Dynamic, and Long-Term Loadings
 (1 nuted Stato dowernment not any axemy thetcof of any of they umpoyery makes any waranty comewed or umplied) of assumet any kfat liability of mesponsibist, for any therd party use or the cocults of wh uw of any information appatatiss, product ar prosess disctowd in thes report, of fepresems that its us by such thed part, woukd not infling: privately owned sights.

NONSAP-C: A Nonlinear Stress Analysis Program for Concrete Containments Under Static, Dynamic, and Long-Term Loadings

P. D. Smith
C. A. Anderson

ABSTRACT. 1

1. INTRODUCTION 1
II. CONSTITUIIVE MODELS FOR PLATN AND REINFORCED CONCREITE. 6
A. Elastic-Plastic Concrete Model of Chen and Chen 7
B. Orthotropic Variable Modulus Model for Concrete 14
C. Concrete Creep Model 18
III. SUMMARY OF NONSAP-C CAPABILITIES 21
A. Program Organization. 22
B. Element Library 33
C. Material Models 36
D. Dynamic Capability. 39
E. Computations in Cylindrical Coordinates 39
F. Pressure and Gravity Loads. 39
G. Mesh Generation 40
H. Stiffness Matrix Reformation and Equilibrium Iteration. 40
I. Computing System Recuirements 40
IV. APPLICATION OF NONSAP-C T) ANALYSTS OF 3-DIMENSIONAL CONCRETE STRUUCIURES 40
A. Elastic Analysis of a Multicavity PCRV. 41
B. Concrete Cube under Multiaxial Stress States 44
C. Thick-Walled Concrete Ring. 47
D. Rectangular Concrete Plate. 49
E. Dynamic Response of a Concrete Beam 51
F. Shear Strength of a PCRV End Slab Model 55
G. Creep of Fort St. Vrain Cruciform 60
H. Creep of ORNL Thermal Cylinder 61
I. Spherical Membrane Under Internal Pressure 63
ACKNOWLEDCGMENIS 63
REFERENCES 67
APPENDIX A. DATA INPUT TO NONSAP-C 70
APPENIIX B. MEMBRANE ETHENT FORMUTATION. 125
APPENDIX C. RETATED CODES 130

NONSAP-C: A NONLINEAR STRESS ANALYSIS PROGRAM
 FOR CONCRETE CONTAINMENTS UNDER STATIC, DYNAMIC, AND LONG-TERM LOADINGS

by
P. D. Smith
C. A. Anderson

Abstract

ABSIRACT

This report describes the NONSAP-C finite element code and its application to the nonlinear structural analysis of three-dimensional concrete containments under static, dynamic, and long-term loadings. Features of this code that allow for easy application to realistic concrete structural problems are discussed, along with the various material models used to represent plain and reinforced concrete, for both time-dependent and time-independent behavior. Applications of the code to analysis of conventional reinforced concrete structures and to the structural analysis of prestressed concrete reactor vessels (PCRVs) and PCRV models are illustrated. Comparisons of the code predictions with previous numerical solutions to these problems or to experimental data are made. Input instructions for the NONSAP-C code are described in the report.

I. INIRODUCIICN

Concurrent with the development of computing machines with expanded memory and faster execution times has been the developnent of numerical methods for solving nonlinear physical problems in two and three dimensions. In the area of structural mechanics the analysis of reinforced concrete structures has in the past been treated in an ad hoc fashion with the use of numerous approximations (such as elastic or perfectly plastic behavior) to represent the behavior of the reinforced concrete. The developnent of fast computers with large memories, together with nonlinear finite element methods and codes, has rendered such approaches obsolete. It is the purpose of this report to describe a finite element code that has been modified at the Los Alamos Scientific Laboratory (IASL) for the structural analysis of reinforced concrete pressure vessels and containments.

Analytical procedures that are accurate for prediction of the stress and deformation ficlds of honogeneous continua encounter numerous diffi culties when applied to reinforced soncrete structures. Among these difficulties are the incorporation of the nonhonogeneous behavior caused by the presence of the reinforcement, concrete cracking, nonlinear concrete crushing, the effect of triaxial stress on strength, bond slip and dowel action across a cracked section. Consequently, although early attempts at modeling the behavior of reinforced concrete structures relied on an elastic finite element analysis, ${ }^{1,2}$ the preponderance of research in this field in the last five years has been concerned with modeling the nonlinear behavior of reinforced concrete structures by use of the finite element method. ${ }^{3}$

Representation of the composite nature of reinforced concrete proceeded historically with the use of separate finite elements (initially, constant strain triangles) for the reinforcement and concrete. ${ }^{2}$ More recently, with the widespread adoption of isoparametric finite elements to represent complicated geometrical shapes with a small number of elements, the emphasis has changed to a "smeared" element stiffness representation. 4 In this method the mechanical and geometrical properties of the plain concrete and the reinforcement are integrated over the finite element to provide a stress state-dependent element stiffness, which can include yielding of the reinforcement and cracking of the concrete.

Undoubtedly, the most important and difficult nonlinearity in the analysis of concrete structures is crack formation and propagation. Concrete cracking is accounted for by introduction of a crack oriented perpendicular to the maximum principal stress direction whenever the stress state at the point in question satisfies the cracking criterion. The constitutive matrix is subsequently modified to prevent transmission of normal tensile stress across the crack plane. The cracking process is carried out pointwise (at the integration points for isoparametric elements), and an integrated element stiffness, reflecting the reduction in stiffness caused by the presence of the crack, is determined. Unfortunately, the extreme material "softening" of crack formation can sometimes
cause numerical difficulties. Finally, since incremental equations are usually employed, progessive crack growth can be followed using this method. Reference 5 is an up-to-date survey of analysis methods for PCRVs, including a discussion of the numerical treatment of cracking in concrete.

Various theories have been advanced to describe the time-independent behavior of concrete under multiaxial compressive stress states. These theories include elastic-plastic theories, the nonlinear orthotropic theory, and the endochronic theory. Again, Ref. 5 provides an excellent summary of the various theories. Characteristic of the attempts at formulating constitutive model.s for concrete under multiaxial stress states is the difficulty in obtaining experimental data; in this regard the data of Kupfer, Hilsdorf, and Rusch ${ }^{6}$ for the biaxial strength of concrete has been often used to support theoretically derived failure criteria for elastic plastic representations of concrete behavior. However, a difficulty with elastic-plastic constitutive models is that they do not model the material anisotropy observed experimentally in concrete under stress, nor do they correctly model the dilatancy in concrete undergoing deformation.

For predicting time-dependent behavior of concrete under long-term loads, viscoelastic models have been used and continue to be applied in finite element analysis codes. Again, Ref. 5 presents an up-to-date summary of recent developments in the use of viscoelastic theories to represent concrete creep including attempts to account for temperature and moisture changes.

This report is concerned with a description of the NONSAP-C code that has been developed at IASL for the structural analysis of reinforced concrete reactor vessels and containments. The NONSAP-C code is based on the widely used Nonlinear Stress Analysis Program (NONSAP) code ${ }^{7}$ with extensive modifications made at LASL to incorporate time-independent and time-dependent concrete constitutive relations, an out-of-core solver for large systems of linear equations, an elastic-plastic membrane element to represent the behavior of cavity liners, and numerous other capabilities to ease the difficult task of analyzing three-dimensional reinforced
concrete structures. A companion mesh generator code, INGEN, ${ }^{8}$ and graphics code, MOVIE, ${ }^{9}$ are also available and serve as pre- and postprocessor codes for NONSAP-C. The NONSAP code was selected as the vehicle for the concrete structural analysis code because it included both dynamic and static analysis capabilities, it used the desirable isoparametric finite element formulation, and it possessed a modular structure, thus making straightforward the incorporation of additional material models. Also, a great deal of flexibility for the user is provided by the different options (e.g., equilibrium iteration and stiffness reformulation) in NONSAP for solving the nonlinear discretized equations.

Section II of this report discusses the material models for concrete that are used in the NONSAP-C code. Nonlinearity of the stress-strain relation caused by inelasticity of the concrete and steel are treated in one time-independent model by a variable moaulus approach with or thotropic behavior induced in the concrete due to the developnent of different tangent moduli in different directions. Concrete cracking at integration points of isoparametric elements is handled in the usual way. ${ }^{3,5}$ In a second time-independent model ${ }^{10}$, concrete behavior is characterized by elastic-plastic constitutive relations in which the concrete is assumed to be a continuous, isotropic, and linearly elasticplastic strain-hardening material with stress states limited by a failure surface that is quadratic in I_{1} and $J_{2}\left(I_{1}\right.$ and J_{2} are the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor, respectively). In the tension-tension region of the failure surface, stresses are limited to small values because of the contracted nature of the failure surface there. In contrast to the variable modulus approach, the elastic-plastic model incorporates biaxial strength data; however, there is no provision for crack formation in the elastic-plastic model. Finally, a viscoelastic concrete model based on the work of Bazant ${ }^{11}$ is described for the time-dependent behavior of concrete. Again, cracking is not taken into account in the current version of the viscoelastic model.

Section III of the report contains a summary of the capabilities of the NONSAP-C code. Numerical implementation of the material models, the out-of-core solver, the elastic-plastic membrane element, and the NONSAP-C thermal capability are described in this section. Also described here are the internal mesh generating capability of the NONSAP-C code and the requirements of the computing system for execution of the NONSAP-C code.

In Section IV of this report is summarized the current state of application of the NONSAP-C code to analysis of the static and dynamic behavior of some typical concrete structures, including comparisons of the code predictions to experimental data. All of the problems analyzed are modeled as three-dimensional structures. The nine test problems described in Section IV were chosen because they exercise the various options or concrete material models of the NONSAP-C code that may be required in concrete structural design or in the safety analysis of concrete structures. Noteworthy of the results from the variable modulus-cracking concrete model is the variability in the predictions of the NONSAP-C code with the experimental observations of the failure of an unreinforced PCRV end-slab model that was tested to destruction at the Structural Research Laboratory at the University of Illinois, ${ }^{12}$ with the worst agreement being the prediction of the ultimate pressure load and the concrete ductility at failure. Comparisons of structural response are also made between the two time-independent concrete models the variable modulus and elastic-plastic models - for a concrete cube under various multiaxial stress states and a thick-walled ring under internal pressure. Finally, the results from numerical simulation of the creep behavior of the Oak Ridge National Laboratory Thermal Cylinder ${ }^{13}$ were in fair agreement with the experimental observations.

Appendix A of this report contains the user instructions for the NONSAP-C code. The authors have attempted to incorporate input instructions for the added capabilities (concrete material models, pressure boundary conditions, body force loads, and membrane element data) that are consistent with the input instructions of the original NONSAP code.

Also described in Appendix A are the instructions for a restart analysis. Appendix B contains a summary formulation of the membrane element. Appendix C contains brief descriptions of the INGEN mesh generasing code and the MOVIE.LASL graphics code and shows how these codes can be ised with the NONSAP-C code.

II. CONSTITUTIVE MODEIS FOR PLAIN AND REINFORCED CONCREIE

Nonlinear constitutive relations for concrete under short-term loads have taken four basic forms. The earliest of these is the isotropic variable modulus model, wherein bulk and shear moduli are expressed as functions of stress invariants and fit to experimental data. ${ }^{14}$ A recent developnent for concrete application has been the endochronic model ${ }^{15}$ that expresses the bulk and shear moduli as functions of "intrinsic time". Intrinsic time is a measure of the length of the path traced through strain space by the deformation process. A third approach has been the elastic-plastic method with a yield surface and incremental elastic-plastic stress and strain relations derived by the procedures of classical plasticity. Section II.A below discusses one such elasticplastic model that has been proposed recently for describing the inelastic behavior of concrete and that has been incorporated in the NONSAP-C code. This model does not yet take into account the presence of reinforcement nor does it treat cracking explicitly; it does, however, simulate biaxial strength effects that have been observed experimentally in concrete. A fourth model described in Section II.B is the orthotropic variable modulus model; this model has also been incorporated in the NONSAP-C code and accounts for the presence of reinforcement, nonlinear concrete behavior, and cracking. Finally, Section II.C briefly describes a viscoelastic constitutive model ${ }^{5,11}$ that has been implemented in the NONSAP-C code for long-term thermal creep of concrete.

The usual finite element representation of Reference 16 will be used throughout this section. Thus v will represent vectors, and M will represent matrices.

A. Elastic-Plastic Model of Chen and Chen

Ductile behavior of metals has been explained as the motion of dislocations present in the metal; the motions are driven by shear stress and are unaffected by hydrostatic pressure. Mathematical theories based on the physical theory of dislocation motion employ a failure (yield) criterion that is unaffected by hydrostatic pressure. These theories have gained general acceptance in the engineering cormunity and are fairly cormonly applied in the stress analysis of inelastic structural systems. The situation for concrete, on the other hand, is more complicated. The considerable difference (i.e., a factor of ten or more) in tensile and compressive strengths of concrete under uniaxial stress, the finite strength of concrete under hydrostatic tensile stress, and the effect of biaxial stress on the strength of concrete all contribute to the need for a much more general failure criterion. An elastic-plastic theory for concrete must also take into account the nonlinear relationship between stress and strain that is observed for compressive stresses well short of the failure stress as shown in Fig. 1.

Fig. 1. Compressional stress-strain behavior of concrete.

