3/4 LIMITING CONDITIONS FOR OPERATION AND SURVIELLANCE REQUIREMENTS

3/4.0 APPLICABILITY

LIMITING CONDITION FOR OPERATION

- 3.0.1 Limiting Conditions for Operation and ACTION requirements shall be applicable during the OPERATIONAL MODES or other conditions specified for each specification.
- 3.0.2 Adderence to the requirements of the Limiting Condition for Operation and/or associated ACTION within the specified time interval shall constitute compliance with the specification. In the event the Limiting Condition for Operation is restored prior to expiration of the specified time interval, completion of the ACTION statement is not required.
- 3.0.3 When a Limiting Condition for Operation is not met, except as provided in the associated ACTION requirements, action shall be initiated within 1 hour to place the unit in a MODE in which the Specification does not apply to placing it, as applicable, in:

1. At least HOT STANDBY within 6 hours,

- 2. At least HOT SHUTDOWN within the following 6 hours, and
- 3. At least COLD SHUTDOWN within the subsequent 24 hours. Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time limits as measured from the time of failure to meet the Limiting Condition for Operation. Exceptions to these requirements are stated in the individual Specifications.
- 3.0.4 Entry into an OPERATIONAL MODE or other specified applicability condition shall not be made unless the conditions of the Limiting Condition for Operation are met without reliance on provisions contained in the ACTION statements unless otherwise excepted. This provision shall not prevent passage through OPERATIONAL MODES as required to comply with ACTION statements.
- 3.0.5 When a system, subsystem, train, component or device is determined to be inoperable solely because its emergency power source is inoperable, or solely because its normal power source is inoperable, it may be considered OPERABLE for the purpose of satisfying the requirements of its applicable Limiting Condition for Operation, provided: (1) its corresponding normal or emergency power source is OPERABLE; and (2) all of its redundant system(s), subsystem(s), train(s), component(s) and device(s) are OPERABLE, or likewise satisfy the requirements of this specification. Unless both conditions (1) and (2) are satisfied, within 2 hours action shall be initiated to place the unit in a MODE in which the applicable Limiting Condition for Operation does not apply by placing it as applicable in:

1. At least HOT STANDBY within 6 hours.

- 2. At least HOT SHUTDOWN within the following 6 hours, and
- 3. At least COLD SHUTDOWN within the subsequent 24 hours.

This specification is not applicable in MODES 5 or 6.

THIS PAGE PROVIDED FOR INFORMATION ONLY

APPLICABILITY

SURVEILLANCE REQUIREMENTS

- 4.0.1 Surveillance Requirements shall be applicable during the OPER-ATIONAL MODES or other conditions specified for individual Limiting Conditions for Operation unless otherwise stated in an individual Surveillance Requirement.
- 4.0.2 Each Surveillance Requirement shall be performed within the specified time interval with:
 - a. A Daximum allowable extension not to exceed 25% of the surveillance interval, and
 - b. A total maximum combined interval time for any 3 consecutive tests not to exceed 3.25 times the specified surveillance interval.
- 4.0.3 Lure to perform a Surveillance Requirement within the specified time in ...val shall constitute a failure to meet the OPERABILITY requirements for a Limiting Condition for Operation. Exception to these requirements are stated in the individual Specifications. Surveillance Requirements do not have to be performed on inoperable equipment.
- 4.0.4 Entry into an OPERATIONAL MODE or other specified applicability condition shall not be made unless the Surveillance Requirement(s) associated with the Limiting Condition for Operation have been performed within the stated surveillance interval or as otherwise specified.
- 4.0.5 Surveillance Requirements for inservice inspection and testing of ASME Code Class 1, 2 and 3 components shall be applicable as follows:
 - a. During the time period:
 - 1. From issuance of the Facility Operating License to the start of facility commercial operation, inservice testing of ASME Code Class 1, 2 and 3 pumps and valves shall be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code 1974 Edition, and Addenda through Summer 1975, except where specific written relief has been granted by the Commission.
 - 2. Following start of facility Commercial operation, inservice inspection of ASME Code Class 1, 2 and 3 components and inservice testing of ASME Code Class 1, 2 and 3 pumps and valves shall be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as required by 10 CFR 50, Section 50.55a(g), except where specific written relief has been granted by the Commission pursuant to 10 CFR 50, Section 55.55a(g)(6)(i).
 - b. Surveillance intervals specified in Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda for the inservice inspection and testing activities required by the ASME Boiler and Pressure Vessel Code and applicable Addenda shall be applicable as follows in these Technical Specifications:

BASES

The specifications of this section provide the general requirements applicable to each of the Limiting Conditions for Operation and Surveillance Requirements within Section 3/4.

