM	OVLAY

Other , DEFINE options which exist in the program library are IBM, S7600. HEX , and VAX. An external user would have to supplement the list or create a combination of . DEFINE options that are appropriate for his system. For a description of the * DEFINE options, please see your TRAC manu al.

Any external inization which has considered installing TRAP on their system must make sure that the UISSPLA graphics software, which is proprietary software of Integrated Software Systems Corporation, exists on their system. TRAP is very dependent on this graphics package and currently uses version 9.2 with updates ior ve, sion 10 available for users who have the latest version.

The calling sequence for the TRAP code and its associated subroutines has been included in Fig. II-2.

J Examples

In this section we present examples of code execution, various code options, and input commands

1. Examples of Code Execution. Plo: liquid temperature vs cell pusition for component 16. Here, this component is a pressurizer and is a one-dimensional model. First generate the component data file. COMP16, by running EXCON on TRCGRF (upper-case entries are supplied by the user)
```
EXCON GO/11.2
Enter Space Delimited Component Numbers
16
Input accepted Now Running Excon
```

All Done

Fig. II- 2.
Program subroutine function entry

Fig. II- 2 (cont).

Fig. II-2 (cont).

Fig. II- 2 (cont).

Fig. II- 2 (cont).

Fig. II- 2 (cont).

Fig. II-2 (cont).

Fig. II- 2 (cont).

Fig. II- 2 (cont).

Fig. II- 2 (cont).

Fig. II-? (cont).

Fig. $11 \cdot 2$ (cont).

67	nochek	called by graf2d vslice	gri3d	hslice	sptup
68	vector	called by graf2d	gridd	usrdrw	vslice
69	intno	called by graf2d	hslice	plotno	ustdrw
70	frame	called by graf2d			
71	realno	called by graf2d	usidrw	vslice	
72	axes3d	called by grf3d			
73	view	called by grf3d			
74	graf3d	called by grf3d			
75	surten	called by grf3d			
76	surmat	called by gIf3d			
77	bckgnd	called by grf3d	macid		
78	x xintax	called by grfaxs			
79	mshift	called by grfaxs			
80	rlint	called by grfaxs			
81	Hreal	called by grfaxs			
82	rimess	called by grfaxs			
83	grid	called ty gridd			
84	strtp:	called by gridd	quadft	vslice	
85	connpt	called by gridd	quadfr	vslice	
86	headin	calied by head!			
87	intens	called by hslice	usidrw	vslice	

Fig. II- 2 (cont).

Fig. II- 2 (cont).

Here, TRCGRF is the graphics file produced by program TRAC. Next run TRAP:
TRAP / 11.2
CTSS TRAP FOR INDEPENDENT VERSION.GT.12.0
enter output plot file label (max. 80 characters)
TEST: CASE
Enter Problem Specification
COMPID 16
FIXED TIME 4
FREE X 15
DEP TL
DISPLAY
Plot No. 1 Completed.
END
All Done
We define the component ID number as 16; set TIME as the fixed independerit variable at 0.4 s , set the cell position coordinate, X . as the free independent variable ranging from the first through the fifth $c \in l l s$; and define TL (liquid temperature) as the dependent variable.

Example.
Plot, for a three-dimensional component, a curve relating liquid temperature and axial position (the free independent variable). Let the component ID be 42 and assume the associated data on file COMP42 resides in the user's local file space. Let the values of the fixed independent variables be: 1 st radial cell, 1 st angular cell, $\mathrm{t}=0.5 \mathrm{~s}$. Also, for this example.

TABLE II- 2
AUXFIL DATA

811		
USPWR1		
1.	549	1
3.	551.	1
4.	554.	2.
5.	558	2.
6.	566	2
8.	580.	2.
10.	579.	2.
11.	571.	1.
714		
USPWR2		
1. ?	550.	1.
3.5	552.	1.
4.5	556.	2.
5.5	562.	2.
6.5	570.	2
8.5	580.	2.
10.5	577.	2.

superimpose data with error bars from two auxiliary data files. The information in this file is given in Table II-2. The interactive session is:

TRAP / 11.2
Enter General Title
TEST CASE
Enter Problem Specifications
COMPID 42
DEP TL
FIXED RADIUS 1
FIXED THETA 1
FIXED TIME 5
FREE Z 111
OV LE
TRAC DATA
INCLUDE AUXFIL
DISPLAY
Plot No. 1 Completed
END
All Done

The user sets the comporient identification (ID) at 42 (a vessel); fixes RADIUS and THETA as two of the independent variables (that is, he fixes both radius and theta at the first cell); fixes TIME at 0.5 s , defines the free independent variable as Z (ranging from the first z-level through the eleventh z-leve!); defines the dependent variable mnemonic as TL (which is equivalent to liquid temperatures-these mnemonics are generated by TRAC and stored in the TRCGRF output file); and finally asks TRAP to co-plot all data found in the auxiliary file. AUXFIL. He finishes his plot problem definition with the DISPLAY command and terminates the program with the END statement.

For this example, if the user chooses not to be completely interactive, he prepares a file containing:

```
TEST CASE
COMPID }4
DEP TL
FIXED RADIUS 1
FIXED THETA 1
FIXED TIME . }
FREE Z 1 11
OV LE
TRAC DATA
INCLUDE AUXFIL
DISPLAY
END
```

If we name this file TRAPIN, the terminal session is:
TRAP FILE TRAPIN / 11.2
Plot No. 1 Compieted.
Ali Done

Example.

This is the same as the first example, except that we also wish to plot a TL-vs-X curve for TIME $=0.7 \mathrm{~s}$. The session is:

```
TrAP / 1 1.2
CTSS TRAP FOR INDEPENDENT VERSION.GT. 12.0
enter output plot file label (max. 80 characters)
    TEST CASE
    Enter Problem Specification
COMPID }1
FIXED TIME . }
FREE X 15
DEP TL
DISPLAY
Plot No. 1 Completed
FIXED TIME . }
DISPLAY
Plot No. 2 Completed
```

> END
> All Done
2. Examples of Option Use. Most of the following examples are based on a standard problem. USPWR1, which models a reactor system having 42 components.

Component number 42 is a VESSEL, where
NASX $=$ number of axial levels $=11$.
NRSK $=$ number of radial rings $=5$.
NTSX $=$ number of sectors $=8$.
Component number 6 is a TEE, where
NCELL1 $=$ number of cells in primary tube $=2$.
NCELL2 $=$ number of cells in side tube $=6$.
(a) Create COMPij files corresponding to components 6,16,42:

> EXCON GO
> Enter Space Delimited Component Numbers
> 61642
$\begin{array}{llll}\text { Component Comp06 Finished: } & 100000 \mathrm{E}-04 \text { To } .101080 \mathrm{E}+01 \text { With } 38 \text { Time-Points. } \\ \text { Component Comp16 Finished: } & 100000 \mathrm{E}-04 \text { To } .101080 \mathrm{E}+01 \text { With } 38 \text { Time-Points. } \\ \text { Component Comp42 Finished: } & 100000 \mathrm{E}-04 \text { To } .101080 \mathrm{E}+01 \text { With } 38 \text { Time-Points. }\end{array}$

All Done

This reformats file TRCGRF (assuming it exists as a local file) to files COMPO6. COMP16. and COMP42.
(b) Create two plot frames during the same session and display them on the Tektronix screen.