An elastic-plastic constitutive relation for concrete under general three--dimensional stress states has been proposed recently by Chen and Chen, ${ }^{10}$ in which the concrete is assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening fracture material. In this theory, an initial discontinuity surface, subsequent loading surfaces, and a failure surface for concrete are defined, and elastic-plastic stress-strain incremental relationships are derived using the classical theory of plasticity. Figure 2 illustrates the failure and initial

Fig. 2. Failure and initial discontinuous surfaces in triaxial stress space.
discontinuity surfaces in principal stress space for this type of material. The failure surface is presumed to be dependent on the first stress invariant, I_{1} (proportional to the pressure), and the second invariant of the deviatoric stress teneor, J_{2}, of the quadratic form

$$
\begin{equation*}
\frac{k^{2}}{3} J_{2}-\frac{k^{2}}{36} I_{1}^{2} \pm \frac{1}{12} I_{1}^{2}+\frac{1}{3} A I_{1}=T^{2} \tag{1}
\end{equation*}
$$

where A and T are material constants that can be determined from the concrete tensile and compressive strengths. When $\kappa^{2}=3$ a good fit to biaxial concrete failure data is obtained as shown in Fig. 3. The failure surface, Eq. (1), is similar to one originally developed by Saugy. ${ }^{17}$

Fig. 3. Failure and initial discontinuous curves in biaxial principal stress space with experimental data from Kupfer et al. (1969). ${ }^{6}$

Constitutive relations for incremental stress $\left\{d_{\sigma}\right\}$ in terms of incremental strain $\{d \varepsilon\}$ are derived from References 10 and 18 , based on the normality rule of plasticity as applied to the initial discontinuity and the subsequent loading surfaces. Specifically, one obtains ${ }^{18}$

$$
\begin{equation*}
\{d \sigma\}=\left\{c_{\text {ep }}\right\}\{d \varepsilon\} \tag{2}
\end{equation*}
$$

where [$C_{e p}$] is the elastic-plastic matrix defined by

In Eq. (3)

$$
\begin{gather*}
\frac{1}{\omega}=\left\{(1-2 \nu)\left(2 n^{2} J_{2}+3 p^{2}\right)+9 \nu p^{2}\right\}+\frac{m H(1+\nu)(1-2 \nu)}{E} \sqrt{2 \eta^{2} J_{2}+3 p^{2}} \tag{4}\\
z_{i j}=f_{i} f_{j}, i, j=1,2 \ldots 6, \tag{5}
\end{gather*}
$$

where

$$
\begin{align*}
& \mathrm{f}_{1}=(1-2 v)\left(n S_{x}+p\right)+3 v p \\
& \mathrm{f}_{2}=(1-2 v)\left(n S_{y}+p\right)+3 v p p \\
& \mathrm{f}_{3}=(1-2 v)\left(n S_{z}+p\right)+3 v p p \\
& \mathrm{f}_{4}=(1-2 v) n S_{x y} \tag{6}\\
& \mathrm{f}_{5}=(1-2 v) n S_{x z} \\
& \mathrm{f}_{6}=(1-2 v) n S_{y z}
\end{align*}
$$

and

$$
\begin{align*}
m & =1-\frac{\alpha}{3} I_{1} \\
n & =1 \tag{7}
\end{align*}
$$

$$
p=n I_{1}+\frac{\beta+\alpha \tau^{2}}{3}
$$

where $n=0$ in the compression region of the failure surface and $n=-1 / 3$ in the tension-compression region of the failure surface. In Eq. (6)
$S_{x}, S_{y}, S_{z} S_{x y}, S_{y z}, S_{x z}$ represent the components of the deviatoric stress tensor. The constants α and β are given by (for $k^{2}=3$)

$$
\begin{aligned}
\alpha & =\frac{A_{u}-A_{0}}{\tau_{u}^{2}-\tau_{0}^{2}} \\
B & =\frac{A_{0} \tau_{u}^{2}-A_{u} \tau_{0}^{2}}{T_{u}^{2}-T_{0}^{2}}
\end{aligned}
$$

in which $A_{0},^{A_{u}} \tau_{0} \tau_{0}$ and ' u are the material constants* that

* (Note that in Eq. (1) if $\tau=\tau_{0}$, then the loading function reduces to the initial discontinuity surface of concrete. If $\tau=\tau$ then Eq. (1) becomes the failure surface of concrete.)
are functions of $f^{\prime} c^{\prime} f_{c}, f^{\prime} t^{\prime} f_{t}, f_{b c}^{\prime}$ and $f_{b c}$. Here, $f^{\prime}{ }_{c}, f^{\prime} t$ and $f_{b c}^{\prime}$ denote the ultimate strength of concrete under uniaxial compression, uniaxial tension, and equal biaxial compression, respectively, while $f_{c}, f_{t}, f_{b c}$ denote the initial yield strength of concrete under the corresponding loading. The constants $A_{0}, A_{u},{ }^{\tau}{ }_{0}$ ' and τ_{u} assume different values in the compression and tensioncompression regions.

For the compression region ($I_{1} \leq 0$ and $J_{2}+I_{1} / 3 \leq 0$)

$$
\begin{align*}
& \frac{A_{o}}{\bar{f}_{c}^{\prime}}=\frac{\bar{f}_{b c}^{2}-\bar{f}_{c}^{2}}{2 \bar{f}_{b c}-\bar{f}_{c}} ; \frac{A_{u}}{f_{c}^{\prime}}=\frac{\bar{f}_{b c}^{\prime 2}-1}{2 \bar{f}_{b c}^{\prime}-1} \tag{9}\\
& \left(\frac{\tau_{0} 0}{f_{c}^{\prime}}\right)^{2} \quad \frac{\bar{f}_{c} \bar{f}_{b c}\left(2 \bar{f}_{c}-{\overline{f_{b c}}}^{\prime}\right)}{3\left(2{\overline{f_{b c}}}-\bar{f}_{c}\right)} ;\left(\frac{\tau_{u}}{f_{c}^{\prime \prime}}\right)^{2}=\frac{\bar{f}_{b c}^{\prime}\left(2-\bar{f}_{b c}^{\prime}\right)}{3\left(2 f_{b c}^{\prime}-1\right)} .
\end{align*}
$$

For the tension-compression region: (Either $I_{1} \geq 0$ or $J_{2}+I_{1}$ / $3 \geq 0$)

$$
\begin{align*}
& \frac{A_{0}}{f_{C}^{\prime}}=\frac{\bar{f}_{C}-\bar{f}_{t}}{2} ; \quad \frac{A^{u}}{f_{c}^{\prime}}=\frac{1-\bar{f}_{t}^{\prime}}{2} \tag{10}\\
& \left(\frac{\tau_{0}}{f_{c}^{\prime}}\right)^{2}=\frac{\bar{f}_{c} \cdot \bar{f}_{t}}{6} ; \quad\left(\frac{\tau^{\prime}}{f_{c}^{\prime \prime}}\right)^{2}=\bar{f}_{t}^{\prime} / 6,
\end{align*}
$$

where $(-)$ denotes the nondimensionalized quantity of the corresponding term with respect to $\mathrm{f}^{\prime}{ }_{c}$.

The three-dimensional incremental relationships between stress and strain, Eys. (2) - (7) from Reference 8, have been incorporated into the NONSAP-C code.

The input parameters to the model are the elastic properties of the concrete, the ultimate strain, the three parameters (tensile, compressive, and biaxial strengths) of the failure surface, and the corresponding parameters for the initial discontinuity surface. Typical data for a high strength concrete for PCRV use are given in Table I below.

Two modifications have been the inclusion of a quadratic hardening curve, which defines the incremental loading surfaces between the initial discontinuity surface and the failure surface, and a modification to return the stress state to the failure surface once the failure surface is penetrated. For the former situation the hardening curve is given explicitly by

$$
\begin{equation*}
\left(\frac{d \tau}{d E}\right)=\frac{2}{\varepsilon} \sqrt{\left(\tau_{u}-\tau_{0}\right)\left(\tau_{u}-\tau\right)} \tag{11}
\end{equation*}
$$

TABLE I

CONCREIE PROPERTIES USED IN TEST PROBLIFMS

Modulus of Elasticity (E)	$26.000 \mathrm{MPa}\left(3.8 \times 10^{6} \mathrm{psi}\right)$
Poisson.'s Ratio (U)	0.20
Compressive Strength ($\mathrm{f}^{\prime}{ }_{C}$)	46.0 MPa (6800 psi)
Tensile Strength (f^{\prime} t)	3.1 MPa (450 psi)
Ulimate Strain (ε_{u})	0.003
Biaxial Compressive	
Strength ($\mathrm{f}^{\prime} \mathrm{bc}$)	$1.16 \mathrm{f}^{\prime} \mathrm{c}$

where $\hat{\varepsilon}$ is the "failure" strain associated with the failure surface stress parameter T_{u}, and T_{O} is the initial discontinuity stress parameter.

When the failure surface $F(\{\alpha\})=\tau_{u}^{2}$ is penetrated, the stress state is returned to the failure surface by solving

$$
\begin{equation*}
F\left(\{\sigma\}+x\left[C_{e p}\right]\{\delta \varepsilon\}\right)=T_{u}^{2} \tag{12}
\end{equation*}
$$

for the scaling parameter $x,(0<x<1)$ where $\{\alpha\}$ is the previous stress state, $\{\delta \varepsilon\}$ is the incremental strain change, and $\left[\mathrm{C}_{e p}\right.$] is the elastic-plastic matrix.
B. Orthotropic Variable Modulus Model for Concrete

The orthotropic variable modulus model of Ref. 9 has been adapted to the NONSAP-C finite element code. For this model, orthotropic axes are defined by principal stress directions prior to formation of cracks. $\mathrm{Cl}_{\text {ack }}$ formation is determined by comparing each tensile principal stress σ_{i} in turn against the fracture criterion

$$
\begin{equation*}
\sigma_{i}>f_{t}^{\prime}-\left(f_{t}^{\prime} / f_{c}^{\prime}\right)\left(\min \left[0, \sigma_{j}, \sigma_{k}\right]\right), \tag{13}
\end{equation*}
$$

where $f^{\prime} t$ and $f^{\prime}{ }_{C}$ are uniaxial tensile and compressive strengths and σ_{j} and σ_{k} are the principal stresses mutually orthogonal to σ_{i}. When a crack forms, the concrete tensile stress is released and redistributed. The orthotropic axis normal to the crack is fixed during subsequent deformation.

A corposite integrated stiffness and strength representation is derived for the reinforced concrete element shown in Fig. 4. In Fig. 4

Fig. 4. Cracked concrete element with reinforcement.
(x, y, z) represents the global coordinate system and $(1,2,3)$ represents the axis of orthotropy with 1 being the coordinate perpendicular to the cracking plane (i.e., 1 is the weak direction). The incremental constitutive matrix (see Eq. (2)) for stresses in orthotropic coordinates is ${ }^{19}$

$$
[C]=\left[\begin{array}{ccc}
E_{1} & \beta \sqrt{E_{1} E_{2}} & \beta \sqrt{E_{1} E_{3}} \tag{14}\\
& E_{2} & \beta \sqrt{E_{2} E_{3}} \\
(s y m) & E_{3}
\end{array}\right]\left[\begin{array}{llll}
G_{11} & G_{12} & G_{13} \\
& G_{22} & G_{23} \\
(s y m) & G_{33}
\end{array}\right] \text { (s) }
$$

where

$$
\alpha=\frac{(1-\nu)}{(1+\nu)(1-2 \nu)}, \quad \beta=\frac{\nu}{1-\nu}
$$

and where v is a composite Poisson's ratio for steel and concrete. The shear moduli $G_{i j}, i, j=1,2,3$ are assumed to be given by

$$
\begin{equation*}
G_{i j}=E_{i} E_{j} /\left[(1+\nu)\left(E_{i}+E_{j}\right)\right] . \tag{15}
\end{equation*}
$$

The values for E_{i} in Bqs. (14) and (15) are a composite of variable steel and concrete moduli,

$$
\begin{equation*}
E_{i}=b E_{c i} A_{c i}+E_{s i} A_{s i} \tag{16}
\end{equation*}
$$

where $A_{C i}$ and $A_{s i}$ are relative areas of concrete and steel projected upon the i 'th or thotropic face, $E_{c i}$ and $E_{s i}$ are tangent moduli of the concrete and steel, and b varies from 0 to 1 to account for bond degradation across a crack.

Following the development of Ref. 20, the triaxial strain state is reduced to "equivalent uniaxial strains",

$$
\begin{equation*}
e_{i}=\varepsilon_{i} /(1-\nu r), \tag{17}
\end{equation*}
$$

where

$$
r=\left(\sigma_{j}+\sigma_{k}\right) / \sigma_{i}
$$

In this fashion the tangent moduli E_{Ci} and E_{Si} of Eq. (16) are obtained from postulated uniaxial stress-strain behavior for concrete and steel.

The equivalent uniaxial tangent modulus for concrete varies, depending on whether the concrete is cracked or uncracked, in tension or canpression, or under loading or unloading.

To describe the nonlinear stress-strain behavior of uncracked concrete in compression, the loading tangent modulus is taken to be

$$
E_{C i} / E=\left[1-R^{2}\right] /\left[1+\left(E / E E_{S C}-2\right)+R^{2}\right]^{2}
$$

where

$$
\begin{equation*}
R=e_{i} / \varepsilon_{f} \tag{18}
\end{equation*}
$$

$$
E_{S C}=f_{c}^{\prime} / \varepsilon_{f},
$$

where ε_{f} is the uniaxial failure strain, f_{c} is the uniaxial failure stress, and E is the uniaxial elastic modulus of concrete. For uncracked concrete in tension or for unloading and reloading in compression, the elastic modulus is used. For uncracked concrete, b in Eq. (16) equals one.

