The Sensitivity of Evacuation Time Estimates to Changes in Input Parameters for the I-DYNEV Computer Code

Prepared by T. Urbanik, M. P. Moeller, K. Barnes

Pacific Northwest Laboratory Operated by Battelle Memorial Instit. 'e

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082, Washington, DC 20013-7082
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and it en al NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee ducuments and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC stiff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Information Support Services, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards Institute, 1430 Proadway, New York, NY 10018.

The Sensitivity of Evacuation Time Estimates to Changes in Input Parameters for the I-DYNEV Computer Code

Manuscript Completed: March 1988 Date Published: June 1988

Prepared by T. Urbanik II*, M. P. Moeller, K. Barnes*

Pacific Northwest Laboratory Richland, WA 99352

*Texas Transportation Institute College Station, TX 77843

Prepared for Division of Radiation Protection and Emergency Preparedness Office of Nuclear Reactor Requiation U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN P2006

ABSTRACT

A study performed by the Pacific Northwest Laboratory (PNL) with the assistance of the Texas Transportation Institute for the U.S. Nuclear Regulatory Commission (NRC) identifies the key input parameters to I-DYNEV affecting evacuation time estimates (ETEs). This study attempts to determine the sensitivity of ETEs to changes in input parameters when applied to two different evacuation networks. This information could then be used to determine parameters requiring additional research and to assist in the evaluation of ETEs submitted by licensees and applicants.

The parameters analyzed for the study included vehicle population, network capacity, loading time, the capacity reduction factor, the time interval of processing, and free-flow velocity. These parameters were applied to two evacuation networks with different characteristics. Changes in each of the six input parameters evaluated for this study affected to some degree the estimates of evacuation times. In general, however, the results obtained revealed that the sensitivity of the evacuation time estimates to changes in the input parameters is consistent with traffic modeling theory and documented algorithms included in the model.

CONTENTS

ABSTRACT it	ii
PREFACE vi	ii
SUMMARY	i×
INTRODUCTION	1
INPUT PARAMETERS	3
TRANSPORTATION NETWORKS	3
VEHICLE POPULATION	5
BASE CASE PARAMETERS	5
RESULTS	11
VEHICLE POPULATION	11
NETWORK CAPACITY	15
LOADING TIME	15
CONGESTED CAPACITY REDUCTION FACTOR	15
TIME INTERVAL OF PROCESSING	19
FREE-FLOW VELOCITY	19
CONCLUSIONS	21
REFERENCE	23
BIBLIOGRAPHY	23
APPENDIX - INPUT VALUES FOR I-DYNEV COMPUTER CODE SIMULATIONS	

FIGURES

1	Initial Vehicle Demand Versus Distance From Plant	4
2	Number of Outbound Lanes Versus Distance From Plant	5
3	Site A Link Node Diagram	6
4	Site B Link Node Diagram	7
5	Initial Vehicle Population Versus Distance From Plant	8
6	Evacuation Time Versus Vehicle Population	12
7	The Theoretical Relationship of Vehicle Population and Evacuation Time Estimates	14
8	Evacuation Time Versus Percentage of Base Population for Each Site	16
9	Evacuation Time Versus Duration of Loading Time	17
10	Evacuation Time Versus Congestion Capacity Reduction Factor	18
	TABLES	
1	Specific Site Information	4
2	Evacuation Times for a Range of Time Intervals	19
3	Evacuation Times for a Range of Free-Flow Speeds	10

PREFACE

Two studies were performed to evaluate the I-DYNEV model. The study described in this report documents the sensitivity of evacuation time estimates calculated by the I-DYNEV model to changes in key input parameters to the code. The other study, as documented in NUREG/CR-4873 (PNL-6171), is titled Benchmark Study of the I-DYNEV Evacuation Time Estimate Computer Code. It documents a comparison of observed vehicle movement on a highway network during periods of peak commuter traffic with a simulation of the traffic flow produced using the I-DYNEV computer model.

SUMMARY

Licensees of nuclear power plants are currently required to provide evacuation time estimates (ETEs) for the site's emergency planning zone (EPZ) to the U.S. Nuclear Regulatory Commission (NRC) and to the Federal Emergency Management Agency (FEMA). An ETE is one means by which the two agencies attempt to ensure that adequate protective measures can be implemented in case of a significant release of radioactive materials from a plant site. At present, regulatory guidance for evacuation time studies does not specify an exact methodology. As a result, the licensees have developed their own methodologies and have made their own assumptions when calculating ETEs for their individual plants. To date, most submitted ETEs have been evaluated on a case-by-case basis using professional judgment to determine the adequacy of each.

The NRC requires that evacuation time estimates be made for two reasons. First, during the process of making estimates, situations requiring special resources can be identified because optimal use of available resources can reduce traffic delays. For example, providing traffic controls at critical intersections can substantially reduce evacuation times by minimizing the queues formed at those intersections. Second, during the course of an accident at a nuclear power plant site, evacuation time estimates made in advance for various conditions may be invaluable for decisionmakers who must select the most appropriate protective action. These protective actions include evacuation, sheltering, or sheltering followed by later relocation in order to minimize exposures to the population.

To aid in an evaluation, FEMA sponsored the development of the I-DYNEV computer model. I-DYNEV is a macroscopic model whose results describe the changing traffic conditions that prevail over a transportation network as an evacuation progresses. In order to prepare the mathematical algorithms for the code, the model developer used state-of-the-art techniques resulting from years of research sponsored by the U.S Department of Transportation. This study represents extensive testing of the parameters comprising some of the mathematical algorithms incorporated in the model.

The study is designed to identify input parameters that impact the estimated evacuation time and to evaluate the sensitivity of the evacuation time estimate to changes in each parameter. The input parameters identified for analysis in this study include vehicle population, network capacity, loading time, the capacity reduction factor, the time interval of processing, and free-flow velocity.

To perform a parameter sensitivity study, all input parameters except the one being evaluated remained constant for a series of simulations. Many input parameters, however, are determined by the specific transportation network used and by its associated vehicle population. In an effort to identify any effects of the roadway system on the evacuation time estimates, two distinct transportation networks were used. The two sites are referred to as Site A and Site B in the study. They differ in population distribution, size, number of segments, number of intersections, and roadway speeds.

Changes in each of the six input parameters evaluated for this study affected the estimate of evacuation time to some degree. In general, the sensitivity of evacuation time estimates to changes in the input parameters is consistent with traffic modeling theory and documented algorithms included in the model. In addition the roadway system was shown to affect evacuation times, making it important for the analyst to appropriately code the network.

The major conclusions associated with the six input parameters evaluated are presented below:

- Changes in the vehicle population suggested two major findings. First, for vehicle populations resulting in traffic delays, evacuation time increases at an approximately linear rate with increasing population. The rate of increase is dependent upon the characteristics of the transportation network. This finding is consistent with traffic modeling theory. Second I-DYNEV contains a traffic assignment model (algorithm) that is affected by roadway system characteristics. The assignment algorithm can produce results which are potentially unreasonable if the analyst is unfamiliar with the theory.
- The effective transportation network capacity was varied for Sites A and B. Changes in the network capacity affected the evacuation time estimate in a linear manner reflecting the direct relationship between vehicle demand and capacity. This is consistent with the first finging listed above.
- The evacuation time estimate can be sensitive to the time necessary for loading vehicles onto the network. The magnitude of this sensitivity is related to the vehicle demand on the transportation network. The general trend observed appears to be consistent with traffic modeling theory. The data suggest that loading time only affects the calculation of the evacuation time when all vehicles have not been loaded by what is eventually 50% of the evacuation time. As loading time approaches evacuation time, evacuation time increases proportionally to loading time. The results indicate that loading time will most likely affect evacuation time at low population sites. This is also consistent with the first two findings listed above.
- Although not currently an input value to the I-DYNEV model, the simulations indicate that changes in the percentage reduction of the network capacity under congested traffic conditions (capacity reduction factor) can have a significant impact on the estimated evacuation time. As expected, the significance increases as the vehicle demand increases.
- Although it appears that the time interval of processing, which is used by the model to simulate network activities in discrete time intervals, affects the rate of change of vehicles traveling on a roadway segment, the data suggest that the impact on the calculated evacuation time estimate is minimal.

 Changes in the input value for free-flow velocity had a minimal affect on the estimated evacuation time.

Analysis of the results suggests that the estimated evacuation time is sensitive both to changes in the input parameters as well as to the characteristics of the transportation network. Consequently, use of the I-DYNEV model should be limited to analysts familiar with the code, willing to evaluate the results, and competent to determine their adequacy. The model may produce in appropriate time estimates if the analyst is not familiar with traffic modelling or is not careful in coding the network. The current I-DYNEV documentation is not sufficient to ensure that the model's limitations are understood. A more complete documentation of the model's input parameters is needed if it is intended to be used by other than experienced traffic modellers.

INTRODUCTION

Licensees of nuclear power plants are currently required to provide evacuation time estimates (ETEs) for the site's emergency planning zone (EPZ) to the Nuclear Regulatory Commission (NRC) and the Federal Emergency Management Agency (FEMA). These estimates are part of the process by which the two agencies attempt to ensure that adequate protective measures can be implemented in case of a significant release of radioactive materials from a plant site. At present, regulatory guidance for evacuation time studies do not specify an exact methodology. As a result, the licensees have developed their own methodologies and have made their own assumptions when calculating ETEs for their individual plants. To date, the submitted ETEs have been evaluated on a case-by-case basis using professional judgment to determine the adequacy of each. To assist in the evaluation of ETEs, computer codes such as I-DYNEV have been developed.

The I-DYNEV model was developed for the FEMA to simulate traffic conditions that prevail over a transportation network as an evacuation progresses. Output of the model includes an estimate of evacuation time as well as a variety of measures of effectiveness including speed, vehicle counts, queues, and delays. The I-DYNEV model is an adaptation of the TRAFLO Level II simulation model that was developed by KLD Associates for the Federal Highway Administration (FHWA). Consequently, the model is based on previous traffic modeling codes as well as documented traffic modeling theory. The FEMA is demonstrating the model and providing training on its use to state and local agencies of emergency response and preparedness planning.

A study performed by the Pacific Northwest Laboratory (PNL) with the assistance of the Texas Transportation Institute for the NRC identifies the key input parameters to I-DYNEV affecting ETEs. This study attempts to determine the sensitivity of ETEs to changes in those parameters when applied to two different evacuation networks. This information should be useful to determine parameters requiring additional study and to assist in the evaluation of ETEs calculated using I-DYNEV.

The parameters analyzed for the study included vehicle population, network capacity, loading time, the capacity reduction factor, the time interval of processing, and free-flow velocity. These parameters were applied to two evacuation networks with significantly different roadway characteristics.

The NRC and FEMA require that evacuation time estimates be made for two reasons. First, during the process of making estimates, situations requiring special resources can be identified because optimal use of available resources can reduce traffic delays. For example, providing traffic controls at critical intersections can substantially reduce evacuation times by minimizing the queues formed at those intersections. Second, during the course of an accident at a nuclear power plant site, evacuation time estimates made in advance for various conditions may be invaluable for decisionmakers who must select the most appropriate protective action. These protective actions include evacuation, sheltering, or sheltering followed by later relocation in order to minimize exposures to the population.

INPUT PARAMETERS

To perform a parameter sensitivity study, all input parameters except the one being evaluated remained constant for a series of simulations. Many input parameters, however, are determined by the specific transportation network used and by its associated vehicle population. In an effort to evaluate the effects of the roadway system on evacuation times, two distinct transportation networks were used. The two sites are referred to as Site A and Site B in the study. They differ in population distribution, size, number of segments, number of intersections, and roadway speeds. The remainder of this section presents a discussion of the differences in these transportation networks as well as a review of other input parameters including vehicle population.

TRANSPORTATION NETWORKS

The two transportation networks were developed to represent significantly different siting characteristics. The two networks are not, however, entirely conceptual. They are based on existing networks from two nuclear power plant sites, although they have been extensively modified. In fact, the transportation networks were modified to the extent that they no longer represent the sites from which they were derived. This procedure was followed to develop a reasonably realistic transportation network, yet to avoid potential problems that could result from generating additional evacuation time estimates different from those incorporated into an actual emergency plan. Consequently, the results described in this report are not applicable to the sites from which they were derived.

Differences in the transportation network between Site A and Site B include the vehicle demand on the network, the number of outbound lanes, the number of intersections, and the average free-flow speed. The number of nodes and links along with the number of miles of roadway network are similar for both sites and are listed in Table 1. The number of destination nodes, centroids and entry links, and populations are also listed for the two sites. Site A has fewer destination nodes, fewer centroids and entry links, and a lower vehicle population than does Site B. The larger ratio of vehicles per destination for Site B corresponds to its higher initial vehicle demand on the network. Figure 1 illustrates the vehicle population demand with respect to radial distance from the plant. It can be seen that Site B has a much larger initial vehicle demand on the network than Site A. Figure 2 illustrates the number of outbound lanes by 1-mile increments radially from the plant sites. Site B has almost twice as many outbound lanes for each 1 mile annulus as does Site A.

TABLE 1. Specific Site Informacion

Site Characteristics	Site A	Site B
Number of Nodes Number of Links Miles of Roadway in Network Number of Destination Nodes Number of Centroids and Entry Links Vehicle Population	55 138 149 2 26 3,825	87 121 114 5 51 34,515

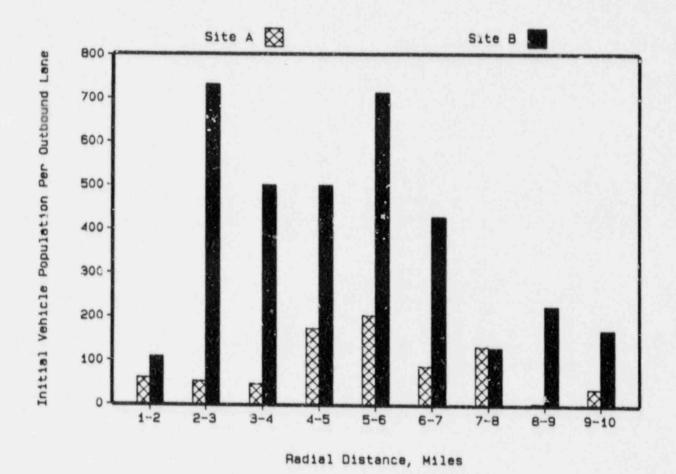


FIGURE 1. Initial Vehicle Demand Versus Distance From Plant



FIGURE 2. Number of Outbound Lanes Versus Distance From Plant

The transportation network developed for Site A is shown in Figure 3, that for Site B appears in Figure 4. These link-node descriptions of Site A and Site B were used as input for the I-DYNEV simulation. The details of each link and node are presented in the Appendix.

VEHICLE POPULATION

The initial vehicle population is illustrated in Figure 5 for each site according to the radial distance from the plant. As the figure indicates, the initial vehicle population for Site B is nearly ten times that of Site A. Because Site B has less than twice the number of outbound lanes and nearly ten times the initial vehicles population as Site A, evacuation time estimates for Site B should be longer than those for Site A. Under the base conditions stated in Table 1 and the Appendix.

BASE CASE PARAMETERS

The base case or original input parameters are listed in the Appendix for both Sites A and B. The categories of parameters include link data, turning movements, intersection control, and loading data.