- 3.0.1 This specification defines the applicability of each specification in terms of defined OPERATIONAL MODES or other specified conditions and is provided to delineate specifically when each specification is applicable.
- 3.0.2 This specification defines those conditions necessary to constitute compliance with the terms of an individual Limiting Condition for Operation and associated ACTION requirement.
- 3.0.3 This specification delineates the ACTION to be taken for circumstances not directly provided for in the ACTION statements and whose occurrence would violate the intent of the specification. For example, Specification 3.5.1 requires each Reactor Coolant System core flooding tank to be OPERABLE and provides explicit ACTION requirements if one tank is inoperable. Under the terms of the Specification 3.0.3, if more than one tank is inoperable, the unit is required to be in at least HOT STANDBY within 6 hours and in at least HOT SHUTDOWN within the following 6 hours. As a further example, Specification 3.6.2.1 requires two Containment Spray Systems to be OPERABLE and provides explicit ACTION requirements if one spray system is inoperable: Under the terms of Specification 3.0.3, if both of the required Containment Spray Systems are inoperable, the unit is required to be in at least HOT STANDBY within 6 hours, in at least HOT SHUTDOWN within the following 6 hours, and in at least COLD SHUTDOWN in the following 24 hours. It is assumed that the unit is brought to the required MODE within the required times by promptly initiating and carrying out the appropriate ACTION statement.
- 3.0.4 This specification provides that entry into an OPERATIONAL MODE or other specified applicability condition must be made with (a) the full complement of required systems, equipment or components OPERABLE and (b) all other parameters as specified in the Limiting Conditions for Operation being met without regard for allowable deviations and out of service provisions contained in the ACTION statements.

The intent of this provision is to insure that facility operation is not initiated with either required equipment or systems inoperable or other specified limits being exceeded.

Exceptions to this provision have been provided for a limited number of specifications when startup with inoperable equipment would not affect plant safety. These exceptions are stated in the ACTION statements of the appropriate specifications.

APPLICABILITY

BASES

- 4.0.7 This specification provides that surveillance activities necessary to insure the Limiting Conditions for Operation are met and will be performed during the OPERATIONAL MODES or other conditions for which the Limiting Conditions for Operation are applicable. Provisions for additional surveillance activities to be performed without regard to the applicable OPERATIONAL MODES or other conditions are provided in the individual Surveillance Requirements.
- 4.0.2 The provisions of this specification provide allowable tolerances for performing surveillance activities beyond those specified in the nominal surveillance interval. These tolerances are necessary to provide operational flexibility because of scheduling and performance considerations. The phrase "at least" associated with a surveillance frequency does not negate this allowable tolerance value and permits the performance of more frequent surveillance activities.

The tolerance values, taken either individually or consecutively over 3 test intervals, are sufficiently restrictive to ensure that the reliability associated with the surveillance activity is not significantly degraded beyond that obtained from the nominal specified interval.

- 4.0.3 The provisions of this specification set forth the criteria for determination of compliance with the OPERABILITY requirements of the Limiting Conditions for Operations. Under this criteria, equipment, systems or components are assumed to be OPERABLE if the associated surveillance activities have been satisfactorily performed within the specified time interval. Nothing in this provision is to be construed as defining equipment, systems or components OPERABLE, when such items are found or known to be inoperable although still meeting the Surveillance Requirements.
- 4.0.4 This specification ensures that the surveillance activities associated with a Limiting Condition for Operation have been performed within the specified time interval prior to entry into an OPERATIONAL MODE or other applicable condition. The intent of this provision is to ensure that surveillance activities have been satisfactorily demonstrated on a current basis as required to meet the OPERABILITY requirements of the Limiting Condition for Operation.

THIS PAGE PROVIDED FOR INFORMATION ONLY

APPLICABILITY

BASES

Under the terms of this specification, for example, during initial plant startup or following extended plant outages, the applicable surveillance activities must be performed within the stated surveillance interval prior to placing or returning the system or equipment into OPERABLE status.

