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NONSAP-C: A NONLINEAR STRESS ANALYSIS PROGRAM
FOR CONCRETE CONTAINMENTS UNDER STATIC,
DYNAMIC, AND LONG~-TERM LOADINGS

oy

P. D. Smith
C. A. Anderson

ABSTRACT

This report describes the NONSAP-C finite element code and its
application to the nonlinear structural analysis of three-dimensional
concrete containments under static, dynamic, and long-term loadings.
Features of this code that allow for easy application to realistic
concrete structural problems are discussed, along with the various
material models used to represent plain and reinforced concrete, for
both time-dependent and time-independent behavior. Applications of
the code to analysis of conventional reinforced concrete structures
and to the structural analysis of prestressed concrete reactor ves-
sels (PCRVs) and PCRV models are illustrated. Comparisons of the
code predictions with previous numerical solutions to these problems
or to experimental data are made. Input instructions for the
NONSAP-C code are described in the report,

I. INTRODUCTICN

Concurrent with the development of computing machines with expanded
memory and faster execution times has been the development of numerical
methods for solving nonlinear physical problems in two and three dimen-
sions. 1In the area of structural mechanics the analysis of reinforced
concrete structures has in the past been treated in an ad hoc fashion
with the use of numerous approximations (such as elastic or perfectly
plastic behavior) to represent the behavior of the reinforced concrete.

The development of fast computers with large memories, together with

nonlinear finite element methods and codes, has rendered such approaches

obsolete, It is the purpose of this report to describe a finite element
code that has been modified at the Los Alamos Scientific Laboratory

(LASL) for the structural analysis of reinforced concrete pressure ves-
sels and containments,
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Analytical procedures that are accurate for prediction of the stress
and deformation fi«ldas of hamogeneous continua encounter numerous diffi-
culties when applied to reinforced concrete structures. Among these
difficulties are the incorporation of the nonhamogeneous behavior caused
by the presence of the reinforcement, concrete cracking, nonlinear con-
crete crushing, the effect of triaxial stress on strength, bond slip. and
dowel action across a cracked section. Consequently, although early
attempts at modeling the behavior of reinforced concrete structures
relied on an elastic finite element analysis,l'2 the preponderance ot
research in this field in the last five years has been concerned with
modeling the nonlinear behavior of reinforced concrete structures by use
of the finite element method.3

Representation of the composite nature of reinforced concrete pro-
ceeded historically with the use of separate finite elements (initially,
constant strain triangles) for the reinforcement and concrete.2 More
recently, with the widespread adoption of isoparametric finite elements
to represent complicated geometrical shapes with a small number of ele-
ments, the emphasis has changed to a "smeared" element stiffness repre-
sentatim.4 In this method the mechanical and geometrical properties
of the plain concrete and the reinforcement are integrated over the
finite element to provide a .tress state-dependent element stiffness,
which can include yielding of the reinforcement and cracking of the
concrete,

Undoubtedly, the most important and difficult nonlinearity in the
analysis of concrete structures is crack formation and propagation.
Concrete cracking is accounted for by introduction of a crack oriented
perpendicular to the maximum principal stress direction whenever the
stress state at the point in guestion satisfies the cracking criterion.
The constitutive matrix is subsequently modified to prevent transmission
of normal tensile stress across the crack plane. The cracking process is
carried out pointwise (at the integration points for isoparametric ele-
ments), and an integrated element stiffness, reflecting the reduction in
stiffness caused by the presence of the crack, is determined. Unfortun-
ately, the extreme material "softening" of crack formation can sometimes

sal 18I nET .
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cause numerical difficulties. Finally, since incremental equations are
usually employed, progessive crack growth can be followed using this
method. Reference 5 is an up-to-date survey of analysis methods for
PCRVs, including a discussion of the numerical treatment of cracking in
concrete.,

Various theories have been advanced to describe the time-independent
behavior of concrete under multiaxial compressive stress states. These
theories include elastic-plastic theories, the nonlinear orthotropic
theory, and the endochronic theory. Again, Ref. 5 provides an excellent
summary of the various theories. Characteristic of the attempts at
formulating constitutive models for concrete under multiaxial stress
states is the difficulty in obtaining experimental data; in this regard
the data of Kupfer, Hilsdorf, and Rusch®
concrete has been often used to support theoretically derived failure

for the biaxial strength of

criteria for elastic plastic representations of concrete behavior.
However, a difficulty with elastic-plastic constitutive models is that
they do not model the material anisotropy observed experimentally in
concrete under stress, nor do they correctly model the dilatancy in
concrete undergoing deformation.

For predicting time-dependent behavior of concrete under long-term
loads, viscoelastic models have been used and continue to be applied in
finite element analysis codes. Again, Ref. 5 presents an up-to-date
summary of recent developments in the use of viscoelastic theories to
represent concrete creep including attempts to account for temperature
and moisture changes.

This report is concerned with a description of the NONSAP-C code that
has been developed at LASL for the structural analysis of reinforced
concrete reactor vessels and containments. The NONSAP-C code is based on
the widely used Nonlinear Stress Analysis Program (NONSAP) code ! with
extensive modifications made at LASL to incorporate time-independent and
time-dependent concrete constitutive relations, an out-of-core solver for
large systems of linear equations, an elastic-plastic membrane element to
represent the behavior of cavity liners, and numerous other capabilities
to ease the difficult task of analyzing three-dimensional reinforced
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concrete structures, A companion mesh generator code, Iht{m,8 and

graphics code, MOVIE,9 are also available and serve as pre- and post-
processor codes for NONSAP-C. The NONSAP code was selected as the
vehicle for the concrete structural analysis code because it included
both dynamic and static analysis capabilities, it used the desirable
isoparametric finite element formulation, and it possessed a modular
structure, thus making straightforward the incorporation of additional
mater ial models. Also, a great deal of flexibility for the user is
provided by the different options (e.g., equilibrium iteration and stiff-
ness reformulation) in NONSAP for solving the nonlinear discretized
equations.

Section IT of this report discusses the material models for concrete
that are used in the NONSAP-C code. Nonlinearity of the stress-strain
relation caused by inelasticity of the concrete and steel are treated in
one time-independent model by a variable modulus approach with ortho-
tropic behavior induced in the concrete due to the development of differ-
ent tangent moduli in different directions. Concrete cracking at inte-
gration points of isoparametric elements is handled in the usual

way.3'5 In a second time-independent model10

, concrete behavior is
characterized by elastic-plastic constitutive relations in which the
concrete is assumed to be a continuous, isotropic, and linearly elastic-
plastic strain-hardening material with stress states limited by a failure
, are the first

invariant of the stress tensor and the second invariant of the deviatoric

surface that is quadratic in I1 and J2 (Il and J

stress tensor, respectively). In the tension-tension region of the
failure surface, stresses are limited to small values because of the
contracted nature of the failure surface there. 1In contrast to the
variable modulus approach, the elastic-plastic model incorporates biaxial
strength data; however, there is no provision for crack formation in the
elastic-plastic model. Finally, a viscoelastic concrete model based on
the work of Bazant'! is described for the time-dependent behavior of
concrete. Again, cracking is not taken into account in the current
version of the viscoelastic model.
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Section III of the report contains a summary of the capabilities of
the NONSAP-C code. Numerical implementation of the material models, the
out-of-core solver, the elastic-plastic membrane element, and the
NONSAP-C thermal capability are described in this section. Also de-
scribed here are the internal mesh generating capability of the NONSAP-C
code and the requirements of the computing system for execution of the
NONSAP-C code.

In Section IV of this report is summarized the current state of
application of the NONSAP-C code to analysis of the static and dynamic
behavior of some typical concrete structures, including comparisons of
the code predictions to experimental data. All of the problems analyzed
are modeled as three-dimensional structures. The nine test problems
described in Section IV were chosen because they exercise the various
options or concrete material models of the NONSAP-C code that may be
required in concrete structural design or in the safety analysis of
concrete structures. Noteworthy of the results from the variable
modulus-cracking concrete model is the variability in the predictions of
the NONSAP-C code with the experimental observations of the failure of an
unreinforced PCRV end-slab model that was tested to destruction at the
Structural Research Laboratory at the University of Illinois,12 with
the worst agreement being the prediction of the ultimate pressure load
and the concrete ductility at failure. Comparisons of structural re-
sponse are also made between the two time-independent concrete models -
the variable modulus and elastic-plastic models - for a concrete cube
under various multiaxial stress states and a thick-walled ring under
internal pressure. Finally, the results from numerical simulation of the
creep behavior of the Oak Ridge National Laboratory Thermal C.ylindexr13
were in fair agreement with the experimental observations.

Appendix A of this report contains the user instructions for the
NONSAP-C code. The authors have attempted to incorporate input instruc-
tions for the added capabilities (concrete material models, pressure
boundary conditions, body force loads, and membrane element data) that
are consistent with the input instructions of the original NONSAP code.
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Also described in Appendix A are the instructions for a restart anal-
ysis. Appendix B contairs a summary formulation of the membrane ele-
ment. Appendix C contains brief descriptions of the INGEN mesh genera-
ving code and the MOVIE.LASL graphics code and shows how these codes can
be rsed with the NONSAP-C code.

I1I. CONSTITUTIVE MODELS FOR PIAIN AND REINFORCED CONCRETE

Nonlinear constitutive relations for concrete under short-term loads
have taken four basic forms. The earliest of these is the isotropic
variable modulus model, wherein bulk and shear moduli are expressed as
14 A
recent development for concrete application has been the endochronic
nnde115
"intrinsic time". Intrinsic time is a measure of the length of the path

functions of stress invariants and fit to experimental data.
that expresses the bulk and shear moduli as functions of

traced through strain space by the deformation process. A third approach
has been the elastic-plastic method with a yield surface and incremental
elastic-plastic stress and strain relations derived by the procedures of
classical plasticity. Section II.A below discusses one such elastic-
plastic model that has been proposed recently for describing the in-
elastic behavior of concrete and that has been incorporated in the
NONSAP-C code. This model does not yet take into account the presence of
reinforcement nor does it treat cracking explicitly; it does, however,
simulate biaxial strength effects that have been observed experimentally
in concrete. A fourth model described in Section II.B is the ortho-
tropic variable modulus model; this model has also been incorporated in
the NONSAP-C code and accounts for the presence of reinforcement, non-
linear concrete behavior, and cracking. Finally, Section II.C briefly
describes a viscoelastic constitutive models’ll that has been imple-
mented in the NONSAP-C code for long-term thermal creep of concrete .

The usual finite element representation of Reference 16 will be used
throughout this section. Thus v will represent vectors, and M will
represent matrices.