TRAP FILE TRAPIN TEK / $\mathrm{t} v$
Plot No. 1 Completed
Plot No. 2 Completed.
All Done
where TRAPIN contains

```
TEST CASES
COM 42
FI RA 1
FI TH 3
FIZ }
FR TI . }005\mathrm{ 1. .1
DE TL
SCALE TL 545.500
Cl
CL RA TI
FI TI 0.2 1.0
FRRA 1 5
```

The first plot graphs LIQUID TEMPERATURE as a function of TIME at the $R=1$. TH=3. $\mathrm{Z}=7$ cell in the vessel. The second plot graphs LIQUID TEMPERATURE as a function of RADIUS at TIME $=0.2 \mathrm{~s}$ to 1.0 s at TIME $=0.2 \mathrm{~s}$ over vessel cells with $\mathrm{TH}=3 . \mathrm{Z}=7$. (cell indexes). This second plot contains five curves smoothed by the SM option co-plotted on the same frame because the NOADV option is set.
(c) Create a movie of PRESSURE vs RADIUS:

TRAP FILE FILEI 16C GIVE / t v
Plot No. 1 Completed.
All Done
where FILE 1 contains

$$
\begin{aligned}
& \text { TEST CASE } \\
& \text { COM } 42 \\
& \text { FI TH } 7 \\
& \text { FI Z } 2 \\
& \text { FI TI . } 0011.005 \\
& \text { FR RA } 15 \\
& \text { DE P } \\
& \text { MO } \\
& \text { DI } \\
& \text { END }
\end{aligned}
$$

This produces a short color movie of approximately 200 frames (not including header and trailer), lasting about 12 seconds when projected at 16 frames $/ \mathrm{s}$. The film files are automatically released to the FR80 plotter.
(d) Create two plots. The first is liquid heat-transfer coefficient vs time for the side tube of the tee, and the second is liquid temperature vs X for the pressurizer.

TRAP FILE TRAPIN 35C GIVE / $\mathrm{t} v$
Plot No. 1 Completed.
Plot No. 2 Completed.
All Done
where TRAPIN contains

```
TEST CASES
COM 6
FIX4
FR TI .005 1. . }0
DE HL
SI
DI
```

```
CL ALL
CJM 16
FI TI . }
FR X : }
DE TL
DI
END
```

The first plot request produces one $35-\mathrm{mm}$ color frame. The second plot request also produces one $35-\mathrm{mm}$ color frame. Both are automatically released to the system.
(e) In this example. we temporarily deal with another reactor system. Display component 9 . which is a pipe component (nozzle) having 13 cells:

```
TRAP TEK / 1 1.2
Enter General Titk
                                    TEST CASE
Enter Problem Specifications
                                    MA 9
                                    DI
```

 Plot No. 1 Completed.
 EN
 All Done
 (f) Plot average rod temperature vs Z for rod number 13 at radial node number 8 :
TRAP TEK / 11.2
Enter General Title
TEST CASE
Enter Problem Specifications
COM 42R
ROD 13
FI RA 8
FR Z 0. 12. 12
FI TI 2
DE RODTMP
D!
Plot No. 1 Completed.
EN
All Done
(g) Example of use of DVNAMES and SUMMARY commands (see Tables II-3 and II-4 for output)

TRAP / 11.2
Enter General Title
TEST CASE
Enter Problem Specifications
COM 16
DV

TABLE II. 3
OUTPUT FROM USING DVNAMES COMMAND

FIX3
FRTIO. 1.1
DE TL
SU

TABLE II-4
OUTPUT FROM USING SUMMARY COMMAND

```
        SUMMARY OF USER SPECIFICATIONS
COMPONENT ID = 16
PRIMARY KEYWORD OPTIONS ARE -
COMPID
DEP
FIXED
FREE
SUMMARY
DVNAMES
FREE INDEPENDENT VARIABLES ARE
TIME
FIXED INDEPENDENT VARIABLES ARE
SUMMARY OF USER SPECIFICATIONS (cont)
    x
    DEPENDENT VARIABLES ARE
    TL
    X-CELL LIMITS 3 3
    LIMITS FOR TIME VARIABLE ARE
    0.00000 1.00000.10000
DI
Plot Request Completed
END
```

All Done

REFERENCES

II-1. Safety Code Development Group. "TRAC-PF1/MOD1: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis," Los Alamos National Laboratory report NUREG/CR-3853. LA-10157-MS (July 1986).
II-2. K. A. Taggart and E. R. Liles. "POST: A Postprocessor Computer Code for Producing Three-Dimensional Movies of Two-Phase Fluw in a Reactor Vessel," Los Alamos National Laboratory report LA-NUREG-6954-MS (September 1977).
II-3. D. Hyman. "PSCAN." CTSS Graphics Utili̇y, Los Alamos National Laboratory. CCF Library. GR864 (November 1982).
11-4. T. Reed, "GPALET." CTSS Graphirs Utility. Los Alamos National Laboratory. CCF Library, GR750 (April 1981).
II-5. M. Vigil. "PFILM." CTSS Utility Routine, Los Alamos National Laboratory. CCF Library. GR363 (June 1982)
II-6. M. Vigil. "FESP." CTSS Utility Routine. Los Alamos National Laboratory. CCF Library. GR862 (November 1982)
II-7. DISSPLA Users Manual, ISSCO. San Diego. California (1981)
II-8. J. Ferguson. "Multivariable Curve Interpolation." J. ACM (April 1964).

III. EXTRACT

EXTRACT is a TRAC-PF1/MOD1 postprocessor that reads a TRCDMP file generated by TRAC-PF1/MOD1 (version 14.1 or greater). The code then extracts the NAMELIST and COMPONENT data from a selected dump and creates an output file, in standard TRAC load format. The output file is a partial TRACIN (TRAC input) file any parameters of which can be modified using a text editor. Once the remaining data are merged with the modified EXTRACT output file to create a complete TRACIN file, the calculation can be restarted from the selected dump. By using EXTRACT instead of rerunning the job from the beginning every time the input deck is changed, users can realize considerable savings in both computer and user resources for many types of simulations. EXTRACT can be used any time the component input must be changed and economics do not justify restarting the job from the beginning. If can also be used with relative ease for parallel sensitivity studies in parametric calculations.

A. Introduction

There has been an increasing demand for software like EXTRACT leading to the current independent code version. Many users have wanted versions of EXTRACT compatible with the TRAC versions they were using at the time.

The need for EXTRACT has been especially noted by users who wish to make changes to VESSEL data. For example, several users have wanted to modify the maximum rate of change of power value in their VESSEL input to limit the rate at which power can drop after scram for a LOCA. In this case the user's VESSEL needs to be changed on a restart, and few users welcome the exercise of doing this by hand.

In the pact, our approach to resolving this user request was to inform the user which version of TRAC would work with our available EXTRACT version. If the user did not want to use that version of TRAC, many resources had to be expended to provide the user with a compatible EXTRACT code.

Many suggestions were made regarding how to provide a current EXTRACT version more easily as new versions of the TRAC code were created. These ranged from suggesting that the function of EXTRACT be made an option in the TRAC code to installing EXTRACT directly into TRAC using IF DEFs, so that a new version wouid not have to be generated every time a change was made to the TRAC code. Because we have had much success in using and managing independent versions of our other postprocessing codes. EXCON and TRAP, we decided to employ a standalone, independent version of EXT ACT as well.

The independent version of EXTRACT became possible only after modifying the TRAC generated TRCRST file (see Table III-1 for a current description of TRCDMP/TRCRST file). The changes, which consisted of freezing the order that the variables in the FLT. VLT, and PTB (fixed length, variable length and pointer tables) are written to the dump file, and adding the NAMELIST data to the dump file, provided neaded data and stability required for a standalone code.

The current version of EXTRACT will be upgraded to reflect feedback from users. It is envisioned that EXTRACT will become another strong complement to our current TRAC postprocessor package.

TABLE III-1

DUMP-FILE OVERALL STRUCTURE

DATE
TIME
NCOM
LENTBL
MLNTBL
LENID
ID
LNLIST
NAMELIST
$-*$ BFIO -
Time-
Edit
Data
$-*$ BFIO -
Time-
Edit
Data
$-*$ BFIO -
.

Date of file creation.
Time of file creation
Number of components.
Actual length of fixed-length table.
Frozen length of fixed-length table.
Length of probiem ID.
Problem ID.
Frozen length of NAMELIST variables.
List of NAMELIST variables.
Word indicating logical "end of file."

Dump at first time.