4.0.5 This specification ensures that inservice inspection of ASME Code Class 1, 2 and 3 components and inservice testing of ASME Code Class 1, 2 and 3 pumps and valves will be performed in accordance with a periodically updated version of Section XI of the ASME Boiler and Pressure Vessel Code and Addenda as required by 10 CFR 50.55a. Relief from any of the above requirements has been provided in writing by the Commission and is not a part of these technical specifications.

This specification includes a clarification of the frequencies for performing the inservice inspection and testing activities required by Sertion XI of the ASME Boiler and Pressure Vessel Code and applicable Addenua. This clarification is provided to ensure consistency in surveillance intervals throughout these Technical Specifications and to remove any ambiguities relative to the frequencies for performing the required inservice inspection and testing activities.

Under the terms of this specification, the more restrictive requirements of the Technical Specifications take precedence over the ASME Boiler and Pressure Vessel Code and applicable Addenda. For example, the requirements of Specification 4.0.4 to perform surveillance activities prior to entry into an OPERATIONAL MODE or other specified applicability condition takes precedence over the ASME Boiler and Pressure Vessel Code provision which allows pumps to be tested up to one week after return to normal pration and for example, the Technical Specification definition of OPERABLE does not grant a grace period before a device that is not capable of performing its specified functions is declared inoperable and takes precedence over the ASME Boiler and Pressure Vessel provision, which allows a valve to be incapable of performing its specified function for up to 24 hours before being declared inoperable.

PLANT SYSTEMS

AUXILIARY FEEDWATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 Two independent steam generator auxiliary feedwater pumps and associated flow paths shall be OPERABLE.

APPLICABILITY: MODES 1, 2 and 3/

ACTION:

a. With one Auxiliary Feedwater System inoperable, restore the inoperable system to OPERABLE status within 72 hours or be in HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

- 4.7.1.2 Each Auxiliary Feedwater System shall be demonstrated OPERABLE:
 - a. At least once per 31 days on a STAGGERED TEST BASIS by:
 - Verifying that each steam turbine driven pump develops a differential pressure of ≥ 1070 psid on recirculation flow when the secondary steam supply pressure is greater than 800 psia, as measured on PI SP 12B for pump 1-1 and PI SP 12A for pump 1-2. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3.
 - Verifying that each valve (power operated or automatic) in the flow path is in its correct position.
 - 3. Verifying that all manual valves in the auxiliary feedwater pump suction and discharge lines that affect the system's capacity to deliver water to the steam generator are locked in their proper position.
 - 4. Verifying that vaives cW194, CW197, FW32, FW91 and FW104 are closed.
 - At least once per 18 months by:
 - Verifying that each automatic valve in the flow path actuates to its correct position on an auxiliary feedwater actuation test signal prior to entering MODE 3.
 - Verifying that each pump starts automatically upon receipt of an auxiliary feedwater actuation test signal.

 prior to entering MODE 2. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3.
 - Verifying that there is a flow path between each auxiliary feedwater pump and each steam generator by pumping water from the Condensate Storage Tank to the steam generator.

* Provision of section 3.0.4 is not applicable for entry into-

ADDITIONAL CHANGES PREVIOUSLY PROPOSED BY LETTER Serial No. 1508 Date 4/29/88

ADDITIONAL CHANGES PREVIOUSLY
PROPOSED BY LETTER
Serial No. 1377 Date 5/4/87

PLANT SYS EMS

SURVEILLANCE REQUIREMENTS (Continued)

The flow path to the steam generator shall be verified prior to extering MODE 3 by either steam generator level change or Auxiliary Feedwater Safety Grade Flow Indication. Verification of the Auxiliary Feedwater System's flow capacity is not required.