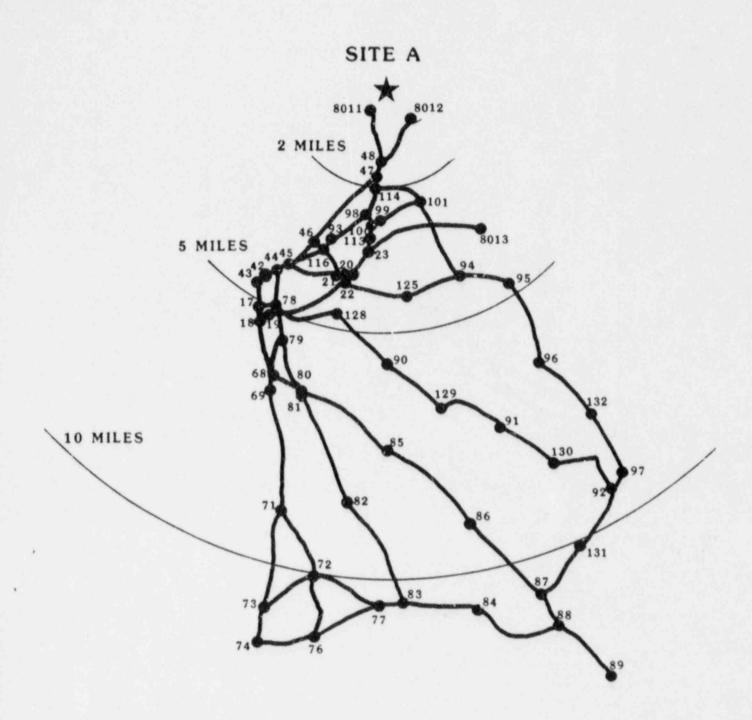


FIGURE 3. Site A Link Node Diagram

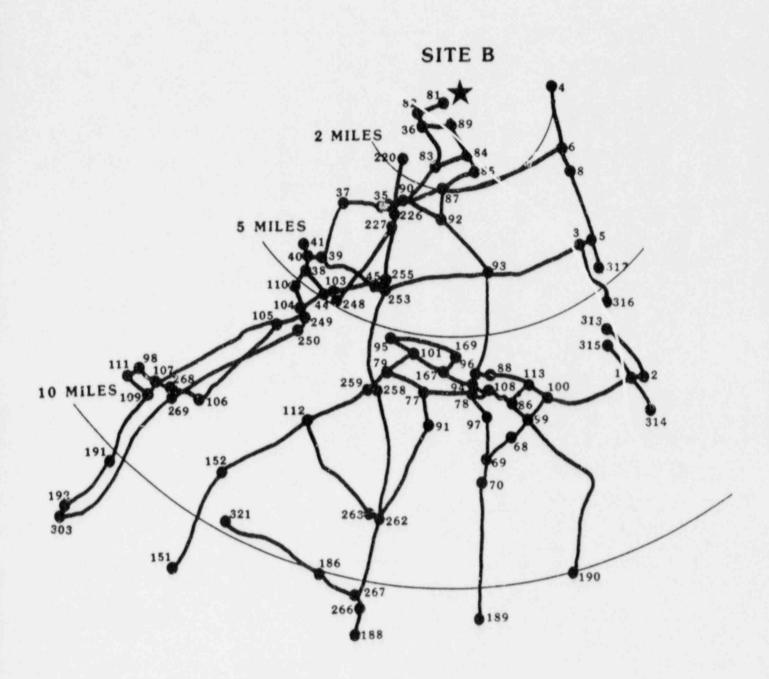


FIGURE 4. Site B Link Node Diagram

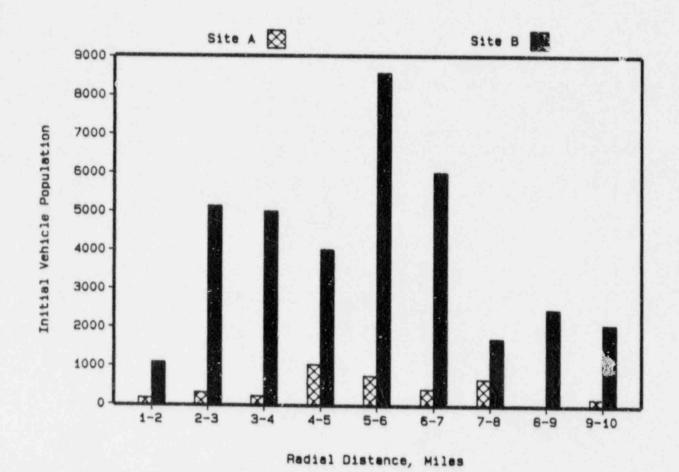


FIGURE 5. Initial Vehicle Population Versus Distance From Plant

Specific link attributes such as length, number of lanes, lost time, grade, right turn on red code, and pedestrian volumes were held constant for both sites. The network's capacity is the mean queue discharge headway, which is the minimum time spacing between vehicles exiting the transportation network. The mean queue discharge headways varied from 2.0 to 3.6 seconds (averaging 2.4 seconds) for Site A and from 2.1 to 3.1 seconds (also averaging of 2.4 seconds) for Site B. The free-flow speeds for Site A covered a range of 30 to 60 mph, with the average approximately 35 to 40 mph. Site B had free-flow speeds with a range of 25 to 60 mph, with the average also approximately 35 to 40 mph.

The turning movements for Site A were held constant except as noted in the population section. Details of this procedure will be described later. The turning movements for each link were held constant for Site B. Four time periods were used for loading vehicles onto the transportation network. A fifth time period was used, but it is required by the model to indicate loading is complete and to allow clearing of the network. The first four time periods were each 5 minutes in length, and the last was set at 600 minutes. For both Sites A and B, the four time periods loaded, in order, 10%, 25%, 40%,

and 25% of the vehicle population onto the transportation network. The vehicle population is loaded in terms of vehicles per hour during each of the time periods. For this study, the vehicle loading rate for each time period was the same for all runs except for the sensitivity study of loading rate. The fifth time period was used to clear the system, and no vehicles were input during this period.

For this study, six parameters were evaluated. These parameters are vehicle population, network capacity, loading time, the capacity reduction factor, and the time interval of processing and free-flow velocity.

RESULTS

VEHICLE POPULATION

With all other parameters held constant, the vehicle populations of both sites were varied from a few hundred vehicles to over 19,000 vehicles. The resulting evacuation times were graphed and are shown in Figure 6. Site A had a base population of about 3800 vehicles. The base population represents the population associated with the network prior to modifications. The base population was assigned in this manner because roadway networks do, to some extent, relate to the population served. For example, high-density urban areas have more roads than low-density rural areas. Evacuation time estimates were calculated for Site A while varying the vehicle populations from 10% to 500% of the base vehicle population of 3800 vehicles.

The results of vehicle population variations are presented in Figure 6. The three curves for Site A represent results using three distinct traffic assignments. The traffic assignment determines the vehicle evacuation routes by determining the frequency of vehicles making turns at each intersection. The first assignment, whose results are represented by Curve 1, was to utilize the traffic assignments determined by the I-DYNEV model based on a vehicle population of 3800 vehicles and the original network topology. It is important to note that the I-DYNEV traffic assignment model determines the evacuation routes requiring the minimum time based on a vehicle population of specific size and distribution. The vehicle population distribution was never changed as part of this study.

The effect of the I-DYNEV traffic assignment model is to balance traffic on the network which results in a minimum time estimate for that specific population. An example of the I-DYNEV traffic assignment model is represented by the movement of vehicles from intersection 71 to intersection 73 on Site A as labeled in Figure 3. The I-DYNEV traffic assignment model may determine that traffic moving from intersection 73 to intersection 74 is badly congested and that the delay is sufficient to make travel through intersections labeled 72, 77, 76, and 74 just as fast as waiting to travel through intersections 73 and 74. The traffic assignment model, therefore, assigns some traffic to the alternate route in order to balance traffic flow or congestion.

The rationality of the alternative routing is dependent on a number of considerations. First, is the alternative route reasonable? In the case described, the alternative route would appear to be unreasonable. At intersection 73, a vehicle would be beyond the 10-mile distance of the recommended evacuation area. The idea of the I-DYNEV traffic assignment model directing the vehicle toward intersection 72 results in movement parallel and even slightly towards the plant. For this reason, the traffic assignment appears unreasonable. A second consideration in routing is whether a traffic control exists to divert and direct traffic or whather motorists need to be aware of alternative routing. Therefore, when considering the appropriateness of the network and allowable turning movement, the traffic controls and the familiarity of the driver with the entire transportation network are issues.

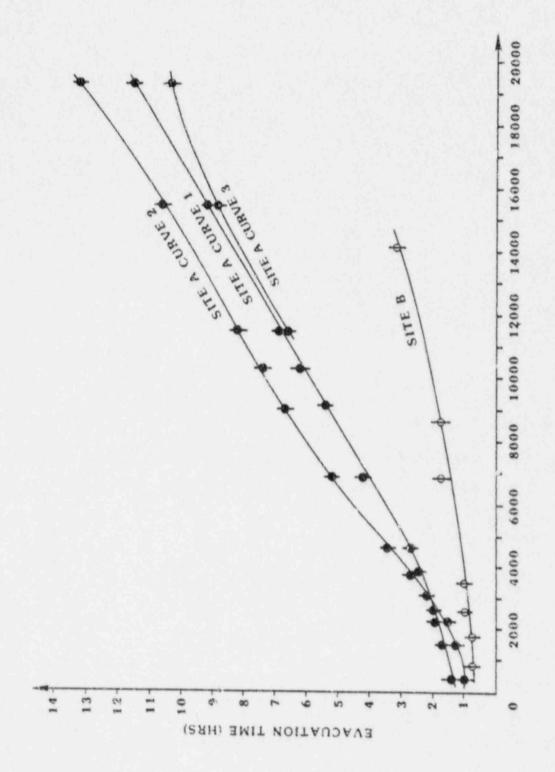


FIGURE 6. Evacuation Time Versus Vehicle Population

VEHICLE POPULATION

The second traffic assignment used in the analysis, represented by Curve 2 in Figure 6, was to manually adjust some vehicle routings in order to eliminate any routings which appear unreasonable. For this reason, evacuation times estimated for Curve 1 are generally shorter than those estimated for Curve 2. Interestingly, at very low volumes the estimates calculated for Curve 1 are longer than those calculated for Curve 2. This may occur because travel distance, not capacity, controls evacuation time at very low volumes.

The third traffic assignment used, represented by Curve 3 in Figure 6, is based on traffic assignments calculated for the vehicle population size evaluated. As stated, Curve 1 in Figure 6 is based on traffic assignments developed using a vehicle population of 3800 vehicles. For Curve 2, these traffic assignments were manually adjusted to avoid unreasonable routings. Each curve represents the sensitivity of the evacuation time estimate to changes in the vehicle population which is a function of the transportation network. Differences between the curves represents the sensitivity of the evacuation time estimate to changes in the traffic assignment.

In actual use, the traffic assignment model would be run for the appropriate vehicle population represented by Curve 3. Differences in the curves indicate that the evacuation time is affected by the traffic assignment. Therefore, the traffic assignment algorithm may not be appropriate in specific cases. As a result, the analyst must evaluate the appropriateness of the routings generated by I-DYNEV and manually correct unreasonable routings in order to generate meaningful evacuation time estimates.

In addition to evaluating the rationality of alternative routings, an analyst must determine whether the vehicle turning percentages generated by I-DYNEV could be implemented during an evacuation given available traffic control and resources. For example, if traffic can not be routed according to the same percentage as assumed in the model, the analyst is obligated to modify the turning percentages and rerun the simulation to obtain a more reasonable evacuation time estimate.

Evacuation time estimates for a transportation network have a postulated relationship with the vehicle population. This relationship is illustrated in Figure 7. For any transportation network it is desirable to identify Point A, indicated on the figure because it represents the point where evacuation time is capacity constrained. All vehicle populations of fewer vehicles, represented to the left of Point A, can be termed not capacity constrained. In other words, the evacuation time estimate will remain nearly constant even if the vehicle population is slightly increased. This is possible because the evacuation time estimate is a function of preparation time and response time. As defined, preparation time is the time required for individuals to prepare to evacuate, and the response time is the travel time for individuals to physically move through the evacuation network. In a noncapacity constrained network, the number of vehicles present on the transportation network does not cause any significant vehicle congestion delay. In reality, there are some additional delays due to vehicle interactions.

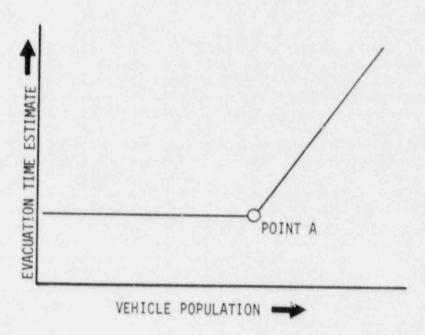


FIGURE 7. The Theoretical Relationship of Vehicle Population and Evacuation Time Estimates

The area to the right of Point A represents a transportation network that is capacity constrained. As represented, the evacuation time estimate will increase as the vehicle population increases. The rate of this increase, which is represented by the slope of the line to the right of Point A, is determined by the characteristics of the transportation network. At this stage, the evacuation time estimate has become a function of the delay time caused by traffic congestion.

For the I-DYNEV simulations, preparation time was not modeled in a manner that results in a constant value to the left of Point A. Although not constant, the rate of increase is much less than that to the right of Point A where traffic congestion and delay influence evacuation time. As presented in Figure 6, Curve 1 is relatively constant initially because the network is not capacity constrained. At a vehicle population of approximately 4000 vehicles, Curve 1 appears to indicate an increased slope as a result of a capacity constrained network.

The graphs of the evacuation time versus vehicle population indicates that an increase in vehicle population has less effect on the estimated evacuation time for Site B than for Site A. The evacuation time estimates increase at a relatively constant rate from about 800 vehicles to over 34,000 vehicles. Although not indicated on Figure 6, Site B had a base vehicle population of over 34,000 vehicles. The graph of Site B presented in Figure 6 is truncated at 20,000 vehicles to correspond to the range presented for Site A. Simulations were run using up to 34,000 vehicles, and the general trend continued.

NETWORK CAPACITY

The capacity of roadway segments on the transportation network was varied for Site A and Site B. The capacity of each roadway segment is input in the I-DYNEV computer code in terms of the mean queue discharge headway (discharge headway). One of the most critical input parameters for the model was the discharge headway which is the minimum time spacing between vehicles. Because the discharge headway is the means of setting roadway capacity, the value used for this parameter has a dramatic impact on the simulation. The network capacity at each site was varied from 50% to 200% of the original capacity.

The corresponding evacuation times for the two sites are shown in Figure 8. The graph shows that increases in capacity decrease the evacuation time, but at continually decreasing rates. This result is consistent with traffic modeling theory.

LOADING TIME

The next task was to evaluate the sensitivity of the evacuation time to changes in the time for loading vehicles onto the network. The loading time is I-DYNEV's method of representing preparation time. Although I-DYNEV does not have an input parameter for preparation time, loading time accounts for preparation time by allowing only a limited number of vehicles onto the network during the initial time periods. Subsequent time periods may load any percentage of the vehicle population onto network as would represent the conditions of the evacuation. For this study, the loading time was varied from 20 minutes to 8 hours. The 20-minute loading time essentially corresponded to instantaneous loading of the entire vehicle population. The results are presented in Figure 9. The evacuation time estimates calculated for Site A appear unaffected by increases in the loading time until the loading time exceeds 1 hour 20 min. From this value on, the evacuation time is determined by the input value for the loading time. In effect, the evacuation time has become equal to the loading time plus the amount of time necessary for the last loaded vehicle to exit the transportation network thereby clearing the system. The Site B curve also follows the same general trend.