The value of the equivalent uniaxial strain at crack formation is stored for use as a crack opening and closing criterion. For concrete with a closed crack, the uncracked modulus is used in Eq. (3.5). For concrete with an open crack across which there is no steel, one percent of the elastic modulus is used. Where there is steel across an open crack, the elastic modulus is used for the concrete fraction. The factor b in Fq. (16) is a simple model of bond development across a crack and varies linearly from one to zero as the stress sustained by the steel approaches its yield stress.

The steel portion of Eq. (16) is elastic until yieldirg, whereupon its modulus is set to one percent of the elastic value. The sinel is assumed to unload and reload elastically.

Following Reference 19 the three-dimensional constitutive relation described by Eq. (14) for incremental stresses, in terms of incremental strains in orthotropic coordinates, has been programmed as one of the material models in the NONSAP-C finite element code. Input parameters for this model include the elastic properties of concrete and steel, the tensile and compress, ve strengths of concrete, the steel yield stress, and the percentages of the steel reinforcement.
C. Concrete Creep Model

A viscoelastic creep model based on the theory described in References 11 and 21 has been incorporated into the NONSAP-C code as a threedimensional material model. The creep compliance function shown in Eq.
(19) for concrete in uniaxial stress is expressed as the Dirichlet series with temperature-dependent coefficients shown in Eq. (20),

$$
\begin{align*}
& \varepsilon(t)-\varepsilon^{0}(t)=\int_{0}^{t} J\left(t, t^{\prime}\right) d o\left(t^{\prime}\right) \tag{19}\\
& J\left(t, t^{\prime}\right)=\frac{1}{E}+\sum_{\mu=1}^{N}\left(a_{\mu}+b_{\mu} T\right)\left[1-\exp \left(t^{\prime}-t\right) / \tau_{\mu}\right], \tag{20}
\end{align*}
$$

where t is the time from casting of concrete, T is the temperature in degrees Celsius, Z is the Young's modulus for concrete, ${ }^{\tau} \mu$ are constants called retardation times, and $\left(a_{\mu}, b_{\mu}\right)$ are coefficients that represent a creep compliance depending linearly on temperature.

An eight-year study of multiaxial creep behavior of concrete is summarized in Reference 22. During this investigation, strains were measured in cylindrical specimens subjected to a variety of multiaxial loading conditions, three curing times, two curing histories, and two curing temperatures $\left(24^{\circ} \mathrm{C}\right.$ and $\left.65^{\circ} \mathrm{C}\right)$. Experimental data were taken for as lory as five years. This experimental work is particularly important because the various test conditions rouchly approximate the conditions for concrete in a prestressed concrete reactor vessel (PCRV). The results obtained in this study were fit to a five-term Dirichlet series of the form shown in Eq. (20). Retardation times differing by decades were arbitrarily selected in advance. The values obtained for the Dirichlet series parameters are shown in Table II below. The experimental data were for concrete loaded 90 days after casting. Figure 5 illustrates the closeness of the fit between the Dirichlet series representation of Eq. (20), using parameters given in Table II and the experimental data of Ref. 22.

Fig. 5. Creep functionals for as-cast concrete at 24 K and 65 K , together with Dirichlet series approximations.

TABLE II
VALUES OF COEFFICIENTS IN EQ. 20

Series Term	Retardation Time (days)		a $\left(x^{2} 10^{6}\right)$	

III. SUMMARY OF NONSAP-C CAPABILITIES

This section describes the capabilities (e.g., elements, material models, solution methods) of the NONSAP-C code. Briefly described are those capabilities that have been carried over directly from the NONSAP code; background theory and detailed description are provided here and in the previous section for those capabilities that have been added to the NONSAP-C code specificaliy for the analysis of concrete structures and prestressed concrete reactor vessels.

The equations of motion for an assenblage of nonlinear finite elements have been derived previously ${ }^{7}$ and are of the form

$$
\begin{equation*}
[M]^{t+\Delta t}\{\ddot{u}\}+[C]^{t+\Delta t}\{\dot{u}\}+{ }^{t}[K]\{u\}={ }^{t+\Delta t}\{R\}-t_{\{F\}}, \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
{[M] } & =\text { constant mass matrix } \\
{[\mathrm{C}] } & =\text { constant damping matrix } \\
t_{[K]} & =\text { tangent stiffness matrix at time } t \\
t+\Delta t\{R\} & =\text { external load vector at time } t+\Delta t \\
& =\text { nodal force vector equivalent to the element } \\
t_{\{F\}} & \text { stresses at time } t \\
t+\Delta t\{\dot{U}\} & =\text { nodal velocity vector at time } t+\Delta t \\
t+\Delta t\{u ̈\} & =\text { nodal acceleration vector at time } t+\Delta t \\
\{u\} & =\text { nodal displacement increment. }
\end{aligned}
$$

The code NONSAP-C obtains solutions to Eq. (21) by various approximate means.
A. Program Organization

The complete solution process in program NONSAP-C is divided into three distinct phases.

Input phase

The input phase consists of three steps.
a) The control information and the nodal point input data are read and generated by the program. In this phase the equation numbers for the active degrees of freedom at each nodal point are established.
b) The externally applied load vectors for each time (load) step are calculated and stored on disk.
c) The element data are read and generated, the element connection arrays are calculated and all elenent information is stored on disk. Assemblage of Constant Structure Matrices

Before the solution of Eq. (21) is carried out, the linear structural stiffness, mass, and damping matrices are assembled and stored on disk. In addition, the effective linear stiffness matrix is calculated and stored.

Step-by-Step Solution

During this phase the solution of Eq. (21) is obtained at all time points. In addition to the displacement, velocity, and acceleration vectors (whichever applicable), the element stresses are calculated and printed.

It need be noted that these basic steps are independent of the element type used and are the same for either a static or dynamic analysis. However, only those matrices actually required in the analysis are assembled. For example, no mass and damping matrices are calculated in a static analysis.

1. Central Memory Storage Allocations. For the analysis, the finite elements of the complete assemblage need to be divided into element groups according to their type, the nonlinear formulations (see Section B), and the material models used (see Section C). One element group must consist of the same element type, must use one nonlinear formulation, and
only one specific material model (which may, however, have multiple sets of material properties). The use of element groups reduces input-output transfers during the solution process, since the element data are retrieved in blocks during the solution of Eq. (21) and during element stress calculations. Figure 6 shows the manipulation of element group data during the solution process. The data for each element group are read from and written to a common block array A. This array resides in the small core memory (SCM) of the CDC -7600 computer. Tables III, IV, and V show the storage allocation within this array for the three element types. The number of elements that can be placea within an element group is governed by the NUMEST storage locations assigned in the main program to the cormon block array A .

TAPE 1
LINEAR ELEMENT GROUP STORAGE

TAPE 2
NONLINEAR EZEMENT
GROUP STORAGE

TAPE 9
NONLINEAR ELEMENT GROUP STORAGE:

Fig. 6. Auxiliary storage organization for element group representation.

TABLE V
THREE-DIMENSIONAL CONTTNUMM EIAMENI DATA STORAGE

STARTING ADDRESS	LENGTH	ARRAY	DESCRIPTION
$\mathrm{N} .01=1$	3*MXINODS*NUME	IM	Element connectivity
N1.02	3*MXNODS*NUME	XYZ	Nodal coordinates
N103	NUME:	IELID	Nodes per element for displacements
N104	NUME	IELITX	Nodes per element for geonetry
N105	NUME	IPSI	Stress output table number
N107	NUME	MATP	Material properties set number
N108 (MX	(MXNODS-3) *NUME	NOD9	Midside node numbers
N109	NUME	IREUSE	Marker for reuse of preceding element stiffness
N110	NUMMAT	DEN	Material density
N111	NCON*NUMMAT	PROP	Material properties
N112	IDW*NGAUS*NUME	WA	Deformation history stored at each load step
N1.13	16*NI'ABLE	ITABLE	Stress output locations
N114	MXNODS*NUME	NODGL	Map of local and global node numbers
N115	NSTE+1	T	Nonuniform spaced solution times (for viscoelastic material model)
N120	NDM2	S	Element stiffness
N121	$2 * N D M$	XM	Lumped mass and unit nodal body $10 a d s$
N. 122	NDM	B	Strain-displacement coefficients
N123	NDM	RE	Internal loads
N124	NDM	EDIS	Nodal displacements

Several other arrays associated with the solution process are ussigned to the large core memeory (LOM) array At. Storage locations within this master array are assigned dynamically during the different phases of the solution process as shown in Tables VI thru IX. The length of LCM array AL is set in the main program and can be increased at the expense of reducing the size of the two blocks used in the out of-core equation solver.

To further improve high-speed storage capacity, NONSAP-C is an overlaid program. Figure 7 shows the overlay structure. The maximum array length NUMEST is limited by the amount of SCM available after the lengthiest chain of overlays is loaded. The lengthiest chain of overlays is currently that associated with the orthotropic variable-mociulus concrete model.
2. Nodal Point Input Data and Degree of Freedom.

The nodal point data read during the first step of the input phase consist of the boundary condition cocies (stored in the ID array) and the global. X, Y, Z coordinates of each nodal point. A maximum of three boundary condition codes need currently be defined, since a finite element node can have at most three (translational) degrees of freedom. All nodal point data are retained in high-speed storage during the complete input phase, i.e., during the calculation of the externally applied load vectors and the reading and generating of the element group information.

It need be noted that the user should allow only those degrees of freedorn which are compatible with the elements connected to a nodal point. The program can deal with a maximum of six possible degrees of freedom (three translations and three rotations) at each nodal point, and all nonactive degrees of freedon need be deleted. Specifically, a "1" in the ID array denotes that no equation shall be associated with the degree of freedom, whereas a " 0 " indicates that this is an active degree of freedom. Figure 8 shows for the simple truss structure the

TABLE VI
STORAGE ALLOCATIONS DURTNG INPUT PHASE

	NG IENGIH	ARRAY	DESCRIPTION
ADDRESS	NDOF*NUMNP		
$\mathrm{N} 1=1$		ID	Nodal constraints
N2	NLMNP	X	Nodal coordinates
N3	NUMNP	Y	Nodal coordinates
N4	NUMNP	2	Nodal coordinates
NT	NUMNP	TEMP	Nodal temperatures
NG N	NLMP*NDOF*LOADG	MASS	Map of global degrees of freedom associated with each equation number
N5	NEQ	R or XMN	External loads or nodal masses
N6	NPTM	RV	Load curve magnitude
N7	NPIM	TIMV	Load curve times
N8	NLLUR*NSTE	RG	Nodal loads
N9	NLOAD	NOD	Node numbers
N10	NLOAD	IDIRN	Global degree of freedom for nodal loads
N11	NLOAD	NCUR	Load curve number for nodal loads
N12	NLOAD	FAC	Load scale factor for nodal loads
N13	NEQ*NPCUR	FEQ	Pressure-equivalent nodal loads
N14	NPCUR	LCV	Load curve number for pressure loads

TABLE VII
STORAGE ALLOCATION DURING INITIAL CONDITION INPUT

Starting	LEMGIH	ARRAY	description
ADDRESS			
N1. through N4	Sam	as during	input phase
N5	NEP	DISP	Initial displacements
N6	NED	VEL	Initial velocities
N7	NED	ACC	Initial accelerations

TABLE VIII
STORAGE ALLDCATICN DURING MATRIX ASSEMBLY PHASE

STARTING	LIPGIT	APRAY	DESCRIPTION
ADORESS			
$\mathrm{N}=1$	NED	R	Nodal loads
N2	NEQ	MASS	Map of global degree of freedom associated with each equation number
N4	NED	X M	Nodal masses and dampers
N5	NES	XM	Lumped mass vector
N6	NEQ*LOADG	GMASS	Unit nodal gravity loads

CABLE IX
STORAGE ALLOCATION DURING SOLLTTION PHASE

Fig. 7. Overlay structure of NONSAP-C.

BEFORE

AETER

NODAL POINT

NUMBFRS

Fig. 8. Nodal point layout of truss element and ID array before and after allocation of equation numbers to active degrees of freedom.

ID array as it was read and/or generated by the program. Once the contplete ID and X, Y, Z arrays have been obtained, equation numbers are associated with all active degrees of freedom, i.e., the zeroes in the ID array are replaced by corresponding equation numbers, and each 1 is replaced by a 0, as shown in Fig. 8 for the simple truss example.
3. Calculation of External Load Vectors. The loading in the analysis can consist of concentrated nodal point loadings and distributed body or surface loads (see F. below). The load corresponding to a degree of freedom is assumed to vary with time as expressed by a time function and a load multiplier, both defined in the input.
4. Read-In of Element Data. In the last step of the input phase, element information for each element group is read and generated. Specifically, the element coordinates, the material properties, and the element connection arrays are established. Also, working vectors which store required element strains, stresses, and other variables are initialized. For each element group this information is processed in the first NUMEST high-speed storage locations and then written together in one block on secondary storage. During the next phases of the solution, therefore, the required element data can be read in blocks, sequentially one block at a time, into the same high-speed storage locations.

It should be noted that the reasing and generation of the element data of one group requires only one call of the specitic element overlay needed since all elements in one group are of the same kind. After all element information has been established, the ID and X, Y, Z arrays are no longer required, and the corresponding storage area is used for the formation of the constant structure matrices and later for the solution of the equations of equilibrium.
5. Disk Storage Allocation. NONSAP-C requires 18 external disk files during the solution process. Table X shows the allocation of these files. Most of the computer time required for a problem solution is devoted to data transmissions between central memory and these disk files.

