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NOMENCLATURE

specific heat at constant pressure [J/kg*K]
diameter of the bed [m]

particle diameter [nn]

mass diffusivity [u /8]

gravitational acceleration [n/o']

enthalpy [J/kg]

heat of fusion [J/kg)]

Leverett function

thermal conductivity [W/m*K]

bed height [m]

capillary pressure [N/n’]

gas pressure [N/n’]

liquid pressure TN/m )

decay heat [W/kg of UO,]

radial distance [m]

saturation

effective saturation, S.z(S-Sr)/(l-S')
residual saturation

tine [s)

temperature (K]

liquid volumetric flux in the z direction [m/s)
velocity at which the solid collapses [m/s]
liquid volumetric flux in the r direction [m/s]
volume fraction of species j in phase i
distance from bottom [m]

volume fraction

thermal diffusivity [m’/s]
surface tension [N/m)]
emissivity

permeability )

viscosity [Pa*s]

theoretical density [kg/m']
dens:ity [k;/n' of total volume)

Subscripts

E
1

gas
liquid
solid



INTRODUCTION




Time-dependent models were subsequently developed by E. Gorham-
Bergeron [13) and Turland/Moore [14,15]. In-pile D series [16-
22) and Degraded Core Coolability [23-24] experiments at Sandia
National Laboratories investigated debris dryout in Liquid Metal
Fast Breeder Reactors and Light Water Reactors, respectively.
Related out-of-pile experiments were conducted by Dhir and Catton
(25) and Squarer and Peoples [26].

Relatively little attention has been given to the postdryout
meltdown of debris beds that form during LWR accidents. Several
Molten Pool [33-37) and Dry Capsule (DC) [38-30] experiments
conducted at Sandia National Laboratories investigated incipient
debris melting within the context of Liquid Metal Fast Breeder
Reactor (LMFBR) accidents. A series of complementary Melt
Progression (MP) experimeuts are being planned at Sandia to study
the transition of a dry LWR debris bed to a final molten pool
state. The importance of U-2r-0 chemistry will be examined in
the MP experiments whereas the earlier LMFBR work stressed UQ,-
stainless steel interactions. Larger particles will be used in
the MP study (average diameters near 2 mm versus 0.2 mm in the DC
experiments) and the temperature gradients will be smaller. Due
to large thermal gradients in the DC experiments, evaporation and
recondensation was a dominant crust formation process [30].

Natural convection effects in the final molten pool state
have been investigated in many LMFBR studies [40-47]. Emara and
Kulacki [40], Suo-Anttila and Catton [41], Cheung [42] and
Tveitereid [43] modeled natural convection flows in horizontal
fluid layers with internal energy generation. Kulacki and
Goldstein [44], Baker et al.[45] and Faw et al.[46] present
experimental correlations for upward and downward heat
partitioning in such fluid layers.

In the present study a two-dimensional model is presented
for the postdryout meltdown of a UD,-Z2r0, bed to a final state
consisting of a molten pool supported by dense solid crusted
regions. This model is an extension of earlier work by Kelly
(48], who developed a simplified one-dimensional debris meltdown
model for use in the MELPROG computer code that is being
developed at Sandia and Los Alamos National Laboratories [48,49].
Uncertainties in the MELPROG debris model can affect the manner
in which molten material is released into the lower plenum
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2. ANALYSIS

Typical characteristics of a U0,-Zr0, core rubble bed
similar to the one found in TMI [4] are given in Table I. One
hour after reactor shutdown, power generation falls to
approximately one percent of peak power (8. A TMI-2 type plant
with an operating power of 2.8 x 10* MW and 63,000 kg of Vo, in
the core (5] has a decay heat Q on the order of 300 W/kg of UOD,.
Because it takes several days for the decay heat to decrease
significantly below the one hour value [8], it is assumed that Q
is constant in the following analysis. A lower limit for the UD,
volume fraction Y, is estimated by assuming that all of the
roughly 23,000 kg of Zr in a typical core (6] are oxidized,
resulting in the formation of 30,000 kg of Zr0,. Neglecting
materials other than UD, and 2r0, in the core gives a maximum Zr0,
mass fraction of 0.25. Setting the solid densities of UD, and
Zr0, equal to 10000 and 5700 k;/n' [67, respectively, gives a
maximum Zr0, volume fraction Y, of 0.36.