A. Elastic-Plastic Model of Chen and Chen

Ductile behavior of metals has been explained as the motion of dis-
locations present in the metal; the motions are driven by shear stress
and are unaffected by hydrostatic pressure. Mathematical theories based
on the physical theory of dislocation motion employ a failure (yield)
criterion that is unaffected by hydrostatic pressure. These theories
have gained general acceptance in the engineering community and are
fairly commonly applied in the stress analysis of inelastic structural
systems. The situation for concrete, on the other hand, is more campli-
cated. The considerable difference (i.e., a factor of ten or more) in
tensile and compressive strengths of concrete under uniaxial stress, the
finite strength of concrete under hydrostatic tensile stress, and the
effect of biaxial stress on the strength of concrete all contribute to
the need for a much more general failure criterion. An elastic-plastic
theory for concrete must also take into account the nonlinear relation-
ship between stress and strain that is observed for compressive stresses
well short of the failure stress as shown in Fig. 1.

i
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Fig. 1. Compressional stress-strain behavior of concrete,






discontinuity surfaces in principal stress space for this type of
material. The failure surface is presumed to be dependent on the first
stress invariant, Il(proportional to the pressure), and the second
invariant of the deviatoric stress tencor, Jo of the quadratic form

K ~‘2 2 1 2

, 1 e
'§"" J2 - 3'-6‘ 11 1—2- Il * '3 A .1 & ’ (1)
where A and 1 are material constants that can be determined fram the
concrete tensile and compressive strengths., When -.2=3 a good fit to
biaxial concrete failure data is obtained as shown in Fig. 3. The failure
surface, BEq. (1), is similar to one originally developed by Saugy.”
of T4
Compression i.(z/———\ o
il
O' '
1/1,
Experimental Data:
(&}
o Elastic Limit
o Failure Initial -
Discontinuous
THEORETICAL: Curve
Failure Curve >
&
‘0
o
@
e
Q
4 £
o
O

Fig. 3. Failure and initial discontinuous curves in biaxial principal
stress space with experimental data from Kupfer et al. (1969).
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Constitutive relations for incremental stress 'd o’
mental strain d+ | are derived fram References 10 and 18,based on the
normality rule of plasticity as applied to the initjal discontinuity and

the subsequent loading surfaces.

ep

In Eq.

1

A

10

(14V) (1-2

(3)

. {(1—2v)(2n2J

in terms of incre~
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Specifically,one obtains

(2)
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(3)
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where
f] = (1-2v) ('}th’)) + 3v¢
f2 = (1-2v) (ﬂsy+c) + 3v¢
£, = (1-2v) (nS_+p) + 3vp
i pAse (6)
f4 = {1-2v) any
fs = (1-2v)nSxz
f6 = (1-2\))r|sy2
and
3 1 :
Y = 1 ( )
.
Btat”

where n = 0 in the compression region of the failure surface and n = - 1/3
in the tension-compression region of the failure surface. In By. (6)

Sx, Sy' Sz Sxy' vz’ sz represent the components of the devi-

atoric stress tensor, The constants o and £ are given by (for k? = 3)
} A = A
a & u [e)
i g (8)
tu" \O
2 2
gl T
] S e
u g
in which Ao' ¢ Ty and T, are the material constants* that

*(Note that in Bg. (1) if T=To,then the loading function reduces to the
initial discontinuity surface of concrete. If T=1, then Bg. (1)
becames the failure surface of concrete,)

11
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are functions of f'c, fc’ f't. ft’ f'bc' and fbc’ Here,
f'c, f't and f.bc denote the ultimate strength of concrete under
uniaxial compression, uniaxial tension, and equal biaxial compression,
respectively, while f ot ft’ Ebc denote the initial yield strength of
concrete under the corresponding loading. The constants A, A, T,
and ', assume different values in the compression and tension-
compression regions.

For the compression region (I, S0and J,+1,/220)

=2 2 Fi2 _

I et el R (ke
f' ™ r - T } ' Eagt

¢ 2fbc fc fc ZEbc i

(9)
F F T o F T s

(_r_o)Z fc fbc (2fC fbc) (Tu)z i be(Z fbc)

% - A

& 242 fbc - fc) ¢ 3(2fk')c- 1)

For the tension-compression region: (Either I, < 0or J, + 1,/
328

Ll T e N
"f'z ST S 3 i 2
(10)
o 2 P +1 e
to <
(£7) Se— 1 (gm = /6 .
c c

where (-) denotes the nondimensionalized quantity of the corresponding
term with respect to f' &

12



The three-dimensional incremental relationships between stress and
strain, Bgs. (2) - (7) from Reference 8, have been incorporated into the
NONSAP-C code.

The input parameters to the model are the elastic properties of the
concrete, the ultimate strain, the three parameters (tensile, campres-
sive, and biaxial strengths) of the failure surface, and the correspond-
ing parameters for the initial discontinuity surface. Typical data for a
high strength concrete for PCRV use are given in Table I below.

Two modifications have been the inclusion of a quadratic hardening
curve, which defines the incremental loading surfaces between the initial
discontinuity surface and the failure surface, and a modification to
return the stress state to the failure surface once the failure surface
is penetrated. For the former situation the hardening curve is given
explicitly by

(93.)= 8 Lo : (11)
. : u

TABLE I

CONCRETE PROPERTIES USED IN TEST PROBLEMS

6

Modulus of Elasticity (E) 26.000 MPa (3.8x10"psi)
Poisson's Ratio (V) 0.20
Campressive Strength (f'c) 46.0 MPa (6800 psi)
Tensile Strength (f't) 3.1 MPa (450 psi)
Ultimate Strain (€,) 0.003
Biaxial Compressive

Strength (f'bc) = 1.16 f'c

13
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where £ is the "failure" strain associated with the failure surface
stress parameter 1 ad and ‘s is the initial discontinuity stress
parameter.

When the failure surface F ({a)) = 15 is penetrated, the stress
state is returned to the failure surface by solving

F({o} + "[Cep] {6e}) = T (12)

for the scaling parameter y, (0< x < 1) where (! is the previous
stress state, {9¢} is the incremental strain change, and [Cep] is the
elastic-plastic matrix.
B. Orthotropic Variable Modulus Model for Concrete

The orthotropic variable modulus model of Ref. 9 has been adapted to
the NONSAP-C finite element code. For this model, orthotropic axes are
defined by principal stress directions prior to formation of cracks.

Crack formation is determined by camparing each tensile principal stress
Oj in turn against the fracture criterion

0; > ft' - (ft'/fé) (min [0,;:j,<_*k]), (13)

where f't and f'c are uniaxial tensile and cowpressive strengths and
When a crack forms, the concrete tensile stress is released and

redistributed. The orthotropic axis normal to the crack is fixed during

are the principal stresses mutually orthogonal to e

.

subsequent deformation.
A composite integrated stiffness and strength representation is
derived for the reinforced concrete element shown in Fig. 4. 1In Fig. 4
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Fig. 4. Cracked concrete element with reinforcement.

(x,y,2) represents the global coordinate system and (1,2,3) represents
the axis of orthotropy with 1 being the coordinate perpendicular to the
cracking plane (i.e., 1 is the weak direction). The incremental consti-

tutive matrix (see Eg. (2)) for stresses in orthotropic coordinates islg

15
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and where v is a composite Poisson's ratio for steel and concrete. The
gshear moduli Gij i, 3=1, 2, 3 are assumed %o be given by

’

Gi'j = L‘i['lj/[(l*a) (Ei+Ej)]. (15)

The values for E:i in Bys. (14) and (15) are a camposite of variable
steel and concrete moduli,

' B A- .+ 8 A .4 (16)
i gl al si si
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where Aci amd Asi are relative areas of concrete and steel projected
upan the i'th orthotropic face, Eci and Esi are tangent moduli of the
concrete and steel, and b varies fram 0 to 1 to account for bond degra-
dation across a crack.

Following the development of Ref., 20, the triaxial strain state is
reduced to "equivalent uniaxial strains",

C.‘l = i;(l".f}f (17)

In this fashion the tangent moduli Eci and Esi of Bg. (16) are ob-
tained from postulated uniaxial stress-strain behavior for concrete and
steel.

The equivalent uniaxial tangent modulus for concrete varies,depending
on whether the concrete is cracked or uncracked, in tension or com-
pression, or under loading or unloading.

To describe the nonlinear stress-strain behavior of uncracked con-
crete in compression, the loading tangent modulus is taken to be

Sl e e 3.*
E./E = [1-R%1/00 + (B/E_-2) + R®] ,

where

i &






(19) for concrete in uniaxial stress is expressed as the Dirichlet
seriec with temperature-dependent coefficients shown in Ej. (20),

e(t) -e%t) = [ J(t, t') do(t') (19)
o

where t is the time from casting of concrete, T is the temperature in
degrees Celsius, E is the Young's modulus for concrete, ', are constants
called retardation times, and (a, , b)) are coefficients that represent a
creep compliance depending linearly on temperature.

An eight-year study of multiaxial creep behavior of concrete is
summar ized in Reference 22. During this investigation, strains were
weasured in cylindrical specimens subjected to a variety of multiaxial
loading conditions, three curing times, two curing histories, and two
curing temperatures (24°C and 65°C) . Experimental data were taken
for as lorg as five years. This experimental work is particularly impor-
tant because the various test conditions rouchly approximate the condi~
tions for concrete in a prestressed concrete reactor vessel (PCRV). The
results obtained in this study were fit to a five-term Dirichlet series
of the form shown in Eq. (20). Retardation times differing by decades
were arbitrarily selected in advance. The values obtained for the
Dirichlet series parameters are shown in Table II below. The experi-
mental data were for concrete loaded 90 days after casting. Figure 5
illustrates the closeness of the fit between the Dirichlet series repre-
sentation of Fg. (20), using parameters given in Table 1I and the
exper imental data of Ref. 22.

19






TABLE I1I
VALUES OF QOFFFICIENTS IN EQ. 20

Ser ies Retardation Time a b
Term t (days) (x 106) (x 108)
1 1 0.0169 0.00036
2 10 0.0206 0.00047
3 100 0.0308 0.00118
4 1000 0.0797 0.00077
5 10000 0.0741 -0.00070

III. SUMMARY OF NONSAP-C CAPABILITIES

This section desctibes the capebilities (e.g., elements, material
models, solution methods) of the NONSAP-C code. Briefly described are those
capabilities that have been carried over directly fram the NONSAP code;
background theory and detailed description are provided here and in the
previous section for those capabilities that have heen added to the NONSAP-C
code specifically for the analysis of concrete structures and prestressed
concrete reactor vessels,

The equations of motion for an assemblage of nonlinear finite elemente
have been derived previcusly’ and are of the form

IS« e %0 » fkdud . MPYm - MR, (21)
where
[M] = constant mass matrix
[C] = constant damping matrix
t[K] = tangent stiffness matrix at time t
EYOL(R} = external load vector at time t+/t
t{F} = nodal force vector equivalent tc the element
stresses at time t
gt 171 S nodal velocity vector at time t+/t
t*At (4§} = nodal acceleration vector at time t+it

{u}

i

nodal displacement increment,

21
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The code NONSAP-C obtains solutions to Eg. (21) by various approximate
means.,
A. Program Organization

The complete solution process in program NONSAP-C is divided into
three distinct phases.
Input phase

The input phase consists of three steps.

a) The control information and the nodal point input data are read
and generated by the program. In this phase the equation numbers for the
active degrees of freedam at each nodal point are established.

b) The externally applied load vectors for each time (load) step
are calculated and stored on disk.

c) ‘The element data are read and generated, the element connection

arrays are calculated and all element information is stored on disk.
Assemblage of Constant Structure Matrices

Before the solution of Eq. (21) is carried out, the linear structural
stiffness, mass, and damping matrices are assembled and stored on disk.
In addition, the effective linear stiffness matrix is calculated and
stored.
Step-by-Step Solution

During this phase the solution of BEq. (21) is obtained at all time
points, In addition to the displacement, velocity, and acceleration

vectors (whichever applicable), the element stresses are calculated and
printed,

It need be noted that these basic steps are independent of the
element type used and are the same for either a static or dynamic anal-
ysis. However, only those matrices actually required in the analysis are
assembled. For example, no mass and damping matrices are calculated in a
static analysis.

1. Central Memory Storage Allocations, For the analysis, the finite
elements of the complete assemblage need to be divided into element
groups according to their type, the nonlinear formulations (see Section

B), and the material models used (see Section C). One element group must
consist of the same element type, must use one nonlinear formulation, and
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only one specific material model (which may, however, have multiple sets

of material prope

rties).