Dump at second time.

EOF
EOF
EOF
LCOMP1
MLNVLT
MLNPTR
LCOMP2
MLNULT
MILNPTR
LCOMP3
MLNULT
MLNPTR

etc.

Physical "End of File" mark (fills remainder of $1 / \mathrm{O}$ buffer).

Length of first component dump.
Fixed-length iable for first component.
Frozen length of variable-length table.
Frozen variable-length table for first component.
Frozen length of pointer-table.
Frozen pointer table for first component.
Array data for first component (only required arrays are dumped).
Length of second component dump.
Fixed-length table for second component.
Frozen length of variable-length table.
Frozen variable-length table for second component.
Frozen length of pointer table. Frozen pointer table for second compones.t. Array data for second component (only required arrays are dumped).
Length of third component dump. Fixed-length table for third component
Frozen length of variable-length tarle.
Frozen variable-length table for second component.
Frozen length of pointer table. Frozen pointer table for second component. Array data for second component (only required arrays are dumped)

B. Basic Concepts and Capabilities

EXTRACT requires two input files: \% TRCRST (a renamed TRCDMP) file and a usercreated EXTIN file. EXTIN consists of user-selected options such as the dump number and the component numbers desired. Based on this input. EXTRACT will generate an output file containing all the NAMELIST information and the user-selected COMPONENT data. The output file, EXTOUT, is written in TRAC load format, which is the standard format used in TRACIN files (Ref. III-1). The user can then modify the EXTOUT file using any local editor.

The types of changes permitted can range from a simple task of changing the fle v area in one cell to redesigning the mesh cell configuration of the entire component. The modified file can then be used to create a new restart TRACIN filie.

EXTOUT is a partial TRACIN file lacking only part of the main data cards, the material property data, the control section (trips, signal, and control block data), and the TIME-EDIT information. After a user has created a new TRACIN file using the contents of EXTOUT file and supplied the remaining data, he can continue processing the TRAC job treating the TRACIN file as a restart deck.

When the TRACIN file created from the EXTOUT does not have control parameters that depend on their previous computed time-step values, and restarting the job at time $=0$ (zero) is acceptable, then the TRACIN file can be treated as a standard input deck. If the TRACIN file generated by EX,TRACT contains core data in the VESSEL component, the user must set the NAMELIST option IEXVSS to 1 . This is a new option that has been added to TRAC to inform the code that it is going to read an EXTRACT-generated VESSEL component. Because of the astomatic fine-mesh noding (rezoning), there has always been a slight difference in the amount of data supplied by the dump file and the data required in the input file. Since an EXTRACT output file contains all the data found in a TRAC restart run, but has the appearance of a standard input deck, a means to distinguish the difference was needed.

The EXTOUT file created by EXTRACT will include any additional data which exists as a tesult of a special option being turned on through a NAMELIST or main data card selection. This capability does not require any additiona! user input out is handled automatically by EXTRACT.

EXTRACT also has the capability of reading a TR'_RST file generated by a particular version of TRAC and producing an output file that will be compatible to a different version of TRAC. This option can be selected by assigning the appropriate values to CVERSION and DVERSION on the first input record of file EXTI N. Please note that if you attenipt to create a newer version of an output file by setting DVEf:SION greater than CVERSION certain parameters required by the newer version will not be provided correctly. The same type of problem can exist in going in the opposite direction and the only solution is that the user input the correct value after editing the file.

C. Using EXTRACT

EXTRACT user must have the following files local: EXTRACT, TRCRST, and EXTIN. TRCRST is the renamed TRCDMP file from which the user wants to "extract" component information for subsequent use in a TRAC restart calculation. The EXTIN file is the EXTRACT input file. It contains at least four cards, depending on what the user wants to extract from the TRCRST file. In brief:

> Card Innut Description
> 1 free-format input (two reals and an integer) indicating version being read (from TRCRST), version desired, and KFAC usage (0 for FRICs and 1 for KFACs)
> $2-1$ picks up last dump (or enter specific dump number)
> 3 on $\quad 999$ to pick up all components (or list specific components one per line)
> last line $\quad 0$ (zero) is component list terminator and last record (required)

The output file created by EXTRACT has components in TRACIN-compatible format leady for editing into your TRACIN deck. A sample EXTIN input deck and run is shown in Figs. 3.1 and 3.2 .
(NOTE: If the user extracts a VESSEL component that has a core, he/she must set the NAMELIST opticn IEXVSS to 1 in the new restart TRACIN deck whether it is to use the extracted VESSEL component data.) The following lines will compare the input differences based on the value of the NAMELIST variable IEXVSS.
IEXVSS $=0$ (default) vessel component was not EXTRACT generated.

Variable	Dimension	Description
BURN	ICRU-ICRL+1	Fuel burnup (MWD/MTU)
RFTN	NODES* (ICRU-ICRL+1)	Initial fuel rod temperature (K)

For IEXVSS $=1$ vessel component was generated oy EXTRACT.

ZHT	NZMAX	Fine-mesh axial heights (m)
BURN	NZMAX	Fuel burnup (MWD/MTU)
RFTN	NODES*NZMAX	Restart fuel rod temperature (K)

The value of IEXVSS is meaningless if the VESSEL component does not contain a core. Also, in cases in which multivessel components are present in a TRACIN file, the value of IEXVSS will apply to all the VESSELS.

D. TRAC Programming Guidelines to Preserve Independence of EXTRACT

This version of EXTRACT is a standalone code and does not need to be regenerated every time a new TRAC program library is generated. The same version of EXTRACT will now be capable of reading dump files generated by the base TRAC-PF1/MOD1 version 14.1 code up to the latest version. Having this backwards and forwards capability on a standalone code required freezing the order of certain blocks of data written to the dump file and establishing some guidelines for adding and deleting data from the frozen blocks and from other write statements in the dump routines. This effort also changed the structure of the TRAC-PF1/MOD1 dump file (see Table III-1 for current description). The guidelines that users modifying the TRAC code need to know to preserve the backwards and forwards compatibility between the TRAC dump routines, the TRAC restart routines, and the EXTRACT code are:

1. All new NAMELIST variables must be equivalenced to the next available position in the dummy DVLT array in the DMPIT routine. For examp!e. INEW $=$ IDVLT (N), where N is the next available position in array IDVLT, the integer equivalent of DVLT.
2. All new FLT (fixed-length tab'e) variables must be equivalenced to the next available position in the dummy DVLT array in the DMPIT routine (between statement labels 90 and 95) (for examples of 1 and 2, see Table III-2).
3. All new VLT (variable-length table) and PTB (pointer table) variables must be equivalenced to the next available position in the corresponding DVLT array in their respective comporient-type dump routine (DPIPE, DTEE, etc.) (for examples see Table III-3).
4. The index position of the DVLT array for a NAMELIST, FLT, VLT, or PTB variable that has been deleted cannot be reassigned to a new variable added to any of the tables. Once an index on the DVLT has been assigned it can never be used again for a different variable even after the index becomes available when a variable has been deactivated.
5. For every new variable added to the NAMELIST, FLT. VLT, and PTB tables, a corresponding equivalence of the opposite type must be added to the restart routine that reads that particular table. For example, if I add the variable INEW to the NAMELIST table, I find out that the next available position on the DVLT array in the DMPIT routine is DVLT (56). I then equivalence the new variable to "DVLT(55)=INEW" and inseri the line. But I also have :o do a corresponding equivalence of the opposite type in routine RDREST. The new line would be "iNEW=DVLT(56)." See Table III-4 and Tabie III-5 for additional examples.

All the guidelines up to this point pertain to preserving the frozen order of the data tables and adding new variables at the next available position. This is the only way to write a table variable to the DUMP file. Failure to do this correctly would result in the loss of the variable for restarts. The EXTRACT code will automatically read new variables added to the data tables even though additional information will sometimes be needed to instruct EXTRACT as to what to do with the new variable.