TABLE I

Typical initial properties of a core rubble bed.

Quantity of Interest Typical Value
decay heat, Q [W/kg of UQ,) 300.0

height of bed, L [m] 1.0°*
diameter of bed, d [m] 1.0°*
particle diareter, d_ [mm] 0.1-10.0 ®
initial solid volume fraction, a 0.8 ©

UO, solid volume fraction, Y.1 2 0.64

ZrO, solid volume fraction, Y“ ¢ 0.38

a. Order of magnitude estimate from Ref. [4].
b. From Ref. [B8].
¢. Porosity used in bed dryout studies [9].







2.1.2 Liquid Phase Velocities

Assuming that the liquids are miscible, Darcy's Law gives for
the momentum equations,

’18‘2"{;“"&’1'“1 , (2a)
and
Py gg " -f; ve- g; Py ' (2b)

where 4 is the dynamic viscosity of the liquid, g is the
gravitational acceleration and %, is the relative permeability.
Equations (2a,2b) take into account viscous drag, which is
assumed to vary linearly with velocity, gravity and motion due to
changes in pressure. Capillary forces enter FEgs.(2a,2b) through
the terms involving the liquid pressure, P,. The capillary
pressure is defined as the difference between P, and the gas
pressure, P. (that is, P =P -P,) [51-558]. Taking the gas flow to
be isobaric gives VP ,=-VP ." From Eqs.(2a,2b) it is therefore
evident that capillary iorces move liquid into regions of high
P..

Leverett [55] derived the following relation for P_ using
dimensional analysis,

1-a 13/2
P = Jy|—E8 (8)
C '
.
where 7 is the surface tension, K is the permeability and J is
the Leverett function. He further noted that J is only a
function of the saturation
. -
8 = (4)

al‘a‘

and the residual saturation S, (which is defined as the threshold
value of S below which bulk liquid motion ceases). Physically, S



represents the fraction of the porosity that is occupied by
liquid. Bird et al. [57) derive a relation for & by modelling
the porous solid as a bundle of capillary tubes,

dz (1-a )3

o e (8)
* 150 ag

where the factor of 150 is determined empirically. Combining
Eq.(3,5) gives

{150 a
P = Jg —2 (6)

dp(l-a.)

Note that P decreases as the particle diameter d , increases.
For 7=0.5 N/n, capillary forces are only inportunt when d is on
the order of 1 mm (or smaller) [50]. Increasing a, incro;so- _ A
and consequently, capillary forces tend to move liquid into
regions of higher solid fraction (lower porosity).

Empirical correlations are needed for J, the relative
permeability %,, and the residual saturation S,. Hofmann and
Barleon [58] give for J

J=a (8,+b)7° , 7

where S  [2(S-8))/(1-8 ,)] is an effective saturation, a=0.38,
b=0.014 and c=0 27. Equst:on (7) agrees with the results of Reed
et al (23] except near S$,0. The primary advantage of Eq.(7) is
the absence of a szn.ulnr:ty at 8§ =0. Note that J and P, reach
their maximum value in regions of low saturation. Ther.!oro,
capillary forces tend to move liquid into regions of low
saturation [51-58].