The use of element groups reduces input-output

transfers during the solution process, since the element data are

retrieved in blocks during the solution of Bg. (21) and during element

stress calculations.
data during the solution process.
read from and written to a common block array A.
the small core memory (SCM) of the CDC-7600 computer.

Figure 6 shows the manipulation of element group
The data for each element group are
This array resides in
Tables III, IV,

and V show the storage allocation within this array for the three element

types.

The number of elements that can be placed within an element group

is governed by the NUMEST storage locations assigned in the main program

to the common block array A.
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TABLE TII
TRUSS ELIMENT DATA STORAGE

STARTING LENGTH ARRAY DESCRIPTION

ADDRESS

N10l=1 NUMMAT E Young's modulus

N102 NUMMAT DEN Density

N103 NUMMAT AREA Cross-sectional area

N104 NUMMAT STRAI Critical strain

N105 6*NUME M Element connectivity

N106 6*NUME XYZ Nodal coordinates

N107 NUME MPTP Material properties of

set number

N108 NUME PINIT Critical axial force

N109 NUME 1Ps Stress output switch

N110 NCON*NUMMAT  PROP Material properties

TABLE IV
MEMBRANE ELEMENT DATA STORAGE

STARTING LENGTH ARRAY DESCRIPTION

ADDRESS

N10l=1  3*MXNODS*NUME M Element connectivity

N102 ITMNODE*NIME  XYZ Nodal coordinates

N103 NUME IR Nodes per element

N1O4 NUME IPST Stress output table number

N105 NUME BETA Orientation of orthotropic
material axes

N106 NIME THICK Element thickness

N107 NUME MATP Material properties set
numbers

N108 NUMMAT DEN Material density

N109 NOON*NUMMAT PROP Material properties

N110 IDWNGAUS*NIME WA Deformation history stored
at each time step

N1l (MXNODE-4 ) * NOD5 Midside node numbers

NUME
N112 9*NTABLE TTABLE Stress output locations

S— - Satemeaama e e o
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Several other arrays associated with the solution process are
assigned to the large core memeory (LCM) array AL. Storage locations
within this master array are assigned dynamically during the different
phases of the solution process as shown in Tables VI thru IX. The length
of ICM array AL is set in the main program and can be increased at the
expense of reducing the size of the two blocks used in the out -of-core
equation solver.

To further improve high-speed storage capacity. NONSAP-C is an over-
laid program. Figure 7 shows the ovarlay structure. The maximum array
length NUMEST is limited by the amount of SCM available after the length-
iest chain of overlays is loaded. The lengthiest chain of overlays is
currently that associated with the orthotropic variable-modulus concrete
model.

2. _Nodal Point Input Data and Degree of Freedom,

The nodal point data read during the first step of the input phase
consist of the boundary condition codes (stored in the ID array) and the
global X, Y, Z coordinates of each nodal point. A maximum of three
boundary condition codes need currently be defined, since a finite ele-

ment node can have at most three (translational) degrees of freedom. All
nodal point data are retained in high-speed storage during the complete
input phase, i.e., during the calculation of the externally applied load
vectors and the reading and generating of the element group information.

It need be noted that the user should allow only those degrees of
freedom which are compatible with the elements connected to a nodal
point. The program can deal with a maximum of six possible degrees of
freedom (three translations and three rotations) at each nodal point, and
all nonactive degrees of freedam need be deleted. Specifically, a "l1" in
the ID array denotes that no equation shall be associated with the degree
of freedom, whereas a "0" indicates that this is an active degree of
freedom. Figure 8 shows for the simple truss structure the
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TABLE VI

STORAGE ALLOCATIONS DURING INPUT PHASE

STARTING LENGTH ARRAY DESCRIPTION

ADDRESS

Nl=1 NDOF*NUMNP ID Nodal constraints

N2 NUMNP X Nodal coordinates

N3 NUMNP Y Nodal coordinates

N4 NUMNP 2 Nodal coordinates

NT NUMNP TEMP Nodal temperatures

NG NUMP*NDOF*LOADG MASS Map of global degrees of freedom

NS NEO R or XMN
N6 NPTM RV

N7 NPM TIMV
N8 NLCUR*NSTE RG

NG NLOAD NOD
N10 NLOAD IDIRN
N11 NLOAD NCUR
N12 NLOAD FAC
N13 NEQ*NPCUR FEQ
N14 NPCUR v

associated with each equation
number

External loads or nodal masses
Load curve magnitude

Load curve times

Nodal loads

Node numbers

Global degree of freedom for
nodal loads

Load curve number for nodal loads
Load scale factor for nodal loads
Pressure-equivalent nodal loads
Load curve number for pressure loads
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TABLE VII
STORAGE ALLOCATION DURING INITIAL CONDITION INPUT

STARTING LENGTH ARRAY DESCRIPTION
ADDRESS
N1 through N4 Same as during input phase
NS NEQ DISP Initial displacements
N6 NEQ VEL Initial velocities
N7 NEQ X Initial accelerations
TABLE VIII
STORAGE ALLOCATION DURING MATRIX ASSEMBLY PHASE
STARTING LENGTH ARRAY DESCRIPTION
ADDRESS
Ni=1 NED R Nodal loads
N2 NEQ MASS Map of global degree of freedom
associated with each equation number
Né NI XMN Nodal masses and dampers
NS NEQ ™ Lumped mass vector
N6 NEQ*LOADG GMASS Unit nodal gravity loads
TABLE IX
STORAGE ALLOCATION DURING SOLUTION PHASE
STARTING LENGTH ARRAY DESCRIPTION
ADDRESS
N2=1 NFQ DISP Displacements
N3 NED R or DISPI Load or displacement increment
N5 NEQ RE Unbalanced loads
N6 NEQ wv working vector
N7 NER VEL Velocity
N8 NEQ A0 Acceleration
N9 NEQ XM Lumped masses
N10 NV TEMPV] Nodal temperatures at time = t
N1l NUMNP TEMPV2 Nodal temperatures at time = t + Ot
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ID array as it was read and/or generated by the program. Once the com-
plete ID and X, Y, 2 arrays have been obtained, equation numbers are
associated with all active degrees of freedom, i.e., the zeroes in the ID
array are replaced by corresponding equation numbers, and each 1 is
replaced by a 0, as shown in Fig. 8 for the simple truss example.

3. Calculation of External Load Vectors. The loading in the anal-
ysis can consist of concentrated nodal point loadings and distributed
body or surface loads (see F. below). The load corresponding to a degree
of freedom is assumed to vary with time as expressed by a time function
and a load multiplier, both defined in the input,

4. Read-In of Element Data. In the last step of the input phase,
element information for each element group is read and generated. Spe-
cifically, the element coordinates, the material properties, and the

element connection arrays are established. Also, working vectors which
store required element strains, stresses,and other variables are initial-
ized. For each element group this information is processed in the first
NUMEST high-speed storage locations and then written together in one
block on secondary storage. During the next phases of the solution,
therefore, the required element data can be read in blocks, sequentially
one block at a time, into the same high~speed storage locations.

It should be noted that the readiing and geiwwratior of the element
data of one group regquires only one call of the cpecitic element overlay
needed since all elements in one group are of tne same kind., After all |
element information has been established, the ID and X,Y,Z arrays are no ,
longer required, and the corresponding storage area is used for the
formation of the constant structure matrices and later for the solution
of the equations of eguilibrium.

5. Disk Storage Allocation. NONSAP-C requires 18 external disk
files during the solution process. Table X shows the allocation of these
files, Most of the computer time required for a problem solution is
devoted to data transmissions between central memory and these disk
files.

|
|
|
1
|
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TABLE X
DISK STORAGE ALLOCATION

DESCRIPTION

Linear element group data
Nonlinear element group data
External loads

Linear stiffness matrix
Consistent mass matrix
Nodal damping vector

Input data

Output

Effective linear stiffness
Lumped mass vector
Constraint data

Prot'.em restart data

Degree-of-freedam data for body loads

Factored nonlinear stiffness
Nodal masses and dampers
Blocked stiffness matrix
Reduced stiffness matrix
Pivots

Element stiffness matrices prior to assembly

Temporary working file

Nodal point temperature-time history



6. Global Matrix Assembly and Solution of Equations. The global
stiffness matrix is stored by columns in blocks of 50 000 words each.
Only the data contained below the skyline of the global matrix are proces-
sed, Details of the out-of-core solution scheme are found in Reference

23, The global matrix is assembled by element group. The upper triangle
of each element stiffness matrix is camputed in compacted vector form.
The element stiffness and element connectivity array are written on a
sequential disk file for each element in the group. Upon campletion of
all of the element stiffness computations within an element group, blocks
1 and 2 of the global matrix are read fram disk into core. Element data
are read from disk file NFROM and assembled to the extent they fit into
blocks 1 and 2. Data for elements that do not fit entirely in blocks 1
and 2 are written to disk file NTO. When all elements have been proces-
sed, blocks 1 and 2 are sent to disk and blocks 3 and 4 are brought into
core. Element data are now read from disk file NTO, assembled, and
written to disk file NFROM. Assembly continues until all global matrix
blocks have been prucessed.
B. The Element Library

In the following, the finite elements currently available in NONSAP
are briefly described. It should be noted that a particular element

group must consist of finite elements of the same type.

1. Truss Element. A three-dimensional truss element shown in Fig.
is available in NONSAP-C, The element is assumed to have constant area

and may be used in linear elastic analysis, materially nonlinear and/or
large displacement geometrically nonlinear analysis. In the large dis-
placement analysis, the updated Lagrangian formulation is used, but small
strains are assumed in the calculation of element stresses. The truss
element can be used to specify nonzero boundary displacements.




Fig. 9. Truss element.

2. The Membrane Element, The membrane element shown in Fig. 10 can |
have from 4 to 8 nodes and conforms to the surface of any configuration |
of the 8-to 2l-node solid element., The membrane element can model sur- |
faces of nonorthogonal curvature, Stresses and strains are camputed in

the directions of principal curvature. Material models include linear |
elastic isotropic, linear elastic orthotropic, and elastic-plastic with a

von Mises yield condition. Only small strains can be modeled., Mathe-

matical details are found in Appendix B.
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Fig. 10. Three-dimensional membrane element.

3.  Three-Dimensional Solid or Thick-Shell Element. A general

three-dimensional isoparametric element with a variable number of (from 8
to 21 nodes) can be used. As shown in Fig. 11, the first 8 nodes are the
corner nodes of the element, nodes 9 to 20 correspond to midside nodes
and node 21 is a center node. The element can be used for three-
dimensional analysis of solids and thick shells.
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Nonlinear Elastic Material
The nonlinear elastic material behavior is defined by specifying the

stress as a piece wise linear function of the current (infinitesimal)
strain. Thus, the total stress and the tangent modulus are directly
defined in terms of the total strain.

2. Membrane Element Material Models. The membrane element material
behavior can be described by means of three models.

Isotropic and Orthotropic Linear Elastic Material

The stress-strain relationships are defined by means of constant
Young's moduli and Poisson's ratios. The orthotropic material axes x-y

are oriented with respect to the membrane tangent axes r-s as shown in
rig. 12.

Fig. 12. Orientation of orthotropic material axes in the membrane
element.
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Elastic-Plastic Material

The elastic-plastic material model is based on the von Mises yield
condition. Linear isotropic hardening is assumed.

3. Three-Dimensional Solid Element Material Models, Currently,any
one of the following six material models can be used to describe the
three-dimensional solid element behavior.