To delete an existing variable from the frozen tables one would merely delete the equivilencing line "DVLT $(N)=O L D$ " 0 il the dump routine and the corresponding "OLD=DVLT(N)" on the restart routine. Piease note that the PT (pointer table) variables are not re-equivalenced from the DVLT array on the restart routines. The reason is that the TRAC code will recompute the pointer values based on the current version of the code. The pointer values from the dump file are only used by EXTRACT for error checking.

The last remaining guideline pertains to the addition, deletiun, or modification of any calls to the subroutine BFOUT from any of the dump routines (DMPIT, DCOMP. DACCUM, DVSSL, etc.).
6. If a call to subroutine BFOUT from a dump routine is added, deleted, or modified, the following action must be taken.
a. Add. delete, or modify the CALL BFIN statement in the respective restart routine to correspond to the CALL. BFOUT statement in the dump routine.

TABLE III-2
EXAMPLES FOR EQUIVALENCING THE NAMELIST AND FLT VARIABLES TO THE DUMMY DVLT ARRAY IN ROUTINE DMPIT

```
*DC DMPIT
*IF DEF, OVLAY. I
    SUBROUTINE DMPIT
*IF DEF, OVLAY, }
*IF -DEF, S7600, 1
    SUBROUTINE DMPIT
*IF DEF, $7600, 2
    OVERLAY (CBDUMP, 3,0)
    PROGRAM DMPIT
C
C SUEROUTINE DMPIT GENERATES RESTART DUMPS
C
    CALL CLEAR (0.0 DVLT(1). LNLIST)
    DVLT(1) = ALP
        VTL(2) = CHM12
    DVLT(3) = CHM13
    DVLT(4) = CHM14
    DVLT(5) = CHM15
    DVLT(6) = CHM22
    DVLT(7) = CHM23
    DVLT (8) = CHM24
    DVLT(9) = CHM25
    DVTL(10) = DTSTRT
    DVLT(11) = HSTN
    IDVLT(12) = \ADDED
    IDVLT(13) = ICCFL
    IDVLT (14) = ICDELT
    IDVLT(15) = ICFLOW
    IDVLT (16) = IDIAG
    IOVLT(17) = IELV
    IDVLT(18) = IGAS
    IDVLT (19) = IGEOM3
    IOVLT(20) = IH2SRC
    IOVLT (21) = IHOR
    IDVLT(22) = IHORG
    IDVLT(23) = IKFAC
    IDVLT (24) = IMFR
    IDVLT (25) = INLAB
```


TABLE III-2 (cont)

```
IDVLT(26) = IISVAN
IDVLT(27) = IPOWR
IDVLT(28) = ISGLCN
IDVLT(29) = ISTO, r
IDVLT(30) = LEVSTG
IDVLT(31) = NCRG
IDVLT(32) = NDIA1
IDVLT(33) = NDIA,3
IDVLT(34) = NFRC1
IOVLT(35) = NFRC.
IDVLT(36) = NLT
IDVLT(37) = NOAIR
IDVLT(38` = NSEND
IDVL;(3S = NSPL
|VLT(40) = NSPU
IDVLT(41) = NVSLMX
DVLT(*) = P
DVLT(43) = PA
DYLT(44) = QPPP
DVLT(4 ) = TL
DVLT(46) = YPOWR
\operatorname{DLT}(47)= TV
~VLT(48) = TW
DVLT(*9) = 12
DVi }/(50)=V
IDVLT(51) = IEXVSS
*IF DEF, INTERACT.;
IDV!T(52) = IPRCPY
IDVLT(53) =: NORMDP
10VLT(54) = NORMRS
C* * ** THE \capRDER OF THE NAMELIST VRZIABLES ARE FROZEN IN THE ABOVE ORDER.
** * ** ALL NEW VARIABLi'S MUST BE ASSIGNED STARTING AT IDVLT(55) OR
C**** DVLT(55).
C IDVLT(56) = ISOLUT
C* * ** WRITE T.,: FROZEN NAMELIST VALUES
C
C LOOP OVERCC JN GT
C
    DO 500 ICOMP = , n
C
C NEAD FIXED I
C
```


TABLE III-2 (cont)

```
    CALL RDLCM(FLT(1), IA(LCOMPT+ICOMP-1), LENTBL)
    CALL CLEAR (0.0. DVLT(1). MLNTBL)
    DVLT(1) = HTLSCI
    DVLT(2) = HTLSCO
    IDVLT(3) = ICFLG
    IDVLT(4) = ID
    IDVLT(5) = IREST
    IDVLT(6) = LENARR
    IDVLT(7) = LENFV
    IDVLT(8) = LENFV2
    IDVLT(9) = LENPTR
    IOVLT(10) = LENVLT
    IDVLT(11) = LEXTRA
    IDVLT(12) = LFV
    IDVLT(13) = LFVN
    IDVLT(14) = NCELLT
    IDVLT(15) = NUNBMM1
    IDVLT(16) = NUMBM2
    IDVLT(17) = NUMBM3
    IDVLT(18) = NUMBN1
    IDVLT(19) = NUMBN2
    IDVLT(20) = NUMBN3
    IDVLT(2i) = NODES
    IDVLT(22) = NUM
    IOVLT(23) = NRVLT
    IDVLT(24) = TYPE
*IF DEF, FOURB. 1
    NW=8
*IF DEF, EIGHTB, 1
    NW=4
*IF DEF, TENB, 1
            NW=3
            DO 95 }=1=1.N
            IDVLT (1+24) = CTITLE(1)
    9 5 \text { CONTINUE}
        INDX=NW+?
C* * ** THE FIXED l_ .&UTH TABLE HAS BEEN FROZFN IN THE ABOVE ORDER IF NEW
C* * ** VARIABIES ARE ADDED PLEASE BEGIN ASSIGNING THEM AS FOL:OWS
C* * ** DVLT(INDX+1) OR IDVLT(IKDX +1) = NEW-VARIABLE
```

TABLE III-3

EXAMPLES FOR READING THE DUMMY DVLT ARRAY FROM A DUMP FILE AND REASSIGNING THE VARIABLE TO THE NAMEIIST AND FLT TABLES CORRECTLY IN THE RDREST ROUTINE

```
*DC Ri LCM
*CA RDK
*DK RDREST
*IF -DEF, OVLAY 1
        SUBROUTINE RDREST
*IF DEF, CVLAV, 5
*IF -DEF, $7600, 1
        SUBROUTINE RDREST
*IF DEF, $7600, 2
    OVERLAY (CBRDRES, 1.3)
    PROGRAM RDREST
C
C SUBROUTINE REDREST OBTAINS COMPONENT DATA FROM RESTART FILE
C
C* * ** READ THE NAMELIST VALUES FROM THE DUMP FILE.
C
    CALL CLEAR,0.0 DVLT(1), LNLISTO)
    CALL BFIN(IDVLT(1), LNLISTO, ICTRLP)
    ALP = DVLT(1)
    CHM12 = DVTL(2)
    CHM13 = DVLT(3)
    CHM14 = DVLT (4)
    CHM15 = DVLT(5)
    CHM22 = DVLT(6)
    CHM23 = DVLT (7)
    CHM24 = DVLT(8)
    CHM25 = DVLT(9)
    D}\mp@subsup{}{}{\top}STRT= DVTL(10)
    H}N=\operatorname{DVIT(11)
    IADDED = IDVLT(12)
    ICCFL = IDVLT(13)
    ICDELT = IDVLT(14)
    ICLFLOW = IDVLT(15)
    IDIAG = IDVLT(16)
    IELV = IDVLTT(17)
    IGAS = IDVLT (1%)
    IGEOM3 = IDVLT(19)
```