DISK STORAGE ALTOCATION

FILE NAME

TAPE 1
TAPE 2, TAPE 9
TAPE 3
TAPE 4

TAPE 5
TAPE 6
TAPE 7

TAPE 8

TAPE 10

TAPE 11
TAPE 12
TAPE 13
TAPE 14
TAPE 15, TAPE 16
TAPE 17
TAPE 21

DESCRIPTION

Linear element group data
Nonlinear element group data
External loads
Linear stiffness matrix
Consistent mass matrix
Nodal damping vector
Input data
output
Effective linear stiffness
Lumped mass vector
Constraint data
Prol em restart data
Degree-of-freedam data for body loads
Factored nonlinear stiffness
Nodal masses and dampers
Blocked stiffness matrix
Reduced stiffness matrix
Pivots
Element stiffness matrices prior to assembly
Temporary working file
Nodal point temperature-time history
6. Global Matrix Assembly and Solution of Equations. The global stiffness matrix is stored by columns in blocks of 50000 words each. Only the data contained below the skyline of the global matrix are processed. Details of the out-of-core solution scheme are found in Reference 23. The global matrix is assembled by element group. The upper triangle of each element stiffness matrix is computed in cormpacted vector form. The element stiffness and element connectivity array are written on a sequential disk file for each element in the group. Upon completion of all of the element stiffness computations within an element group, blocks 1 and 2 of the global matrix are read from disk into core. Element data are read from disk file NFROM and assembled to the extent they fit into blocks 1 and 2. Data for elements that do not fit entirely in blocks 1 and 2 are written to disk file NTO. When all elements have been processed, blocks 1 and 2 are sent to disk and blocks 3 and 4 are brought into core. Element data are now read from disk file NIO, assembled, and written to disk file NFROM. Assembly continues until all global matrix blocks have been processed.
B. The Element Library

In the following, the finite elements currently available in NONSAP are briefly described. It should be noted that a particular element group must consist of finite elements of the same type.

1. Truss Element. A three-dimensional truss element shown in Fig. 9 is available in NONSAP-C. The element is assumed to have constant area and may be used in linear elastic analysis, materially nonlinear and/or large displacement geometrically nonlinear analysis. In the large displacement analysis, the updated Lagrangian formulation is used, but small strains are assumed in the calculation of element stresses. The truss element can be used to specify nonzero boundary displacements.

Fig. 9. Truss element.
2. The Membrane Element. The membrane element shown in Fig. 10 can have from 4 to 8 nodes and conforms to the surface of any configuration of the 8 -to 21 -node solid element. The membrane element can model surfaces of nonorthogonal curvature. Stresses and strains are computed in the directions of principal curvature. Material models include linear elastic isotropic, linear elastic orthotropic, and elastic-plastic with a von Mises yield condition. Only small strains can be modeled. Mathematical details are found in Appendix B.

Fig. 10. Three-dimensional membrane element.
3. Three-Dimensional Solid or Thick-Shell Element. A general three-dimensional isoparametric element with a variable number of (fram 8 to 21 nodes) can be used. As shown in Fig. 11, the first 8 nodes are the corner nodes of the element, nodes 9 to 20 correspond to midside nodes and node 21 is a center node. The element can be used for threedimensional analysis of solids and thick shells.

Fig. 11. Three-dimensional solid element.

C. Material Models

All new material models have been added to the three-dimensional pc.tion of the code. All nonlinear material models allow equilibrium iterations.

1. Truss Element Material Models. The truss element material behavior can be described by means of two models.
Linear Elastic Material
The linear elastic material can be defined by Young's :mdulus and poisson's ratio only.

Nonlinear Elastic Material

The nonlinear elastic material behavior is defined by specifying the stress as a piece wise linear function of the current (infinitesimal) strain. Thus, the total stress and the tangent modulus are directly defined in terms of the total strain.
2. Membrane Element Material Models. The membrane element material behavior can be described by means of three models.
Isotropic and Orthotropic Linear Elastic Material
The stress-strain relationships are defined by means of constant Young's moduli and Poisson's ratios. The orthotropic material axes $x-y$ are oriented with respect to the membrane tangent axes $r-s$ as shown in Fig. 12.

Fig. 12. Orientation of orthotropic material axes in the membrane element.

Elastic-Plastic Material

The elastic-plastic material model is based on the von Mises yield condition. Linear isotropic hardening is assumed.
3. Three-Dimensional Solid Element Material Models. Currently, any one of the following six material models can be used to describe the three-dimensional solid element behavior. Isotropic Linear Elastic Material. The stress-strain relationships are defined by means of the constant Young's modulus and Poisson's ratio. The Curve Description Model

In the curve description model, the instantaneous bulk and shear moduli are defined by piecewise linear functions of the current volume strain. An explicit yield condition is not used, and whether the material is loading or unloading is defined by the history of the volume strain only.

In the analysis of some problems, tensile stress due to applied loading cannot exceed the gravity in-situ pressure. In such conditions the model can be used to simulate tension cut-off; i.e., the material model assumes reduced stiffness in the direction of the tensile stresses that exceed the magnitude of the gravity pressure. Orthotropic Variable Modulus Reinforced Concrete

The steel reinforcement and concrete matrices are combined to form a composite modulus. Nonlinear conpressive behavior is modeled in terms of equivalent uniaxial strains and an approximate uniaxial stress-strain relationship. Cracks are allowed to form in three orthogonal directions. Thermal strains resulting from a time-varying temperature field may be modeled.

Viscoelastic Concrete Creep

The constitutive law is derived by expanding the creep compliance function in a Dirichlet series. Solutions are obtained at user-selected nonuniform time intervals. Thermal strains resulting from a time-varying temperature field may be modeled.

Elastic-Plastic Material Model

The elastic-plastic material model is based on the von Mises yield condition. Linear isotropic hardening is assumed.

Elastic-Plastic Concrete Material

This concrete model is based on classical elastic-plastic theory. An expanding yleld surface distinguishes elastic deformation from nonlinear deformation. When the expanding yield surface contacts a failure surface, the stress in the material can no longer increase and the stiffness of the material is zerc. The yield and failure surfaces are paraboloids and hyperboloids about the hydrostatic axis in stress space. D. Dynamic Capability

Dynamic problems are solved by integration of the equations of motion in the time domain. Both the Wilson-Theta and Newmark-Beta integration algorithms are available. Either a lumped or consistent mass matrix may be selected.
E. Computations In Cylindrical Coordinates

Problems may be run and nodal constraints applied in cylindrical coordinates in which the ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) axes become (axial, radial, tangential). Element matrices are calculated in rectangular coordinates and transformed to cylindrical coordinates prior to assembly of global matrices. Nodal loads are understood to be in cylindrical coordinates and pressure loads are transformed to cylindrical coordinates.
F. Pressure and Gravity Loads

Membrane and three-dimensional elements may be loaded with pressure loads. Pressures are transformed to nodal loads using the element face shape functions.

Gravity loads may be applied to the structure based on the material density associated with each element. The element mass is apportioned among the element nodes using

$$
m_{i}=\rho \int_{V} H_{i} d v
$$

where m_{i} is the nodal mass, p the element density, H_{i} the shape function for nocie i, and V is the element volume. Gravity loads are determined from the nodal masses by applying the desired number of " g ' s " to the appropriate degrees of freedom.
G. Mesh Generation

NONSAP-C has certain basic mesh generating capabilities. These include generation of lines and circles of node points, generation of element connectivity data, and generation of pressure load data. For somplex meshes, the INGEN code of Reference 8 is recormencied for mesh generation. H. Stiffness Matrix Reformation and Equilibrium Iterations

The user may select the number of time steps between which element stiffness matrices are not updated to reflect the revised stress state. Likewise, one may select a time step interval. during winich equilibrium iterations are not performed. During the equilibrium iterations at a particular time step, the number of iterations for which the stiffness matrix is to be reformed may be selected.

Experience indicates that stiffness reformation and equilibrium iteration should be performed at every time step despite the large additional computational cost involved. Reformation of the stiffness matrix during equilibrium iterations speeds convergence.

1. Computing System Requirements

NONSAP-C is written in standard CDC FORIRAN EXTENDED and CDC COMPASS and contains no facility-dependent coding. It is written for the CDC-7600 computer and requires 150000 words of small core memory, 370000 words of large core memory, and 18 disk files. Computer time required for a problem solution is dominated by data transmission between disk files and central memory.
IV. APPLICATION OF NONSAP-C TO ANALYSIS OF 3-DIMENSIONAL CONCRETE STRUCIURES.

In this section the application of the NONSAP-C code to the stress analysis of a variety of concrete structures is illustrated. The analyses range from treatment of elastic behavior only to a nonlinear dynamic analysis including the effects of concrete cracking and crushing. The input decks for these test problems have been put sequentially on tape after the NONSAP-C code.
A. Elastic Analysis of a Multicavity PCRV

A linear elastic analysis of a 30 degree symmetry section of a multiCavity PCKN was carried out. The main purposes were to test the NONSAP-C code on a problem with the three-dimensional geonetric complexities introduced in a PCRV by the presence of penetrations and steam generators and to assess convergence of the solution as the mesh was refined. The model selected for our analysis is illustrated in Ref. 6, page 165; the finite element mesh shown in Fig. 13 was generated by the INGEN code as jescribed in Ref. 8 and comprised 96 20-node isoparametric elements with a total of 707 nodes. The mesh appears to have 768 elements since each 20 -node isoparametric was

Fig. 13. PCRV mesh -30° sector.
represented as 8 elements for the MOVIE cole. ${ }^{9}$ The boundary conditions used for this problem are zero circunferential displacements on the two symmetry planes, zero axial displacement at the support points, and zero radial displacements along the line of zero radius. An internal pressure of $5.1 \mathrm{MPa}(750 \mathrm{psi})$ within the core region was the only applied load. Young's modulus equal to $30 \times 10^{3} \mathrm{MPa}$ and a Poisson's ratio of 0.2 were used in the calculation.

Displacement at specific points in the PCRV are given in Table XI below with the positions referenced as shown. Figure 14 illustrates minimum principal stress contours in the lower head of the PCRV that were obtained using the MOVIE code described in Ref. 9. Finally, Fig. 15 illustrates, as a continuous tone image, the deformed PCRV with the displacements magnified by 600 . Output again is from the MOVIE code.

CONIOUR VALUES
A -8.81 MPa
B -7.8 MPa
C -6.8 MPa
D -5.8 MPa
E -4.8 MPa
F -3.8 MPa
G -2.8 MPa
H -1.8 MPa
I -0.8 MPa

Fig. 14. Minimum principal stress contours in the lower PCRV head.

Fig. 15. Color tone image of the deformed PCRV.

This problem is a fair test of the storage required for a truly threedimensional structural analysis of a PCRV. The stiffness matrix for the problem contained 200632 words; the half-bandwidth was 170 and there were 1725 equations. The cormputing time required for this problem was 26 s of central processor time on the CDC 7600. Reference 24 summarizes the results of convergence studies for this problem using a coarser and a finer mesh than the one shown in Fig. 13.

TABLE XI
RADIAL, CIRCUMFERENTIAL, AND AXIAL DISPLACEMENTS
FOR MULTICAVITY PCRV

B. Concrete Cube Under Multiaxial Stress States

A concrete cube, as shown in Fig. 16, has been subjected to several proportional multiaxial load histories and the responses (in terms of strains) have been compared. The elastic-plastic concrete material model, described in section II. A. was used in this study. The multiaxial load histories are given in Table XII.

Fig. 16. Concrete cube under triaxial stress.

TABLE XII
MULTIAXIAL LOAD HISTORIES
$\frac{\text { CASE }}{A}$
B
C

D

STRESS CONDITION
Uniaxial compression and unloading
Biaxial compression $z_{z}=\sigma_{y}=-p, \sigma_{x}=0$
Biaxial compression $\sigma_{x}=-p, \sigma_{y}=-1 / 2 p_{0},{ }_{x}=0$
Triaxial compression $x=\sigma=\sigma=-p$.

Fig. 17. Response curves of the concrete cube under triaxial stress.

The concrete material properties that were used in these test problems are given in Table I of Sec.II.A.; there was no reinforcement of the concrete cube. The initial discontinuity surface of the elasticplastic constitutive model (see Fig, 2) was taken to occur at 60\% of the effective stress at failure. The parameters A and of Eq. (1) were calculated to be 12.1 MPa (1780 psi) and 22.9 MPa (3370 psi) in the compression region and $21.6 \mathrm{MPa}(3180 \mathrm{psi})$ and $4.8 \mathrm{MPa}(710 \mathrm{psi})$ in the tension regions, respectively.

Responses of the concrete cube to the compressive loading programs given in Table XII are shown in Fig. 17 for the elastic-plastic material model. As can be seen in Fig. 17 increasing biaxial stress stiffens the compressive material response; when a hydrostatic compressive stress state is reached, the material remains entirely elastic for all values of stress.

C. Thick-Walled Concrete Ring

Figure 18 illustrates a finite element mesh of a thick-walled circular ring whose response to internal pressure loading was calculated using the NONSAP-C code with the material models discussed in Sections II.A.and II.B. Five 12 -node elements were used to describe the ring geometry; stiffness and stresses were evaluated, or integrated,

Fig. 18. Concrete ring finite element model.
at 8 Gauss points in each element. Concrete properties described in Table I of Section II.A. were used. Based on the formation of a radial tensile crack in the elastic stress field, the ultimate pressure that the ring can withstand is 1.2 MPa (178 psi), which is predicted by the variable modulus theory. For the elastic-plastic concrete model a plastic zone propagates fram the inner element through the ring until the plastic zone permeates the ring at an internal pressure of about 1.12 MPa (160 psi). From 1.12 MPa up to 1.4 MPa the concrete work hardens, corresponding to stress states between the initial discontinuity and failure surfaces. At 1.4 MPa the stress state throughout the ring is on the failure surface and rupture occurs. Calculated response of the ring to the internal pressure loading is shown in Fig. 19, and Fig. 20 shows the development of the crack pattern of the variable modulus concrete model and the growth of the inelastic zones for the elastic-plastic model (the four inplane Gauss points allow for discrimination within each element).