Isotropic Linear Elastic Material. The stress-strain relationships are
defined by means of the constant Young's modulus and Poisson's ratio.
The Curve Description Model

In the curve description model, the instantaneous bulk and shear
moduli are defined by piecewise linear functions of the current volume
strain. An explicit yield condition is not used, and whether the mate-

rial is loading or unloading is defined by the history of the volume
strain only.

In the analysis of some problems, tensile stress due to applied
loading cannct exceed the gravity in-situ pressure. In such conditions
the model can be used to simulate tension cut-off; i.e., the material
model assumes reduced stiffness in the direction of the tensile stresses
that exceed the magnitude of the gravity pressure.

Orthotropic Variable Modulus Reinforced Concrete

The steel reinforcement and concrete matrices are cambined to form a
camposite modulus. Nonlinear compressive behavior ic modeled in terms of
equivalent uniaxial strains and an approximate uniaxial stress-strain
relationship. Cracks are allowed to form in three orthogonal direc-

tions, Thermal strains resulting from 1 time-varying temperature field
may be modeled.

Viscoelastic Concrete Creep
The constitutive law is derived by expanding the creep compliance
function in a Dirichlet series. Solutions are obtained at user-selected

nonuniform time intervals. Thermal strains resulting from a time-varying
temperature field may be modeled.
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Elastic-Plastic Material Model

The elastic-plastic material model is based on the von Mises yield
condition. Linear isotropic hardening is assumed.
Elastic-Plastic Concrete Material

This concrete model is based on classical elastic-plastic theory. An
expanding yi121d surface distinguishes elastic deformation fram nonlinear
deformation. When the expanding yield surface contacts a failure sur-
face, the stress in the material can no longer increase and the stiffness
of the material is zerc., The yield and failure surfaces are paraboloids
and hyperboloids about the hydrostatic axis in stress space.
D. Dynamic Capability

Dynamic problems are solved by integration of the equations of motion
in the time damain. Both the Wilson-Theta and Newmark-Beta integration
algorithms are available. Either a lumped or consistent mass matrix may
be selected.
E. Camputations In Cylindrical Coordinates

Problems may be run and nodal constraints applied in cylindrical
coordinates in which the (X, Y, Z) axes become (axial, radial, tan-
gential). Element matrices are calculated in rectangular coordinates and
transformed to cylindrical coordinates prior to assembly of global
matrices. Nodal loads are understood to be in cylindrical coordinates and
pressure loads are transformed to cylindrical coordinates.
F. Pressure and Gravity Loads

Membrane and three-dimensional elements may be loaded with pressure
loads. Pressures are transformed to nodal loads using the element face
shape functions.

Gravity loads may be applied to the structure based on the material
density associated with each element. The element mass is apportioned
among the element nodes using

m, = f Hi dv

V
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where m, is the nodal mass, 0 the element density, H i the shape func-
tion for node i, and V is the element volume. Gravity loads are deter-
mined from the nodal masses by applying the desired number of "g's" to the
appropriate degrees of freedom.
G. Mesh Generation

NONSAP-C has certain basic mesh generating capabiiities. These in-

clude generation of lines and circles of node points, generation of ele-
ment connectivity data, and generation of pressure load data. For ~omplex
meshes, the INGEN code of Reference 8 is recammended for mesh generation.
H. Stiffness Matrix Reformation and Bquilibrium Iterations

The user may select the number of time steps between which element
stiffness matrices are not updated to reflect the revised stress state,
Likewise, one may select a time step interval during wiich eqguilibrium
iterations are not performed. During the equilibrium iterations at a
particular time step, the number of iterations for which the stiffness
matrix is to be reformed may be selected.

Exper ience indicates that stiffness reformation and equilibrium
iteration should be performed at every time step despite the large
additional computational cost involved. Reformation of the stiffness
matriz during equilibrium iterations speeds convergence.

1. Computing System Requirements

NONSAP-C is written in standard CDC FORTRAN EXTENDED and CDC COMPASS
and contains no facility-dependent coding. It is written for the CDC-7600
computer and requires 150 000 words of small core memory, 370 000 words of
large core memory, and 18 disk files. Computer time required for a
problem solution is dominated by data transmission between disk files and

central memory.

IV. APPLICATION OF NONSAP-C TO ANALYSIS OF 3-DIMENSIONAL CONCRETE
STRUCTURES .

In this section the application of the NONSAP-C code to the stress
analysis of a variety of concrete structures is illustrated. The analyses
range from treatment of elastic behavior only to a nonlinear dynamic
analysis including the effects of concrete cracking ana crushing. The
input decks for these test problems have beer put sequentially on tape
after the NONSAP-C code.
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£. Elastic Analysis of a Multicavity PCRV
A li.ear elastic analysis of a 30 degree symmetry section of a multi-
cavity PCHV was carried out, The main purposes were to test the NONSAP-C
code on a problem with the turee-dimensional geometric complexities
introduced in a PCRV by the presence of penetrations and steam generators and
to assess convergence of the solution as the mesh was refined. The model
selected for our analysis is illustrated in Ref. 6, page 165; the finite
element mesh shown in Fig. 13 was generatea by the INGEN code as Jdescribed in
Ref. 8 and comprised 96 20-node isoparametric elements with a total of 707

nodes. The mesh appears to have 768 elements since each 20-node

Lsoparamety ic was

|

Fig. 13. PCRV mesh - 309 gector.
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represented as 8 elements for the MOVIE code.9 The boundary conditions

used for this problem are zero circumferential displacements on the two
symmetry planes, zero axial displacement at the support points, and zero
radial displacements along the line of zero radius. An internal pressure
of 5.1 MPa (750 psi) within the core region was the only applied load.
Young's modulus equal to 30 x 10°
used in the calculation.

MPa and a Poisson's ratio of 0.2 were

Displacement at specific points in the PCRV are given in Table XI
below with the positions referenced as shown. Figure 14 illustrates
minimum principal stress contours in the lower head of the PCRV that were
obtained using the MOVIE code described in Ref. 9. Finally, Fig. 15
illustrates, as a continuous tone image, the deformed PCRV with the
displacements magnified by 600, Output again is fram the MOVIE code.
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Fig. 14. Minimum principal stress contours in the lower PCRV head.
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TABLE XI
RADIAL, CIRCUMFERENTIAL,AND AXIAL DISPLACEMENTS

FOR MULTICAVITY PCRV

Position Radial Circumferential Axial
Disp. (mm) Disp. (mm) Disp. (mm)
A 0 0 -2.33
B 0 0 -3.20
e 0 0 6.02
D 0 0 $.15
1.76 ~0,06 1.47
0.80 0.06 1.47
0.99 0.27 1.47
D‘

B. Concrete Cube Under Multiaxial Stress States

A concrete cube, as shown in Fig. 16, has been subjected to several
proportional multiaxial load histories and the responses (in terms of
strains) have been campared. The elastic-plastic concrete material
model, described in Section I1I.A. was used in this study.‘ The multiaxial
load histories are given in Table XII,
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Fig. 16. Concrete cube under triaxial stress.

TABLE XII
MULTIAXIAL LOAD HISTORIES

CASE STRESS CONDITION
A Uniaxial compression and unloading
B Biaxial compression ¢ z=*'-"y= “P, »7x=0
, : : : i . =1/2 o = 0
c Biaxial compression © = -p, y= / D,
D Triaxial caompression ©_=0 =0 = ~p,

ny
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The concrete material properties that were used in these test prob-
lems are given in Table I of Sec.II.A.; there was no reinforcement of
the concrete cube. The initial discontinuity surface of the elastic-
plastic constitutive model (see Fig. 2) was taken to occur at 60% of the
effective stress at failure. The parameters A and 1t of Eg. (1) were calcu-
lated to be 12.1 MPa (1780 psi) and 22.2 MPa (3370 psi) in the compres-
sion region and 21.6 MPa (3180 psi) and 4.8 MPa (710 psi) in the tension
regions, respectively.

Pesponses of the concrete cube +to the campressive loading programs
given in Table XII are shown in Fig. 17 for the elastic-plastic material
model. As can be seen in Fig. 17 increasing biaxial stress stiffens the
campressive material response; when a hydrostatic compressive stress
state is reached, the material remains entirely elastic for all values of
stress.

C. Thick-Walled Concrete Ring
Figure 18 illustrates a finite element mesh of a thick-walled

circular ring whose response to internal pressure loading was calculeted
using the NONSAP-C code with the material models discussed in Sections
IT.A.and I1.B. Five 1l2-node elements were used to describe the ring
geometry; stiffness and stresses were evaluated, or integrated,

Fig. 18. Concrete ring finite element model.



at 8 Gauss points in each element., Concrete properties described in Table
I of Section I1.A.were used. Based on the formation of a radial tensile
crack in the elastic stress field, the ultimate pressure that the ring can
withstand is 1.2 MPa (178 psi), which is predicted by the variable modulus
theory. Feor the elastic-plastic concrete model a plastic zone propagates
fram the inner element through the ring until the plastic zone permeates
the ring at an internal pressure of about 1,12 MPa (160 psi). From 1.12
MPa up to 1.4 MPa the concrete work hardens, corresponding to stress states
between the initial discontinuity and failure surfaces. At 1.4 MPa the
stress state throughout the ring is on the failure surface and rupture
occurs, Calculated response of the ring to the internal pressure loading
is shown in Fig. 19, and Fig. 20 shows the development of the crack
pattern of the variable modulus concrete mode! and the growth of the
inelastic zones for the elastic-plastic model (the four inplane Gauss
points allow for discrimination within each element).

INNER SURFACE LOAD VS DEFLECTION
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Fig. 19. Response of the concrete ring to internal pressure loading.

48




HEHEEE
LI

Fig. 20. Propagation of nonlinear behavior for variable-modulus—cracking
and elastic-plastic concrete models.

D. Rectangular Concrete Plate

A reinforced concrete slab, simply supported on three sides, free on
} the fourth, and loaded with a uniform pressure was analyzed with NONSAP-C
F using the variable-modulus-cracking concrete model. The finite element
‘ mesh, consisting of twenty-four l6-node isoparametric elements, was one
element thick. Bgual amounts (0.5%) of tension and campression rein-
forcement located as shown in Fig. 21 were included. Using a steel
tensile strength of 300 MPa and a concrete compressive strength of 30 MPa
as strength properties, a limit load of 28.3 kPa was predicted using
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yield line theory. Figure 22 shows the load-deflection curve calculated
by NONSAP-C with the finite element model; a limit or ultimate load of 30
kPa is indicated, which is in good agreement with the prediction of the
yield line theory. Figure 23 shows the tensile crack pattern determined
with the finite element model. Although the crack patterns are widely
diffused, the crack trajectories are aligned with the predicted yield
lines,

This problem was run using ten load increments and required two
minutes of central processor time on the CDC 7600. Eight integration
points were used in each element
E. Dynamic Response of a Concrete Beam

The dynamic beam problem was selected as an experiment to see if the

var iable-modulus-cracking reinforced-concrete constitutive law in the
NONSAP-C code could be used to model a dynamic problem. The particular
beam selected is 3b-2 fram a series of beams tested at the University of
Ilinois. 2>

The beam was 1.5 m long and had a rectangular cross section 0.30 m by
0.15 m. Two No. 7 bars were used as compression reinforcement and two
No. 9 bars were used as tensile reinforcement. Stirrups made of No. 2
bar were spaced at 0.108 m along the beam. Material properties were as
follows:

Initial modulus of concrete 2.98 x 104 MPa
Compressive strength of concrete 22.5 MPa
Tensile strength of concrete 5.1 MPa
Poisson's ratio 0.2

Modulus of steel 2,0 x 10° MPa
Yield strength of steel 301 MpPa

The beam was excited by an explosively driven two-point loading. The
load was idealized as a triangle with a peak of 0.26 MN, a rise time of
0.018 s,and a duration of 0,040 s. Although the concrete was extensively
damaged by the loading pulse, the beam did rebound and required two
subsequent blows before it collapsed.