TABLE III-3 (cont)

```
IG2SRC = IDVLT (20)
IHOR = IDVLT(21)
IHORG = IDVLT(22)
IKFAC = IOVLT(23)
IMFR = IDVLT'(24)
INLAB = IDVLT(25)
INVAN = IDVLT(26)
IPOWR = IDVLT (27)
ISOLCN = IDVLT(23)
ISTOPT = IDVLT(29)
LEVSTG = IDVLT(30)
NCRG = IDVLT(31)
NLIA1 = IDVLT(32)
NDIA3 = IDVLT(33)
NFRC1 = IDVLTT(34)
NFRC3 = IDVLT(35)
NLT = IDVLT(36)
NOAIR = IDVLT(37)
NSENT = IDVLTT(38)
NSPL = IDVLT(39)
NSPU = IDVLT(40)
NVSLMX = IDVLT(41)
P=DVLT(42)
PA = DVLT(43)
QPPP = DVLT(44)
TL= DVLT(45)
TPOWR = DVLT(46)
TV = DVLT(47)
TW = DVLT(48)
VL = DVLT (49)
VV = OVLT (30)
IEXVSS = IDVLT(51)
4IF DEF, INTERACT. 3
    IPRCPV = IDVLT(52)
NORMDP = IDVLT(53)
NORMRS = IDVLT(54)
C* * ** PLEASE DEFINE NEW NEAMELIST VARIABLES STARTING AT P( SITION DVLT(55)
C* * ** OR IDVLT(55)
C IF(IELV.EQ.IELVC) GO TO 1991
```

```
    200 CONTINUE
    NRCOMP = NRCOMP +1
    IF(NRCOMP.GT.DNCOMP) GO TO 221
    CALL BFIN(LCOMP, 1, ICTRLR)
    ZALL CLEAR (O.O, DVLT(1), MLNTBO)
    CALL. BFIN (DVLT, MLNTBO, ICTRLR)
    HTLSCI = DVLT(1)
    HTLSCO = DVLT(2)
    ICFLG = IDVLT(3)
    ID=IDVLT(4)
    IREST = IDVLT(5)
    LENARR = IDVLT(6)
    LENFV = IDVLT(7)
    LENFV2 = IDVLT(8)
    LENPTR = IDVLT(9)
    LENVLT = IDVLT(10)
    LEXTRA = IDVLT(11)
    LFV = IDVLT(12)
    LFVN = IDVLT(13)
    NCELLT = IDVLT(14)
    NUMBM1 = IDVLT(15)
    NUMBM2 = IDVLT(16)
    NUB,ABM3 = IDVLT(17)
    NUMBN1 = IDVLT(18)
    NU**BN2 = IDVLT(19)
    NUMBN3 }=\operatorname{IDVLT}(20
    NODES = IDVLT(21)
    NUM = IDVLT(22)
    MRVLi'= IDVLT {23)
    TYPE = IDVLT(24)
*IF DEF, FOURB, 1
    NW=8
*IF DEF, EIGHTB, 1
    NW=24
*IF DEF,TENB, 1
    NW=3
    DO 205 {=1.NW
    CTITLE (1) = IDVLT (1+24)
    2OS CONT:NUE
        INDX=NW+24
C**** PLEASE DEFINE NEW FLT VARIABLES STARTING AT POSITION DVLT(INDX +1)
C* * ** OR IDVLT (;NDX +1).
```

TABLE ill-4

EXAMPLES FOR EQUIVALENCING THE VLT AND PTL VARIAGLES TO THE DUMMY DVLT ARRAY FOR A PIPE COMPONENT IN THE DPIPE ROUTINE

```
*DK DPIPE
        SUBROUTINE DPIPE(COMPTR)
C
C
C* * ** WRITE THE FROZEN FLT TO THE DUMP FILE * * **
C
    CALL BFOUS (DVLT, MLNTBL, ICTRLD)
C
C
* * ** WRITE THE FROZEN LENGTH OF THE YLT * * **
C
    CALL BFOUT (MLNVLT, 1. ICTRLD)
C
    CALL CLEAR (0.0 DVLT(1), MLNVLT)
    DVLT(1) = AA1111
    DVTL(2) = BSMASS
    DVLT(3) = CPOW
    DVLT(4) = ENINP
    DVLT(5) = FL(1)
    DVLT(6) = FL(2)
    DVLT(7) = FL(1)
    \operatorname{DLT}(8)=FV(2)
    nVLT(9) = HOUTL
    DVTL(10) = HOUTV
    DVLT(11) = PLENT
    DVLT(12) = POWIN
    DVLT(13) = POWOFF
    DVLT(14) = QINT
    DVLT(15) = QOUT
    DVLT(16) = QP3IN
    DVLT(17) = QP3OFF
    DVLT(18) = RADIN
    RVLT(19) = RPOWMX
    DVLT(20) = RQP3MX
    DVLT(21) = TH
    OVLT(22) = TOUTL
    DVLT (23) = TOUTV
    DVLT(24) = VFLOW
    DVLT(25) = Z
```

TABLE IH-4 (cont)

$$
\begin{aligned}
& \operatorname{DVLT}(26)=211111 \\
& \operatorname{IDVLT}(27)=\operatorname{IA1111} \\
& \operatorname{IDVLT}(28)=\operatorname{IACC} \\
& \operatorname{IDVLT}(29)=\operatorname{ICHF} \\
& \operatorname{IDVLT}(30)=\operatorname{ICJ1} \\
& \operatorname{IDVLT}(31)=\operatorname{ICJ} 2 \\
& \operatorname{IDVLT}(32)=\operatorname{ICONC} \\
& \operatorname{IDVLT}(33)=\operatorname{IONOFF} \\
& \operatorname{IDVLT}(34)=\operatorname{IPF} \\
& \operatorname{IDVLT}(35)=\operatorname{IPOW} \\
& \operatorname{IDVLT}(36)=\operatorname{IPOWSV} \\
& \operatorname{IDVLT}(37)=\operatorname{IPOWTR} \\
& \operatorname{IDVLT}(38)=\operatorname{IPP} \\
& \operatorname{IDVLT}(39)=\operatorname{IQF} \\
& \operatorname{IDVLT}(40)=\operatorname{IQP} \\
& \operatorname{IDVLT}(41)=\operatorname{IQP} 3 S V \\
& \operatorname{IDVLT}(42)=\operatorname{IQP} 3 T R \\
& \operatorname{IDYLT}(43)=\operatorname{ISOLLB} \\
& \operatorname{IDVLT}(44)=\operatorname{ISOLRB} \\
& \operatorname{IDVLT}(45)=\operatorname{JS1} \\
& \operatorname{IDVLT}(46)=\operatorname{IS} 2 \\
& \operatorname{IDVLT}(47)=\operatorname{JUN1} \\
& \operatorname{IDV:T}(48)=\operatorname{JUN} 2 \\
& \operatorname{IDVLT}(49)=\text { MAT } \\
& \operatorname{IDVLT}(50)=\text { NCELLS } \\
& \operatorname{IDVLT}(51)=\text { NONOFF } \\
& \operatorname{IDVLT}(52)=\text { NPOWRF } \\
& \operatorname{IDVLT}(53)=\text { NPOWSV } \\
& \operatorname{IDVLT}(54)=\text { NPOWTB } \\
& \operatorname{IDVLT}(55)=\text { NQP3RF } \\
& \operatorname{IDVLT}(56)=\operatorname{NQP3SV} \\
& \operatorname{IDVLT}(57)=\text { NQP3TB } \\
& \operatorname{IDVLT}(58)=\operatorname{TYPE1} \\
& \operatorname{IDVLT}(59)=\operatorname{TYPE2} \\
& \operatorname{IDYT}(60)=\operatorname{II1111}
\end{aligned}
$$