CONGESTED CAPACITY REDUCTION FACTOR

The I-DYNEV model contains an algorithm that reduces the network capacity by 15% under congested flow conditions. An earlier report (Urbanik, Moeller, and Barnes 1987) indicated that the use of such a congestion factor for freeway conditions was not warranted for the data set evaluated. Although not currently an I-DYNEV input parameter, a sensitivity analysis of this factor appeared appropriate. For this study, the capacity reduction factor was varied from 40% to 100% for both sites. The 40% value corresponds to a reduction in capacity to 40% of the original capacity under congested conditions. The graph of the sensitivity of the evacuation time to the congested capacity reduction factor is shown in Figure 10.

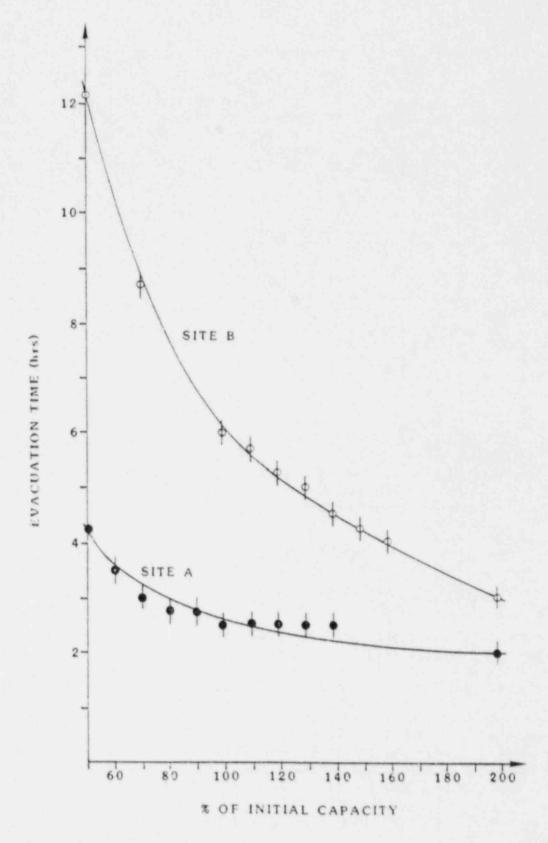


FIGURE 8. Evacuation Time Versus Percentage of Base Population for Each Site

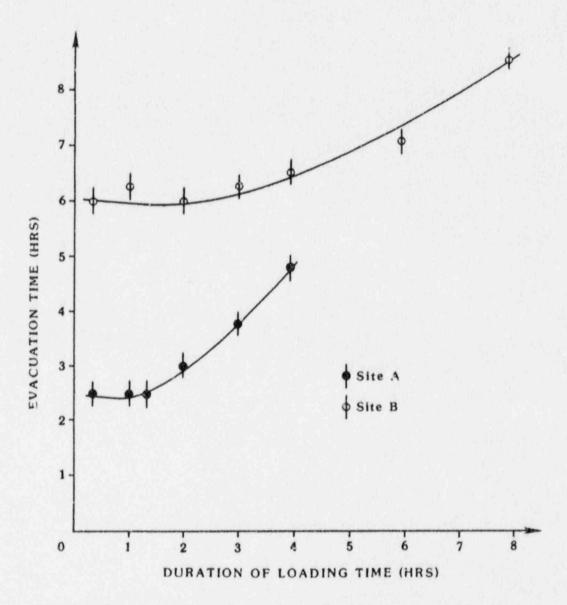


FIGURE 9. Evacuation Time Versus Duration of Loaling Time

Examining the cur.e for Site A indicates that, for a capacity reduction up to 30% under congested flow conditions, the evacuation time is not affected. In fact, when capacity was reduced 30% to 60% (a capacity reduction factor of 70% to 40%), the evacuation time increases by only 45 minutes. The evacuation time for Site B, however, appears to be extremely sensitive to capacity reduction. For changes in the capacity reduction factor from 40% to 100%, the evacuation times are from 14 hours to 6 hours. This variation may occur because the vehicle population of Site B makes the network capacity constrained and the vehicle population of the Site A simulation is not capacity constrained.

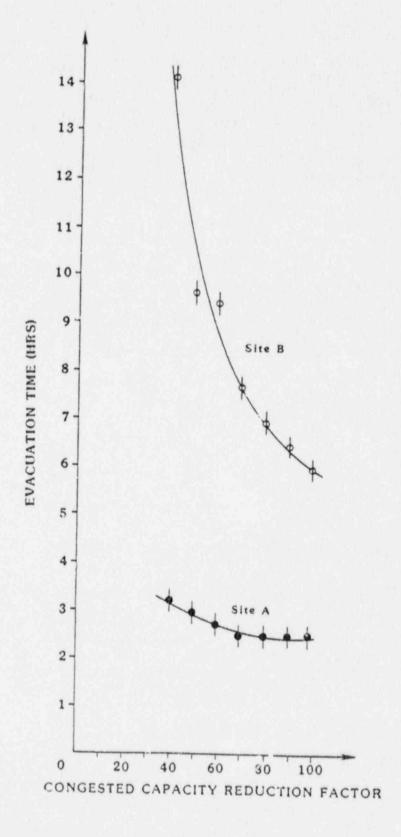


FIGURE 10. Evacuation Time Versus Congestion Capacity Reduction Factor

TIME INTERVAL OF PROCESSING

During the many simulations performed previously (Urbanik, Moeller, and Barnes 1987) it was realized that the rate at which vehicles were allowed to respond to the changing traffic conditions was restricted by the input value for the time interval of processing. Traffic simulation codes provide output information by taking a "snapshot" of the status of vehicles on the network at discrete time intervals. Between these "snapshots", vehicles are processed through the network. For I-DYNEV, the time interval of processing is a value input by the user. This input value is not intended to affect the results. Within the algorithms of I-DYNEV, the change in vehicle travel time over a link (roadway segment) in any processing is limited to 25% of the time interval of processing. Consequently, the time interval of processing, which is selected by the user, affects the speed of vehicles traveling throughout the transportation network. Time intervals of 60, 150, and 300 seconds were used to evaluate the sensitivity of the evacuation times for Sites A and B. Table 2 indicates that the length of the time interval had relatively no effect on the evacuation time for either site.

TABLE 2. Evacuation Times for a Range of Time Intervals

Time Interval, sec	Evacuation Site A	Time, hr
60	2.25	6
150	2.25	6
300	2.50	6

FREE-FLOW VELOCITY

Free-flow velocity appears to have min mal effect on the evacuation time estimates. According to the data presented in Table 3, it is evident that an increase or a decrease in the free-flow velocity results in an increase in the evacuation time estimate. This phenomenon may be the result of the interaction of the time interval of processing, 2) the capacity reduction factor, and 3) a function that limits the rate of change for vehicle travel time on a segment.

TABLE 3. Evacuation Times for a Range of Free-Flow Speeds

Free-Flow Speeds, mph	Evacuation Site A	n Time, hr Site B
All 30 mph	2.75	6.25
Base less 5 mph	2.50	6
Base Case	2.50	6
Base plus 5 mph	2.50	6.25
All 60 mph	2.75	6.50

CONCLUSIONS

Changes in each of the six input parameters evaluated in this study affected the estimates of evacuation times to some degree. In addition, care in coding the network is required or the traffic assignment algorithm within the I-DYNEV model may route traffic in a potentially unreasonable manner in order to balance the system demand. In general, the sensitivity of evacuation time estimates to changes in the input parameters is consistent with expectations.

The major conclusions associated with the six input parameters evaluated are presented below:

- Changes in the vehicle population suggested two major findings. First for vehicle populations resulting in traffic delays, evacuation times essentially increase linearly with increasing population. The rate of increase is dependent upon the characteristics of the transportation network. This finding is consistent with traffic modeling theory. Second, I-DYNEV contains a traffic assignment model (algorithm) that is affected by roadway characteristics. The algorithm can produce results which are potentially unreasonable if the analyst is unfamiliar with the theory.
- The effective network capacity was varied for Sites A and B. Changes in the network capacity affected evacuation time in a linear manner, reflecting the direct relationship between vehicle demand and capacity. This is consistent with the first finding listed above.
- The Evacuation time estimate can be sensitive to the loading time of vehicles onto the network. The magnitude of this sensitivity is related to the vehicle demand on the transportation network. The general trend observed appears to be consistent with traffic modeling theory. The data suggest that loading time only affects the calculation of the evacuation time when all vehicles have not been loaded by what is eventually 50% of the evacuation time. As loading time approaches evacuation time, evacuation time increases proportionally to loading time. The results indicate that loading time is most likely to affect evacuation time at low population sites. This is consistent with the first two findings above.
- Although not currently an input value to the I-DYNEV model, the simulations indicate that changes in the percentage reduction of the network capacity under congested traffic conditions (capacity reduction factor) can have a significant impact on the estimated evacuation time. As expected, the significance increases as the vehicle demand increases.
- Although it appears that the time interval of processing affects the rate of change of vehicles traveling on a roadway segment, the data suggest that the impact on the calculated evacuation time estimate is minimal.

 Changes in the input value for free-flow velocity had a minimal effect on the estimated evacuation time.

Analysis of the results suggests that the estimated evacuation time is sensitive both to changes in the input parameters as well as to the characteristics of the transportation network. Consequently, use of the I-DYNEV computer code should be limited to analysts who are willing to evaluate the results and competent to determine their adequacy. To provide a meaningful time estimate, the results of any evaluation should be inspected in detail. The current I-DYNEV documentation is not sufficient to ensure that the limitations in the model are understood by those not experienced in traffic modelling. A more complete documentation of the I-DYNEV input parameters is recommended if it is intended to be used by other than experienced traffic modellers.

REFERENCE

Urbanik II, T., M. P. Moeller and K. Barnes. 1987. Benchmark Study of the I-DYNEV Evacuation Time Estimate Computer Code. NUREG/CR-4873, PNL-6171, Pacific Northwest Laboratory, Richland, Washington.

BIBLIOGRAPHY

- Urbanik II, T., A. E. Desrosiers, M. K. Lindel and C. R. Schuller. 1980.

 Analysis of Techniques for Estimating Evacuation Times for Emergency

 Planning Zones. NUREG/CR-1745, BHARC-401/80-017, Battelle Human Affairs

 Research Centers, Seattle, Washington.
- U.S. Nuclear Regulatory Commission. 1980. <u>Criteria for Preparation and Evaluation of Radiological Emergency Response Plans at Nuclear Power Plants.</u>
 NUREG-0654, FEMA-REP-1, Washington, D.C.

APPENDIX

INPUT VALUES FOR I-DYNEY COMPUTER CODE SIMULATIONS

APPENDIX

INPUT VALUES FOR I-DYNEY COMPUTER CODE SIMULATIONS

Input values used in the development of the evacuation time estimates referenced in this report are presented according to the input and output schemes of the I-DYNEV computer code.

BASE CASE IMPUL DATA FOR SITE A RANDOM NUMBER SEED 7581 DURATION (SEC) OF TIME PERIOD NO. 1 DURATION (SEC) OF TIME PERIOD NO. 2 DURATION (SEC) OF TIME PERIOD NO. 3 DURATION (SEC) OF TIME PERIOD NO. 4 DURATION (SEC) OF TIME PERIOD NO. 5 300 300 300 300 36000 LEM TH OF A TIME INTERVAL, SECONDS 300 MAXIMUM INITIALIZATION TIME, NUMBER OF INTERVALS 18 NUMBER OF TIME INTERVALS BETWEEN SUCCESSIVE STANDARD OUTPUTS 3 PERCENT OF HOURLY FLOW RATES DURING INITIALIZATION (NO INITIALIZATION) PERCENT OF CAPACITY UNDER CONGESTED CONDITIONS