The finite element model of the beam consisted of 48 16-node isopara-
metric elements as shown in Fig, 24, The first mode period of a linearly
equivalent beam is 0.016 s; therefore, a time step of 0.00]1 s was used for
this analysis. At 0.015 s NONSAP calculations indicated that the beam
had collapsed. Crack indicators in NONSAP-C showed that nearly the
entire beam was distressed at this time. Deflection and strain time
histories show reasonable agreement with experimental data prior to the
occurrence of the failure mechanism as shown in Figs. 25 and 26.
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Fig. 22. Response of the concrete plate.
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Fig. 23. Crack pattern in the reinforced concrete plate.
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Fig. 24. Reinforced concrete beam 3b-2.
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Fig. 25. Deflection vs time, beam 3b-2.
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Fig. 26. Strain vs time, beam 3b-2.

This problem was run fcr 40 time steps without equilibrium iteration
and required 14 minutes of central processor time on the CDC 7600.
F. Shear Strength of a PCRV End Slab Model

A series of PCRV models has been tested to destruction at the
Structural Research Laboratory of the University of Illinois, The most
recent test series, reported in Ref. 12, was designed to study the
effects of penectrations on the strength of the end slabs. Here three-

dimensional effects are important.

Figure 27 illustrates the finite element mesh that represents a 30
degree symmetry section of vessel PV-27. This vessel contained six end
slab penetrations. There was no reinforcement in the end slab, Twenty-
node isoparametric elements were used in the finite element mesh, The
mesh contained 994 nodes and 152 elements. Material properties weye
taken fram Ref. 12 and are shown in Table I of Section II.A. The vessel
was prestressed axially to 23,5 MPa (3410 psi) and circumferentially to
10.7 MPa (1560 psi).
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An initial elastic analysis of PV-27 with internal pressure and
without prestressing was carried out with the NONSAP-C code. There was
good agreement between the deflections obtained with the NONSAP-C anal-
ysis and with elastic deflections computed with the FINITE structural
analysis code as reported in Ref. 12.

Following the elastic analysis, a Jetermination of the inelastic
regponse was made using the variable-modulus~cracking concrete model.
Since the wall of the vessel was not expected to crack, it was modeled as
an elastic medium. Only the end slab was modeled with the nonlinear
concrete constitutive law.

The prestress and internal pressure were applied incrementally and
the response was calculated by equilibrium iteration within each load
increment. Initial cracking of the end slab occurred at an internal
pressure of 5.7 MPa (830 psi). At an internal pressure of 10.0 MPa (1470
psi), the equilibrium iterations failed to converge because of extensive
cracking in the end slab. Radial and circumferential crack patterns at
maximum load are shown in Figs. 28 and 29, The uncracked area within the
dashed lines in Fig. 29 is an indication of the cryptodome that remained
in the test vessel after the central plug broke away. Figure 30 illus-
trates the internal pressure versus central deflection curves obtained
with the NONSAP-C analysis and during the experiment. A peak internal
pressure of 16.5 MPa (2400 psi) was sustained during the experiment.
The experimental load-deflection curve in Fig. 30 indicates that there
was considerable inelasticity beyond initial cracking. The NONSAP-C
analysis accurately predicted the onset of inelastic behavior in the end
slab. Permanent internal damage was observed during the experiments to
occur at less than half of the ultimate internal pressure,and experi-
mental load deflection measurements indicated the onset of nonlinear
behavior between 4.1 MPa and 6.2 MPa (600 psi and 900 psi). Considering
the approximation made in modeling all but the center of the end slab as
a linear material, the analytical results show reasonable agreement with
the experimentally observed cracking pattern. The analysis procedure
does not properly account for the nonlinear deformation process that
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Fig. 28.

Crack pattern at the outer surface of the end slab of PV-27 as

camputed by NONSAP-C.
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Crack pattern on the penetration face of the end slab of PV-27 as

camputed by NONSAP-C.
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occurred during the experiment between the onset of cracking and the
ultimate load sustained by the vessel. This analytical deficiency may be
the result of unaccounted for frictional resistance in the cracked con-
crete, a too sensitive crack initiation criterion, or a mesh that was too
oarse to madel the details of postcracking behavior.,

Analysis of PV-27 was a severe test of NONSAP C, as far as

calculating the nonlinear behavior of a multicavity PCRV. There were

2477 equations with a half-baniwidth of 368 in the system of equations

for stress equilibrium of PV-27 during any load increment. Five load
increments were used in the calculation of the behavior of PV-27, which
used up 43 m of computing time on the CDC-7600. Most of the

calculational time (25 m) was spent in the equilibrium iterations.
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Fig. 30. Experimental and computed pressure-deflection curves for PV-27.
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Figure 31 illustrates 11te element mesh that

has been suggested for the cruciform for which experimental creep data
are avallable from Ref. 26, Note that this is not a compatible mesh

(1.e,, displacements are not continuous across all

modulus of elasticity was experimentally measured (ses Tapble E 20-6 of
Ref. 20);
,_.._ ,,,,, .___x_.*
v
* i e
o >
7 | ”~
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Fig. 31, Cruciform finite element model.
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a value of 31 000 MPa (4.5 X 106) psi at the age of test (33 days) and
constant thereafter appears to be justified by the data and was used in

the calculation., Utilizing the creep functional of England and Ross,27

1.5

6,(t) = 4.07 x 107 [(1-9_'*' R (22)

where T is temperatuce in Ob, t is time in days, and o0 is stress, cal-
culation of the creep behavior of the cruciform was made using NONSAP-C
for constant axial and side pressure loading of 10.8 MPa (1585 psi) over
63 days. The cruciform was assumea to be equilibrated at 64.5°C. A
creep Poisson's ratio of 0.20 was used. FEight integration points were
usad for this mesh; the mesh itself ~onsists of 46 nodes. Eighteen time
steps were employed in the calculation and the execution time was 10 3.
Figure 32 illustrates the uniaxial strain (Lé) measured at the center
of the top element and the biaxial strain (1/2 iy + 1/2 (z) measured
at the junction of the middle two elements, together with the experi-
mentally measuted values. Good agreement between the numerical and
exper imental values is seen.

From BEqg. (22) one can evaluate the creep strain at large times to be
equal to 8 x 17 6. The limiting creep strain was found to be 815
i strain, whicn added to an initial elastic strain of 350 ustrain, gives
a total limiting strain of 1165 ustrain. By taking large time steps (25,
50, 100, 200, and 400 days), the limiting state of strain in the top
element »f t'e cruciform mesh, which is in a state of uniaxial stress,
can be similated numerically. The NONSAP-C value of limiting strain was
1140 ustrain, which is within 2 percent of the analytical value.
H. Creep of ORNL Thermal Cylinder

A concrete cylinder with axial and circumferential prestressing was
subjected to a radial temperature gradient corresponding to a uniform
internal heat flux and a time-varying internal pressure at the Oak Ridge
National Laboratory. Dimensions and the prestress configuration are
shown in Fig. 33. The vessel was prestressed 90 days after casting. The
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l A 12.8 degree sector of the cylinder was modeled with 20-node iso-
parametric elements as shown in Fig. 34. The circumferential prestress
was applied to only one row of elements to simulate the bearing pads
shown in Fig. 33. The Young's modulus of 38 300 MPa and the Poisson's
ratio of 0.2 were taken from Ref., 13. The coeffi~ient of thermal expan-
sion for limestone concrete was taken from Fig. 51 of Ref. 28 as 5.4
ustrain®C. The temperature-dependent creep data given in Section II.C.
of this report were used in the calculations.

Figures 35 through 36 are plots of circumferential strain histories
obtained with the NONSAP-C finite element code. Also shown are banded
plots of strains measured during the experiment. More extensive calcu-
lational results are presented in Ref. 31., and explanations are advanced
for discrepancies between the calculated and experimental data.

1. Spherical Membrane Under Internal Pressure

This problem wa: used as a test of the membrane element of NONSAP-C.

A spharical memorane, shown in Fig. 37, was loaded with uniform internal

pressure. The missing element at the apex was replaced with a set of
equivalent nodal loads. Stresses at symmetric integration points were
normalized with respect to the exact solution of this problem and were
averaged in eacn principal direction for each element. Results are shown
in Table XIII. Accuracy decreases as the apex of the membrane is
approached. This effect, as well as the absolute error in the stress
magnitudes, is probably caused by imprecision in the nodal loads applied
at the apex.

The problem was also run using the elastic-plastic constitutive model
and demonstrated satisfactory agreement with predicted yielding behavior.
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I. HEADING CARD (12A6)

note columns variable
(1) 1 -72 HED(12)
NOTES/

(1) Begin each new data —ase with a new heading card.

entry

Enter the master heading information
for use in labeling the output

Ind the final

case with two blank cards.

II. MASTER CONTROL CARDS

notes nolumns variable
(1) 1~5 NUMNP
(2) 6 IDOF(1)
¥ J IDOF(2)
8 IDOF(3)
9 IDOF (4)
10 IDOF (5)
11 IDOF (&)
(3) 12-15 NBEGL
(4) 16-20 NEGNL
(5) 21-25 MODEX
(6) 26-30 NSTE
(6) 31-40 DT
(7) 41-50 TSTART
(8) 51-55 IPRI
IPTL

| 56-60

entry

Total number of nodal points;
EQ.0; program stop

Master X-translation code;
B.0; admissible

B.1; deleted

Master Y-translation code
Master Z-translation code
Master X-rotation code
Master Y-rotation code
Master Z-rotation code

Number of linear element groups;
EQ:0; all elements are nonlinear

Number of nonlinear element groups;
EQ.0; all elements are linear

Flag indicating solution mode;
ED.0; data check only

B.1; execution

BQ.2; restart

Number of solution time steps 1
Time step increment

Time at solution start

Output printing interval;
B.0; default set to "1"

Output interval to plot tape
E.0; ro output
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(2)

(3)
(3)

NOTES /
(1)

(3)

6-1( _DAMP Flag indicating damping type;
ED.0; no damping effects
ED.1; Rayleigh damping

11-15 IMASSN Number of concentrated nodal masses

16-20 IDAMPN Number of concentrated nodal dampers,
(CAUTION: Use of nodal dampers may
produce erroneous results)

The control flag on static or dynamic analysis (IMASS)
determines whether or not the program is to solve a problem
including the contribution of inertia forces to system
equilibrium, i.e. whether to solve a static or dynamic problem.

If IMASS.FQ.0, the program will solve a static (or quasi-static)
problem, and no storage will be allocated for either the system
mass matrix or the system velocity and acceleration vectors,

If IMASS.EQ.1 or 2, the wnalysis will be a dynamic analysis.

For IMASS.EQ.1 a lumped (diagonal) mass matrix is allowed, in
which case the diagonal mass coefficients are stored as a
vector, and for IMASS.EQ.2 a consistent mass matrix is generated
(fram element data). It should be noted that the camputation of
the effectiv> load vector at each solution time step is
considerably more expensive when the consistent mass option is
requested, and the extra effort .nvolved in a consistent (as
opposed to the diagonal) mass an:lysis may not be justified in
mary (if not most) prollems,

The mass matrix is constant and i: only formed once before the
time integration iz started.