INNER SURFACE LOAD VS DEFLECTION

Fig. 19. Response of the concrete ring to internal pressure loading.

Fig. 20. Propagation of nonlinear behavior for variable-modulus-cracking and elastic-plastic concrete models.
D. Rectangular Concrete Plate

A reinforced concrete slab, simply supported on three sides, free on the fourth, and loaded with a uniform pressure was analyzed with NONSAP-C using the variable-modulus-cracking concrete model. The finite elenent mesh, consisting of twenty-four 16 -node isoparametric elements, was one element thick. Equal amounts (0.5%) of tension and cormeression reinforcement located as shown in Fig. 21 were included. Using a steel tensile strength of 300 MPa and a concrete compressive strength of 30 MPa as strength properties, a limit load of 28.3 kPa was predicted using

Fig. 21. Concrete plate showing reinforcement.
yield line theory. Figure 22 shows the load-deflection curve calculated by NONSAP-C with the finite element model; a limit or ultimate load of 30 kPa is indicated, which is in good agreement with the prediction of the yield line theory. Figure 23 shows the tensile crack pattern determined with the finite element model. Although the crack patterns are widely diffused, the crack trajectories are aligned with the predicted yield lines.

This problem was cun using ten load increments and required two minutes of central processor time on the $\operatorname{CDC} 7600$. Eight integration points were used in each element
E. Dynamic Response of a Concrete Beam

The dynamic beam problem was selected as an experiment to see if the variable-modulus-cracking reinforced-concrete constitutive law in the NONSAP-C code could be used to model a dynamic problem. The particular beam selected is 3b-2 from a series of beans tested at the University of Illinois. ${ }^{25}$

The beam was 1.5 m long and had a rectangular cross section 0.30 m by 0.15 m . Two No. 7 bars were used as compression reinforcement and two No. 9 bars were used as tensile reinforcement. Stirrups made of No. 2 bar were spaced at 0.108 m along the beam. Material properties were as follows:

Initial modulus of concrete	$2.58 \times 10^{4} \mathrm{MPa}$
Compressive strergth of concrete	22.5 MPa
Tensile strength of concrete	5.1 MPa
Poisson's ratio	0.2
Modulus of steel	$2.0 \times 10^{5} \mathrm{MPa}$
Yield strength of steel	301 MPa

The beam was excited by an explosively driven two-point loading. The load was idealized as a triangle with a peak of $0.26 \mathbb{N}$, a rise time of 0.018 s , and a duration of 0.040 s . Although the concrete was extensively damaged by the loading pulse, the beam did rebound and required two subsequent blows before it collapsed.

The finite element model of the beam consisted of 4816 -node isoparametric elements as shown in Fig. 24. The first mode period of a linearly equivalent beam is 0.016 s ; therefore, a time step of 0.001 s was used for this analysis. At 0.015 s NONSAP calculations indicated that the beam had collapsed. Crack indicators in NONSAP-C showed that nearly the entire beam was distressed at this time. Deflection and strain time histories show reasonable agreement with experimental data prior to the occurrence of the failure mechanism as shown in Figs. 25 and 26.

NOHSAP-C CALCULAT ION

Fig. 22. Response of the concrete plate.

Fig. 23. Crack pattern in the reinforced concrete plate.

Fig. 24. Reinforced concrete beam $3 \mathrm{~b}-2$.

Fig. 25. Deflection vs time, beam 3b-2 .

Fig. 26. Strain vs time, bean 3b-2.

This problem was run for 40 time steps without equilibrium iteration and required 14 minutes of central processor time on the CDC 7600. F. Shear Strength of a PCRV End Slab Model

A series of PCRV models has been tested to destruction at the Structural Research Laboratory of the University of Illinois. The most recent test series, reported in Ref. 12, was designed to study the effects of penetrations on the strength of the end slabs. Here threedimensional effects are important.

Figure 27 illustrates the finite element mesh that represents a 30 degree symmetry section of vessel PV-27. This vessel contained six end slab penetrations. There was no reinforcement in the end slab. Twentynode isoparametric elements were used in the finite element mesh. The mesh contained 994 nodes and 152 elements. Material properties were taken from Ref. 12 and are shown in Table I of Section II.A. The vessel was prestressed axially to $23.5 \mathrm{MPa}(3410 \mathrm{psi})$ and circumferentially to 10.7 MPa (1560 psi).

Fig. 27. Finite element mesh for a 30° symmetry sector of PV-27.

An initial elastic analysis of PV-27 with internal pressure and without prestressing was carried out with the NONSAP-C code. There was good agreement between the deflections obtained with the NONSAP-C analysis and with elastic deflections computed with the FINITE structural analysis code as reported in Ref. 12.

Following the elastic analysis, a Jetermination of the inelastic response was made using the variable-modulus-cracking concrete model. Since the wall of the vessel was not expected to crack, it was modeled as an elastic medium. Only the end slab was modeled with the nonlinear concrete constitutive law.

The prestress and internal pressure were applied incrementally and the response was calculated by equilibrium iteration within each load increment. Initial cracking of the end slab occurred at an internal pressure of $5.7 \mathrm{MPa}(830 \mathrm{psi})$. At an internal pressure of 10.0 MPa (1470 psi), the equilibrium iterations failed to converge because of extensive cracking in the end slab. Radial and circumferential crack patterns at maximum load are shown in Figs. 28 and 29. The uncracked area within the dashed lines in Fig. 29 is an indication of the cryptodone that remained in the test vessel after the central plug broke away. Figure 30 illustrates the internal pressure versus central deflection curves obtained with the NONSAP-C analysis and during the experiment. A peak internal pressure of 16.5 MPa (2400 psi) was sustained during the experiment. The experimental. load-deflection curve in Fig. 30 indicates that there was considerable inelasticity beyond initial cracking. The NONSAP-C analysis accurately predicted the onset of inelastic behavior in the end slab. Permanent internal damage was observed during the experiments to occur at less than half of the ultimate internal pressure, and experimental load deflection measurements indicated the onset of nonlinear behavior between 4.1 MPa and 6.2 MPa (600 psi and 900 psi). Considering the approximation made in modeling all but the center of the end slab as a linear material, the analytical results show reasonable agreement with the exper imentally observed cracking pattern. The analysis procedure does not properly account for the nonlinear deformation process that

Fig. 28. Crack pattern at the outer surface of the end slab of PV-27 as cormuted by NONSAP-C.

Fig. 29. Crack pattern on the penetration face of the end slab of PV-27 as computed by NONSAP-C.
occurred during the experiment between the onset of cracking and the ultimate load sustainei by the vessel. This analytical deficiency may be the result of unaccounted for frictional. resistance in the cracked concrete, a too sensitive crack initiation criterion, or a mesh that was too coarse to model the details of postcracking behavior.

Analysis of PV-27 was a severe test of NONSAP C, as far as calculating the nonlinear behavior of a multicavity PCRV. There were 2477 equations with a half-bandwidth of 368 in the system of equations for stress equilibrium of PV-27 during any load increment. Five load increments were used in the calculation of the behavior of PV-27, which used up 43 m of computing time on the $\mathrm{CDC}-7600$. Most of the calculational time (25 m) was spent in the equilibrium iterations.

Fig. 30. Experimental and computed pressure-deflection curves for PV-27.
G. Creep of Fort St. Vrain Cruciform

Figure 31 illustrates a three-dimensional finite element mesh that has been suggested for the cruciform for which experimental creep data are available from Ref. 26. Note that this is not a compatible mesh (i.e., displacements are not continuous across all element faces). The modulus of elasticity was experimentally measured (see Table E 20-6 of Ref. 26);

Fig. 31. Cruciform finite element model.
a value of $31000 \mathrm{MPa}\left(4.5 \times 10^{6}\right)$ psi at the age of test (33 days) and constant thereafter appears to be justified by the data and was used in the calculation. Utilizing the creep functional of England and Ross, ${ }^{27}$

$$
\begin{equation*}
\varepsilon_{c}(t)=4.0 T \times 10^{-9}\left[\left(1-e^{-1.5 t}\right)+\left(1-e^{-.035 t}\right)\right] \sigma \tag{22}
\end{equation*}
$$

where T is temperature in ${ }^{\circ} \mathrm{C}, \mathrm{t}$ is time in days, and σ is stress, calculation of the creep behavior of the cruciform was made using NONSAP-C for constant axial and side pressure loading of 10.8 MPa (1585 psi) over 63 days. The cruciform was assumed to be equilibrated at $64.5^{\circ} \mathrm{C}$. A creep poisson's ratio of 0.20 was used. Eight integration points were used for this mesh; the mesh itself aonsists of 46 nodes. Eighteen time steps were employed in the calculation and the execution time was 10 s . Figure 32 illustrates the uniaxial strain $\left(\varepsilon_{Z}\right)$ measured at the center of the top element and the biaxial strain $\left(1 / 2 \varepsilon_{y}+1 / 2 \varepsilon_{z}\right)$ measured at the junction of the middle two elements, together with the experimentally measuted values. Good agreement between the numerical and exper imental values is seen.

From Eq. (22) one can evaluate the creep strain at large times to be equal to $8 \times 1)^{-9}$ To. The limiting creep strain was found to be 815 μ strain, whicn added to an initial elastic strain of 350 ustrain, gives a total 1 imiting strain of 1165 pstrain. By taking large time steps (25 , 50, 100, 200, and 400 days), the limiting state of strain in the top element of the cruciform mesh, which is in a state of uniaxial stress, can be simulated numerically. The NONSAP-C value of limiting strain was 1140 ustrain, which is within 2 percent of the analytical value.
H. Creep of ORNL Thermal Cylinder

A concrete cylinder with axial and circumferential prestressing was subjected to a radial temperature gradient corresponding to a uniform internal heat flux and a time-varying internal pressure at the Oak Ridge National Taboratory. Dimensions and the prestress configuration are shown in Fig. 33. The vessel was prestressed 90 days after casting. The
temperature gradient was applied over the 40th to 55th days after the prestress was applied. From the 135 th day to the 330 th day after prestressing, an internal pressure of 4.83 MPa was applied. Details of the experiment are found in Ref. 13.

Fig. 32. Cruciform experimental strain-time data and results of NONSAP-C creep calculations.

A 12.8 degree sector of the cylinder was modeled with 20 -none isoparametric elements as shown in Fig. 34. The circumferential prestress was applied to only one row of elements to simulate the bearing pads shown in Fig. 33. The Young's modulus of 38300 MPa and the Poisson's ratio of 0.2 were taken from Ref. 13. The coeffinient of thermal expansion for 1 imestone concrete was taken from Fig. 51 of Ref. 28 as 5.4 ustrain ${ }^{\circ} \mathrm{C}$. The temperature-dependent creep data given in Section II.C of this report were used in the calculations.

Figures 35 through 36 are plots of circumferential strain histories obtained with the NONSAP-C finite element code. Also shown are banded plots of strains measured during the experiment. More extensive calculational results are presented in Ref. 31., and explanations are advanced for discrepancies between the calculated and experimental data. I. Spherical Membrane Under Internal Pressure

This problem was used as a test of the membrane element of NONSAP-C. A spherical memwrane, shown in Fig. 37, was loaded with uniform internal. pressure. The missing element at the apex was replaced with a set of equivalent nodal loads. Stresses at symmetric integration points were normalized with respect to the exact solution of this problem and were averaged in each principal direction for each element. Results are shown in Table XIII. Accuracy decreases as the apex of the membrane is approached. This effect, as well as the absolute error in the stress magnitudes, is probably caused by imprecision in the nodal loads applied at the apex.

The problem was also run using the elastic-plastic constitutive model and demonstrated satisfactory agreement with predicted yielding behavior.

ACKNOWLEDGMENTS

This work was supported by the Reactor Safety Research Division of the United States Nuclear Regulatory Comnission.

A special thank you is extended to K. J. Bathe and E. L. Wilson who or iginated the NONSAP code and who have been extremely generous in sharing their work with the finite element community. Much of the NONSAP-C code and accompanying report are taken directly from their work.

Fig. 33. Thermal cylinder.
$10.4-M P_{0}$
External pressure

Thermal Cylinder Model
Typical Section
Finite Element Model

Fig. 34. Finite element mesh for the thermal cylinder.

Fig. 35. Thermal cylinder circumferential strain-time results at the inner surface.

Fig. 36. Thermal cylinder circumferential strain-time results at the outer surface.

Fig. 37. Membrane finite element model for a spherical segment.