TABLE III-4 (cont)

```
C* * ** THE VARIABLE LENGTH TABLE IS FROZEN UP TO THIS POINT
C* * ** PLEASE ADD ALL NEW VARIABLES STARTIN AT IDVLT(61) OR DVLT(61)
C
C* * ** WRITE THE FROZEN VIT TO THE DUMP FILE * * **
C
    CALL BFOUT (DVLT, MLNVLT, ICTRLD)
C
C
C* * ** WRITE THE FROZEN LENGTH OF THE POINTER TABLE FOR THE PIPE * * **
C
    CALL BFOUT (MLNPTR, 1, ICTRLD)
C
    CALL RDLCM {PT, COMPTR+LENTBL+LENVLT, LENPTR)
C
    CALL CLEAQ (0, IDVLT(1), MLNPTR)
C* * ** THE FOLLOWING ARE POINTERS FOUND IN *CD DUALPT
    IDVLT(1) = LALP
    IDVLT(?) = LALPD
    IDVLT(3) = LALPDN
    IDVLT(4) = LALPN
    IDVLT(5) = LALV
    IDVLT(6) = LALVN
    IDVLT (7) = LARA
    IDVLT(8) = LARAN
    IDVLT (9) = LAREL
    IDVLT (10) = LARELN
    IDVLT(11) = LAREV
    IDVLT(12) = LAREVN
    IDVLT(13) = LARL
    IDVLT (14) = LARLN
    IDVLT(15) = LARV
    IDVLT(16)= LARVN
    IDVLT(17) = LBIT
    IDVLT(18) = LBITN
    IDVLT(19) = LCIF
    IDVLT(20) = LCIFN
    IDVLT(21) = LCONC
    IDVLT(22) = LCONCN
    IDVLT(23)=LD
    IDVLT(24)=LDN
    IDVLT(25) = LEA
    IDVLT (26) = LEAN
```

$$
\begin{aligned}
& \operatorname{IDVLT}(27)=\operatorname{LEL} \\
& \operatorname{IDVLT}(28)=\operatorname{LELN} \\
& \operatorname{IDVLT}(29)=\operatorname{LEV} \\
& \operatorname{IDVLT}(30)=\operatorname{LEVN} \\
& \operatorname{IDVLT}(31)=\text { LGAM } \\
& \operatorname{IDVLT}(32)=\text { LGAMN } \\
& \operatorname{IDVLT}(33)=\text { LHIL } \\
& \operatorname{IDVLT}(34)=\operatorname{LHILO} \\
& \operatorname{IDVLT}(35)=\text { LHIV } \\
& \operatorname{IDVLT}(36)=\text { LHIVO } \\
& \operatorname{IDVLT}(37)=\text { LHLV } \\
& \operatorname{IDVLT}(38)=\operatorname{LHLVN} \\
& \operatorname{IDVLT}(39)=L P \\
& \operatorname{IDVLT}(40)=\operatorname{LPA} \\
& \operatorname{IDVLT}(41)=\operatorname{LPAN} \\
& \operatorname{IDVLT}(42)=\operatorname{LPN} \\
& \operatorname{IDVLT}(43)=\operatorname{LROA} \\
& \operatorname{IDVLT}(44)=\operatorname{LROAN} \\
& \operatorname{IDVLT}(45)=\operatorname{LROL} \\
& \operatorname{IDVLT}(46)=\operatorname{LROLN} \\
& \operatorname{IDVLT}(47)=\operatorname{LROV} \\
& \operatorname{IDVLT}(48)=\operatorname{LROVN} \\
& \operatorname{IDVLT}(49)=\operatorname{LS} \\
& \operatorname{IDVLT}(50)=1.5 \mathrm{~N} \\
& \operatorname{IDVLT}(51)=\operatorname{LTD} \\
& \operatorname{IDVLT}(52)=\operatorname{LTDN} \\
& \operatorname{IDVLT}(53)=\operatorname{LTL} \\
& \operatorname{IDVLT}(54)=\operatorname{LTLN} \\
& \operatorname{IDVLT}(55)=\operatorname{LTV} \\
& \operatorname{LUVLT}(56)=\operatorname{LTVN} \\
& \operatorname{IDVLT}(57)=\operatorname{LTW} \\
& \operatorname{IDVLT}(58)=\operatorname{LTWN} \\
& \operatorname{IDVLT}(59)=\operatorname{LVL} \\
& \operatorname{IDVLT}(60)=\operatorname{LVLN} \\
& \operatorname{IDVLT}(61)=\operatorname{LVLT} \\
& \operatorname{IDVLT}(62)=\operatorname{IVLTO} \\
& \operatorname{IDVLT}(63)=\operatorname{LVM} \\
& \operatorname{IDVLT}(64)=\operatorname{LVMN} \\
& \operatorname{IDVLT}(65)=\operatorname{LVV} \\
& \operatorname{IDVLT}(66)=\operatorname{IVVN}
\end{aligned}
$$

TABLE III-4 (cont)

$$
\begin{aligned}
& \operatorname{IDVLT}(67)=\operatorname{LVVT} \\
& \operatorname{IDVLT}(68)=\operatorname{LVVTO}
\end{aligned}
$$

C* * ** THE FOLLOWING ARE POINTERS FOUND $\mathbb{I N}$ *CD HYDROPT
$\operatorname{IDVLT}(69)=$ LALPMN
$\operatorname{IDVLT}(70)=\operatorname{LALPMX}$
$\operatorname{IDVLT}(71)=\operatorname{LALPO}$
$\operatorname{IDVLT}\left(7_{+}\right)=\operatorname{LAM}$
$\operatorname{IDVLT}(73)=\operatorname{LARC}$
$\operatorname{IDVLT}(74)=\operatorname{LB}$
$\operatorname{IDVLT}(75)=\operatorname{LCFZ}$
$\operatorname{IDVLT}(76)=\mathrm{LCL}$
$\operatorname{IDVLT}(77)=\operatorname{LCPL}$
$\operatorname{IDVLT}(78)=\operatorname{LCPV}$
$\operatorname{IDVIT}(79)=\operatorname{LCV}$
$\operatorname{IDVLT}(80)=$ LDALVA
$\operatorname{IDVLT}(81)=$ LDFLDP
$\operatorname{IDVLT}(82)=\operatorname{LDFVDP}$
$\operatorname{IDVLT}(83)=\operatorname{LDRIV}$
$\operatorname{IDVLT}(84)=\operatorname{LDX}$
IDVLT $(85)=$ LELEV
$\operatorname{IDVLT}(86)=\operatorname{LFA}$
$\operatorname{lDVLT}(87)=\operatorname{LFAVOL}$
$\operatorname{IDVLT}(88)=\operatorname{LFINAN}$
$\operatorname{IDVLT}(89)=\operatorname{LFRIC}$
$\operatorname{IDVLT}(90)=\operatorname{LFSMLT}$
$\operatorname{IDVLT}(91)=\operatorname{LGRAV}$
$\operatorname{IDVLT}(92)=\operatorname{LGRVOL}$
$\operatorname{IDVLT}(93)=\operatorname{LH}(1)$
$\operatorname{IDV!}!(94)=\operatorname{LH}(2)$
$\operatorname{IDVLT}(95)=\mathrm{LH}(3)$
$\operatorname{IDVLT}(96)=\operatorname{LHD}$
$\operatorname{IDVLT}(97)=\operatorname{LHFG}$
$\operatorname{IDVLT}(98)=\operatorname{LHGAM}$
$\operatorname{IDVLT}(99)=$ LHLA
$\operatorname{IDVLT}(100)=\operatorname{LHLATW}$
$\operatorname{IDVLT}(101)=\operatorname{LHVA}$
$\operatorname{IDVLT}(102)=$ LHVATW
$\operatorname{IDVIT}(103)=\operatorname{LKFAC}$
$\operatorname{IDVLT}(104)=$ LQP3F
$\operatorname{IDVLT}(105)=\operatorname{LQPPP}$
$\operatorname{IDVLT}(106)=$ LRhs
$\operatorname{IDVLT}(107)=\operatorname{LRMEM}$
$\operatorname{IDVLT}(108)=\operatorname{LRMVM}$