				1967	LENGT	21	PKT								LOCT	g DIS	FOFF		
		1 600	LENGTH		TET	FULL	. 1000		LANE CHAN	DE	STINA	TION	NODES	OPP	TIME	HDWY.	FREE	RTOR	PED
	(18.	INK 17	M1*100	- C	R	LANES	LR	GRD	123456	LEFT		RGHT	100000	NODE	SEC	SEC	MPH	CODE	CODE
	(43,				0	1	0 0	0	000000	0	43		78	0	2.5*	2 4	30	0	0
	(78,	17		0	0	1	0 0	Ö	000000	0	18		-78	18	2:5*	2 4	30	0	0
	(17,		10	. 0	0	1	0.0	0	000000	19	68	43	-18	0	2 5*	2.4	30	0	0
	(19,			0	0	1	0.1	0	000000	68	0	17	0	68	2 5*	2.4	30	0	0
	(68,	18		0	0	2	0.0	0	000000	0	17	19	ő	0	2 5+	2 4	30	0	0
	(18,	191		0	0	1	00	0	000000	0	21	0	0	0	2 5+	2 4	30	0	0
	(21,			0	0	2	0 1	0	000000	0	18	0	0	0	2.5+	2.4	60	0	0
	(116,			0	00	1	00	0	000000	0	116	0	0	0	2.5*	2 4	35	0	0
	(20.	211		0	0	1	0 0	0 0	000000	0	21	0	0	21	2 5*	2.4	35	0	0
	(22,	217		. 0	0	1	0 1	ŏ	000000	22	125	19	C	0	2 5*	2.4	35	0	0
	(125,	21)		0	0	1	0 0	0	000000	125	19	20	0	0	2 5.	2.4	30	0	0
	(19.	211	155	0	0	2	0 1	0	000000	20	55	125	0	50	2.5+	2.4	35	0	0
	(21,	22)		0	0	1	5.0	0	000000	0	23	0	ő	0	2 5*	2.0	30	0	0
	(23,	52)		0	. 0	2	0 1	0	000000	. 0	21	0	0	0	2 5*	20	60	0	00
	(8013,	23)		0	0	2	0 1	0	000000	U	0	0	113	0	2.5+	2.0	60	0	0
	(113)	23)		0.0	0	5	0 1	0	000000	0	55	0	113	0	2 5*	2.0	0	0	0
	(17,	43)		0	0	-	0 0	0	010000	0	55	0	0	0	2 5*	2 0	60	0	0
	(44.	43)		0	0		0 0	0	000000	0	0	44	0	0	2.5*	2.4	30	0	0
	(43,	44)		0	0	1	0 0	0	000000	17	0	0	0	0	2 5*	2 4	35	0	0
	(45.	44)		0	0	1	0 0	0	000000	78	45	78	0	43	2 5+	2 4	35	0	0
	(78,	44)		0	. 0	1	00	0	000000	43	0	45	0	43	2 5*	2 4	35	0	0
	(44,	45)	-	0	0	1	00	0	000000	0	46	116	0	0	2.5*	2 4	35	0	0
	(116,	45)		0	0	1	0 0	0	000000	116	44	0	0	44	2 5+	2.4	35	0	0
	(45.	45)		0	0	1	0 0	0	000000	44	0	46	0	0	2.5*	2.4	30	0	0
	(47,	46)		0	0	1	000	0	000000	0	47	93	0	0	2 5*	2.4	35	0	ō
	(93,	46)		0	0		0 0	0	000000	93	45	0	0	45	2.5*	2.4	40	0	0
	1 46.	47)	200	G	0		10	0	000000	45	00	47	0	0	2.5*	2.4	40	0	0
	(48.	47)		0	0	1	10	0	000000	0	46		~114 -114	00	2.5*	2.4	40	0	0
	(114,	471	-	. 0	0	1	00	0	000000	0	0	o	-46	0	2.5*	2.4	40	0	0
	(8011)	48)	0	0	0	1	00	0	000000	0	47	o	0	o	2.5*	2.4	50	0	0
	(18,	48)	0	0	0	1.1	00	0	000000	0	0	47	0	0	2 5+	2 4	0	0	0
	(69,	68)	120	0	0	1	0 0	0	000000	79	69	0	~B0	69	2 5*	2 4	35	0	0
	1 79.	68)	50	0	0	1	0 0	. 0	000000	0	18	80	-79	0	2 5*	2 4	40	0	0
	(80.	68)	65	0	0		00	0	000000	80	0	18	-69	0	2.5*	2 4	35	o	0
	(68,	69)	35	. 0	0	1	0 0	0	000000	69	0	79	18	0	2.5*	2 4	40	0	0
	(71)	69)		0	0	1	0 0	0	000000	0	71	0 0	0	0	2.5*	2 4	40	0	0
	(69,	71)	275	0	0	1	00	0	000000	0	72	73	0	68	2.5*	2 4	45	0	0
	(72,	71)		0	0	1	0 0	0	000000	73	69	0	0	69	2 5*	2 4	45	0	0
	(71,	71)	130	0	. 0	1	00	0	000000	69	0	72	0	0	2 5*	3 0	37	0	0
	(73.	72)	140	0	0	100	0 0	0	000000	77	0	73	0	0	2 5*	2.4	40	0	0
	(77,	72)	145	0	0	1	0 0	0	000000	71	7.7	0	0	77	2 5+	2.4	40	0	0
	(71,	731	230	0	0	400	0 0	0	000000	0	73	71	0	0	2 5*	2 4	40	0	0
	(72,	73)	140	0	0	100	0 0	0	000000	72	74	71	00	74	2.50	3.0	37	0	0
	(74;	73)	80	0	. 0	1.	0 0	0	000000	0	71	Ô	72	0	2.5*	2.4	30	0	0
	73,	741	80	0	0	1	0 0	0	000000	76	8009	0	0	o	2.54	2 4	30	0	0
	76,	741	135		0	1	0 0	0	000000	8009	0	73	0	0	2 5.	2 0	50	0	o
	77,	761	145	0	0	1	0 0	0	000000	0	77	0	0	0	2 5+	5 0	50	0	0
	(72.	77)	145	0	0	1	0 0	0	000000	0	74	70	0	0	2.5+	2.0	50	0	0
	76.	77)	145	0	0	1	0 0	0	000000	72	83	76	0	0	2.5*	5.4	40	0	0
	(83,	77)	55	0	0	1	0 0	0	000000	0	76	72	0	83	2.5+	2 0	50	0	0
	(44,	78)	90	0	0	1	00	0	000000	128	79	17	0	79	2 5+	2.4	30	0	00
	79,	78)	70	. 0	0	1	0 0	0	000000	17	44	128	0	44	2.54	2.4	40	0	00
	(128,	78)	150	0	0	1	0 0	0	000000	74	17	44	0	17	2 5.	3.6	30	0	0
	68.	791	50	0	0	1	00	0	000000	44	158	79	0	158	2.5+	2.4	30	0	0
	78.	79)	70	0	0	1	00	0 0	000000	78	0	80	0	0	2.5*	2.4	35	0	0
	80.	79)	100	0	- 0	100	0 0	0	000000	68	80	68	. 0	0	2.5*	2.4	40	0	0
	68,	80)	65	0	0	1 1	00	0	000000	79	79	81	00	78	2.5*	2.4	40	0	0
	79.	80)	100	0	0	1	00	0	000000	0	81	68	0	0	2.5*	2.4	40	0	0
	81.	80)	10	0	0	1	0 0	0	000000	68	79	0	ő	79	2.5*	2 4	40	0	0
	82,	81)	10	0	0	1	00	0	000000	0	85	82	0	0	2.5*	2.4	40	0	00
	82,	81)	250	0	0	4	0 0	0	000000	80	0	85	0	0	2.5+	2.4	40	0	0
	81,	82)	250	0	0	4.	0 0	0	000000	92	80	0	0	80	2 5*	2 4	45	0	0
	83,	82)	250	0	0	.10	00	0	000000	0	83	0	0	0	2.5*	2.4	40	0	0
	77,	83)	55	0	Ö	1	0 0	0	000000	82	81	0	0	0	2.5*	2.4	45	0	0
1	85	83)	250	0	0	1	00	0	000000	84	0	77	0		2.5*	5 0	50	0	0
	84.	83)	185	0	0	1	00	0	000000	0	77	85	0	00	2.50	2.4	45	0	0
	83.	84)	185	0	-0	1	00	0	000000	0	88	0	0	0	2 5+	2.0	50	0	0
	88	84)	185	0	0	1	0.0	0	000000	0	83	0	0	o	2.5+	2.0	50	0	00
	81.	85) 85)	225	0	0	1	0 0	0	000000	0	85	0	. 0		2.5*	2.4	45	Õ	0
	85,	86)	225	00	0	1	000	0	000000	0	81	0	0	0	2.50	2.4	45	0	0
-	97,	86)	225	0	o	1	0 0	0	000000	0	87	0	0	0	2.5*	2 4	45	0	0
-	86,	87)	225	0	0	1	00	0	000000	131	85	00	0 0	0	2.5*	2 4	50	0	0
- 1	88.	87)	80	0	0	1	0 0	0	000000	0	86	131	0	88	2.5*	2 4	30	0	00
												2.00			m m m	W-0.75	60	· ·	

				PKT L	ENGT	н	PKT								LOST	G D15	FREE	0.7.00	PED
			LENGTH	FE		FULL	LANES		LANE CHAN			TON N		OPP.	TIME	HDWY.	SPD	CODE	CODE
	6.11		MI+100	1	R	LANES	LR	GRD	123456		THRU		DIAG		SEC	SEC	35	CODE	O
	101	87)		0	0	1	0 0	0	000000	68	0	86	0	0	2.5*	3 0	50	0	ő
1	84.	88)		0	0	1	0 0	0	000000	87	0	89	0	0	5	2.0	30	0	o
1	87.	88)	80	0	0	1	00	0	000000	0	89	84	0	0	2.5*	2 4	50	0	0
1	89	88)		0	0	1	0 0	0	000000	84	87	0	0	87	2.5+	2.0		0	0
- 2	80,	89)		0	0	1	0 0	0	000000	0	8010	0	0	0	2.5.	20	50		ő
1	128.	901	T 100 100	0	0	1	0 0	0	000000	0	129	0	0	0	2.5*	3.6	30	0	0
1		901	5.00.00	0	Ö	1	0 0	0	000000	0	128	0	0	0	2 5*	3.0	35	0	
- 1	129,	10000		o	0	1	0 0	0	000000	0	130	0	0	0	2.5*	3 0	35	0	0
1	129,	91)		0	0	- 1	00	0	000000	0	129	0	0	0	2 5*	3 0	35	0	0
	130.	91)		0	0	1	0 0	0	000000	130	97	0	0	97	2.5*	3.0	35	0	0
(131,	92)		0	0		00	0	000000	97	0	131	0	0	2.5*	3.0	35	0	0
- 1	130.	92)		0	0		00	0	000000	0	131	130	0	0	2.5*	3.0	40	0	0
(97,	92)		0	0	1	0 0	0	000000	0	98	116	0	0	2.5+	2.4	40	0	0
-	46.	93)			0		0 0	0	000000	116	46	0	0	46	2.5*	2.4	40	0	0
- 1	98,	931		0	0		0 0	0	000000	46	0	98	0	0	2.5*	2.4	35	0	0
- (116,	93)		0	0		0 0	0	000000	101	95	0	0	95	2 5*	2.4	35	0	0
- 5	125,	94)		0	0		0 0	0	000000	0	125	101	0	0	2.5*	2.4	35	0	0
1	95,	94)	7.55	0		1	00	0	200000	95	0	125	0	0	2.5*	2.4	35	0	0
1	101.	94)		0	0	*	0 0	0	000000	0	0	96	0	0	2 5*	2.4	35	0	0
1	94,	951		0	- 20		0.0	0	000000	94	0	0	0	0	2.3*	2.4	40	0	0
	901	951		0	0			0	000000	132	0	0	0	0	2 5*	2.4	40	0	0
1	95,	96)		0	0			0	000000	0	0	95	0	0	2 5+	3.0	40	0	0
-	132,	96)		0	0	1	0 0	700	000000	132	0	0	0	0	2 5*	3 0	40	0	0
- (92,	97)	55	0	0	1	0 0	0	000000	0	0	92	0	0	2 5*	3.0	40	0	0
- 1	132.	97)		0	0		0 0	0	000000	0	100	0	0	0	2 5*	2 4	40	0	0
- 1	93,	98)		. 0	0	1	0 0	0	000000	0	93	. 0	0	0	2.5*	2 4	30	0	0
. 1	100	981	15	0	0	1	00	0		0	101	0	0	0	2 5*	2.4	30	0	0
4	100.	99)	15	0	0	1	0 0	0	000000	0	100	0	0	0	2 5*	3.0	30	0	0
- 1	101.	991	105	0	0	1	0 0	0	000000	114	99	113	0	0	2 5*	2.4	30	0	0
-	98,	100		0	0	1	0 0	0	000000	113	98	114	0	0	2 5*	2.4	30	0	0
	99,	1001	15	. 0	0		0 0	0	000000	98	114	99	Ö	0	2 5*	2.0	60	0	0
	113.	100	60	0	0	1	0 1	0	000000	99	113	5.3	0	0	2.5*	2.0	60	0	0
	114.	100	75	. 0	0	1	0 1	0	000000	99	0	0	0	0	2 5*	2.4	35	0	0
	94,	101	195	0	0	1	00	0	000000		0	94	0	0	2 5+	3.0	30	0	0
	99,	101	105	0	0	1	0 0	0	000000	0	100	0	0	0	2.5*	2.0	60	0	0
	25,	113	30	0	. 0	5	0 0	O	000000	0	23	0	0	0	2.5*	2.0	60	0	0
	100,	113	60	0	0	1	0 0	0	000000	0	100	0	0	0	2 5*	2.0	50	0	0
	47.	114	30	0	0	5	0 0	0	000000		47	0	o	0	2.5*	2.0	60	0	0
	100.	114	75	0	0	1	0 0	0	000000	0	45	93	0	o	2 5+	2 4	35	0	0
	20,	116	20	0	0	. 1	0 0	0	000000	0		0	0	20	2 5*	2.4	30	0	0
	45.	116	120	0	0	1	00	0	000000	93	20	45	0	0	2 5*	2 4	35	0	0
	93.	116	80	0	0	1	0 0	0	000000	50	_			0	2.5*	2 4	35	0	0
		125		0	0	1	00	0	000000	0	94	0	0	0	2.5*	2.4	35	0	0
	94.	125	140	0	0	. 1	0 0	0	000000	0	21	0			2 5*	3.6	30	0	0
		128		0	0	- 1	00	0	000000	0	90	0	0	0	2 5*	3.6	30	o	0
	90.	128	150	0	C	1	00	0	000000	0	78	0	0		T 3.	3.0	35	Ö	0
	10.00	129		0	0	1	00	0	000000	0	91	0	0	0	2.5*	3 0	35	ő	o
		129	71200	0	0	1	0 0	0	000000	0	90	0	0	0	2.5.		35	0	0
		130		0	. 0	1	00	0	000000	0	92	0	. 0	0	2.5*	3.0		ő	o
		130	1.00	0	0	1	0 0	0	000000	0	91	0	0	0	2.5+	3.0	35	0	0
		131		0	0	1	0 0	0	000000	0	87	0	0	0	2.5+	3.0	35	0	0
		131		0	0	1	0 0	0	000000	0	92	0	0	0	2.5*	3.0	35	-	0
		132		0	0	1	0 0	0	000000	0	97	0	0	0	2 5.	3 0	40	0	
		132		0	0	1	0 0	0	000000	0	96	0	0	0	2.5*	3.0	40	0	0
	7/1	106	100	100															

. INDICATES DEFAULT VALUES WERE SPECIFIED

LANE CHANNELIZATION CODES

O UNRESTRICTED O RTOR PERMITTED O NO PEDESTRIANS
1 LEFT TURNS ONLY 1 RTOR PROHIBITED 1 LIGHT
2 BUSES ONLY 2 MODERATE
3 CLOSED 3 HEAVY

DOSED

CLOSED

RIGHT TURNS ONLY

CAR - POOLS

CAR - POOLS + BUSES

RTOR CODES

PEDESTRIAN CODES

LINK		TURN MOVEMENT	PERCENT	TAGES		TURN MOVEMENT	POSSIBLE		CAPACITY REDUCTION
(8013, 23)	LEFT	THROUGH	RIGHT	DIAGONAL	LEFT	THROUGH	RIGHT	DIAGONAL	(PERCENT)
(8012, 48)	0	0	0	100	NO	YES	NO	YES	0
(8011, 48)	0	100	0	0	NO	YES	NO	NO	0
(23, 22)	Ö	100	100	0	NO	NO	YES	NO	0
(48, 47)	0	63	0	37	NO	YES	NO	NO	0
(23, 113)	0	100	0	- 0	NO	YES	NO	YES	0
(47, 114)	0	100	ő	o ·	NO NO	YES	NO	NO	0
(22, 21)	1	98	1	0	YES	YES	NO	NO	0
(47, 46)	1.4	86	0	o .	YES	YES	YES	NO	0
(46, 93)	0	73	27	0	NO	YES	YES	NO NO	0
(93, 98)	0	100	0	0	NO	YES	NO	NO NO	0
(98, 100)	12	22	66	0	YES	YES	YES	NO	0
(113, 100)	0	49	51	0	YES	YES	YES	ND	0
(114, 100)	54	48	0	0	YES	YES	YES	NO	Ö
(100, 113)	0	100	0	0	NO	YES	NO	NO	0
(100, 114)	0	100	0	0	NO	YES	NO	NO	Ö
(93, 116)	63	0	37	0	YES	NO	YES	NO	0
(113, 23)	0	100	0	0	NO	YES	NO	NO	Ö
(46, 45)	23	77	0	0	YES	YES	NO	NO	o
(114, 47)	0	0	0	100	NO	NO	NO	YES	0
	0	100	0	0	NO	YES	NO	NO	0
(21, 19)	0	100	0	0	NO	YES	NO	NO	0
(45, 116)	5	0	100	0	NO	NO	YES	NO	0
(19, 18)		95	0	0	YES	YES	NO	NO	0
(116, 20)	66		34	0	YES	ND	YES	NO	0
(116, 93)	51	100	0	0	NO	YES	NO	NO	0
(101, 94)	4	o o	95	0	YES	NO	YES	NO	0
(20, 21)	0	3	97	0	YES	NO.	YES	NO	0
(45, 44)	81	19	0	0	YES	YES	YES	NO	0
(21, 125)	0	100	0	0	YES	YES	NO	NO	0
(44, 78)	0	88	12	c c	YES	YES	NO	NO	0
(78, 79)	0	79	21	o	NO	YES YES	YES	NO	0
(74, 80)	0	91	9	0	NO	YES	YES	NO	0
(80, 81)	0	93	7	0	NO	YES	YES	NO	0
(81, 82)	0	100	0	0	NO	YES	NO	NO NO	0
(62, 83)	42	0	58	0	YES	NO	YES	NO	0
(81, 85)	0	100	0	0	NO	YES	NO	NO	0
(85, 86)	0	100	0	0	NO	YES	NO	ND	o o
(85. 87)	0	100	0	0	YES	YES	NO	NO	Ö
(87, 88)	0	7.4	26	0	NO	YES	YES	NO	0
(98, 89)	0	100	0	0	NO	YES	NO	NO	o
(94, 95)	0	100	0	0	YES	YES	NO	NO	0
(95, 96)	100	0	100	0	NO	NO	YES	NO	0
(44, 43)	100	0	0	0	YES	NO	NO	NO	0
(94, 101)	100	0	0	0	YES	NO	NO	NO	0
(87, 131)	0	100	0	0	YES	NO	NO	NO	0
(96, 132)	0	100	0	0	NO	YES	NO	NO	0
(43, 17)	0	73	0	0	NO	YES	NO	NO	0
(88, 84)	0	100	0	27	NO	YES	NO	YES	0
(79, 68)	8	0	24	68	NO	YES	NO	NO	0
(80, 68)	97	0	3	0	YES	NO.	YES	YES	0
(131, 92)	0	100	0	0	YES	NO YES	YES	YES	0
(92, 97)	100	0	0	0	YES	NO	NO NO	NO	0
(132, 97)	0	0	100	0	NO	NO	YES	NO NO	0
(101, 99)	0	100	0	0	NO	YES	NO	NO	0
(99, 100)	31	19	50	0	YES	YES	YES	NO	0
(17, 18)	43	57	-0	0	YES	YES	NO	NO	0
(92, 130)	0	100	0	0	NO	YES	NO	NO	0
(40 30)	0	190	. 0	0	NO.	YES	NO	NO	0
(68, 79)	3	0	97	0	YES	NO	YES	NO	0
(68, BC) (18, 68)	0	0	100	0	YES	NO	YES	NO	o .
(84, 83)	0	74	0	56	YES	YES	NO	YES	Ö
(68, 69)		100	0	0	NO	YES	YES	NO	Ö
(69, 71)	0	100	0	0	NΩ	YES	NO	NO	0
(130, 91)	0	100	14	0	NO	YES	YES	NO	0
(97, 92)	0	37		0	NO	YES	NO	NO	0
(71, 72)	7	0	63	0	NO	YES	YES	NO	0
(132, 95)	0	0	100	0	YES	NO	YES	NO	0
(100, 98)	0	100	0	0	NO	NO NO	YES	NO	0
(83, 77)	0	99	1		NO NO	YES	NO	NO	0
(77, 72)	0	0	100	0	NO NO	YES	YES	NO	0
(18, 19)	0	100	0	0	NO	YES	YES	NO	0
(91, 129)	0	100	0	. 0	NO	YES	NO	NO	0
(92, 131)	0	100	0	0	NO	YES	NO	NO	0
(71, 73)	35	e8	o	000	YES	YES	NO NO	NO	0
(72, 73)	0	99	1	0	NO	YES	YES	NO NO	0
(17, 78)	39		56	0	YES	YES	YES	NO NO	0
(131, 87)	7.0	0	30	0	YES	NO	YES	NO	0
(129, 90)	0	100	. 0	000	NO	YES	NO	NO	o o
(77, 76)	0	100	- 0	0	NO	YES	NO	NO	o
(98, 93)	10	90	0	0	YES	YES	NO	NO	0
(72, 71)	0	100	0	0	YES	YES	NO	ND	Ö
(96, 95)	100	0	0	0	YES	NO	NO	NO	0
(83, 82)	0	100	0	0	NO	YES	ND	140	