- C. The Auxiliary Feed Pump Turbine Steam Generator Level Control System shall be demonstrated OPERARLE by performance of a CHANNEL CHECK at least once per 12 hours, a CHANNEL FUNCTIONAL TEST at least once per 31 days, and a CHANNEL CALIBRATION at least once per 13 months.
- d. The Auxiliary Feed Pum, Suction Pressure Interlocks, and Auxiliary Feed Pump Turbine Inlet Steam Pressure Interlocks shall be demonstrated OPERABLE by performance of a CHANNEL FUNCTIONAL TEST at least once per 31 days, and a CHANNEL CALIBRATION at least once per 18 months.
- e. After any modification or repair to the Auxiliary Feedwater System that could affect the system's capability to deliver water to the steam generator, the affected flow path shall be demonstrated available as follows:
 - 1. If the modification or repair is downstream of the test flow line, the auxiliary feed pump shall pump water from the Condensate Storage Tank to the steam generator; and the flow path availability will be verified by steam generator level change or Auxiliary Feedwater Safety Grade Flow Indication.
 - If the modification or repair is upstream of the test flow line, the auxiliary feed pump shall pump water through the Auxiliary Feedwater System to the test flow line; and the flow path availability will be verified by flow indication in the test flow line. (see note below)

This Surveillance Testing shall be performed prior to entering MODE 3 if the modification is made in MODES 4, 5 or 6. Verification of the Auxiliary Feedwater System's flow capacity is not required.

Note: When conducting tests of the Auxiliary Feedwater System in MODES 1, 2, and 3 which require local manual realignment of valves that make the system inoperable, a dedicated individual shall be stationed at the valves (in communication with the control room) able to restore the valves to normal system OPERABLE status.

THIS PAGE PROVIDED FOR INFORMATION ONLY

PLANT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- f. Following each extended cold shutdown (> 30 days in MODE 5), by:
 - 1. Verifying that there is a flow path between each auxiliary feedwater pump and each steam generator by pumping Condensate Storage Tank water to the steam generator. The flow path to the steam generator shall be verified by either steam generator level change or Auxiliary Feedwater Safety Grade Flow Indication.

Verification of the Auxiliary Feedwater System's flow capacity is not required.

ADDITIONAL CHANGES PREVIOUSLY
PROPOSED BY LETTER
Serial No. 1508 Date 4/29/88

PLANT SYSTEMS

BASES

3/4.7.1.2 AUXILIARY FEEDWATER SYSTEMS

The OPERABILITY of the Auxiliary Feedwater Systems ensures that the Reactor Coolant System can be cooled down to less than 280°F from normal operating conditions in the event of a total loss of offsite power.

Each steam driven auxiliary feedwater pump is capable of delivering a total feedwater flow of 600 gpm at a pressure of 1050 psig to the entrance of the steam generators. This capacity is sufficient to ensure that adequate feedwater flow is available to remove decay heat and reduce the Reactor Coolant System temperature to less than 280°F where the Decay Heat Removal System may be placed in operation.

Following any modifications or repairs to the Auxiliary Feedwater System piping from the Condensate Storage Tank through auxiliary feed pumps to the steam generators that could affect the system's capability to deliver water to the steam generators, following extended cold shutdown, a flow path verification test shall be performed. This test may be conducted in MODES 4, 5 or 6 using auxiliary steam to drive the auxiliary feed pumps turbine to demonstrate that the flow path exists from the Condensate Storage Tank to the steam generators via auxiliary feed pumps.

3/4.7.1.3 CONDENSATE STORAGE FACILITIES

The OPERABILITY of the Condensate Storage Tank with the minimum water volume ensures that sufficient water is available to maintain the RCS at HOT STANDBY conditions for 13 hours with steam discharge to atmosphere and to cooldown the Reactor Coolant System to less than 280°F in the event of a total loss of offsite power or of the main feedwater system. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

3/4.7.1.4 ACTIVITY

The limitations on secondary system specific activity ensure that the resultant offsite radiation dose will be limited to a small fraction of 10 CFR Part 100 limits in the event of a steam line rupture. This dose includes the effects of a coincident 1.0 GPM primary to secondary tube leak in the steam generator of the affected steam line. These values are consistent with the assumptions used in the safety analyses.

3/4.7.1.5 MAIN STEAM LINE ISOLATION VALVES

The OPERABILITY of the main steam line isolation valves ensures that no more than one steam generator will blowdown in the event of a steam line rupture. This restriction is required to 1) minimize the

INSERT A

Verification of the turbine plant cooling water valves (CW 196 & CW 197), the startup feedwater pump suction valves (FW32 & FW91), and the startup feedwater pump discharge valve (FW106) in the closed position is required to address the concerns associated with potential pipe failures in the auxiliary feedwater pump rooms that could occur during operation of the startup feedwater pump.