The damping matrix flag (IDAMP) determines whether or not the
program is to include in a dynamic analysis Rayleigh damping.
The Rayleigh damping can only he included when a dynamic
analysis is specified (IMASS.Gr.0).

In a dynamic analyeis, i.e. IMASS.GT.0, additional concentrated
masses and/or additional concentrated dampers can be specified
at selected degrees of freedam. The concentrated masses and
concentrated dampers are input in Sections VI and VII.

A dynamic analysis with concentrated masses only (i.e., no
limped mass or consistent mass effects) can be accaomplished by
specifying IMASSN.GE.1, IMASS.H).1, and setting the mass density
on all element cards to 0.0.
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where || u" || is the Buc ‘4ean norm of the system displacement

vector at cycle "n" of the ii.ration.

Whether or not a material model specifically allows iteration

for equilibrium depends on hcw the model was incorporated into |
the program; the sections on the element material models |
distinguish between models tnat do and do not allow iteration, *

u Equilibrium iteration car only be performed if

(a) the structuve contains at least one nonlinear ;
element groap, and

(b) the material mojels used to represent all
nonlinear element groups allow for the
possibility of equilibrium iteration.

The parameters IBQUIT, ITEMAX and RTOL will not be used if |

(a) the struciure is represented wilh linear ]
elements only, or

(b) any one of the material models associated with
a nonlinear element group does not allow for
equilibrium iteration.

Card 4 (110, 2F10.0)
note columns variable entry

(1) l=-10 I0PE Time integration method used
EQ.0; default set to "1"
EQ.1; Wilson's theta method
BD.2; Newmark's method

(2) 11-20 OPVAR(1) First integration parameter
1) If IOPE.ED.l1 parameter is THETA

BEQ.0; default set to 1.4
2) If IOPE.ED.2 parameter is DELTA

BQ.0; default set to 0.5

77







note

(1)

i 8 1 8
note

(1)

(2)

(3)

(1)

For large meshes it is usually not necessary to print
displacements, velocities, and accelerations at every node.
Hence, nodes for which printout is desired are grouped into NPB
printout blocks. Each block of nodes is defined by the node

aunbers of the first and last node in the block (see next card).

If NPB.EQ.0 all nodal quantities are printed regardless of the
values of IDC, IVC, and IAC.

The displacement solution at the nodes within the blocks is
printed if IDC.EQ.1. In dynamic problems the velocity and/or
acceleration solutions also are printed if IVC.EQ.1 and/or
IAC.ED. 1.,

Card 6 (1615)

If NPB.EQ.0O, leave this card blank.

columns variable entry

1-5 IPNODE (1,1) First node of printout block no. 1.
6 - 10 IPNODE(2,1) Last node of printout block no. 1.
11-15 IPNODE (1,2) First node of printout block no. 2.

etc.

Two entries are expected for each printout block, namely, the
first node of the block and the last node of the block. All
nodal points between these two nodes will be included in the
printout block.

NODAL POINT DATA (Al, 14, Al, 14, 515, 3F10.0, I15)
columns variable entry

1 o o Symbol describing the coordinate
system for this node;

Q. ; (blank) Cartesian (X, Y, 2)
;.X; X-cylindrical

2~-5 N Node (joint number;)
GE.1 and LE.NUMNP

6 PSF Print suppression flag (ignored
unless N.BQ.1);
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(2)

(3)

(5)

Nodal data must be defined for all (NUMNP) nodes. Node data may
be input directly (i.e., each node on its own individual card)
or the generation option may be used if applicable (see note 6,
below) . Admissible node numbers range from "1" to the total
nunber of nodes (NUMNP). Node numbers may not be repeated or
omi tted.

The print suppression flag (PSF) is used to eliminate the second
printing of ordered node coordinates or to suppress printing of
equation number assignments (or both). The PSF character is
entered on the card for node one (1) only.

Boundary condition codes can only be assigned the following
Values (M » 152,:-016)—-

ID(M,N) = 0; unspecified (free) displacement

ID(M,N) 1; deleted (fixed) displacement

An unspecified (ID(M,N)=0) degree of freedom is free to
translate or rotate as the solution dictates. Concentrated
forces (or moments) may be applied in this degree of freedam.

On: system equilibrium equation is required for each unspecified
degree of freedom in the model. The maximum number of
equilibrium equations is always less than six (6) times the
total number of nodes in the system.

Deleted (ID(M,N)=1) degrees of freedom are removed fram the
final set of equilibrium ejquations. Ileleted degrees of freedom
are fixed (points of external reacticn), and any loads applied
in these degrees of freedom are ignored by the program. Nodes
that are used for geometric reference only (i.e., nodes not
assigned to elements) must have all six (6) degrees of freedom
deleted. Nodal degrees of freedom having undefined stiffness
(such as rotations in an all TRUSS model) must be deleted.

Independent of the actual entries posted for the ID(M,N) in cc
7-35 of the Nodal Data, any master boundary condition deletions
(i.e., IDOF(M) .EQ.1, M=1,2,...,6) which are given in cc 6-11 of
Card 1 in Section II will be used for all nodes. Suppose that
all rotations X,Y,Z have czen deleted by means of the master
codes (i.e., IDOF(M).EQ.1, M=4,5,6), then ID(M,N) (M=4,5,6) will
be set to "1", and data in cc 21-35 are ignored by the program.

For the case CT (cc 1) equal to the character "X", the data

input in cc 36-65 are interpreted as the cylindrical (r,%,z)
coordinates of node "N". The table in note (1) contains the
formulae used by the program to compute the Cartesian (X,Y,2)
coordinates of node N from the cylindrical coordinate values
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NOTES/

note

(1)

(1)

16-20 NPLE Number of element faces with pressure
loads

21-25 NPCUR Number of different load curves used
for pressure loads

NLOAD determines the number of cards to be read in Section IV.3,
below. The loads defined in Section IV.3 are concentrated node
forces/maments that do not change direction as the structure
deforms; i.e., the applied node forces are conservative loads.

Time-dependent loads are applied to the structure by means of
load (or time) function (i.e., f(t)) references and function
multipliers assigned with the loads. At time t the value of
f(t) is found by linear interpolation in the table cf f(t) vs
t; £(t) times the multiplier is the magnitude of the applied
load at t. NPIM is the maximum number of (f(t),t) pairs used to
describe any one of the NLCUR functions; an individual function
may have fewer than NPIM (f(t),t) points as input, but no
function can be input with more than NPIM points. At least two
points are required per function; otherwise,interpolation in
time is not possible.

2. Load function data (skip these cards if NLCUR = 0)

Input NLCUR sets of the following data cards in order of
increasing load function number.

a. Control data (215)
columns variable entry

1-5 NTF Time function number;
GE.l and LE.NLCUR

6 - 10 NPTS Number of points (i.e., f(t), t pairs)
used to input this time function;
GE.2 and LE.NPIM

b. (£(t),t) data (8F10.0)

columns variable entry

1= TIMV(1) Time at point 1, t3

11--20 RV (1) Function value at point 1, f(t;)
21-30 TIMV (2) Time at point 2, tp

31-40 RV (2) Function value at point 2, f(tj)
71-80 RV (4) Function value at point 4, f(ty)
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NOTES/
(1)

(2)

note

note

If the same degree of freedom (IDIRN) at the same node (NOD) is
given a multiple number of times, the program combines the loads
algebraically with no error diagnostic.

Nodal loads must be refered to cylindrical coordinates if the
analysis is done in cylindrical coordinates.

4. Pressuie Loads Data

- —————— > —_—— s —

Repeat the following sets of cards for each load curve used for
pressure loading. Skip if NPLE.EQ.O.

a. Load curve data (3I%)

columns variable entry
1-5 NCURV Load curve number
6 ~10 NEF Number of element faces for which

pressure loads are to be camputed
using this load curve

11~-15 ICYL EQ.0; rectangular nodal coordinates
B.1; cylindrical nodal coordinates

o — - v o -2

NEF faces)
columns variable entry
1 ~10 PSCAL Load curve scale factor (<0 for
compression)
11-15% W
16-20 » NNG{J), Node numbers c¢efining the pressure
J=1,8 loaded face. Enter in NONSAP order

with zeros for absent nodes

46~50 1

51~55 NFACE Number of loaded faces to be generated
including the first (default = 1)

5660 HODINC Node number increment for generated

faces.,
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note

(1)

NOTES/
(1)

(2)

5. Gravity Loads Data (4F10.0,15)

Skip this section if LOADG.ED.O.

columng variable entry

1 -10 GACEL Acceleraticn of gravity

11-20 GS(1) Number of G's in X or axial direction
21-30 GS(2) Number of G's in Y or radial direction
31-40 GS(3) Number of G's in Z or hoop direction
41-45 NSTEPS Number of equal increments in which

deadlnad is applied (default = 1)

Must be consistent with density input from material data.
Deadloads are available with truss, membrane, and 3D elements.

Increments of dead load are added to the first NSTEPS load
vectors; to apply the dead load alone, set the load curves to
zero during the first NSTEPS increments.

V. RAYLEIGH DAMPING SPECIFICATION (2F10.0)

note
(1)

(1)
NOTES/

(1)

Omit this card if IDAMP.EQ.O.

columns variable entry
1-10 ADAMP Rayleigh damping coefficient
11-20 BLAMP Rayleigh damping coefficient

Rayleigh damping is defined as C = M + K, where o and § are
input as above,

It need be noted that £ is applied to the linear stiffness
matrix of the element assemblage.

V1. CONCENTRATED NODAL MASSES (110,6F10.0)

Skip this section if IMASSN.EQ.0, on card 2 of Section II.
Otherwise, input IMASSN cards as follows.



R RNy

note

(1)

(2)

(3)

NOTES/

VII.

note

(1)

(2)

(3)

(1)

(2)

(3)

columns  variable entry

1~-10 N Node number ;

GE.1 and LE.NUMNP
11-20 XMASS (1) X-direction mass
21-30 XMASS (2) Y-direction mass
31-40 XMASS (3) Z-direction mass
41-50 XMASS (4) X-rotational mass
51-60 XMASS (5) Y-rotational mass
61-70 XMASS (6) Z-rotational mass

Input IMASSN cards; node order is not important. Repeating
nodes accumulates mass at the node.

Mass components input for deletad (or nonexistent) degrees of
freedom are ignored by the program without a diagnostic message.

Rotational degrees of freedom are currently not used (see Table
11.1).

CONCENTRATED NODAL DAMPERS (110,6F10.0)

Skip this section if IDAMPN.EQ.0, on card 2 of Section II,
above., Otherwise, input IDAMPN cards as follows.

columns variable entry
1 - 10 N Node number ;

GE.1 and LE.NUMNP
11-20 XDAMP (1) X~direction damper
21-30 XDAMP (2) Y~direction damper
31-40 XDAMP (3) Z-direction damper
41-50 XDAMP (4) X-rotation damper
51-60 XDAM? (5) Y-rotation damper
61-70 XDAMP (6) Z-rotation damper
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VIII

note

(1)

(3)

Input IDAMPN cards; node order is not important. Repeating
nodes accumulates dampers at the node.

Damper components input for deleted (or non-existent) degrees of
freedom are ignored by the program without a diagnostic message.

Rotational degrees of freedom are currently not used .