,	73,	72)	21	79	0	0	YES	YES	NO	NO	
,	19,		43	55	5	0	YES	YES	YES	NO	
7	93.	46)	79	0	21	0	YES	NO	YES	NO	
,	21,	55)	0	100	0	0	NO	YES	NO	NO	
	22,	53)	o	0	0	100	NO	NO	NO	YES	
- 3	78,		Ö	100	o	0	NO	YES	NO	NO	
1	90,		o	100	0	0	NO	YES	NO	NO .	
- 3		78)	40	41	19	o	YES	YES	YES	NO	
	128,	74)	7	93	0	ō	YES	YES	NO	NO	
	73.		90	0	10	0	YES	NO	YES	NO	
	76,	74)			. 0	0	NO	YES	NO	NO	
(74,	76)	0	100	0	0	NO	YES	YES	NO	
- 5	95,	94)	0	100	0	o o	NO	YES	NO	NO	
	71,		0	100	61	Ö	YES	NO	YES	NO	
(72,		39	0	0	0	YES	YES	NO	NO	
(76,		0	100		Ö	YES	YES	NO	NO	
- (77,	83)	55	44	0	0	NO	YES	NO	NO	
(128,	90)	0	100	0		NO	YES	YES	YES	
(69,	68)	0	0	40	60		YES	NO	YES	
(74,	73)	0	0	0	100	NO	YES	YES	NO	
(68,	18)	0	93	7	0	NO		YES	YES	
(78,	17)	0	0	35	65	NO	NO	NO	NO	
(94,	125)	0	100	0	0	NO	YES		NO	
- (90,		0	100	0	0	NO	YES	NO	NO	
(83,	84)	0	100	0	0	NO	YES	NO	NO	
- (82	81)	0	0	100	0	YES	NO	YES		
-	18,	17)	0	95	0	5	NO	YES	NO	YES	
(125,	21)	96	3	1	0	YES	YES	YES	NO	
- (73,	71)	100	0	0	0	YES	NO	YES	NO	
(129,	917	0	100	00	0	NO	YES	NO	NO	
(17,	43)	0	0	100	0	NO	NO	YES	NO	
- (21.	20)	0	100	0	0	NO	YES	NO	NO	
1	84.	83)	32	0	63	0	YES	NO	YES	NO .	
- (91.	130)	0	100	. 0	0	NO	YES	NO	NO	
(43.	44)	0	17	83	0	NO.	YES	YES	NO	
-	44.	45)	0	-4	9.6	0	NO NO	YES	YES	NO	
- (130.	92)	59	0	41	0	YES	NO	YES	NO	
(45.	461	0	0	100	0	NO	YES	YES	NO	
-	20,	116)	0	33	67	0	NO	YES	YES	NO	
1	116	45)	72	0	28	0	YES	NO	YES	NO	
-	46,	47)	0	0	0	100	NO	NO	NO	YES	
- (78.	44)	12	0	88	0	YES	NO	YES	NO	
-	81	80)	46	54	0	0	YES	YES	NO	NO	
1	80.	79)	83	17		0	YES	YES	NO	NO	
-	85.	81)		89	0	0	YES	YES	NO	NO	
1	79.	78)	61	39	0	0	YES	YES	YES	NO	
1	88.	87)	0	80	20	0	NO	YES	YES	NO	
1	87,	86)	0	100	0	0	NO	YES	NO	NO	
1	86.	85)	0	100	0	0	NO	YES	NO	NO	
1	89	88)	100	0	0	0	YES	YES	NO	NO	
	07,	007	100	N							

SPECIFIED FIXED-TIME SIGNAL CONTROL, AND SIGN CONTROL, CODES

NODE 17 IS UNDER SIGN CONTROL

		NODE	17 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(18, 17)	43. 17)	APPROACHES (78, 17) O	
			NODE	18	
	OFFSET O	SEC			CYCLE LENGTH 75 BEC
NUMBER	DURATION (SEC) (PCT) 40 53 35 46	(17, 18)	(19, 18)	APPROACHES (68, 18) 1 2	
		NODE	19 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(18, 19)	(21, 19)	APPROACHES	
		NODE	20 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(21, 20)	(116, 20)	APPROACHES	
		NODE	21 IS UNDE	R SIGN CONTROL	
NUMBER	(SEC) (PCT) 0 100	(20, 21)	(22, 21)	APPROACHES (125, 21)	(19, 21)
		NODE	22 18 UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(21, 22)	(23, 22)	APPROACHES	
		NODE	23 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SFC) (PCT) 0 100	(22, 23)	(9013, 23)	APPROACHES (113, 23)	
		NODE	43 15 UNDE	R SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) 0 100	(17, 43)	(44, 43)	APPROACHES	• • • • • • • • • • • • • • • • • • • •
		NODE	44 IS UNDE	R SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) 0 100	43, 44)	(45, 44)	APPROACHES (78, 44)	
		NODE	45 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(44, 45)	(46. 45)	APPROACHES (116, 45)	
		NODE	46 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(45, 46)	(47, 46)	APPROACHES (93, 46)	
		NODE	47 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(46, 47)	(48, 47)	APPROACHES (114, 47)	
		NODE	48 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(8011, 48)	(8012, 40)	APPROACHES	
		NODE	68 IS UNDE	R SIGN CONTROL	
	DURATION (SEC) (PCT) 0 100	(18, 68)	(69, 68)	APPROACHES (79, 68) 0	(80, 68)

		NODE			
NUMBER	DURATION (SEC) (PCT) 0 100	(68, 69)	71, 69)	APPROACHES	
		NODE	71 IS UNDER	SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(69, 71)	(72. 71)		
		NODE	72 IS UNDER	SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(71, 72)	(73, 72)	APPROACHES (77, 72) 0	
		NODE	73 IS, UNDER	SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) O 100	(71, 73)	(72, 73)	APPROACHES (74, 73)	
			HODE	74	CYCLE LENGTH 75 SEC
	OFFSET O			APPROACHES	
MIMPED	DURATION (SEC) (PCT) 30 40 45 60	(73, 74) 2 1	(76, 74) 1 2		
			76 15 UNDER		
ALD SHATE CO.	resch (PCT)	74, 76)	77, 76)	APPROACHES	
			77 IS UNDER	SIGN CONTROL	
MIMBER	DURATION (SEC) (PCT) 0 100	(72, 77)	76, 77)	APPROACHES (83, 77)	
		NODE	78 IS UNDER	SIGN CONTROL	
NUMBER	DURATION (EFC) (PCT) 0 100	(44. 78)	(79. 76) 1	APPROACHES (128, 78)	(17, 78)
		NODE	79 IS UNDER		
NUMBER	DURATION (SEC) (PCT) 0 100	(68, 79)	(78, 79)		
		NODE	80 IS UNDER	SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) O 100	(68, 80)		APPROACHES (B1, B0)	
		NODE	81 IS UNDER	SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(80, 81)	(82, 81)	APPROACHES (85, 81)	
		NODE	82 IS UNDER	SIGN CONTROL	
NIMBER	DURATION (SEC) (PCT) O 100	(81, 82)	(83, 82)	APPROACHES	
		NODE	B3 IS UNDER	SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) 0 100	(77, 83)	(82, 53)	APPROACHES (84. /3)	
		NOD	84 IS UNDER	R SIGN CONTP.	
NUMBER	DURATION (SEC) (PCT) O 100	(63, 84)		APPRDACHES	
			E 85 IS UNDE	R SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) O 100	(81, 85)	86, 85)	- APPROACHES	

NODE	86	15	UNDER	SIGN	CONTROL
------	----	----	-------	------	---------

			NUDE	86 18	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(85. B	16)	(87,	86)	A	PPROACHES				-		-			٠
			NODE	87 19	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(8à. S	371	68.	87)	(1	0 87)				•		-	-	 	٠
							CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(84, 8	18)	(B7,	88)	A	PPROACHES 89, 88)						-	1	 •	•
			NODE	89 15	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(BE, E	99)			A	PPROACHES		-		-		-	-	 	٠
			NODE	90 18	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(128, 9	20)	(129,	90)	A	PPROACHES		-		-		-		 	*
			NODE	91 15	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(129, 9	71)	(130. 1	91)	A	PPROACHES		*			i	-	-	 	*
			NODE	92 15	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(131, 5	(2)	(130,	92)	(PPROACHES 97, 92) 1								 ~ ~	*
			NODE	93 18	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) O 100	(46, 9		(99.	93)	(1	APPROACHES 16, 93)				-		-		 	+
			NODE	94 IS	UNDER	SIGN	CONTROL									
	DURATION (SEC) (PCT) O 100		74)	95.	94)	(1	APPROACHES						-		 	•
			NODE	-5 18	JNDER	SIGN	CONTROL									
INTERVAL NUMBER 1	DURATION (SEC) (PCT) O 100	(94, 9	75)	96.	95)	A	APPROACHES	-		-	-				 	٠
			NODE	96 18	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (POT) 0 100	(95. 9	6)	(132,	96)	A	PPROACHES									*
			NODE	97 IS	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(92, 9			971		APPROACHES		-						 	•
			NODE	98 15	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) O 100	(93, (98)		APPROACHES									
			NODE	99 18	UNDER	SION	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(100, 1	99)	(101,	99)	,	APPROACHES			-				-		
			NODE	100 15	UNDER	SIGN	CONTROL									
NUMBER	DURATION (SEC) (PCT) 0 100	(98, 1	00)	(99,	100)	(APPROACHES 113, 100) 0		1 1	14,	10	0)			 -	• •

NODE 101 IS UNDER SIGN CONTROL

						NODE			ONDER	31	I GIN C	DIVINO													
	INTERVAL NUMBER	(SEC)	(PCT) 100		94.	101)	- 6		101)		- API	PRDACE	HES	-			-				-			-	٠
						NODE	113	3 IS	UNDER	SI	IGN C	ONTROL													
	INTERVAL NUMBER 1	(SEC)	ATION (PCT) 100		23,						- APF	PROAC	HES	-	-	•		-			-			-	٠
						NODE	114	15	UNDER	SI	GN CC	ONTROL													
	INTERVAL NUMBER 1	(SEC)	(PCT)	4	47,	114)	(1	00,	114)	**	- APP	PROACH	HES					-		•	-		-		٠
						NODE	116	IS	UNDER	SI	GN CC	ONTROL													
	INTERVAL NUMBER 1	(SEC)	4TION (PCT) 100	0 1	20, 1	116)	(45,	116)		(93	3, 116	ES				-		- 7		-		-		٠
						NODE	125	IS	UNDER	SI	GN CO	NTROL													
	INTERVAL NUMBER 1	(SEC)	(PCT)	(;	21. 1		(125)		- APP	ROACH	ES				-		-	-				-	٠
						NODE	128	IS	UNDER	SI	GN CC	ONTROL													
-)	INTERVAL NUMBER 1	(BEC)	(ECT)	1 3	90. 1	281		78. 1	128)		- APP	ROACH	ES				Ī		-	-	-				٠
						NODE	129	IS	UNDER	SI	GN CO	NTROL													
. 1	INTERVAL NUMBER 1	(SEC)	(PCT)		90. 1	29)					- APP	RDACH	ES		-		-				-			-	٠
						NODE	130	IS	UNDER	SI	GN CD	NTROL													
,	INTERVAL NUMBER 1	(SEC)	ATION (PCT) 100	(,	 91 1	30)	-,- ;	92.			- APP	ROACH	ES												•
						NODE	131	IS	UNDER	SI	GN CD	NTROL													
- 1	INTERVAL NUMBER 1	(SEC)	(PCT)	(€	87, 1	31)		92.			- APP	ROACH	ES		-		-		-				+		•
						NODE	132	IS	UNDER	SI	GN CO	NTROL													
	INTERVAL NUMBER 1										- APP	ROACH	E.S		-		-			-		-	-	-	•
						IN	TERPRE	ETAT	ION OF	S	IGNAL	CODE	S												
				0			YIELD	OR	AMBER																
				1		(GREEN																		
				2		f	RED																		
				3					GREEN																
				4					GREEN	LEP	-T AR	ROW													
				5			STOP		GREEN	Dis	AGO NA	ADD	nω												
				7					GREEN				O M												
				8					LEFT A				EN .	ARR	OW										
				9					URN-GR																

CENTROID NUMBER		- L1N	1	SOURCE/SINK	RATE	(VEH/HR
2010	¥	101.	941		43	
2011	1	94.	125)		125	
2012	K	101.	991		33	
2013	1	47.	46)		257	
2014	1	98	93,		133	
2015	(93	116)		133	
2016	1	44.	43)		639	
2017	1	44.	78)		296	
2018	6	46.	45)		108	
2019	4	45	116)		89	
2020	1	45.	44)		144	
2026	4	95.	96)		323	
2027		96	132)		323	
2028	0	78.	128)		125	
2029	16	91,	130)		143	
2030	1	84	881		61	
2031	1	81,	85)		255	
2032	(82,	83)		240	
5033	-6	43.	17)		555	
2034	1	78.	79)		111	
2035	1	79.	781		111	
2036	3	68.	69)		277	
2038	6	69.	71)		318	
2033 2034 2035 2036	-	78. 79. 68.	17) 79) 78) 69)		222 111 111 277	