In fully saturated flow (S=8 «=1), K, equals the permeability,
Kk, while in undersaturatad flcw, only a fraction of the solid is
wetted and £, is proportional to & (with the proportionality
being a function of 8). Reed et al. [23] give for £







2.1.4 Conservation of Energy

Assuting that all the materials present are in local thermal
equrlibrium, only one temperature field needs to be determined.
Radiation heat transfer in the packed bed is incorporated
utilizing a diffusion model with a temperature dependent
conductivity. Balancing the energy stored in the solid and the
liquid, convection by the liquid and the solid (as it collapses),
diffusion and internal heat generation,

g_t 25 [aayujpojh-j‘ alyljpljhlj] Y %; [U zj Y'ja.p.j lJ]
- & (v :§ Yljpljhlj] -3 % [’" :§ Y15P13b1j]

8T ., 18,
¢ %I ket B2 r 8r TKegs 8%
¢ ["-’-1*-1‘ "1"11“'11] Q. (10)

where h“ is the enthalpy of species j in phase i, Q is tho decay
heat expressed as energy release per mass of UO' and k_,, an
effective thermal conductivity which accounts for both conductivo
and radiative heat transfer in the porous solid. Note that
energy stored in the gas phase is neglected in Eq.(10). This is
a reasonable approximation because the densities of materials of

interest are very large (on the order of 10* kg/n') compared with
the gas density.

Radiation heat transfer in the pncked bed is incorporated
using a modified gas conductivity, k'=k »k'“ [60,81]. That is,
it is assumed that gas conduction ana rtdint;on act in parallel.
Several researchers [60-64] have proposed that k, =4€od T’ where
€ is the emissivity of the solid and ¢ is the Steftn Boit:uann
constant. Empirical correlations for kyge in solid-gas systems
are available in the literature [80,61,64). However, in the
current problem, three phases (solid, liquid and gas) are
present. In calculating ky¢: the solid and the liquid are
treated as a single component with a volume averaged thermal
conductivity,









Typical values of densities p,,, specific heats c ., heats of
fusion hyys thermal conductivities k‘ , viscosities u, and surface
tensions 7, for UD, and 2r0, are given in Table II. Initial
noslurnnontu of the liquid UD, thermal conductivity ranged from
2.0 W/(mK) to 11.0 W/(uK) [668,67]. Upon subsequent analysis of
these experiments, Fink and Leibowitz [71] suggested a value of
5.5 '/('-A(‘). The gas is taken to be argon, for which k'- 2.086 x
107 ™" shere k. is measured in W/m*K and T is in Kelvins [3].
The viscosity of tgo melt is calculated by volume averaging. For
simplicity, properties are assumed to remain constant in the
calculations presented here.

TABLE II

Typical UD, and Zr0, properties given in Refs. [3,65-72].

Property uo, (j=1) Zr0, (j=2)
theoretical solid density, Py (kg/m") 9,650 5,700
liquid density, p,, [kg/m') 8,700 5,700
solid specific heat, € e [J/kg*K] 630 700
liquid specific heat, €p1 J/kg*K] 490 815
solid thermal conductivity, kj ‘W/me*K’ 3.0 2.0
liquid thermal conductivity, &U ‘W/me K 5.5 2.7
heat of fusion, h” (J/kg) 274,000 706,000
viscosity, u, (Pa*s) 0.0058 0.0035
surface tension, ] (N/m) 0.45 0.45
2.2 Order of Magnitude Analysis

Consider a debris bed with an initial temperature profile,
T‘(l.r)=T(t.r.O). 1f the distance characteristic of changes in
T, is on the order of L, the height of the bed, conduction and
radiation in the bed become important over the entire domain at
time t=L'/a‘. where a, is an average scolid thermal diffusivivy.
Using the UD, properties in Table 11, setting €=0.4 and
evaluating k_,, at 2000 K, gives a ¥ k.“/[(l—e)p.c”] = 10" a'/s.
Rubble beds with heights on the order of 1 m heat up
adiabatically until time L'/a‘= 10 s. For the times of interest,
T(z,r,t) is highly dependent on initial conditions and

« I8 =






Eqs.(1,10) is straightforward. In two phase regions ., =/ .=se
diagram provides sdditional reletions of the f-rm