INITIAL CONDITIONS

Initial conditions for the element are defined in this section.
Initial conditions may be established using one (1) of three (3)
methods--

METHOD 1 - For MODEX.EQ.2, this is a restart job. Refer to
Section XII for setting up a restart job. The
variable "ICON" appearing on the time card below
is read by the program, but ignored; i.e., the
control card (Section VIII.a) must still be input.

METHOD 2 - For MODEX.NE.2, and initial conditions of all
zero, input ICON.EQ.0 with no additional data;
all vector components are then automatically
initialized to zero at time of solution start,
TSTART.

METHOD 3 - For MODEX.NE.2, and known nonzero initial
conditions, input ICON.EQ.1 and read the system
vectors in compacted form from cards as described
in Section VIII.b, below.

a. Control Card (I5)
columns variable entry

1«5 ICON Flag indicating the type of initial

conditions;

EQ.0 and MODEX.NE.2, zero initial
conditions are generated automatically.

BEQ.1 and MODEX.NE.2, nonzero initial
conditions are read from data cards
immediately following.

BQ.2, reads constant initial velocities.



b. Card Input of System Vectors (6E12.6)

For the case MODEX.NE.2 and ICON,ED.1, the program performs the
following read operations:

READ (5,1000) (DIS(K),K=1,NEQ)

READ (5,1000) (VEL(K),K=1,NEQ)

READ (5,1000) (ACC(K),K=1,NEQ)
1000 FORMAT (6E12.6)

where DIS/VEL/ACC are the system initial displacement/velocity/
acceleration vectors, respectively. The variable NEQ is the
total number of freedoms retained for evaluation; i.e., six (6)
times the total nodes minus (~) all deletions provided by fixed
boundary condition specifica*ions,

The list of equation numbers can be obtained in Section ITT
(variable PSF) and can be identified conveniently from the
displacement (velocity and acceleration) print-out of a previous
solution,

For the case of a static solution, the VEL/ACC system initial
vectors are not read fram card input. A static solution is
performed if IMASS.EQ.0 (Section II, card 2).

If ICON=2 then read constant initial velocities 3E10.0.
ELEMENT INPUT

Input as many blocks of data in these sections as there are total
element groups. Linear element groups (NEGL, tctal) are input first, and
nonlinear elements (NEGNL groups, total) follow the linear element group
data. Therefore, whether the elements in a group are linear or
nonlinear, depends on whether the element group belongs to the first NEGL
groups or the last NEGNL groups.

In any cne group all elements input must be the same type; e.g., if
nonlinear TRUSS elements are given as input, then all elements in the
group must be nonlinear. Furthermore, in any one group, only one
material model can be used. e.g., if the group consists of TRUSS
elements, the. either the material of all elements in the group is linear
elastic, or it is nonlinear elastic. However, a number of different sets
of material constants for a specified model can be used.

Since the program is an overlay system, in order to avoid unnecessary
manipulation of overlays, it is most efficient to group all element
groups of one kind and using one material model together.
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note

(1)

note

{(2)

NOTES/

(1)

columns  variable entry

1-10 ARFA (N) Cross~gsectional area
11-20 DEN (N) Mass density for dynamic analysis
21-30 STRAI (N) Initial axial strain

c. stress-strain curve card (8r10.0)

——— 20 2

columns variable entry

l1-10 PROP (1,N) Strain at point 1, el

11--20 PROP(2,N) Strain at point 2, el
PROP
(NCON/2 ,N) Strain at point NCON/2
PROP

(NOON/2+1,N)  Stress at point 1, ol

PROP
(NCON/2+2,N)  Stress at point 2, 02

PROP (NCON, N) Stress at point NCON/2

One section property card is defined to have the same area,
density,and initial strain.

The stress-strain curve is defined by straight lines between the
input points (e!, 1), From the stress-strain curve total

stresses and the tangent modulus are evaluated for a given
strain (see Fig. A.2).

The variable NCON was defined in Section IX.3 by the variable
NPAR(17) .

This model can only be used in & nonlinear element group.

4. Element Data Cards (415,F10.0,315)

NPAR(2) elements must be input and/or generated in this
section in ascending sequence beginning with "1",
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note

(1)

(2)

(3)

NOTES/
(1)
(2)

(3)

columns variable entry

l1-5 M TRUSS element number;
GE.l and LE.NPAR(2)

6 ~-10 II Node number at one end

11-15 JJ Node number at other end

GE.1 and LE.NUMNP

16-20 MTYP Material property set number;
GE.1 and LE.NPAR(16)

21-30 PINIT Initial axial force in the TRUSS:
Gr.0, tension

31-35 IPS Flag for printing axial stress in
TRUSS element;

EQ.0, no printing
BQ.1, print element stress

36-40 KG Node generation increment used to
canpute node numbers for missing
elements;

BQ.0, default set to "1"

Refer to Figure A.l.

PINIT is the axial force in the TRUSS at zero node displacement,
and zero initial strain in the truss. The initial strain
defined for the material property set number gives rise to an
additional force in the truss,

Elements must be input in increasing element number order. If
cards for elements (M+l,M+2,...,M+J) are omitted, these "J"
missing elements are generated using MI'YP and PINIT of element
"M" and by incrementing the node numbers of successive elements
with the value "KG"; KG is taken from the first card of the
element generation sequence (i.e., from the "M-th" element
card). The last element cannot be generated,

X. MEMBRANE ELEMENTS

MEMBRANE elements are 4- to 8-node isoparametric curved
gquadrilaterals with coordinate input in the global X-Y-Z coordinate

system.

They conform to the surface of any configuration of the 8-tc 21~

node solid element and can model surfaces of nonorthogonal curvature.
Figure A.3 shows some typical MEMBRANE elements.
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ELEMENT NUMBER "M"
USES MATERIAL PROPERTY SET
"MTYP"

Fig. A.l. Truss element.
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(2)

(3)

(3)

(5)
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i. Element Group Control Card (20I4)

columns variable entry

1=4 NPAR (1) Enter the number "4"

5~-8 NPAR (2) Number of MEMBRANE elements in
this group;
GE.1

13-16 NPAR (4) Coordinate system identifier

EQ.0, Caitesian coordinates
BQ.1, cylindrical coordinates

25-28 NPAR (7) Maximum number of nodes used to
describe any one element;

GE.4 and LE.8
BQ.0, default set to "8"

37-40 NPAR (10) Numer ical integration order to be
used in Gauss quadrature formulae;

B0.0, default set to "2"

GE.2 and LE.4
49-52 NPAR (13) Number of stress output location
tables;

EQ.0, print stresses at
integration noints

57-60 NPAR (15) Material model nunlr;

GE.1 and LE.12

. 1, linear isotropic
.2, linear orthotropic
BQ.3, elastic-plastic

61-64 NPAR (16) Number of different sets of
material properties;
% |
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Mass density of the material used in
calculation of the mass matrix,
GE.0.0

The mass density defined is used directly in the calculation of
the element matrix, i,e., no acceleration constants are applied
to the variable DEN(N).

b. material property card(g) (8F10.0)

For MODEL "1" (NPAR(153).EQ.1) (lirear isotropic)

note colums variable entry
l1-10 PROP(1,N) Young's modulus, E
11-20 PROP(2,N) Poisson's ratio
21-30 PROP (3,N) Initial stress “gp
31-40 PROP (4,N) Initial stress gg

For MODEL "2" (NPAR(15)EQ.2) (linear orthotropic)

notes columns variable entry

(1) 1-10 PROP (1,N) R-direction modulus, Eg
11-20 PROP (2,N) S-direction modulus, Eg
21-30 PROP (3 ,N) Poisson ratio Vg
31-40 PROP (4,N) Shear modulus, Ggg

| 41-50 PROP (5,N) Ini*ial stress “gg

51-60 PROP (6,N) Initial stress Ugg

NOTES/

|
t (1) See Fig. 12 for orientation of the x-y axes with respect to the
‘ membrane tangent axes.,

For MODEL "3" (NPAR(15).EQ.3) (elastic-plastic material, von Mises yield

condition)
note columns variable entry
(1) l-10 PROP (1,N) Young's modu’us,E
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(1)
(2)
(3)

NOTES/

(2)

(3)

note

(1)

NOTES/

(1)

100

11-20 PROP (2,N) Poisson's ratio,
21-30 PROP (3 ,N) Yield stress in simple tension, 'y
31-40 PROP (4 ,N) Strain hardening modulus, Ey

MODEL 3 is a nonlinear library material model for which
NPAR(17) .B3.4 by default. NPAR(18).FQ.10, since 10
history-dependent variables must be stored for each integration
point.

The Young's modulus and Poisson's ratio define the initial
elastic behavior of the material.

The yield stress in simple tension defines the initial yield
conditions.

Linear isotropic strain hardening is assumed and is the
tangential modulus (after yield) obtained from a uniaxial

tension test.

Stress Output Table Cards (915)

Skip this section if stresses at integration points are to be
printed, i.e.,NPAR(13).BQ.0; otherwise supply NPAR(13) cards.

columns variable entry

i1~-93 ITABLE (N, 1) Stress output location
6 - 10 ITABLE(N, 2) Stress output location
11-15 ITABLE (N, 3) Stress output location
16-20 ITABLE (N, 4) Stress output location
21-25 IT? LE(N,5) Stress output location
26-30 ITABLE(N,6) Stress output location
31-35 ITABLE(N,7) Stress output location
36-40 ITABLE (N, 8) Stress output location
41-45 ITABLE(N,9) Stress output location

Stress tables are defined to provide flexibility in element

stress output requests.

Each element can refer to tables
defined, and the elament stresses are then calculated



note

(1)

(2)

(3)

(2)

at the points specified in the table. Refer to Fig. A.4 tor
selection of the stress calculation points. The first “"0" entry
in a table wili terminate that table., For example, if
ITABLE(N,1) BO.7 and 1TABLE (N.2) EQ.0. then stresses willi be
printed at point 7 whenever this stress table is referred to.
Tne stress tables are only used when MODEL "1" or "2" aefine the
material benavior.

4. Element Data Carcz (15, I3, 12, 2Fi0.0, 1i015)
columns variaple entiy

1 -5 M MEMBRANE elemen® numoer;
GE.1 arxi LE.NPAR(2)

6 -8 1EL Number of nudes usea 1O uescrioe
this element;
0.0, defaults set to "tPAR(7)"
LE.NPAR(7)

10 iPs Numbe: of tne stress table to be
usea for stress calculacioas;
.0 no scress output for this
eleme it

1l~2 BEY Material anglie B, in degrees to pe
used in connection witn material
madel “2" (linear ortnotropic)

21-30 THIC Element thick g3 GT.0.0

31-35 MIYP Material property set number
assignea to this element;

36-40 KG Node generation paramcter used to
compute noue numbers for missing
elements (given on first card ol
a seguence) ;
B3.0, agefault set to "1"

4. 45 NOD(1) Global noae number ot element
-

noaal point 1

40-50 NOD(2) Glopal noue number of element
nodal point 2
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Typical 3/D continuum elements derived
fram the general element in Fig. A.7.
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(3)

(6)

NPAR(3) 1is applicable tor nonlinear element groups only and
determines the type of geometrical nonlinearities to be
considered in the analysis.

Used with the viscoelastic creep model only.

NPAR(7) is the maximum number of nodee that can be used to
describe any one of the elements in this group, i.e.,elements in
this group must have less than or equal to NPAR(7) nodes. A
minimum of 8 and a maximum of 21 nodes are used to describe 3/D
CONTINUM elements as indicated in Fig. A.7. Constant strain
tetrahedra can be formed from 8~-node elements by having nodes
1,2,3 and 4 coincide and nodes 7 and 8 coincide.