ENTRY LINK VOLUMES

LINK		FLOW RATE (VEH/HOUR)	(PERCENT)	(PERCENT)
(8011.	48)	80	0	0
(8012)	48)	57	0	0
(8013)	231	1	0	0

TIME PERIOD 2 - DYNEY DATA FOR SUBNETHORK 1

ENTRY LINK VOLUMES

LINK		FLOW RATE (VEH/HOUR)	TRUCKS (PERCENT)	(PERCENT)
(8011)	48)	180	0	0
(8012)	48)	128	0	0
(8013.	23)	1	0	0

CENTROID NUMBER		LINE		FOURCE/SINK	RATE	(VEH/HR)	
2010		101.	941		97		
2011	.0	94,	1251		88		
2012	1	101.	991		7.4		
2013	5	47.	46)		578		
2014	3	98.	93)		300		
2015	(93.	116)		300		
2016	1	44.	43)	14	438		
2017	5	44.	78)		666		
2018	1	45.	45)		243		
2019	1	45.	116)		200		
5050	-	45.	44)		324		
5059	1	95.	961		727		
2027	1	96,	1321		727		
2028	2	18	128)		281		
2029		91,	130)		355		
2030	1	84.	88)		137		
2031	E	81,	55)		574		
5035	- 8	82.	83)		540		
2033	(43.	171		500		
2034	4	78.	79)		250		
2035	1	79,	78)		250		
2036	- (68			623		
5008	(69.	711		716		

TIME	DEDINE	-	Park Inc.		-		
TAME	PERIOD	3 *	DYMEY	DATA	FOR	SUBNETWORK	

ENTRY LINK VOLUMES

LIN	·	FLOW RATE (VEH/HOUR)	TRUCKS (PERCENT)	(PERCENT)
(9011)	48)	360	0	0
(8012)	48)	256	0	0
(0013)	23)	1	0	0

SOURCE/SINK FLOW RATES

CENTROID NUMBER		LIN	K	SOURCE/SINK	RATE	(VEH/HR)
2010	(101.	94)		194	
2011	1	94	125)		176	
5015	(101.	99)		48	
2013	0	47.	46)	11	56	
2014	6	98.	93)		000	
2015	0	93.	116)		00	
2016	(44.	43)		376	
2017	1	44.	78)		133	
2018	1	46.	45)		86	
2019	(45.	116)		00	
2020	(45.	44)		48	
2026	-	95,	961		54	
2027	4	96.	132)	14	54	
5058	1	78.	128)	5	62	
2029	1	91.	130)	6	44	
5030	1	84.	88)	2	74	
2031		81,	85)	11	48	
5035	6	82,	63)		80	
5033	5	43.	17)	10	00	
2034	ž.	78.	79)		00	
2035	t	79.	78)		00	
2006	-	68.	69)		46	
5038	(69.	71)		32	

TIME PERIOD 4 - DYNEY DATA FOR SUBNETHINGS

ENTRY LINK VOLUMES

LIN	,	FLOW RATE	TRUCKS	CAR POOLS
(8011,	48)	180	0	0
(9013)	23)	128	0	0

CENTROID NUMBER		LIN	K	SOURCE/SINK	RATE	(VEH/HR)
2010	1	101.	94)		97	
2011		94.	125)		88	
5015	(101.	99)		74	
2013	1	47.	46)		578	
2014	(98.	93)		300	
2015	-	93.	116)		300	
2016	(44.	431	14	438	
2017	1	44.	78)		666	
2018	(46.	45)		243	
2019	£	45.	116)		200	
5050	-	45.	44)		324	
5059	1	95	96)		727	
2027	-	96.	132)		727	
5058	-	78.	128)		281	
2029	(91,	130)		322	
5030	(84.	66)		137	
2031	1	81.	85)		574	
5035	(82.	83)		540	
5033		43	17)		500	
2034	(78.	791		250	
2035	(79,	78)		250	
2036	-	68.	691		623	
2038	(69	71)		716	

TIME PERIOD 5 - DYNEY DATA FOR SUBNETWORK 1

ENTRY LINK VOLUMES

L.N		FLOW RATE (VEH/HOUR)	TRUCKS	CAR POOLS
(9011)	48)	0	0	0
(8012.	48)	0	0	0
(8013,	53)	0	0	0

CENTROID NUMBER		LIN	K .	SOURCE/SINK	RATE	(VEH/HR)
2010	6	101,	94)		0	
2011	1	94.	125)		0	
5015	6	101.	991		0	
2013	(47.	461		0	
2014	-	98.	931		0	
2015	(93.	116)		0	
2016	1		43)		0	
2017	6	44.	78)		0	
2018	(46.	451		0	
2019	(45.			0	
2020	4	45.	44)		0	
2026	1	95.	96)		0	
2027	1	96.	132)		0	
2028	L	78.	128)		0	
2029	-(91,	130)		0	
2030	1	84,	88)		000	
2031		81.	85)		0	
5035	4	82.	83)		0	
2033	1	43.	17)		0	
2034	-	78.	79)		0	
5033	1	79.	78)		0	
2036	(68,	69)		0	
2038	-	69,	71)		0	

RAGE LASE INPLI CAIG EGS SIJE 8 7581 RANDOM NUMBER SEED DURATION (SEC) OF TIME PERIOD NO. I DURATION (SEC) OF TIME PERIOD NO. 2 DURATION (SEC) OF TIME PERIOD NO. 3 DURATION (SEC) OF TIME PERIOD NO. 4 DURATION (SEC) OF TIME PERIOD NO. 5 30% 300 300 LENGTH OF A TIME INTERVAL, SECONDS 300 MAXIMUM INITIALIZATION TIME, NUMBER OF INTERVALS 12 NUMBER OF TIME INTERVALS BETWEEN SUCCESSIVE STANDARD OUTPUTS 3 PERCENT OF HOURLY FLOW RATES DURING INITIALIZATION (NO INITIALIZATION) PERCENT OF CAPACITY UNDER CONTESTED CONDITIONS 99

		OHCE	DYGE 1	LOW HAIES		
CLATROID NUMBER		LIN	к	SOURCE/SINK	RATE	(VEH/HR)
2063	-	4.	6)		0	
2064	(89.	85)		0	
2065	8	89.	36)		0	
		84.			0	
2068	1	41.	401		0	
2070	- 6	39,	401		0	
2071	6	40.	39)		0	
2072	-	39.	45)		0	
2073	.0	38	110)		0	
2074		110.	104)		0	
2075	-	37,	35)		C	
2074	161	5.5	1071		0	
2077	-	111.	1091		0	
2078	1	105	1071		0	
		99.			0	
2080		70,	189)		0	
2081	1	313.	2)		0	
2052	5	315.	1.1		0	
2083	1	ea.	1131		0	
2084	1	106.	BA1		0	
2085	i	88.	941		o	
2004	. 2	Ph. 4			0	
2087	6	113.	DA.		0	
2088	1	94.	1691		0	
2089	r	78.	771		0	
2091		113, 96, 78, 167, 8,	1077		c	
2093	t	B.	51		Ü	
			5)		0	
2006		25 x 4	3)		0	
2097		93,	96)		0	
2098	1	93.	45)		0	
2099	1	112.			0	
2100	-	321.	1841		0	
2101	i	321.	182.		0	
2104	Ž.	314.	1)		.0	
2114	1	314, 95 36,	101)		0	
2118	-	38.	44)		0	
2200	-	1.	1001		0	
		101.			0	
2203	-	77.	91)		0	
2204	1	140	1671		0	
20058	- 2	4 4 75			0	
2206	1	109,	1911		0	
2207	-	37.	391		0	
2208	6	104	103)		0	
2209	1	87.	901		0	
2210	i	87.	921		0	
2711	i	82.	36)		0	
2212	*		83)		0	
		2000	200			

	20	CHCEL	DIMM	FLOW MAILES	
CENTROID NUMBER		LIN	K.	SOURCE/SINK RATE	(VCH/HR)
2063	1	4.	6.3		
2064	1	6.	85)	1920	
2066	1	89,	367	1920	
2067	t	84.	831	1860	
2068	1	41.	401	3312	
2070	3	29.	40)	468	
2071	Š	40.	201	2368	
2072	i	39.	45)	1800	
	*	38.	110)	1272	
2074		110.	104)	1272	
	.6		35)	2472	
	5		107)	1800	
		111.		1800	
7777	1		107)	720	
	0		190)	2400	
		70.	189)	2460	
2080	1	313.	5)	2772	
2082	8	315.	1.7	2508	
2093	16	80	1137	1044	
2084	6	108.	86)	1044	
2085	1	88	96)	1044	
	1		94)	1044	
	1		5.51	1200	
2098	6	96.	1691	1104	
2089	t	78.	77)	2604	
2090	6	8	5)	0	
2091	1	167.	101)	2160	
				0	
		8.	5)	6988	
2094		317.	5)	9276	
	1		3)	1102	
2096	1	317.	5)		
2097	3	93.		744	
		93.	45)	2100	
		112,		1308	
		321			
		112		1188	
		317.	1521		
			5)	0	
		314.	2.7	912	
2114		95.		1212	
27.7.7.7.	6		44)	1752	
2200		1.		996	
			79)	1092	
	1		91)	1092	
2204	.6		1671	1092	
	1	112.	259)	840	
		109.	191)	1236	
2207	1	37,	39)	: 596	
2208	1	104.	105)	1596	
2209	1	87.	901	1200	
2: 10	X	87.	92)	1200	
2211	10	82	76)	648	
2212	1	30.	83)	1296	

	ww.		CR. CONT.			
CENTROID NUMBER		LINK		SOURCE/SINK	RATE	(VEH/HR)
2063	(4.	6)	7	128	
2054	1	6			320	
			361		320	
	1	84	837		176	
	i		40)		452	
W. T. T. W.	è	39.	40)		068	
		40.	391		388	
2072		39.	45)		056	
2073		38.			868	
			104)		868	
			35)		568	
		98.			056	
		111.			056	
2078			107)		650	
		90,			400	
2080		70.			544	
2081			2)		228	
		315.	1)		640	
2063	-	88.	113)	2	340	
	-	108.		2	340	
2085		88.	96)		340	
2086	18	96.	94)	2	340	
2087	1	113.	86)	2	700	
2088	(96.	169)	5	484	
2089	-	78.	773	5	856	
2090	-	В.	5)		222	
2091		167,	101)	4	860	
2090	-	8.	53	9	999	
2093	-	8,	5)	9	999	
2094		317.	5.)	9	999	
2095	6	316.	3)	2	592	
2096		317,	5)	9	999	
2097	(93,	961	1	680	
2098	4		45)		716	
	(112,		5.	940	
	(321.		2	664	
		112.			550	
22.02	- (317,	5)		870	
	-	314.	1)		052	
			101)		724	
2118	(44)		936	
5500		1.	100)		256	
5505	-	77.	791		472	
					472	
5.7.2.3	1		167)		472	
2205			2591		896	
			191)		772	
		37.	39)		600	
2208			105)		600	
	5		901		712	
27'10	8		92)		722	
2011			36)		452	
5515	-	30.	83)	5	916	

	241				
CENTROID NUMBER		LIN	4	SOURCE/SINK RATE	(VEH/HR)
2063	-	4.	6)	75.20	
2064	-6			2400	
7066		89		2400	
		-	83)	2328	
2068	. (41,	401	4140	
2070	(37.	40)	598	
2071	-(40.	397	2999	
2072	i	39,	45)	2256	
2073	(110)	1596	
2074	1		104)	1396	
2075	1		35)	3096	
2076	(98,	1071	2256	
2077	1	111.	109)	2253	
2078	4	105.	1071	900	
2079	1	99.	1901	3000	
2080	X	70,	189)	3084	
2081	1	313/	21	3456	
5085	(315.		3132	
	(88	113)	1296	
	-	108	857	1276	
2035		mm.	96)	1296	
	1	96.	94)	1296	
2087	1	113.	94) 86)	1500	
		961	169)	1380	
		78.		3252	
2090	-	8.	5)	5616	
2091	1	167.		2700	
2093		8,		5615	
2094		317.	51	5796	
2095		316.		1440	
2096		317.		5796	
2097	1		56)	936	
2098	1	93.	45)	2628	
2099	1	112.	2631	1632	
2100	1		186)	1476	
2101	-	112	1521	1236	
2104		314.	17	1140	
	1	77.7	1017	1512	
2118	t		44)	2184	
		1.		1248	
2202		101.	79)	1368	
2203	-		91)	1368	
2204		169.		1368	
2205		112		1056	
2206		109.		1548	
2207	i		39)		
		104			
2209		87,			
2210		67.			
2211		82.		804	
5515		-			
6.6.1.6	- 1	200	00	1050	

SOURCE/SINK FLOW RATES

CENTROID NUMBER	LI	VK.	SOURCE/SINK RATE (VEH/HR)
2063	(4,	6)	3168
2064	1 6.	65)	960
2056	(89,	36)	960
2067	(84,	83)	924
2069	(41,	40)	1656
2070		40)	240
2071	(40,		1200
2072	(39.	45)	900
2073	(38,		636
2074	(110,		636
2075	(37.		1236
2076	(98,		900
2077	(111,		900
2078	(105.	107)	360
2079	(99,	190)	1200
2080	(70.	189)	1236
2081	(313,	2)	1380
2082	(315.	1)	1248
5083	(88,	113)	516
2084	(108,	86)	516
2085	(88.	961	516
2086	(96,	94)	516
2087	(113,	86)	600
		169)	552
2089	(7B,		1296
2091		.01)	1080
2093	(8,		4488
	(317,	5)	4644
2095	(316,	3)	576
	(93,	96)	372
	(93,		1044
	(112,		660
2100		180)	588
	(112.	152)	472
	(314,	1)	456
	(95,	7.7	600
	(38,	44)	876
		100)	504
	(101,	79)	.95
		91)	552
	(169,	167)	552
	(112,	259)	650
	(37.		612
	4	39)	804
	(87,	105)	804
	(87,	90)	600
	(82,	92)	600
	(36,		324
****	, 30,	83)	648

1	0 100		
		NODE 315 IS UNDER SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) 0 100	+	
		NODE 316 IS UNDER SIGN CONTROL	
INTERVAL MUMBER 1	DURATION (SEC) (PCT) O 100	+	
		NODE 317 IS UNDER SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) O 100	++	
		NODE 321 IS UNDER SIGN CONTROL	
INTERVAL NUMBER 1	DURATION (SEC) (PCT) 0 100	++	

INTERPRETATION OF SIGNAL CODES

0	YIELD OR AMBER
1	GREEN
2	RED
3	RED WITH GREEN RIGHT ARROW
4	RED WITH GREEN LEFT ARROW
5	STOP
6	RED WITH GREEN DIAGONAL ARROW
7	NO TURNS-GREEN THRU ARROW
8	RED WITH LEFT AND RIGHT GREEN ARROW
9	NO LEFT TURN-GREEN THRU AND RIGHT