TABLE XIII
SPHERICAL MEMBRANE STRESSES

$\sigma(\mathrm{RR}) / \sigma$ (EXACP)		$\sigma(S S) / \sigma(E X A C T)$		
Element	Mean	Variance	Mean	Variance
$0-15$	0.99657	$0.368 \mathrm{E}-4$	1.00333	0.222 E-4
15-30	0.99625	$0.432 \mathrm{E}-4$	1.00417	$0.264 \mathrm{E}-4$
$30-45$	0.99458	$0.405 \mathrm{E}-4$	1.00500	0.197 E-4
45-60	0.99208	$0.530 \mathrm{E}-4$	1.00792	$0.197 \mathrm{E}-4$
$60-65$	0.98083	$0.931 \mathrm{E}-4$	1.01917	$0.743 \mathrm{E}-4$

REFERENCES

1. Y. R. Rasinid and W. Rockenhauser, "Pressure Vessel Analysis b! Finite Element Techniques," Proc. Conf. on Prestressed Concrete Pressure Vessels, Inst. Civ. Eng., London (1968).
2. D. Ngo and A. C. Scorcielis, "Finite Element Analysis of Reinforced Concrete Beams,* J. Am. Concr. Inst. 64, No. 3, 152-163 (1967).
3. D. V. Phillips and O. C. Zienkiewicz, "Finite Element Nonlinear Analysis of Concrete Structures," Proc. Inst. Civil Engrs. 61, Part 2, 59-88 (March 1976).
4. J. Isenberg and S. Adham, "Analysis of Orthotropic Reinforced Concrete Structures," ASCE Journal of the Structural Division, ST 12, 2607-2624 (1970).
5. W. G. Dodge, Z. P. Bazant, and R. H. Gallagher, "A Review of Analysis Methods for Prestressed Concrete Reactor Vessels," Oak Riage National Laboratory report ORNL-5173 (February 1977).
6. H. Kupfer, H. K. Hilsdorf, and H. Rusch, "Behavior of Concrete under Biaxial Stresses," J. Am. Concr. Inst. 66 (8), 656-666 (August 1969).
7. K. J. Bathe, E. I. Wilson, and R. Iding, "NONSAP: A Structural Analysis Program for Static and Dynamic Response of Nonlinear Systems," University of California report UC-SESM-74-3 (February 1974).
8. W. A. Cook, "INGEN: A General-Purpose Mesh Generator for Finite Element Codes," Los Alamos Scientific Laboratory report IA-NUREG-7135 MS, April 1978.
9. B. E. Brown, "MOVIE. LASL Version 10 User's Manual," Los Alamos Scientific Laboratory report LA-NUREG-6532-M, December 1976.
10. A.C.T. Chen and W. F. Chen, "Constitutive Relations for Concrete," Journal of the Engineering Mechanics Division ASCE 101, EM4, 465-481 (Aug'1st 1975).
11. Z. P. Bazant, "Theory of Creep and Shrinkage in Concrete Structures: A Précis of Recent Developments," 1-93 in Mechanics Today, Vol. 2, pergamon Press, NY (1975).
12. J. D. Reins, J. L. Quiros, W. C. Schnobrich, and M. A. Sozen, "Shear Strength of End Slabs of Prestressed Concrete Nuclear Reactor Vessels," University of Illinois report UILU-EMG-76-2022 (July 1976).
13. J. P. Callahan, "Prestressed Concrete Reactor Vessel Thermal Cylinder Model Study," Oak Ridge National Laboratory report ORNL/TM-5613 (June 1977).
14. I. Nelson and M. L. Baron, "Application of Variable Moduli Models to Soil Behavior," Int. J. Solids Structures 1. pp. 399-41.7 (1971).
15. S. P. Bazant and P. Bhat, "Endochronic Theory of Inelastic and Failure of Concrete," Journal of the Engineering Mechanics Division ASCE 102, PMA, PP. 701--722 (August 1976).
16. O. C. Zienkiewicz, The Finite Element Method, Third Eaition, McGraw Hill, New York, 1977.
17. B. Saugy, "Contributions to the Theoretical. Study of the Nonlinear Behavior of Massive Reinforced Concrete Structures Under Rapidly Applied Loads," Bullet in Technique de la Suisse Romande Vol. 22, (Novemioer 1969).
18. T. Y. Chang and W. F. Chen, "Extended NONSAP Program for OTEC Structural Systems," Fritz Engineering Laboratory Report No. 414.7, Lehigh University, August 1976.
19. S. Adham, A. Bhaumik, and J. Isenberg, "Reinforced Concrete Constitutive Relations," Air Force Weapons Laboratory report AFWL-TR-74-72 (February 1975).
20. D. Darwin and D. A. W. Pecknold, "Inelastic Mociel for Cyclic Biaxial Loading of Reinforced Concrete," University of Illinois report UTLU-EMG-74-2018 (July 1974).
21. 2. P. Bazant and S. T. Wu, "Dirichlet Series Creep Function for Aging Concrete," Journal of the Engineering Mechanics Division ASCE 99, EM2, pp. 367-387 (April 1973).
1. T. W. Kennedy, "An Evaluation and Summary of a Study of the Long-Term Multiaxial Creep Behavior of Concrete," Oak Ridge National Laboratory report No. ORNT TM-5300 (December 1975).
2. D. P. Mondikar and G. H. Powell, "Large Capacity Equation Solver for Structural Analysis," Computers and Structures 4, 699-728 (1974).
3. P. D. Smith, W. A. Cook, and C. A. Anderson, "Finite Element Analysis of Prestressed Concrete Reactor Vessels," Proceedings of the Fourth Structural Mechanics in Reactor Technology Conference, San Francisco, CA, August 15-19, 1977.
4. A. Feldman, W. A. Keenan, and C. P. Seiss, "Investigation of Resistance and Behavior of Reinforced Concrete Members Subjected to Dyanmic Loading," Part III, Defense Atomic Support Ayency Report DASA-1259 (February 1962.)
5. Fort St. Vrain Nuclear Generating Station - Final Safety Analysis, Appendix E, PCRV Data, Public Service Company of Colorado report (no đate).
6. O. C. Zienkiewicz, M. Watson, and I. P. King, "A Numerical Method of Viscoelastic Stress Analysis," Int. J. Meech. Sci. 10, 807-827 (1.968).
7. R. K. Nanstad, "A Review of Concrete Properties for Prestressed Concrete Pressure Vessels," Oak Riage National Laboratory report ORNL//TM-5497, October 1976.
8. A. E. Green and W. Zerna, Theoretical Elasticity, (Oxford at the Clarendon Press, 1954.)
9. E. Haug and G. H. Powell, "Finite Element Analysis of Nonl inear Membrane Structures," University of California (Berkeley) report UCSESM 72-7 (February 1972)
10. P. D. Smith and C. A. Anderson, "Constitutive Models for Concrete and Finite Element Analysis of Prestressed Concrete Reactor Vessels," Proceedings of the Japan-U.S. Seminar on HITRR Safety Technology, September 15-16, 1977 Seismic Research, Vol. I, (Brookhaven National Laboratory report BNL-NUREG-50689-Vol. I) .

CONIENTS
I. Heading Card
II. Master Control Cards
III. Nodal Point Data
IV. Applied Loads Data

1. Control card
2. Load furiction data
3. Nodal loads data
V. Rayleigh Damping Specification
VI. Concentrated Nodal Masses
VII. Concentrated Nodal Dampers
VIII, Initial Conditions
IX. Truss Elements
4. Element group control card
5. Linear elastic material/section property data
6. Nonlinear elastic material/section property data
7. Element data cards
X. Membrane Elements
8. Element group control card
9. Material property data
10. Stress output tables
11. Element data cards
XI. Three-Dimensional Solid or Thick-Shell Elements
12. Element group control card
13. Material property data
14. Stress output tables
15. Element data cards
XII. Restart Analysis
I. HEADING CARD (12A6)
note columns variable entry
(1) $1-72$ HED (12) Enter the master heading information for use in labeling the output

NOTES/
(1) Begin each new data case with a new heading card. End the final case with two blank cards.
II. MASTERR CONTROL CARDS

Card 1 ($15,6 \mathrm{IL}, 14,3 \mathrm{I} 5,2 \mathrm{~F} 10.0, \mathrm{I} 5)$
notes olumns variable entry
(1)
(2)
(3)

12-15 NEGL
(4)

16-20 NEGNL
(5)

21-25 MODEX
(6)
(6) 31-40 DT
(7)
(8) 51-55 IPRI

56-60 IPTL Output interval to plot tape EX. 0; no output

	61-65	IPLTC	Caitrol for plot type EQ.0; write displacements on tape EQ.1; write velocities on tape EQ.2; write accelerations on tape
(9)	$66-70$	ITEMP	Control for nodal temperatures EQ.-1; fixed temperatures on node cards EQ. O; no temperatures EQ. 1; cemperatures on tape 21
	71-75	LOADG	Gravity loads EQ.0; no gravity loads EQ.1; gravity loads included

NOTES
(1) The total number of nodes (NUMNP) controls the amount of data to be read in Section III. If NUMNP.EQ.O, the program terminates execution.
(2) The codes $\operatorname{IDOF}(1), \operatorname{IDOF}(2), \ldots, \operatorname{IDOF}(6)$ given in columns 6-11 can have values of " 0 " or " 1 " and are used to conserve storage and reduce input for special problems not requiring a full six degrees of freedom at each node. If IDOF (I).EQ.l, the I-th ($I=1,2, \ldots, 6$) nodal displacement does not exist in this problem, and any reference in the data to the node I-th degree of freedom is ignored by the program.
(3) The program distinguishes between linear and nonlinear elements. Linear elements have their stiffness matrices formed only once, and the formulation excludes consideration of either geometric or material nonlinearities; linear elements are used to represent those regions of a model which can be assumed to behave linearly and should be used (where possible) to improve solution efficiency.

An element group is a series of elements of a particular type (e.g., TRUSS, 3/D CONTINUUM, etc.) in which element numbers are assigned in ascending sequence beginning with " 1 " and ending with the total number of elements in that particular group. The organization of elements into groups is somewhat arbitrary and is best illustrated by the following example.

Suppose that a model contains 20 linear TRUSS elements and 33 linear membrane elements, 11 of which have isotropic material properties. Assuming that the isotropic properties are not given as equivalent orthotropic properties, a minimum of three (3) linear element groups (i.e., NEGL. EQ.3) is required in this example.

LINEAR	EI TMENT	RANGE OF	TYPE OF
GROUP	TYPE	EILEMENT	MATFERIAL
NUMBER		NUMBERS	MODEL
		$1-20$	
1	TRUSS	$1-11$	AE, constant
2	MPMBRANE	$1-22$	Isotropic
3	MEMBRANE	$1-22$	

Further, suppose that it is desirable to separate the 20 TRUSS elements into two groups of 5 and 15 elements and 22 MPMBRANE or thotropic elements into two groups, one with 8 and the other with 14 elements; then, NEGL.EQ. 5 and

1	TRUSS	$1-5$	AE, constant
2	TRUSS	$1-15$	AE, constant
3	MRMBRANE	$1-11$	Isotropic
4	MEMBRANE	$1-14$	Orthotropic
5	MEMBRANE	$1-8$	Orthotropic

Since NONSAP is an overlaid program, the order of the element groups (linear and nonlinear) is most efficient when a? 1 element groups are groupe? together. In addition, all element groups using the same nonlinear material model are best input together.

It need be noted that the program must read data for all of the "NEGL" groups before reading any data for the nonlinear groups.

The one restriction that must be noted when organizing elements into groups (either linear or nonlinear) is that only one type of material model is allowed for the elements in that group. Also, it is permissible to model a structure with nonlinear elements only, in which case NEGL.EQ. 0 and NEGNL.GF. 1.
(4) Nonlinear elements include the effect of material and/or geometric nonlinearities ir the formation of stiffness and stress recovery matrices. The type of nonlinearities to be associated with an individual group of elements is defined by means of data given on the element group control card. In separating elements into nonlinear groups, note that only one type of material model is allowed for the group. The order in which groups aro input was discussed in note (3) above.

The total number of element groups processed by the program is the sum NEGG+NEGNL. Also, NEGNL can be zero, but then the number of linear element groups must be at least one.
(5) The MODEX parameter determines whether the program is to check the data without executing an analysis (i.e., MODEX. EQ.0) or if the program is to solve the problem. In the data check only mode, the program only reads and prints all data. Therefore, the MODEX. EQ. 0 option should be used for data checking. If MODEX. EQ.2, the problem is a restart job. Refer to Section XII for setting up a restart job.
(6) DI is the solution time step, Δt, and is used similariy for static, quasi-static or cymamic problems. DF for static problems is not used to perform step-by-step time integration for system response, but rather is used as an equivalent "load step" or "loading increment". All forcing functions are input as tailes of $f(t)$ versus t, and the loads at solution step " n " (where " n " is between " 1 " and "NSTE") are found in the $f(t)$ tables by linear interpolation at $t=n \Delta t$. NSIE must be at least one.
(7) The time at solution start (TSTART) is an input convenience for restart (i.e., MODEX.EQ.2) jobs. ISTART in a restart job would be the final time to which a previous solution was run and saved for use in supplying initial conditions for this job. Since the time counter is incremented from TSTART, none of the forcing funciion tables need be revised (i.e., shifted in time) for the restart job.
(8) The print interval determines at which solution step interval program results are to be printed. If IPRI.EQ.4, output is produced at the end of solution steps $4,8,12$, etc.

If IPRI is larger than the total number of solution steps (NSTE), then no output will be printed during the course of so. Itions. If IPRI.LE.NSIE, then print directives must be given fo displacements, velocities, and acceleration on Card 6 in this section and for the stress components on the element cards (Section IX. 4, X.4, or XI. 4).
(9) Nodal temperatures may be used by 3-D element material models 4 and 5 , the reinforced concrete and viscoelastic creep models. The initial zero-strain temperatures are read from the material property data. If ITEMP is equal to -1 , then nodal temperatures are read from node cards and this spatial temperature distribution is used for all times. If ITEMP is equal to +1 , the NUMNP nodal temperatures are read from TAPE 21 . There must be at least (NSTE+1) records on TAPE 21 where the first record contains the nodal temperature at $t=0$. If IIEMP is zero, then no temperatures are read.