The selection of appropriate integration orders depends on the
element shape and strain state being considered. When the
guantities being integrated vary irregularly a higher order is
needed. An integration order of "2" is sufficient for most
problems. Shell or plate problems often use thin elements in
which strain varies more cr less linearly through the thickness,
but more irregularly in the plane of the surface of the shell.
In these cases it is advantageous to specify a lower order for
integration through the thickness, i.e., NPAR(11) < NPAR(10).

The expense of stiffness formation is dependent on the
integration order, i.e.,

n = NPAR(11) * NPAR(10) * NPAR(10),

where n is the number of points at which BTDB must be
calculated in order to find the element stiffness by Gauss
integration.

The consistent mass matrix is always calculated using an
integration order of three in each direction,

Element stresses are calculated at the points defined in the
stress output location table (see Section XI.3) assigned to an
element. NPAR(13) defines the total number of stress output
location tables input in Section XI.3.

For nonlinear material models (NPAR(]5).GE.3) stress output
tables cannot be used, and stresses are printed at integration
points; NPAR(13) is set to "O" in these cases.

Only one meterial model (defined by the value of NPAR(15)) is
allowed in an element group. The model defined for the element
group must be consistent with the nonlinear formulation used
(NPAR(3)) and the requirement of equilibrium iteration as defined
on Card 4 of the Master Control Cards (Section II). Equilibrium
iteration can be performed on al] material models except for the
linear model and the curve description model. Always input
NPAR(17) = 5 + 4*NDIRCH when using material model 5, concrete
creep.



) continuum element node numbering convention.
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2. Material Property Data

NPAR(16) sets of cards must be input in this section, Card "a"
("material number card") is the same for all material models,
but card(s) "b" ("material property card(s)") depend on the
material model number NPAR(15).

a. material number card (I5, ¥10.0)

note columns variable entry
l1-5 N Material property set number;
GE.1 and LE.NPAR(16)
(1) 6-15 DEN (N) Mass density of the material used in
the calculations of the mass matrix
m.o‘o
NOTES /

(1) The mass density defined is used directly in the calculaticn of
the element mass matrix, i.e., no acceleration constants are
applied to the variable DEN(N).

b. material property card(s) (8F10.0)

FOR MODEL "1" (NPAR(15.).EQ.1) (linear isotropic elastic)

note columns variable entry

(1) 1-10 PROP (1,N) Young's modulus, E
11-20 PROP(2,N) Poisson's ratio,

NOTES/

(1) MODEL 1 is a linear library model defined by two (2) positive
constants (E,v); i.e., if NPAR(15).BQ.1, NPAR(17) is set to "2"
by default. MODEL 1 can be used with linear or nonlinear
element groups. Since Lhe material constants are independent of
history NPAR(18) is "0" by default.

FOR MODEL "3" (NPAR(15).EQ.3) (curve description model)

note columns variable entry

first card

(1) 1=130 PROP (1,N) e ' volume strain at point "1"
11-20 PROP (2,N) ey2. ..
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Second card

(2) 1-10 PROP(9) Relaxation parameter TAU(1) in Dirichlet
series

11-20 PROP (10) A(2)

21-30 PROP(11) B(2)

31-40 PROP(12) EX(2)

41-50 PROP(13) TAU(2)
Etc.

NOTES /

(1) MODEL 5 is a linear time dependent library element model for
which NPAR(17) = S5+4*NDIRCH. This number must he input on the
element group control card. The number of terme in the
Dirichlet series must be NDIRCH.LE.5. To characterize the
history 43 variables--namely, the previously calculated stresses
and strains, the temperature, and at most 30 hidden
variables--need be saved at each integration point.

(2) The coefficients in the Dirichlet series can be defined in
either of two ways--either with age dependence or with
temperature dependence. The relaxation function is of the form

e

DIRCH
J(t,t) JE_ + : SR VL e-t/'r(N)>
o tw

For age dependence (reguiring that ITEMP=0) the coefficient ft(N)
is given by

E(N) = A(N) + B(NJt"EX(N) (¢ is time)

For temperature dependence (requiring that ITEMP= 1) the
coefficient E(N) 1s given by

E(N) = ;(‘@%B—(i)_;:r. (T is temperature)
FOR MODEL "6" (NPAR(15).BQ.6) -~ (elastic-plastic von Mises)
note «2lumns variable entry
(1) 1-10 PROP(1,N) Young's modulus, E
11-20 PROP(2,N) Poisson's ratio, V
21-30 PROP (3,N) Yield stress in simple tension,
(2) 31-40 PROP(4,N) Strain hardening modulus, E¢
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NOTES/

(2)

(1)

61-65 ITABLE(N,13) Stress output location 13

66-70 ITABLE(N,14) Stress output location 14
71-75 ITABLE (N, 15) Stress output location 15

76-80 ITABLE(N,16) Stress output location 16

Stress tables are defined to provide flexibility in element
stress output requests. Each element can refer to one of the
tables defined, and the element stresses are then calculated at
the points specified in that table. Figure A.B defines the
locations of the 27 possible points within an element where
stresses may be prirted,

Any one table may contain a maximum of sixteen [(16) stress
output points. The first "0" entry in a table will terminate
that table. For example, if ITABLE(N,1).BEQ.21 and

ITABLE(N,2) .EQ.0, then stresses will be printed only at point 21
(the centroid of the element) whenever this stress table is
referred to.

Stress output tables are used only with linear material models
(NPAR(15) .BEQ.1). For elements using nonlinear material models
(NPAR(15) .GE, 3), stresses can be printed at integration points
only.

For reference, 2x2x2 MONSAP-C integration points are dofined in
Fig. A.9.

Element Data Cards (1615)

Three cards must be prepared for each element that appears in
the input:

First Card

columns variable entry

1=5 M 3/D CONTINUUM element number;
GE.1 and LE.NPAR(2)

6-10 1ELD Number of nodes to be used in
describing the element's

displacement field;

BQ.0, default set to NPAR(7)
LE.NPAR (7)
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(3) 11-15 IELX Number of nodes to be used in
the description of the element's
geametry;

.0, default set ot I1ELD

GE.5 and LE.TELD

EQ.IELD isoparametric element
LT.IELD subparametric element

(4) 16-20 IPS Number of the stress output location
table to be used for this element
(if a linear material model is used)
or flag for printing stresses at
element integration points;
B.0, no stress output for this
element

21-25 MTYP Material property set number
assigned to this element;

GE.1 and LE.NPAR(16)
(5) 26-30 18T Flag indicating that the stiffness
and mass matrices for this element

are the same as those for the
precading element;

.0, no
EQ.1, yes

(6) 31-35 KG Node number increment for element
data generation;

BQ.0, default set to "1"

Second Card
note columns variable entry
(2) 1-5 NOD(1) Global node number of element
nodal point 1
6-10 NOD(2) Global node number of element
nodal point 2
11-15 NOD(3) Global node number of element
nodal point 3
16-20 NOD(4) Global node number of element
nodal point 4
21-25 NOD(5) Global node number of element
nodal point 5
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NOTES/

(1) Element cards must be input in ascending element number order
beginning with one (1) and ending with NPAR(2). Repetition of
element numbers is illegal, but element cards may be amitted,
and missing element data are generated according to the
procedure described in note (6).

(2) IELD is a count of the node numbers actually posted on Cards 2 |
and 3 which must immediately follow Card 1., TELD must be at |
least eight (8) but must be less than or equal to the limit ‘
NPAR(7), which was given on the element group control card, |
Section XI.1l. FElement displacements are assigned at the IELD |
nonzero nodes, and thus the order of the element matrices is
three (i.e., translations X,Y,Z) times IELD. The eight corner
nodes of the hexahedron must be input, but nodes 9 to 21 are
optional, and any or all of these optional nodes may be used to
describe the element's displacement field, However, all 21
entries for NOD(I) are read fram element data cards 2 and 3; if
IELD.LT.2]1 the particular node locations not used 1n this
element must be input as zero (0) in NOD(I). Figure XI.3
defines the input sequence that must be observed for element
input,

For example, the 10-node element (TELD.EQ.10) shown below

is defined by
NOD(I) = (XXXXXXXX00X000X000000),

where the nonzero entries (X) are the global mesh node numbers
(Section III) of the 10 nodes.
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APPENDIX B, MEMBRANE ELFMENT FORMULATION

The following is a synopsis of the mathematical formulation used for
the 4 to B-node membrane element. Latin subscripts refer to a three-
dimensional Cartesian space and Greek subscripte refer to a two=dimen-
sional membrane space. Repeated subscripts within a term are summed
unless otherwise noted,

Following Chapter 5 of Reference 28, 9 and 9, are nonunit co-
variant base vectors tangent to the nonorthogonal curvilinear (isopara-
metric) coordinates of the unstrained membrane, For small straine, the

strain tensor is given by

Gt 148
Yag * TGyt et 83 ¥g) s (B.1)
where
gﬁ 15 >£,,& -e.; (8.2)
= B.3
!,D VE,E v £ ( )

X = (Cartesian coordinates

Cartesian displacements

<
i

& = Cartesian unit vectors.

The partial derivatives in B.2 and B,2 can he expressed in terms of
element nodal coorcdinates and nodal displacements lbw use of iosparametric

shape functions

N
N
i 5
Vo.8 ; Hn.e Yoo ? (8.5

R T U PPy T r—

125




where

Hh, = shape function for node n

Xy coordinates of node n

vny = displacements of node n,

X

Equations B.1 through E,5 may be combined to express membrane straing

as a function of nodal displacements in the form

m Vs

Y22 i [b] + (8.6)

Metric coefficients used in coordinate transformations are expressecd
as

g" = gc . g} . (8.7)

and a unit membrane surface area is transformed from Cartesian to

membrane coordinates as

R

dA d ,q] X 92 = V/ g]] 922 » g-|2 92] d"d' » V/ g d’fd' . (B.S)

-~

Constitutive laws are formulated in a local Cartesian cystem oriented
with respect to the membrane coordinates as shown in Figure B.1, The

Yy ¥y plane is coplanar with the -9, plane. Transformations of

A
stresses, strains, and the constitutive matrix between the local
Cartesian plane and membrane coordinates are taken from Chapter 4 of

Reference 29. Letting
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APPENDIX C - RELAIED CODES

This appendix contains brief descriptions of the INGEN mesh gener-
ating code and the MOVIE.LASL graphics code and shcws how these codes can
be used with the NONSAP-C coce.

INGEN is a general-purpose mesh gencrator for two- and three-
dimensional finite element codes. Th. basic purts of the coge are sur-
face and three~dimensional region generators that use linear blending
interpolation formulae. These gencrators are based on an i, j, Kk index
scheme that is used to number nodal points, conctruct elements, atd
develop displacement and traction boundary conditions., The INGEN code is
available from the Argonne code center.

MOVIE.LASL 1s an interactive FORTRAN program for displa’ and anima-
tion, both of finite element models and of results of their analysis.
The user may manipulate the model (rotate, ¢ -anslate, zoom, etc.), spec-
ify colors for the backgrouwsl and the different element groups, ana
select various display devices. Both line drawings and continuous-tone
color images can oe produced. Single frames or animated movie seguences
are also available and can be displayecd on any of the output devices.
All data to be displayed must exist in the form of nodal values. The
program runs on the Los Alamos Scientific lLaboratory LTSS operating
system and contains much installation-dependent coding.

Figure C.1 shows the relationship of the codes INGEN, NONSAP-C, and
MOVIE-LASL. Linkages shown as solid lines exist, whereas those shown in
dashed lines do not.
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