NODE 249 IS UNDER SIGN CONTROL

					PHEN	DIGH	COMINGE								
NUI	MBER	DURATION (SEC) (PCT) 0 100	(104, 249)			/	APPROACHES	-						 	+
			NODE	250 IS	UNDER	SIGN	CONTROL								
NU	MBER	DURATION (SEC) (PCT) 0 100	(248, 250)	249,	250)	4	APPRDACHES	-		-				 	٠
			NODE	253 16	UNDER	SIGN	CONTROL								
NUN	MBER	DURATION (SEC) (PCT) 0 100	(45, 253)			A	PPRDACHES							 	٠
			NODE	255 18	UNDER	SIGN	CONTROL								
MOL	BER	(SEC) (PCT)	(227, 255)	(253,	255)	A	PPRDACHES 45, 255)	+ -		-				 	٠
			NODE	258 18	UNDER	SIGN	CONTROL								
NUM	1BER	DURATION (SEC) (PCT) 0 100	(255, 258)	(259, 1	258)	A	PPROACHES							 	٠
			NODE	259 IS	UNDER	SIGN	CONTROL								
NUP	MBER	DURATION (SEC) (PCT) O 100	(79, 259)	(112. 1	259)	A	PPROACHES							 	*
			NODE	262 IS	UNDER	SIGN	CONTROL								
NUN	1BER	DURATION (SEC) (PCT) O 100	(258, 262)	(263,	2621	A	PPROACHES		-	-		-		 -	
			NODE	263 15	UNDER	SIGN	CONTROL								
NUM	IBER	DURATION (SEC) (PCT) 0 100	(112, 263)	91.	2631	A	PPROACHES							 	
			NODE	266 18	UNDER	SIGN	CONTROL								
NUM	BER	DURATION (SEC) (PCT) O 100	(262, 266)	(267,	2661	A	PPRDACHES							 -	•
			NODE	267 15	UNDER	LIGN	CONTROL								
INT	ERVAL BER 1	DURATION (SEC) (PCT) 0 100	(186, 267)			A	PPROACHES			٠.					٠
		OFFSET O		NO	DE 26	8									
INT		DURATION									IGTH	75	SEC		
NUH	BER	(SEC) (PCT) 23 26 55 73	(106, 268)	(107. 2 1	268)	3	PROACHES	-						 	•
			NODE	269 15	UNDER	SIGN (CONTROL								
NUM	BER	DURATION (SEC) (PCT) 0 100	(250, 269)	268.	269)	AF	PROACHES							 	٠
			NODE	303 IS	UNDER	SIGN C	CONTROL								
NUM	BER	DURATION (SEC) (FCT) 0 100	(192, 303)	(269,	3031	AF	PROACHES							 -	٠
			NODE	313 18	UNDER	SIGN C	CONTROL								
NLIM.	BER	DURATION (SEC) (PCT) 0 100	**			AF	PROACHES	-						 	
			NODE	314 18	UNDER	SION C	CONTROL								
		DURATION (SEC) (PCT)	** * * * * * * * * * * * * * * * * * * *			AF	PPDACHES					* *		 	

NUMBER	DURATION (SEC) (PCT) O 100	(80. 113)			A ROACHES	•		-						-	
		NODE	151 18	UNDER	SIGN CONTROL										
NUMBER	DURATION (SEC) (PCT) 0 100	(152. 151)			APPROACHES			-	-	*					
		NODE	152 IS	UNDER	SIGN CONTROL										
NUMBER		(112, 152)			APPROACHES								•	-	
	DFFSET C		NO	DE 1	57	C'		1.5	NOTH	78	GE/				
THEFRUM					APPROACHES										
NUMBER	DURATION (SEC) (PCT) 50 66 25 33	(94, 167) 1 2	(169, 2 1	167)	- ACTIONCIES										ļ
		NODE	169 15	UNDER	SIGN CONTROL										
NUMBER	DURATION (SEC) (PCT) O 100	96, 169)			APPRDACHES			•				•	-		•
		NODE	186 IS	UNDER	SIGN CONTROL										
NUMBER	DURATION (SEC) (PCT 0 100	(321, 186)			APPROACHES	• •		-							•
		NODE	188 3	UNDER	SIGN CONTROL										
NUMBER		(266, 188)		* * *	APPROACHES			*			1		-	-	+
		NODE	189 IS	UNDER	SIGN CONTROL										
NUMBER		(70, 189)			APPROACHES			-						* :	*
		NODE	190 18	UNDER	SIGN CONTROL										
NUMBER	DURATION (SEC) (PCT) 0 100	(99, 190)			APPROACHES										+
		NODE	191 18	UNDER	SION CONTROL										
NUMBER		(109, 191)		* * *	APPROACHES			-					-	-	٠
		NODE	192 15	UNDER	SIGN CONTROL										
NUMBER		(191, 192)			APPROACHES			*					-		٠
		NODE	220 15	UNDER	SIGN FOL										
NUMBER	DURATION (SEC) (PCT) 0 100				APPROACHES	- 14		-			* *			*	,
		NODE	226 IS	UNDER	SION CONTROL										
1 50	DURATION (SET) (PCT) 100	(35, 226)	(220,	226)	APPROACHES	* *	* *	-							•
				UNDER	SIGN CONTROL										
4 -41 - 4		(226. 727)			APPROACHES			*		7.5					•
		NODE	248 15	UNDER	SIGN CONTROL										
		(103, 248)		248)			* *			4.	•				٠

NODE 100 IS UNDER SIGN CONTROL

		11000	TAN IN DIESEN DIAM COMINGE	
NUMBER	DURATION (SEC) (PCT) 0 100	(1, 100)	(113, 100)	
			NODE 101	
	OFFSET O	SEC		CYCLE LENGTH 75 SEC
NUMBER	DURATION (SEC) (PCT)	(167, 101)	(95, 101)	
2	60 80 15 20	1 2	1.	
		NODE	103 IS UNDER SIGN CONTROL	
NUMBER	DURATION (SEC) (PCT) O 100	(45, 103)	(44, 103)	
			NUDE 100	
	OFFSET 0	SEC		CYCLE LENGTH 75 SEC
NUMBER	DURATION (SEC) (PCT) 55 72	(44, 104)	(110, 104)	
2	20 26	1	2	
			105 IS UNDER SIGN CONTROL	
TACTEDUAL	DUBATION		APPROACHES	
NUMBER	(SEC) (PCT) 0 100	(104. 105)	APPROACHES	
		NODE	106 IS UNDER SIGN CONTROL	
INTERVAL	DURATION		APPROACHES	
NUMBER 1	(SEC) (PCT) 0 100	(105, 106)		
	OFFSET O	CEA	NODE 107	
				CYCLE LENGTH 75 BEC
NUMBER	DURATION (SEC) (PCT) 25 33 50 66	(98, 107)	(105, 107) (109, 107)	
	20 00		1 1	
	OFFSET O	SEC	NODE 108	CYCLE LENGTH 75 SEC
INTERVAL	DURATION			
MUMBER		(86, 108)	(88, 108) 1 2	
	DEFECT A		NODE 109	
	OFFSET O			CYCLE LENGTH 75 SEC
NUMBER	DURATION (SEC) (PCT) 25 33 50 66	(107, 109)	APPROACHES	
2	50 66	1	2	
	OFFSET O	SEC	NODE 110	CYCLE LENGTH 75 SEC
	DUNATION (SEC) (PCT) 55 73 20 26	(38, 110)	APPROACHES	• • • • • • • • • • • • • • • • • • • •
			111 IS UNDER SIGN CONTROL	
INTERNAL	DURATION		All and the second seco	
NUMBER	(SEC) (PCT) 0 100		APPROACHES	
		NODE	112 IS UNDER SIGN CONTROL	
NUMBER	DURATIC#4 (SEC) (PCT) O 100	(209, 112)	APPROACHE	· · · · · · · · · · · · · · · · · · ·
		-ODE	113 IS LINDER BION CONTROL	

MODE 113 IS UNDER SIGN CONTROL

0 100 1

	OFFSET C	SEC	NODE 86	CYCLE LENGTH 75 SEC
THITTENIA				
INTERVAL	(SEC) (PCT)	(108, 86)	APPROACHE (113, 86)	5 •
1	20 26	1 2	2	
	55 73			
	OFFSET O	000	NODE 87	CYCLE LENGTH 75 BEC
INTERVAL	DURATION (SEC) (PCT)	(83. 87)	APPROACHE (85, 87)	s +
. 1	50 BO	2		
5	:5 20	1	2	
		NOD	E 88 IS UNDER SIGN CONTROL	
			APPROACHE	S +
NUMBER 1	(SEC) (PCT) 0 100	(113, 88)		
	0 100			
			E 89 IS UNDER SIGN CONTROL	
		** * * * *	APPROACHE	s +
	(SEC) (PCT) 0 100			
		11.11		
			E 90 IS UNDER SIGN CONTROL	
INTERVAL	DURATION	** * * * * *	92, 90) (E7, 90)	S +
NUMBER 1	(SEC) (PCT) 0 100	(83, 90)	(92, 90) (27, 90)	
	OFFSET (SEC	NODE 91	CYCLE LENGTH 75 SEC
THITEQUAL	DURATION			
NUMBER	(SEC) (PCT)	(77, 91)	97, 91)	5 •
1 2	40 53 35 46	1 2	2	
*	35 46	*		
		NOD	E 92 IS UNDER SION CONTROL	
INTERVAL	DURATION	** * * * *	APPROACHE	5
NUMBER	(SEC) (PCT) 0 100	(87. 92)		
		1		
		NOD	E 93 IS UNDER SIGN CONTROL	
	DURATION		APPROACHE	8 *
1	0 100	1 437	(92, 93)	
		NOT	E 94 15 UNDER SIGN CONTROL	
			and the second s	
NUMBER	(SEC) (PCT)	(96. 94)	(108, 94) (167, 94)	S +
	0 100			
*	0 100	1		
		NOD	E 95 IS UNDER SIGN CONTROL	
			THE THE STREET WASTE WOLLDEN	
ALC: UNK TO ET TO	DURATION		APPROACHE	s
	(SEC) (PCT)	() 40, 95)	APPROACHE	s
		()AC, 95)	APPROACHE	
	(SEC) (PCT)	()AC, 95)	APPROACHE	
1 INTERVAL	(SEC) (PCT) 0 100	()AC. 95)	F. 96 IS UNDER SIGN CONTROL	
1 INTERVAL NUMBER	O PATION (SEL. (PCT)	()AC. 95) 1 NOD	96 IS UNDER SIGN CONTROL	
1 INTERVAL NUMBER	(SEC) (PCT) 0 100	()AC, 95) 1 NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96)	s
INTERVAL NUMBER I	D PATION (SEC. (PCT) 0 100	()AC. 95) 1 NOD	96 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I	D PATION (SEC. (PCT) O 100 DURATION	()AC, 95) NOD (88, 96)	F. 96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 E 97 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I	D PATION (SEC. (PCT) O 100 DURATION	()AC. 95) 1 NOD (88, 96) 1 NOD	F. 96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 F. 97 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT)	()AC, 95) NOD (98, 96) 1 NOD (78, 97)	96 IS UNDER SIGN CONTROL 93, 96) (169, 96) 1 1 97 IS UNDER SIGN CONTROL (108, 97)	s
INTERVAL NUMBER I INTERVAL NUMBER 2	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100	()AC. 95) NOD (88, 96) NOD (78, 97)	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 E 97 IS UNDER SIGN CONTROL (108, 97) 1 F 98 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER INTERVAL NUMBER INTERVAL	DIPATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100 DURATION	()AC. 95) NOD (88, 96) NOD (78, 97) NOD	96 IS UNDER SIGN CONTROL 93, 96) (169, 96) 1 1 97 IS UNDER SIGN CONTROL (108, 97)	s
INTERVAL NUMBER I INTERVAL NUMBER I TINTERVAL NUMBER	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100	()AC. 95) NOD (88, 96) NOD (78, 97) NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 E 97 IS UNDER SIGN CONTROL (108, 97) 1 F 98 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I INTERVAL NUMBER I TINTERVAL NUMBER	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT)	()AC. 95) NOD (88, 96) NOD (78, 97) NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 E 97 IS UNDER SIGN CONTROL (108, 97) 1 F 98 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I INTERVAL NUMBER I TINTERVAL NUMBER	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT)	()AC, 95) NOD (98, 96) NOD (78, 97)	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 97 IS UNDER SIGN CONTROL (108, 97) 1 98 IS UNDER SIGN CONTROL	s
INTERVAL NUMBER I INTERVAL NUMBER I INTERVAL NUMBER I INTERVAL NUMBER	DURATION (SEC) (PCT) O 100	()AC, 95) NOD (98, 96) NOD (78, 97) NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 F 97 IS UNDER SIGN CONTROL (108, 97) 1 98 IS UNDER SIGN CONTROL NODE 99	S
INTERVAL NUMBER INTERVAL NUMBER INTERVAL NUMBER INTERVAL NUMBER	DURATION (SEC) (PCT) O 100 DURATION (SEC) (PCT) O 100	()AC, 95) NOD (88, 96) NOD (78, 97) NOD + NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 F 97 IS UNDER SIGN CONTROL (108, 97) 1 98 IS UNDER SIGN CONTROL NODE 99 (100, 99)	S
INTERVAL NUMBER INTERVAL NUMBER INTERVAL NUMBER INTERVAL NUMBER	DURATION (SEC) (PCT) O 100	()AC, 95) NOD (88, 96) NOD (78, 97) NOD + NOD	96 IS UNDER SIGN CONTROL (93, 96) (169, 96) 1 1 F 97 IS UNDER SIGN CONTROL (108, 97) 1 98 IS UNDER SIGN CONTROL NODE 99	S

```
INTERVAL DURATION
NUMBER (SEC) (PCT)
1 0 100
                                        - - - - - APPROACHES - -
                                    NODE 44
         OFFSET O SEC
                                                          CYCLE LENGTH 75 SEC
                                      ---- APPROACHES --------
INTERVAL
         DURATION
NUMBER (SEC) (PCT) ( 38, 44) ( 103, 44)

1 55 73 1 2

2 20 25 2 1
                                      NODE 45
         OFFSET O SEC
                                                           CYCLE LENGTH 75 SEC
NUMBER (SEC) (PCT) ( 39, 45) ( 93, 45)
        65
         65 B6
                                     NODE 68
          OFFSET O SEC
                                                           CYCLE LENGTH 75 SEC
INTERVAL DURATION
NUMBER (SEC) (PCT)
                                           - - - APPROACHES - -
                   ( 99, 68) ( 86, 68)
             40
60
                            NODE 69 IS UNDER SIGN CONTROL
NODE 70 IS UNDER SIGN CONTROL
INTERVAL DURATION
                                      - - - - - APPROACHES - - - - -
NUMBER (SEC) (PCT)
                   ( 69, 70)
                            NODE 77 IS UNDER SIGN CONTROL
INTERVAL
          DURATION
                                      - - - - - - APPROACHES - - - - - -
NUMBER (REC) (PCT) ( 78, 77)
1 0 100 1
                                     NODE 78
          OFF SET O SEC
                                                           CYCLE LENGTH 75 SEC
INTERVAL
          DURATION
                                           - - - APPROACHES - -
NUMBER (CEU) (PCT) ( 94, 78) ( 108, 78)

1 15 20 2 1

2 60 80 1 2
                                      NODE 79
          DEFSET O SEC
                                                           CYCLE LENGTH 75 SEC
INTERVAL
          DURATION
                                           - - - APPROACHES - - - -
10MPSD (SEC) (PCT) ( 77, 79) 101, 79)
1 15 20 1 2
2 60 80 2
                             NODE BI IS UNDER SIGN CONTROL
INTERVAL DURATION
NUMBER (SEC) (PCT)
                      +- - - - - - - - - - - - - APPROACHES - - - - - -
                             NOTE BE IS UNDER SIGN CONTROL.
NUMBER (SEC) (PCT)
1 0 100
                                   - - - - - - - - APPRDACHES - - - - - - - - -
                     ( 81, 82)
                             NOW: 83 IS UNDER SIGN CONTROL
INTERVAL
         DURATION
                                           - - APPROACHES - -
                     ( 36, 83) ( 84, 83)
NUMBER (SEC) (PCT)
                             NODE 84 IS UNDER SIGN CONTROL
INTERVAL DURATION
                                       - - - - - APPROACHES - - -
NUMBER (SEC) (PCT)
                             NODE 85 IS UNDER SIGN CONTINUE
INTERVAL
          DURATION
                               NUMBER (SEC) (PCT) ( 6. 85)
```