TABLE III-4 (cont)

```
\(\operatorname{IDVLT}(109)=\operatorname{LROM}\)
\(\operatorname{IDVLT}(1: 0)=\operatorname{LRVMF}\)
\(\operatorname{IDVLT}(111)=\) LSIG
\(\operatorname{IDVLT}(112)=\operatorname{LTRID}\)
\(\operatorname{IDVLT}(113)=\operatorname{LTSAT}\)
\(\operatorname{IDVLT}(114)=\operatorname{LTSSN}\)
\(\operatorname{IDVLT}(115)=\operatorname{LVISL}\)
\(\operatorname{IDVLT}(116)=\operatorname{LVISV}\)
\(\operatorname{IDVLT}(117)=\operatorname{LVLALP}\)
\(\operatorname{IDVLT}(118)=\operatorname{LVLVC}\)
\(\operatorname{IDVLT}(119)=\operatorname{LVLVOL}\)
\(\operatorname{IDVLT}(120)=\operatorname{LVLX}\)
\(\operatorname{IDVLT}(121)=\operatorname{LVOL}\)
\(\operatorname{IDVLT}(122)=\operatorname{LVR}\)
\(\operatorname{IDVLT}(123)=\operatorname{LVRV}\)
\(\operatorname{IDVLT}(124)=\operatorname{LVYVOL}\)
\(\operatorname{IDVLT}(125)=\operatorname{LVVX}\)
\(\operatorname{IDVLT}(126)=\) LWA
\(\operatorname{IDVLT}(127)=\operatorname{LWAT}\)
\(\operatorname{IDVLT}(128)=\) LWFL
\(\operatorname{IDVLT}(129)=\) LWFV
C* * ** T' FOLLOWING POINTERS ARE FROM *CD HEATPT
U.LT(130) \(=\) LCPW
\(\operatorname{IDVLT}(131)=\operatorname{LCW}\)
\(\operatorname{IDVLT}(132)=\operatorname{LDR}\)
\(\operatorname{IDVLT}(133)=\) LEMIS
\(\operatorname{IDVLT}(134)=\operatorname{LHOL}\)
\(\operatorname{IDVLT}(135)=\operatorname{LHOV}\)
\(\operatorname{IDVLT}(136)=\operatorname{LQPPC}\)
\(\operatorname{IOVLT}(137)=\operatorname{LRN}\)
\(\operatorname{IDVLT}(138)=\operatorname{LRN} 2\)
\(\operatorname{IDVLT}(139)=\operatorname{LROW}\)
\(\operatorname{IDVLT}(140)=\operatorname{LTOL}\)
\(\operatorname{iDVLT}(141)=\) LTOV
C* * ** THE FOLLOWING POINTERS ARE FROM *CD INTPT
\(\operatorname{IDVLT}(142)=\operatorname{LIDR}\)
\(\operatorname{IDVLT}(143)=\) LMATID
\(\operatorname{IDVLT}(144)=\operatorname{LNFF}\)
```


TABLE III-4 (cont)

```
C* * ** THE FOLLOWING ARE ADDITIONAL POINTERS FOR A PIPE COMPONENT, * * **
    IDVLT(145) = LPOWRF
    IDVLT(146) = LPOWTB
    IDVLT(147) = LQP3RF
    IDVLT(148) = LQP3TB
C* * ** THE ORDER OF THE VARIABLES IN THE POINTER TABLES ARE FROZEN UP TO
C* * ** THIS POINT. ALL NEW VARIABLES MUST BE ASSIGNED STARTING
C* * ** WITH IDVLT(149).
C
C* * ** WRITE THE FROZEN POINTER TABLE FOR A PIPE TO THE DIJMP FILE * * **
```

TABLE III-5
EXAMPLES FOR READING THE DUMMY DVLT ARRAY FROM THE DUMP FILE AND REASSIGNING THE VARIABLES BACK TO THE VLT ARRAY FOR A PIPE COMPONENT

```
*DK REPIPE
    SUBROUTINE REPIPE(ISTORE, MAXLEN, JFLAG, JUN, LCMPTR)
C
C
    CALL BFIN (MLNVLO, 1, ICTRLR)
C
C
    CALL CLEAR (0.0 DVLT(1), MLNVLO)
    CALL BFIN (DVLT(1), MLNVLO, ICTRLR)
    AA1111 = DVLT(1)
    BSMASS = DVTL(2)
    CPOW = DVLT(3)
    ENINP == DVLT(4)
    FL(1) = DVLT(5)
    FL(2) = DVLT(i6)
    FV(1) = \operatorname{DVLT}(7)
    FV(2)=\operatorname{DVLT}(8)
    HOUTL = DVLT(9)
    HOUTV = DVTL(10)
    PLENT = DVLT(11)
    POWIN = DVLT(12)
    POWIFF = DVLT(13)
    QINT = DVLT(14)
    QOUT = DVLT(15)
    QP3IN = DVLT(16)
    QP3OFF = DVLT(17)
    RADIN = DVLT(18)
    PROWMX = OVLT(19)
    RQP3MX = DVLT(20)
    TH=DVLT(21)
    TOUTL = DVLT(22)
    TOUTV = DVLT(23)
    VFLOW = DVLT(24)
    z=\operatorname{DVLT(25)}
```

C* * ** READ THE FROZEN LENGTH OF THE VLT (VARIABLE LENGTH TABLE * * **

* * ** READ THE FROZEN VLT FOR A PIPE COMPONENT FROM THE DUMP FILE.

TABLE III-5 (cont)

```
Z11111 = DVLT(26)
IA1111 = 'DVLT(27)
IACC = IDVLT (28)
ICHF = IDVLT(29)
ICJI = IDVLT(30)
ICJ2 = IDVLT(31)
ICONC = IDVLT(32)
IONOFF = IDVLT(33)
IPF = IDVLT (34)
IPOW = IDVLT(35)
IPOWSV = IDVLT(36)
IPOWTR = IDVLT(37)
IPP = IDVLT(38)
IQF = IDVLT(39)
IQP = IDV!T (40)
IQP3SV = IDVLT(41)
IQP3TR = IDVLT(42)
ISOLLR = IDVLT(43)
ISOLRB = IDVLT(4A)
JS1 = IOVLT(45)
JS2 = IDVLT(46)
JUN1 = IDVLT(47)
JUN = IDVLT(48)
MAT = IDVLT(49)
NCELLS = IDVLT(50)
NONOFF = IDVLT(51)
NPOWRF = IDVLT(52)
NPOWSV = IDVLT(53)
NPOWTS = IDVLT(54)
NQP3RF = IDVLT(55)
NQP3SV = IDVLT(56)
NQP3TB = IDVLT(57)
TYPE1 = IDVLT(58)
TYPE2 = IDVLT(59)
211111 = IDVLT(60)
```

C. * * * * P: EASE DEFINE NEW VLT VARIABLES STARTING AT POSITION DVLT (61) OR C* * ** IDVLT(61).
b. Recompute the length of the variable "LEXTRA" in the respective input routine (ICORE. ISTGEN, etc.) which corresponds to the dump routine of the component type where the call to BFOUTi was altered. This does not apply if the altered BFOUT statement was in dump routine DMPIT or DCOMP.

- Recompute the length of the variable "LCOMP" in all the component dump routines if the altered call to BFOUT occurred in dump routine DCOMP.
d. Notify the EXTRACT maintenance person promptly of any changes regarding calls to subroutine BFOUT from any dump routine. Failure to do so results in the dump file being incompatible to EXTRACT.

REFERENCES

III-1. S-fety Code Development Group, "TRAC-PF1/MOD1: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis," Los Alamos National Laboratory report NUREG/CR-3858, LA-10157-MS (July 1986).

IV. CVRT

CVRT converts input for MOD1 or old versions of MOD2 into input for the current MOD2 version. Several MOD2 code-development activities have significantly changed the MOD2 input: the heat-structure input and storage were removed from the VESSEL component. and generalized heat-structure components were developed to model the core and vessel heat transfer. CVRT is an attempt to automate the process of converting old input to new MOD2 input. Because CVRT is under development, it still requires significant operator interaction after conversion runs.