Yn?’u? N‘.‘
-3 = f(T) (19)

joy Yesfes’s |

and

Y12P12 /¥ ,
3 - (M) (20)

j=

where M, is the molecular weig . of species j and I and g are
specified functions of temperature. Terms on the left hand side~
of bqs.(19,20) represent usle fractions of 2r0, in the solid and
liquid phases, respectively. Equations (16—203 along with %he
relations, Y =1-Y  and Y,,=1-Y, , are then solved for the

primitive variables, T, a,, a,, Y Y Y“ and Yu

s’ 2’

- 14



8. RESULTS AND DISCUSSION

Solutions are presented in the following sections for a 0.5 m
high UD,—ZrO’ porous bed with a diameter of 0.5 m, an average
particle diameter of 1 mm, an initial uniform porosity of 0.4 and
a Z2r0, to U0, mass ratio of 0.1. The bed is initially at a
uniform temperature of 1500 K and the boundaries continue to
radiate ¢o an environment at 1500 K as the teamperature of the bed
increases due to decay heating. It is assumed in these
calculations that the solid begins collapsing when a,=0.3. The
effect of varying the particie diameter will be discussed in
section 3.2.

3.1 Base Case

Temperature contours in the bed at t=3200 s are saown in Fig.
2. Because of the low thermal conductivities involved, the
temperature in the bed is fairly uniform except in narrow thermal
boundary layers. For a Zr0, to UD, mass ratio of 0.1 (which
corresponis to a Zr0, mole fraction of 0.18), Fig.1 gives a
solidus temperature of 2830 K. Therefore, the 28C0 K contour
approximately encloses the melt zone. A plot of the solid
fraction a, at this time is shown in Fig. 3. Note that a, has
decreased in the center of the bed (there is a corresponding
increase in a;). No liquid motion is evident because the
saturation is below the critical residual saturation S,. That
is, liquid is held in place by surface tension effects.

Liquid motion is evident at t: 3400 s (see Fig.4). Melt
flowing downward and radially outward lLas refrozen, forming a
crust as evidenced by the appearance of the cross hashed region.
Radial relocation is driven by capillary forces, which tend to
move liquid into regions of higher solid fraction. Downward
relocation is due to both gravity and capillary forces. A crust
has not formed above the melt zone at this time because gravity
opposes upward relocation. As shown by the contours in Fig. 5,
temperatures in regions adjacent to the melt zone increase as
liquid freezes, giving up its heat of fusion.

Because the beds of interest are rich in UOz, the Zr0. mcle
fraction is initially larger in the liquid than in the solid (see
Fig. 1). As liquid relocates the local Zr0, mass fraction
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changes. A normalized U0, to Zr0, mass ratio n is defined such
that n=1 initially. In a bed with an initial 2r0, mole fraction
of 0.5, the solidus and liquidus temperatures both equal 2810 K
and consequently, n remains uniform as melt forms and relocates.
Contours of n at 3400 s and 3600 s for the base case are shown in
Figs. 6 and 7, respectively. Note that 7Zr0, is depleted in the
center of the bed and accumulates in the crust regions. At
t=3600 s, 7 varies from 0.5 in the center to 2.0 in the crust and
the Zr0, mole fraction changes from 0.1 to 0.3.

A blockage has formed below the melt zone before 3600 s
elapse (see Fig. 8). Up to this time most of the melt has flowed
downward under the action of gravity. As the solid fraction in
the center of the bed continues to decrease, gradients of a, and
P, (which is related to a, by Eq.8) increase. That is, the
driving force for capillary forces increases with time. As
evidenced by Fig. 9, the solid fraction in the center of the bed
is below 0.4 at t=3800 s and a crust has begun to form above the
melt zone.