Card 2 (4I5)
notes columns variable entry
(1) $1-5$ IMASS

Control flag indicating static or dynamic analysis;
EQ.0; static analysis
GT.0; dynamic analysis
Also flag indicating mass hatrix type;
E2.0; no mass effects
ER.L; lumped (diagonal) mass
EQ. 2; consistent mass matrix
(2)
(3)
(3)

6-18 DAMP
11-15 IMASSN

$$
16-20 \quad \text { IDAMPN }
$$

Flag indicating darming type; EQ.0; no damping effects FO.1, Rayleigh damping

Number of concentrated nodal masses
Number of concentrated nodal dampers. (CAUTION: Use of nodal dampers may produce erroneous results)

NOTES/
(1) The control flag on static or dynamic analysis (IMASS) determines whether or not the program is to solve a problem including the contribution of inertia forces to system equilibrium, i.e. whether to solve a static or dynamic problem.

If IMASS.EQ.0, the program will solve a static (or quasi-static) problem, and no storage will be allocated for either the system mass matrix or the system velocity and acceleration vectors.

If IMASS.EQ. 1 or 2, the inalysis will be a dynamic analysis. For IMASS.EQ. 1 a lumped (diagonal) mass matrix is allowed, in which case the diagonal mass coefficients are stored as a vector, and for IMASS.EQ. 2 a consistent mass matrix is generated (from element data). It should be noted that the computation of the effective load vector at each solution time step is considerably more expensive when the consistent mass option is requested, and the extra effort : nvolved in a consistent (as opposed to the diagonal) mass anc lysis may not be justified in many (if not most) problems.

The mass matrix is constant and is only formed once before the time integration is started.
(2) The damping matrix flag (IDAMP) determines whether or not the program is to include in a dynamic analysis Rayleigh damping. The Rayleigh damping can only be included when a dynamic analysis is specified (IMASS.G1.0).
(3) In a dynamic analysis, i.e. IMASS.GT. 0 , additional concentrated masses and/or additional concentrated dampers can be specified at selected degrees of freedom. The concentrated masses and concentrated dampers are input in Sections VI and VII.

A dynamic analysis with concentrated masses only (i.e., no 1 amped mass or consistent mass effects) can be accomplished by specifying IMASSN.GE.1, IMASS. BQ.1, and setting the mass density on all element cards to 0.0 .

Card 3 (4I5, E10.4)
note
(1)
(2)
(3)
(3)
(3) 21-30 RTOL
entry
Number of time steps between reforming effective stiffness matrix ER. O; default set to "l"

Number of allowable stiffness reformations in each time step

Number of time steps between equilibrium iterations
EQ. O; deFault set to "1". Set to
NSTE for no equilibrium interations.
Maximum number of equilibrium
iterations permitted 2.0; default set to "15"

Relative tolerance used to measure equilibrium convergence ED.O; default set to "1.E-3"

NOTES/
(1) The stiffness matrix reformation interval (ISREFF) is ignored if the model is composed of linear element groups only; i.e., NEXZL. E2.0. For linear problems the matrix is formed and decomposed only once.

For models containing nonlinear element groups, the system stiffness matrix is reformed every ISREF solution steps. For example, if ISREF. EQ.3, the stiffness matrix is formed in solution steps 1 (always), 3, 6, etc. based on conditions known at the end of steps $0,2,5$, etc., r'spectively. Only the nonlinear portion of the complete system stiffness matrix is reformed; the linear portion is saved and reinstated when the complete matrix is calculated.
(2) The stiffness will be reformulated during the first NUMREF equilibrium iterations.
(3) If a structure is represented by nonlinear element groups with material models which allow for "equilibrium iteration", then the parameter IEDUIT determines at what solution step interval. the progam is to iterate for system equilibrium. ITEMAX is the maximum number of cycles of iteration allowed in the solution step and RTOL is used to measure convergence of the iteration in terms of change in system displacements. For example, if IEQUIT.ED.5, ITEMAX.EQ. 12 and RIOL.EQ.0.002, then providing the material model(s) allow for iteration, up to 12 cycles of iteration will be performed at solution steps $5,10,15$, etc. with convergence jeclared if

where $\left|u^{n}\right| \mid$ is the Euc i iean norm of the system displacement vector at cycle " n " of the iir ration.

Whether or not a material model specifically allows iteration for equilibrium depends on how the model was incorporated into the program; the sections on the element material models distinguish between models that do and do not allow iteration.

Equilibrium iteration car only be performed if
(a) the structure contains at least one nonlinear element group, and
(b) the material molels used to represent all nonlinear elemeit groups allow for the possibility of equilibrium iteration.

The parameters IEQUIT, ITEMAX and RTOL will not be used if
(a) the structure is represented \because iln innear elements only, or
(b) any one of the material models associated with a nonlinear element group does not allow for equilibrium iteration.

Card $4\left(110,2 F^{10.0}\right)$
note columns variable entry

21-30 OPVAR(2) Second integration parameter

1) If IOPE.EQ. 1 parameter is not applicable
2) If IOPE.EQ. 2 parameter is ALPHA EQ.0; default as specified in note below

NOTES/
(1) For static problems (IMASS. EQ.0) this card is read, but the information is not used. For dynamic analysis IOPE determines which time integration algorithm will be used in the step-by-step solution.
(2) OPVAR(1) and OPVAR(2) store the integration parameters associated with the time integration method specified by IOPE.
a) Wilson's θ-method uses one parameter (THETA), which is usually specified as 1.4 .
b) Newmark's method uses two parameters. DELTA is specified by the user (or the default value of 0.5 is used) and ALPHA is either set to a default value by the formula

AL.PHA $=0.25^{*}($ DELITA +0.50$) \star * 2$,
or specified directly by the user.
Card 5 (4I5)
note
(1)
columns
variable
$1-5 \quad$ NPB 8
(2)
(2)
(2)

16-20 IAC
entry

Number of blocks of displacement/ velocity/acceleration printout Ex. 0 , print all nodal point components

Displacement printout code EQ.0, no displacement printout EQ.1, print displacements

Velocity printout code ER.0, no velocity printout EQ.1, print velocities

Acceleration printout code EQ.0, no acceleration printout E.1, print accelerations
(1) For large meshes it is usually not necessary to print displacements, velocities, and accelerations at every node. Hence, nodes for which printout is desired are grouped into NPB printout blocks. Each block of nodes is defined by the node numbers of the first and last node in the block (see next card).

If NPB.EQ. 0 all nodal quantities are printed regardless of the values of IDC, IVC, and IAC.
(2) The displacement solution at the nodes within the blocks is printed if IDC.EQ.1. In dynamic problems the velocity and/or acceleration solutions also are printed if IVC.EQ. 1 and/or IAC.EQ.1.

Card 6 (1615)
If NPB.EQ.0, leave this card blank.
note
columns variable entry
(1)

$$
\begin{array}{lll}
1-5 & \text { IPNODE }(1,1) & \text { First node of printout block no. } 1 . \\
6-10 & \operatorname{IPNODE}(2,1) & \text { Last node of printout block no. 1. } \\
11-15 & \operatorname{IPNODE}(1,2) & \text { First node of printout block no. } 2 . \\
& \text { etc. } &
\end{array}
$$

NOTESS
(1) Two entries are expected for each printout block, namely, the first node of the block and the last node of the block. All nodal points between these two nodes will be included in the printout block.
III. NODAL POINT DATA (Al, I4, A1, I4, 5I5, 3F10.0, I5)
note colums variable entry

(1) 1	Symbol describing the coordinate System for this node;
(2) $2-5$	N
EQ. ; ; (blank) Cartesian (X, Y, Z)	
EQ. X ;	

			EQ. ; (blank) no suppression EQ.A; suppress ordered list of node coordinates EQ. B; suppress list of equation numbers EQ.C; both A and B, above
(4)	$7-10$	$\operatorname{ID}(1, N)$	X-translation boundary code (or z)
	11-15	$\operatorname{ID}(2, N)$	Y -translation boundary code (or r)
	$16-20$	$\operatorname{ID}(3, N)$	Z-translation boundary code (or θ)
			X-rotation boundary code
	$26-30$	$\operatorname{ID}(5, N)$	Y-rotation boundary code
	31-35	$\operatorname{ID}(6, N)$	Z -rotation boundary code
(5)	36-45	$X(N)$	X (or z)-coordinate
	46-55	$Y(N)$	Y (or r)-coordinate
	56-65	$\mathrm{Z}(\mathrm{N})$	X (or θ)-coordinate (degrees)
(6)	$66-70$	KN	Node number increment for node data generaiion;
			E2.0; no generation
(7)	71-80	TEMP (N)	Nodal temperature used only for ITEMP $=-1$.

NOTES/

(1) Special cylindrical coordinate systems are allowed for the specification of node coordinates. If an "X" is entered in card column one (1), then the entries in cc 36-65 are with respect to a cylindrical (r, y, z) system rather than the standard cartesian (X, Y, Z) system. The generator (i.e., the z-axis) of the "X-cylindrical" system coincides with the global X-axis, and is zero (0) in the global X-Y plane--

SYSTEM
z-axis
-zero plane
TRANSFORMATIONS
X
X
$X-Y$

$$
\begin{aligned}
& X=z \\
& Y=r \cos \theta \\
& Z=r \sin \theta
\end{aligned}
$$

(2) Nodal data must be defined for all (NUMNP) nodes. Node data may be input directly (i.e., each node on its own individual card) or the generation option may be used if applicable (see note 6, below). Admissible node numbers range from "l" to the total number of nodes (NUMNP). Node numbers may not be repeated or omitted.
(3) The print suppression flag (PSF) is used to eliminate the second printing of ordered node coordinates or to suppress printing of equation number assignments (or both). The PSF character is entered on the card for node one (1) only.
(4) Boundary condition codes can only be assigned the following values ($M=1,2, \ldots, 6$) --
$\operatorname{ID}(\mathrm{M}, \mathrm{N})=0$; unspecified (free) displacenent
$\mathrm{ID}(\mathrm{M}, \mathrm{N})=1$; deleted (fixed) displacement
An unspecified ($I D(M, N)=0$) degree of freedom is free to translate or rotate as the solution dictates. Concentrated forces (or monents) may be applied in this degree of freedom.

On: system equilibrium equation is required for each unspecified degree of freedom in the model. The maximum number of equilibrium equations is always less than six (6) times the total number of nodes in the system.

Deleted ($\operatorname{ID}(M, N)=1)$ degrees of freedom are removed from the final set of equilibrium equations. leleted degrees of freedom are fixed (points of external reaction), and any loads applied in these degrees of freedom are ignored by the program. Nodes that are used for geometric reference only (i.e., nodes not assigned to elements) must have all six (6) degrees of freedom deleted. Nodal degrees of freedom having undefined stiffness (such as rotations in an all TRUSS model) must be deleted.

Independent of the actual entries posted for the $I D(M, N)$ in $C c$ 7-35 of the Nodal Data, any master boundary condition deletions (i.e., IDOF (M). ED.1, $M=1,2, \ldots, 6$) which are given in CC $6-11$ of Card 1 in Section II will be used for all nodes. Suppose that all rotations X, Y, Z have bsen deleted by means of the master codes (i.e., $\operatorname{IDOF}(M)$. EQ. 1, $M=4,5,6)$, then $\operatorname{ID}(M, N)(M=4,5,6)$ will be set to "1", and data in cc $21-35$ are igmored by the program.
(5) For the case CT (cc 1) equal to the character " X ", the data input in cc $36-65$ are interpreted as the cylindrical ($r, 0, z$) coordinates of node "N". The table in note (1) contains the formulae used by the program to compute the Cartesian ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) coordinates of node N from the cylindrical coordinate values
given in oc 36-65. The origin of Cartesian and cylindrical systems is the same point. Cylindrical coordinate data (if input on the card) are printed as read in the first list of node coordinates. The second listing of coordinates (if not suppressed with a PSF of "A" or "C") is an order printing of all nodes with coordinates converted to the (X, Y, Z) system.
(6) Node cards need not be input in node order sequence; eventually, however, all nodes in the set (1, NUMNP) must be defined. Node data for a series of nodes
$\left(\mathrm{N}_{1}, \quad \mathrm{~N}_{1}+1 \star \mathrm{KN}_{1}, \quad \mathrm{~N}_{1}+2 \mathrm{KN}_{1}, \ldots, \mathrm{~N}_{2}\right)$
may be generated from information given on two (2) cards in sequence--

CARD $1 \cdots \mathrm{CT}_{1}, \mathrm{~N}_{1}, \operatorname{ID}\left(\mathrm{~N}_{1}, 1\right), \ldots, \operatorname{ID}\left(\mathrm{N}_{1}, 6\right), \mathrm{X}\left(\mathrm{N}_{1}\right), \ldots, \mathrm{KN}_{1}$
CARD $2-\mathrm{Cr}_{2}, \mathrm{~N}_{2}, \operatorname{ID}\left(\mathrm{~N}_{2}, 1\right), \ldots, \operatorname{ID}\left(\mathrm{N}_{2}, \sigma\right), \mathrm{X}\left(\mathrm{N}_{2}\right), \ldots, \mathrm{KN}_{2}$
KN_{1} is the node generation parameter given on the first card in the sequence. The first generated node is $N_{1}+1 * K N_{1}$; the second generated node is $\mathrm{N}_{1}+2^{\star} \mathrm{KNN}_{1}$, etc. Generation continues until node number $\mathrm{N}_{2}-\mathrm{KN}_{1}$ is estahlished. Note that the node difference $N_{2}-N_{1}$ must be evenly divisible by KN_{1}. Node number NUMNP must be the last card.