The TRAC code (specitically its input routines) forms the basis of the CVRT code. TRAC routines not necessary for input processing were removed from the CVRT program library. The INLAB option in TRAC enables the writing of new input as the old input is read in from the CVRTIN file. Most of the changes associated with MOD2 input are in the vessel and heat-structure components. The capability to read a MOD2 deck and convert to another version of the MOD2 input was recently added to the CVRT code.

Because the CVRT code is being developed and tested, all output from the CVRT code should be used with caution. Any problems with the code should be reported to Victor Martinez (505-667-1122) at Los Alamos. The current version is version 1.0 and has been resequenced to aid in off-site maintenance. It is highly recommended that off-site users maintain the CVRT source with the HISTORIAN program, since error corrections and improvements to CVRT will br tributed as HISTORIAN conmands. CVRT has the same IF DEFs that the orignial Tr urce contained: however, many of the !F DEFs in the main program have bsen remcved. As off-site uscrs provide us with information about problems with conversion on their operating systems, we will incorporate appropriate IF DEFs into the CVRT source so that off-site users do not have to resolve old conversion problems each time a new CVRT code is released.

A. CVRT Input and Execution

CVRT currently runs interactively and enly requires two input values:
VERI - The version number for the old input.
Acceptable input:
14.0 (the old input deck is for the MOD1 code)
3.7 (the old input deck is for the MOD2 code).

VERO - The version number for the new input. Acceptable input:
3.4. 3.5, or 3.8 if VERI is 14.0 3.8 if VERI is 3.7.
(3.8 input is equivalent to that for version 4.0 and is preferable to input for versions 3.4 and 3.5.)
If the MOD2 input changes again, then the CVRT program will be modified to perform the appropriate conversions. For example, if version 4.1 MOD2 input is different from version 4.0 input. CVRT will be modified to read version 4.0 input and write out version 4.1 input.

If the off-site operating system does not support interactive computing, then CVRT can easily be modified to run in batch mode reading VERI and VERO from an input file. CVRT requ'res that ti.e old input file be on the CVRTIN file (device unit number 1) and will write the new input file on the INLAB file (device unit number 3). CVRT converts the free-format
input on CVRTIN to a fixed-format TRAC input on the CVTINP file (device unit number 5). Interactive input and output are to the TTY file (device unit number 59). Messages are written to the CVTMSG file (device unit number 7) and output to the CVTOUT file (device unit number 6).

B. Conversion Tasiks Currently Performed by CVRT

When converting from a MOD1 version 14.0 input deck to a MOD2 version 3.8 input deck. CVRT performs the following conversion tasks.

1. Adds the wall surface roughness input to appropriate components. For the MOD2 code, wall surface roughness is input as a single number for selected components. This resulted in changes to almost all of the 1D and 3D component input.
2. Removes unused variables from the 1D component input for the MOD2 code CVRT takes this into account in preparing the new input file.
3. Removes heat-structure input from the VESSEL component for the MOD2 code input. Several new variables are available as input to the MOD2 VESSEL component (i.e., IGEOM, etc.) and appropriate values are supplied by the CVRT code. Since the MOD1 vessel could only be a right cylinder, this is the option generated by CVRT.
4. Gathers heat-structure input for the VESSEL component and writes it out in the new format associated with the generalized heat-structure component. CVRT currently writes out a new generalized heat-structure component for each of the slab heat structures in the VESSEL component. If any of these heat structures have similar geometry, generalized heat-structure components are not necessary for each of the similar VESSEL heat slabs: geometry defined by one generalized heat structure can be duplicated in many different locations within a TRAC 3D VESSEL component. However, CVRT is unable to perform this autornatically at preser.t: if a user wishes to reduce the number of generalized heat-structure components, he or she will have to perform that manually. There will be one new generalized heat structure for each vessel heat slab, so thi manual lumping of heat-slab input may be required for large vessels with several hundred heat slabs. In addition. CVRT figures out the connectivity from the heat-structure component to the vessel component. locating the new generalized heat structure in the appropriate vessel hydrualic cefl.
5. Numbers the new generalized heat-structure components starting at 999, decreasing to 998. 997, etc. The MOD2 code currently requires that all heat-structure component numbers be larger than the largest hydraulic component's/component number. If the old TRAC input deck has hydraulic components with component numbers in this range, the component numbers will have to be changed.
6. Performs the appropriate conversion to make the MOD1 CFZs into MOD2 CFZs if IKFAC=0. In the MOD2 code, the 3D-VESSEL CFZ definition was changed to be consistent with the 1D FRIC definition. Thereiore, both FRIC and CFZ in the MOD2 code are dimensionless and are both additive constant friciton factors if IKFAC $=0$.

C. Conversion Tasks Not Performed by CVRT

The following is a list of tasks that must be performed manually on the INLAB file after executing CVRT and before attempting to run the MOD2 code. As resources permit, we will eliminate these manual tasks.

1. NAMELIST INPUT - The number of heat structures (NHTSTR) in the new TRAC input is a required NAMELIST input. CVRT will print a message with the correct number: however, because CVRT does not currently write the correct number into the NAMELIST input, the uset must do this manually. Ir. addition, any references to the following variables in the NAMELIST input should be removed.
a. NVSLMX - MOD2 always uses direct inversion and the capacitance method to solve the pressure matrix equations.
b. ICCFL - MOD2 currently does not include the CCFL model.
c. ISTOPT - The INLAB file will contain all of the default values for P. PA, etc. Also, if you have specified defaults in your NAN-LLIST (i.e., P. PA, etc.), these also must be removed from the NAMELIST input on the INLAB file.
2. NCOMP - The number of components will increase because of all the new heatstructure components. Again, CVRT will print the correct number for NCOMP in a message in the INLAB file, but the user will have to modify the NCOMP input value manually.
3. IORDER ARRAY - The new component numbers for the new heat structures must appear in the IORDER array. CVRT will have written the new IORDER array input in the appropriate format to the INLAB file, but the user will have t? move the new IORDER array to the ap ropriate location.
4. ROD AND SLAB INPUT - The generalized heat-structure input must appear in the input deck immediately before the time-step control cards. If the VESSEL component is the last component in the old TRAC input deck, then the ROD and SI.AB input will appaar in the correct locations in the INLAB file. If the VESSEL component in the old TRAC input deck is not last, or if there are two or more VESSEL components. then the new generalized heat-structure input must be moved to right in front of the time-step cards.
5. WARNING AND ???? CARDS - CVRT writes warning cards and "????" where the appropriate input is not known. A pattern search on WARNING and ???? will direct the user to comment cards that must be deleted as well as to other numbers that may have to be changed. There are typically two or three comment cards after the warning that shouid be deletr. A general gravity vector for the VESSEL component that CVRT writes out with ???? as input can typically be deleted because the default is a vertical VESSEL component.
\therefore SIGNAL VARIABLES - Signal variables with parameter numbers 18-19, 24-26, and 44-54 can no longer refer to a VESSEL component. The component numbers for these signal variables should be changed to the appropriate ROD component numbers.
Nuclear Regulatory Comission, R4, Laure1, Maryland 273
Technical Information Center, Oak Ridge, Tennessee 2
Los Alamos National Laboracory, Los Alamos, New Mexico 429
(includes special distribution to TRAC User's Group)
Total 704

Superintendent of Documents U.S. Government Printing OHice Post Orfice Box 37082 Washington, O. C. 2-3013-7982

[^0]: * CGS metafiles may be output on any of numerous graphics devices. In particular, $16-\mathrm{mm}$. $35-\mathrm{mm}$. and $105-\mathrm{mm}$ FR80. $11 \mathrm{-in}$. or $36-\mathrm{in}$. electrostatic plotters, the Tektronics 40 XX series terminals, and similar graphics devices. The metafiles are also machine independent. and may be viewed or output using a CDC 7600. Cray. or VAX computer

[^1]: * CLIFILE is the common blocks definition file for TRAC