The iow solid fraction region (a,K0.4) in Fig. 9 continues to
grow during the next 400 s (see Figs. 10 and 11). Liquid volume
fractions at t=4200 s are shown in Fig. 12. A two phase (liquid-
solid) molten pool forms above the blockage as liquid
accumulates. A small amount of liquid (a,<0.1) is suspended in
the melt zone above this region by surface tension effects. Note
that the liquid level increases towards the edges of the pool.
This wicking is due to the variation of capillary rise x_  with
solid fraction. An approximate relation for x_ can be obtained
by balancing gravity and capillary forces in Eq.(2a), giving

{10 aja
X -4 (21)
dppg(l—as)

In the region to the left of the blockage in fig. 10, a,
increases with r. Consequently, x_ increases near the edges of
the pool. In the next section it will be shown that this effect
is negligible for 5 mm diameter particles. The gas volume
fraction, a.zl—a'~al, at 4200 s is plotted in Fig.13. 1In the
molten pool, the gas fraction is zero and the flow is fully
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4. CONCLUSIONS

4.1 Summary

A model of melt formation and relocation in a two-dimensional
core rubble bed has been developed. The analysis included: mass
conservation equations for the species of interest (UDO, and
Zr0,); a mcmentum equation (2z,r) which represents a balance among
drag, capillary and gravity forces; and an energy equation which
inccrporated the effects of convection by the melt, radiution and
conduction through the bed and internal heat generation. An
equilibrium J0,-2r0, phase diagram was prescribed and radiative
heat transfer through the bed was incorporated utilizing a
temperature dependent conductivity.

A typical solution was presented and the effect of varying
the average particle diameter d_was discussed. Varying d' had
important effects on melting, liquid relocation and crust
formation. Increasing d_ resulted in higher effective thermal
conductivities, delaying melt formation and decreasing the size
of the melt zone. Melt relocation was faster, liquid flowed
earlier and refreezing was more vigorous in the bed with large
particles.

Materials such as zirconium and stainless steel are currently
being incorporated into the present model. Models developed in
this study will be implemented in the U.S. Nuclear Regulatory
Commission’'s MELPROG computer code [48,49) and the modified
version of the code will be used to analyze the accident ac Three
Mile Island in considerable detail.

4.2 Major Uncertainties

Experiments are needed both to validate the current core
rubble model and to help guide future theoretical work. Major
subjects of interest are (1) chemical interactions; (2) flow
correlations; and (3) collapsing of high porosity particulate
beds. A brief discussion of these issues follows.




Experiments using prototypical materials are needed to test
the chemistry models in the analysis. In particular, the use of
equilibrium phase diagrams must be assessed. Nonequilibrium
behavior can result from both finite reaction rates and finite
diffusion rates - the species of interest (UD',ZrO') are
initially separated in core rubble beds. If the equilibrium
assumption is adequate, a U-Zr-0 phase diagram that represents a
minimization of the Gibb’'s free energy is essential. Especially
important is the accurate determination of heats of fusion and
dissolution energies for the compounds of interest. Such
information will affect predictions of current models. For
instance, a recent study indicates that the dissolution of UQ, by
molten Zr is an exothermic process [73], with a heat release on
the order of twice the heat of fusion of Zr. Because the current
version of the DEBRIS module of MELPROG assumes no heat of
dissolution for this reaction, it underpredicts the amount of uo,
dissolved. Numerical information regarding interactions of U and
Zr with Fe, stainless steel, etc., will also be needed.

Melt relocation models in the analysis also need to be
validated. Recause melt relocation and crust formation is
sensitive to flow correlations such as relative permeabilities,
the residual saturation and the Leverett function, uncertainties
in these correlations can lead to uncertainties in the timing of
core slump. To date, none of these correlaticns have been tested
in porous materials undergoing phase changes.

Another important subject of interest is bed collapse. As
solid melts and flows downward, the solid density in the center
of the bed decreases. Of interest here is the collapse of such
high porosity particulate beds. Past experiments indicate that
such beds can be self-supporting at fairly low densities. Two
explanations have been proposed: (1) ligquid trapped between
particles by surface tension effects keep the particles in place
as they melt; and (2) solid particles sinter as the bed
temperature incroases (mass diffusion rates increase rapidly with
T) Experiments are needed to determine if bed collapse can be
represented using a critical porosity. If such a acdel is
adequate, this critical porosity must be determined as a function
of particle diameter.
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