SPECIFIED FIXED-TIME SIGNAL CONTROL. AND SIGN CONTROL. CODES

NUDE 1 IS UNDER SIGN CONTROL

			NUDE	1 IS UNDER	SIGN CONTROL		
NUMBER	DURATION (SEC) (PCT 0 100) (2.	1)		APPROACHES - (315 1)		
			NODE	2 IS UNDER	SIGN CONTROL		
NUMBER	DURATION (SEC) (FCT) 0 100) (313,	2)		~ - APPROACHES -		
	OFFSET	O SEC		NODE		CYCLE LENGTH	75 SEC
LAGERIAL							70 000
NUMBER	DURATION (SEC) (PCT) 65 86 10 13	(5,	31	(316, 3)	APPROACHES -		
	10 13	2		1			
				4 IS UNDER	SIGN CONTROL		
NUMBER	DURATION (SEC) (PCT) 0 100)			A°PROACHES -		
				NODE			
	OFFSET	O SEC				CYCLE LENGTH	75 SEC
	DURATION			(317, 5)	APPROACHES -		
1 2	65 86			1			
	10 13						
				6 IS UNDER	Tarana Managara		
NUMBER	DURATION (SEC) (PCT) 0 100	(4,			APPROACHES -		
			NODE	8 IS UNDER	SIGN CONTROL		
INTERVAL	DURATION	** * *			APPROACHES -		
NUMBER 1	(SEC) (PCT)	1	8)				
			NODE	35 IS UNDER	SIGN CONTROL		
INTERVAL	DURATION				APPROACHES -		
NUMBER) (37.	351	1 90, 35)			
			NODE	56 IS UNDER	SIGN CONTROL		
NUMBER	DURATION (SEC) (PCT 0 100) (62.	367	(89, 36)	APPROACHES -		
			NEIDE	37 IS UNDER	SIAN CONTROL		
TAITED IN	DIMATION		14000				
HUPBER	(SEC) (PCT) 0 100				APPROACHES -		
			NODE	38 IS UNDER	SIGN CONTROL		
NUMBER	DURATION (SEC) (PCT) 0 100	40.		~ ~ ~ ~ ~ ~	APPROACHES -		
				NUDE 3	39		
	UFFSET	O SEC				CYCLE LENGTH	75 SEC
	DURATION (SEC) (PCT) 50 66 25 33	(37,		(40, 39)	APPROACHES -		
				NODE 4	10		
	OFFSET	O SEC				CYCLE LENGTH	75 SEC
	DURATION (SEC) (PCT) 37 49 78 50	1 39,	40	(41, 40)	APPROACHES -		

-	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
200	

(167 (169 (169 (169 (186 (191 (192 (226 (227 (227 (248 (249	96) 167) 95) 267) 192)	0	100	100	0 0	NO NO	YES NO NO	NO YES YES	NO NO
(169 (169 (186 (191 (192 (220 (227 (227 (248	167) 95) 267) 192)	0		100	0	NO			
(169 (186 (191 (192 (226 (227 (227 (248	95) 267) 192) 303)	000	0	100					
(186 (191 (192 (226 (227 (227 (248	267) (192) (303)	0	0			YES	NO		NO
(191 (192 (220 (226 (227 (227 (248	192)	0		0	100	NO	NO	YES	NO
(192 (220 (226 (227 (227 (248	303)			0	100	NO		NO	YES
(226 (227 (227 (248		0	0	ō	100	NO	NO	NO	YES
(226 (227 (227 (248	100000000000000000000000000000000000000	0	0	0	100	NO	NO	NO	YES
(227 (227 (248	226)	0	100	0	0	NO	NO	NO	YES
(227 (227 (248	227)	0	24	Ô	76		YES	NO	NO
(227	248)	0	100	0	0	NO	YES	NO	YES
(248		0	100	0	0	NO	YES	NO	NO
		0	100	0		NO	YES	NO	NO
		0	0		0	NO	YES	NO	NO
(250		0		0	100	NO	NO	NO	YES
(253		0	100	0	0	NO	YES	NO	NO
(255		Ö	0	0	100	NO	NO	NO	YES
(258			100	0	0	NO	YES	NO	NO
(259		0	100	0	0	NO	YES	NO	NO
		100	0	0	0	YES	YES	NO	NO
(259		0	0	0	100	NO	NO	NO	YES
(262		0	100	0	0	NO	YES	NO	NO
(263		0	0	0	100	NO	NO	NO	YES
(266		0	100	. 0	0	NO -	YES	NO	NO
(267		0	0	0	100	NO	NO	NO	YES
(598		0	0	0	100	NO	NO	NO	YES
(593		0	100	0	0	NO	YES	NO	NO
(313		0	0	100	0	NO	NO	YES	NO
(314		100	0	0	0	YES	NO	NO	NO
(315	1)	0	0	100	0	NO	NO	YES	NO
1 316		. 0	0	0	100	NO	NO	ND	YES
(317	5)	100	0	0	0	YES	NO	NO	
(321		0	100	. 0	ō	NO	YES	NU	NO

**********	LINK (100, 97) (99, 6d) (60, 69) (6, 69) (6, 69) (7, 73) (7, 73) (7, 73) (7, 74) (7, 74) (7, 77) (7, 71) (7, 77) (7, 71) (7, 77) (7, 7	100000000000000000000000000000000000000	TURN MOVEMENT SET 100 100 100 100 100 100 100 100 100 10	# 000000000000000000000000000000000000	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+#2222222222254422222224422442242242242242	NAME OF THE PROPERTY OF THE PR	**	4 0000	CAPACITY CO. 2000000000000000000000000000000000000
(0
4	113. 86)	0	24	26	50	NO	YES	YES	YES	0
•	113. 100)	0	0	100	0	YES	YES	YES	NO NO	0
(152, 151)	0	100	0	0	10	YES	NO	NO	o o

				PKT L			PKT											LOST	g DIS	FREE		
			ENGTH	FE	ET	FULL	LANES		L	ANE	CH	AN	DE	STINA	TION N	NODES	OPP	TIME	HDWY	SPD	RTOR	PED
	1.1		11+100	- 6	R	LANES	L R	GRD	1	2 3	4	5 6		THRU			NODE	SEC	SEC	MPH	CODE	CODE
- 1	111.	109)	55	0	0	1	0 0	0		0 0			107	0	191	0	0	2 5*	2 4	30	O	
(112,	152)	125	0	. 0	1	0 0	0		0 0			0	151	0	0	o	2.54	2 7		-	0
-	112.	2591	160	0	0	1	0 0	0		0 0		0 0	0	0	0	258	0	2.54	1,000	40	0	0
(112.	263)	280	0	0	1	0 0	0		0 0			252	0	0				2 4	35	0	0
1	113.	861	50	ō	. 0	i	0 0	0		0 0			0	68		-99	0	2.5*	3 1	35	0	0
1	113.	88)	55	. 0	0	- 1	0 0	0		0 0					108		0	2.50	2.4	30	0	0
		100)	85	0	0		0 0	0		00			108	96	0	0	0	2.5+	3 1	35	0	0
- (152,		230	0	0		0 0	0		0 0				0	99	0	0	2 5*	3 1	35	0	0
	100000000000000000000000000000000000000	101)	60	0	0		0 0	0		0 0			0		0	0	0	2.5*	2.7	40	0	0
- (167,		80	0	č		0 0	75					0		0	0	0	2.5*	2.4	35	0	0
i	169		70	0	0		200	0		0 0			0	0	78	0	0	2.5+	3 1	35	0	0
1		1671	35	0	0	*	0 0	0		0 0			0	0	94	0	0	2.5+	3 1	35	0	0
-	159,		140	0	- 0		0 0	0		0 0	100	20.00	94		101	0	0	2.5*	2.4	30	0	0
		267)	95				0 0	0		0 0			0	-		-101	0	2.50	3 1	35	0	0
- 7	191.		1.000	0	0	1	0 0	0		0 0			0		0	599	0	2.5+	3 1	40	0	0
1		303)	150	0	0	1	0 0	0	- 133	0 0	-733	3 7	0	-	. 0	303	0	2.5+	2.7	40	0	0
- 51			50	0	0	- 1	0 0	0		0 0		00	0	-	0	8007	0	2.5*	3 1	35	0	0
	220.		110	0	0	4	0 0	0		0 0			0	70.00	0	0	0	2.5*	2.1	60	0	0
1	226.		25	0	0	4	0 0	0		0 0			0	200	0	248	0	2.5*	2.1	60	0	0
- 1		248)	160	0	0	2	0 0	0		0 0			0		0	0	0	2.5*	2 1	60	. 0	0
- 5		255)	115	0	0	3	0.0	0		0 0			. 0	258	0	0	. 0	2.5.	2 1	60	0	0
- 6		250)	110	0	. 0	- 6	0.0	0	0	0 0	0	0 0	0	269	0	0	0	2 5*	2 1	60	0	0
	244		50	0	0	1	0.0	0	0	0 0	0.1	0 0	0	0	0	269	0	2.5+	3.1	35	0	0
- (269)	310	0	0	3	0.0	0	0	0 0	0	00	0	303	0	0	0	2 54	5 1	60	0	0
(253.	2551	25	0.	0	1	0.0	0	0	0.0	0	0.0	0	0	. 0	258	. 0	2.5*	3 1	35	0	0
4	255.	258)	225	0	0	3	0 0	0	0	0 0	0	0 0	. 0	262	. 0	0	0	2.5+	2.1	60	0	0
4	258	262)	260	0	0	4	0 0	0	0	0 0	0	0 0	Ò	255	0	0	0	2.5+	2 1	60	0	. 0
- 6	259,	112)	160	0	0	1	0 0	0	0	0 0	0	00	263	152	0	0	0	2 5.	3.1	40	0	0
1	259.	250)	40	0	C	1	0.0	0	0	0 0	0	0 0	0	0	. 0	262	0	2 5*	3 1	35	0	0
1	262	266)	190	0	0	4	0 0	0		0 0			0	188	. 0		0	2 5+	2 1	60	0	0
- (263.	262)	50	0	0	1	0 0	0	0	0 0	0	0.0	0				Ö	2 5+	3 1	35	0	0
(266,	188)	50	0	0	4	0.0	0				0 0	ō				0	2 5	2 1	60	0	0
(267.	2561	30	0	0	1	0.0	0		0 0			· c				Ö	2 5+	3.1	35	0	0
	268.	2671	20	0	0	1	0 0	.0		0 0			0	- 3		2.55	0	2.5+	3 1	35	0	0
	269.		345	0	0	3	0 0	0				00	Č				ő	2.5*	2 1	-0	. 0	
-	313,		132	0	0	1	0 0	0				0 0	· c			0	0	2 5*	3.1	25	0	0
-	314			0	0	1	0 0	0				0 0	100			-	0	2.5*	2.4		_	0
i	315			. 0	ő	1	0 0	0				0 0	.00			- 20	0	2 5*		25	0	0
- 6	316.	31		0	0		0 0	0				0 0	0							30	0	0
i	317.			0	ő	1	0 0	0		0 0							0		2.7	35	0	0
	321			0	Ö		0 0	0		0 0		2. 2.					0			30	0	. 0
		1001					00	0	0	6. 6	. 0	6 6		267	0	0	0	2.5*	3 1	40	0	0

. INDICATES DEFAULT VALUES WERE SPECIFIED

LANE CHANNELIZATION CODES

RTOR

PEDESTRIAN CODES

((((((((((((((((((((((((((((((((((((((
44.55.58.90.777.88.99.21.3334.556.66.777.88.88.90.23.334.11.11.21.21.21.21.21.21.21.21.21.21.21.
100 13 936 35 100 13 100 100 13 100 13 100 13 100 13 100 13 100 13 100 13 100 13 10
20 170 170 25 175 40 105 25 90 100 120 30 125 40
£ 000000000000000000000000000000000000
$\begin{array}{c} X \\ A \\ B \\ C \\ C$
1
THRU 000 5 5 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
SAGO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GH SORRENARDARARARARARARARARARARARARARARARARARAR
E
RW 000000000000000000000000000000000000
##D00000000000000000000000000000000000

DISTRIBUTION

No. of Copies

OFFSITE

William D. Travers. Chief Emergency Preparedness Branch Division of Radiation Protection and Emergency Preparedness Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

- 100 C. Richard Van Niel
 Emergency Preparedness Branch
 Division of Radiation Protection
 and Emergency Preparedness
 Office of Nuclear Reactor Regulation
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555
- Thomas Urbanik II
 Texas Transportation Institute
 Texas A&M University
 Collage Station, TX 77843

Kirk Barnes Texas Transportation Institute Texas A&M University College Station, TX 77843

ONSITE

39 Pacific Northwest Laboratory

G. R. Hoenes
J. D. Jamison
G. F. Martin
W. D. Meitzler
M. P. Moeller (28)
K. L. Swinth
Publishing Coordination
Technical Information (5)

NAC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION	I REPORT NUMBER AN-PORT	by FIDC and You No I any!
12.84: NRCM 1107. S201, 3202 BIBLIOGRAPHIC DATA SHEET	NUREG/CR-487	4
SEE INSTRUCTIONS ON THE REVERSE	3 LEAVE BLANK	
THE SENSITIVITY OF EVACUATION TIME ESTIMATES TO CHANGES IN INPUT PARAMETERS FOR THE I-DYNEV COMPUTER CODE		
IN INPUT PARAMETERS FOR THE 1-DINE COMPOTER CODE	4 DATE RE	PORT COMPLETED
	March	1988
T. URBANIK II		REPORT ISSUED
M. P. MOELLER K. BARNES	June	1988
PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include 24 Code)	8 PROJECT/TASK/WORK UN	T NUMBER
Pacific Northwest Laboratory	9 FIN OR GRANT NUMBER	
Richland, WA 99352	FIN P2006	
SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include Zip Code)	114 TYPE OF REPORT	
Division of Radiation Protection and Emergency Preparedness	Technical	
Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555	6 PERIOD COVERED Unclusive	e deres
A study performed by the Pacific Northwest Laboratory (PNL) with Transportation Institute for the U.S. Nuclear Regulatory Commission (Northwest to I-DYNEV affecting evacuation time estimates (ETEs). In the determine the sensitivity of ETEs to changes in those parameters were evacuation networks. This information could then be used to determine tional research and to assist in the evaluation of ETEs submitted by it is the capacity reduction factor, the time interval of processing, parameters were applied to two evacuation networks simulating a rural. Changes in each of the six input parameters evaluated for this state estimates of evacuation times. In addition, an algorithm within the mined to route traffic in a potentially unreasonable manner in order the general, however, the results obtained revealed that the sensitivity mates to changes in the input parameters is consistent with traffic metalgorithms included in the model.	addition, this stuen applied to two parameters required icensees and applied, network capacity and free-flow veloand an urban area. udy affected to so he I-DYNEV model we balance the systy of the evacuation	whey input different fing additional fine addi
Evacuation Time Estimates Computer Modelling Transportation Analysis		Unlimited
Emergency Planning		16 SECURITY CLASSIFICAT

Unclassified

Unclassified

(This page)

(The report)

18 PRICE

B IDENTIFIERS OPEN ENDED TERMS

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

120555078877 1 US NRC-OARM-ADM DIV OF PUB SVCS POLICY & PUB MGT WASHINGTON 1AN11S19L19S BR-POR

20555

SPECIAL FOURTH-CLASS RATE POSTAGE & FEES PAID USNRC

PERMIT No. G-67