Coordinate generation is possible only if both nodes are given in the same system (i.e., CT_{1} and CT_{2} are the same). Since generation is processed using Cartesian coordinates, intermediate nodes between N_{1} and N_{2} are located at equal intervals along the line between the two points (i.e., linear interpolation in the (X, Y, Z) system).
(7) Temperatures for generated nodes $\mathrm{N}+1, \mathrm{~N}+2, \ldots$, etc., are
$\operatorname{TEMP}(N+1)=\operatorname{TEMP}(N+2)=\ldots=\operatorname{TEMP}(N)$.
IV. APPLIED LOADS DATA

1. Control card (3I5)
note columns variable entry
(1) $1-5$ NLOAD ≥ 0 Number of cards used to prescribe loads acting at the nodes.
(2) $6-10$ NLCUR ≥ 0 Number of load curves (time functions)
(2) 11-15 NPTM ≥ 2 Maximum number of points used to describe any one of the lsad curves

16-20	NPLE	Number of element faces with pressure loads
21-25 NPCUR	Number of different load curves used for pressure loads	

NOTES/
(1) NLOAD determines the number of cards to be read in Section IV.3, below. The loads defined in Section IV. 3 are concentrated node forces/monents that do not change direction as the structure deforms; l.e., the applied node forces are conservative loads.
(2) Time-dependent loads are applied to the structure by means of load (or time) function (i.e., $f(t)$) references and function multipliers assigned with the loads. At time t the value of $\mathrm{f}(\mathrm{t})$ is found by linear interpolation in the table of $\mathrm{f}(\mathrm{t})$ vs t; $f(t)$ times the multiplier is the magnitude of the applied load at t. NPIM is the maximum number of $(f(t), t)$ pairs used to describe any one of the NLCUR functions; an individual function may have fewer than NPIM ($f(t), t$) points as input, but no function can be input with more than NPIM points. At least two points are required per function; otherwise,interpolation in time is not possible.
2. Load function data (skip these cards if NLCUR $=0$)

Input NLCUR sets of the following data cards in order of increasing load function number.
a. Control data (2I5)

```
columns variable entry
```

1-5 NIF Time function number;
GE. 1 and LE.NLCUR
6-10 NPPS Number of points (i.e., $f(t)$, t pairs)
used to input this time function;
GE. 2 and LE.NPTM
b. $(f(t), t)$ data ($8 F 10.0)$
note columns variable entry
(1) $1-10$ TMMV (1) Time at point $1, t_{1}$
11-20 RV (1) Function value at point 1, $\mathrm{f}\left(\mathrm{t}_{1}\right)$

21-30 TIMV (2) Time at point 2, t_{2}
31-40 RV (2) Function value at point 2, $f\left(t_{2}\right)$
71-80 RV (4) Function value at point 4, $f\left(t_{4}\right)$

Next card (if required)
(2)

```
1. - TIMV (5) Time at point 5, t5
11-20 RV (5) Function value at point 5, f(t5)
```

NOTES/
(1) Time values at successive points must increase in magnitude (i.e., TMMV(1) TIMV(2) TIMV(3), etc.), and TIMV(1) must be equal to zero (i.e., TIMV(1).EQ.0.0); otherwise an error condition is declared. The last time value for the function (i.e., TIMV(NPTS)) must be greater than or equal to the time at the end of solution; i.e, TIMV (NPTS) = TSTART + NSTE*DT;otherwise an error condition is declared.
(2) Input as many cards in this section as are required to define NPMS points, four points per card.
3. Nodal Loads Data $(315, F 10.0)$

Skip this section if INLOAD.EQ.0; otherwise input NLOAD cards in this section.
note
(1)

COl
entry
$1-5$ NOD
Node number to which this load is applied; GE. 1 and LE. NUMNP
(2)

6-10 IDIRN

11-15 NCUR

16-25 FAC

Degree-of-freedon number for this load component:

EQ.0; solution terminated
EQ.1; X-trarslation (or z)
EQ.2; Y-translation (or r)
EQ.3; Z-translation (or θ)
EQ. 4; X-rotation
EQ.5; Y-rotation
EQ. 6; Z-rotation
Load curve number that describes the time dependence of the load;
GE. 1 and LE.NLCUR
Function multiplier used to scale $f(t)$ for the load at " t "; Bq.0.0; default set to "1.0"

NOTES/

(1) If the same degree of freedom (IDIRN) at the same node (NOD) is given a multiple number of times, the program combines the loads algebraically with no error diagnostic.
(2) Nodal loads must be refered to cylindrical coordinates if the analysis is done in cylindrical coordinates.

4. Pressure Loads Data

Repeat the following sets of cards for each load curve used for pressure loading. Skip if NPLE.EQ.O.
a. Load curve data (3I5)
note columns variable entry
1-5 NCURV Load curve number
6-10 NEF Number of element faces for which pressure loads are to be computed using this load curve

11-15 ICYL EQ.0; rectangular nodal coordinates EQ.1; Cylindrical nodal coordinates
b. Loaded face data (F10.0, 14I5) (repeat as required to load NEF faces)

note	columns	variable	entry
	1-10	PSCAL	toad curve scale factor (<0 for compression)
	11-15		
	$16-20$	$\begin{aligned} & \operatorname{NNG}(J), \\ & J=1,8 \end{aligned}$	Node numbers cefining the pressure loaded face. Enter in NONSAP order with zeros for absent nodes
	46-50		
	5.1-55	NFACE	Number of loaded faces to be generated including the first (default $=1$)
	56-60	NODINC	Node number increment for generated faces.

```
5. Gravity Loads Data (4F10.0,15)
Skip this section if TOADG.ER.0.
note columns variable entry
(1)
(2)
- variable entry
```

(1)

Acceleration of gravity
Number of G's in X or axial direction Number of $\mathrm{G}^{\prime} \mathrm{s}$ in Y or radial direction Number of $\mathrm{G}^{\prime} \mathrm{s}$ in Z or hoop direction Number of equal increments in which deadload is applied (default $=1$)

``` NOTES/
(1) Must be consistent with density input from material data. Deadloads are available with truss, membrane, and 3D elements.
(2) Increments of dead load are added to the first NSTEPS load vectors; to apply the dead load alone, set the load curves to zero during the first NSTEPS increments.
V. RAYLEIGH DAMPING SPECIFICATION (2F10.0)
Omit this card if IDAMP. EQ. 0 .
note colunns variable entry
(1)
\(1-10\) ADAMP
(1) \(\quad 11-20 \quad \mathrm{BDAMP}\)
Rayleigh damping coefficient
Rayleigh damping coefficient
NOTES/
(1) Rayleigh damping is defined as \(C=M+K\), where \(\alpha\) and \(B\) are input as above.
It need be noted that \(B\) is applied to the linear stiffness matrix of the element assemblage.
VI. CONCENTRATED NODAL MASSES (I10,6F10.0)
Skip this section if IMASSN.EQ.0, on card 2 of Section II. Otherwise, input IMASSN cards as follows.
```

note	columns	variable	entry
(1)	$1-10$	N	Node number: GE. 1 and LE.NUMNP
(2)	11-20	XMASS (1)	X -direction mass
	21-30	XMASS (2)	Y-direction mass
	31-40	XMASS (3)	Z-direction mass
(3)	41-50	XMASS (4)	X-rotational mass
	51-60	XMASS (5)	Y-rotational mass
	61-70	XMASS (6)	Z-rotational mass

NOTES/
(1) Input IMASSN cards; node order is not important. Repeating nodes accumulates mass at the node.
(2) Mass components input for deletod (or nonexistent) degrees of freedom are ignored by the program without a diagnostic message.
(3) Rotational degrees of freedom are currently not used (see Table II.1).
VII. CONCENIRATED NODAL DAMPERS (I10,6F10.0)

Skip this section if IDAMPN.EQ.0, on card 2 of Section II, above. Otherwise, input IDAMPN cards as follows.
note columns variable entry
(1)
$1-10 \mathrm{~N}$
Node number;
GE. 1 and LE.NUMNP
(2)
(3)

11-20 XDAMP (1) X-direction damper
21-30 XDAMP (2) Y-direction damper
31-40 XDAMP (3) Z-direction damper

41-50 XDAMP (4) X-rotation damper
51-60 XDAN? (5) Y-rotation damper
61-70 XDAMP (6) 2-rotation damper

NOTEE,
(1) Input IDAMPN cards; node order is n tt important. Repeating nodes accumulates dampers at the node.
(2) Damper components input for deleted (or non-existent) degrees of freedom are ignored by the program without a diagnostic message.
(3) Rotational degrees of freedom are currently not used.

VIII. INITIAL CONDITIONS

Initial conditions for the element are defined in this section. Initial conditions may be established using one (1) of three (3) methods--

METHOD 1 - For MODEX.EQ.2, this is a restart job. Refer to Section XII for setting up a restart job. The variable "ICON" appearing on the time card below is read by the program, but ignored; i.e., the control card (Section VIII.a) must still be input.

METHOD 2 - For MODEX.NE.2, and initial conditions of all zero, input ICON.EQ. 0 with no additional data; all vector components are then automatically initialized to zero at time of solution start, TSTART.

METHOD 3 - For MODEX.NE.2, and known nonzero initial conditions, input ICON.EQ. 1 and read the system vectors in compacted form from cards as described in Section VIII.b, below.
a. Control Card (I5)
note columns variable entry
(1)

1-5 ICON
Flag indicating the type of initial conditions;

EQ. 0 and MODEX.NE.2, zero initial conditions are generated automatically.

EQ. 1 and MODEX.NE.2, nonzero initial conditions are read from data cards immediately following.

EQ.2, reads constant initial velocities.

b. Card Input of System Vectors (6E12.6)

For the case MODEX. NE. 2 and ICON. EQ. 1, the program performs the following read operations:

$$
\begin{aligned}
& \text { RFAD }(5,1000) \text { (DIS (} K \text {) , } K=1 \text {, NEQ) } \\
& \text { RIFAD (} 5,1000 \text {) (VEL (} K \text {), } K=1 \text {, NEQ) } \\
& \text { READ }(5,1000) \quad \text { (} \operatorname{ACC}(K), K=1, N B Q)
\end{aligned}
$$

1000 FORMAT (6E12.6)
where DTS NEL/ACC are the system initial displacement/velocity/ acceleration vectors, respectively. The variable NBQ is the total number of freedoms retained for evaluation; i.e., six (6) times the total nodes minus (-) all deletions provided by fixed boundary condition specifications.

The list of equation numbers can be obtained in Section IIT (variable PSF) and can be identified conveniently from the displacement (velocity and acceleration) print-out of a previous solution.

For the case of a static solution, the VEL/ACC system initial vectors are not read from card input. A static solution is performed if TMASS. P2. 0 (Section II, card 2).

If $I C O N=2$ then read constant initial velocities $3 E 10.0$.

ELPMPNI INPUT

Input as many blocks of data in these sections as there are total element groups. Linear element groups (NEGL, total.) are input first, and nonlinear elements (NoravL groups, total) follow the linear element group data. Therefore, whether the elements in a group are linear or nonlinear, depends on whether the element group belongs to the first NEGL groups or the last NEGNL groups.

In any onc group all elements input must be the same type; e.g., if nonlinear TRUSS elements are given as input, then all elements in the group must be nonlinear. Furthermore, in any one group, only one material model can be used. e.g., if the group consists of TRUSS elements, then either the material of all elements in the group is linear elastic, or it is nonlinear elastic. However, a number of different sets of material constants for a specified model can be used.

Since the program is an overlay system, in order to avoid unnecessary manipulation of overlays, it is most efficient to group all element groups of one kind and using one material model together.
IX. TRUSS ELEMENTS

TRUSS elements are two-node members allowed arbitrary orientation in the X, Y, Z system. The TRUSS transinits axial force only, and in general, is a six (5)-degree-of-freedom element (i.e., three global translation components at each end of the mer'ser), see Fig. A. 1.

1. Element control card (2014)
note
(1)
(2)

9-12 NPAR(3
Type of nonlinear analysis
MQ. 0 default set to "l"
EQ. 1 materially nonlinear only
EQ. 2 updated Lagrangian formulation
13-16 NPAR(4) Coordinate system identifier
(3)

56-60 NPAR(15)
EQ. 0 rectangular coordinate
Ex. 1 cylindrical coordinate
Material nodel number

EQ. 1 linear elastic
EQ. 2 nonlinear elastic
(4)

61-64 NPAR(16
(5)

65-68 NPAR(17)
Number of different sets of section/ material properties

GE. 1
ED. 0 , default set to "1"
Number of material model constants per set

EQ. 0 if $\operatorname{NPAR(15).EQ.~} 1$
GE. 4 if NPAR(15) , EQ. 2
NOTES
(1) TRUSS element numbers begin with one (1) and end with the total number of elements in this group, NPAR(2). Element data are input in Section IX.4, below.
(2) The parameter NPAR (3) is applicable only if the element group is nonlinear. If NPAR(3).EQ.1, no geonetric nonlinearities are
taken into account, i.e., the geometric stiffness matrix is not included. If NPAR(3). Eq. 2 large displacement effects are included in the analysis, but small strains are assumed in the calculation of element forces.
(3) In any one element group only one material model can be used, and this model type is defined by the entry NPAR(15). If NPAR(15). EQ. I the model is defined by Young's modulus only and NPAR (17).EQ.0. If NPAR(15).EQ. 2 the stress~strain curve is imput in Section IX. 3 below.

The model defined for the element group must be coisistent with the nonlinear formulation used (defined by NPAR(3)) and the requirement of equilibrium iteration as defined on card 4 of the Master Control Cards (Section II). As stated in note (3) of card 4, Section II, equilibrium iterations can only be performed if the model allows for iteration, and if at least one nonlineat element group is used in the analysis. Table A-I sumarizes the formulations, material models and possibilities of equilibrium iteration that may be used.
(4) The variable NPAR(16) defines the number of sets of material/section properties to be read in Sections IX. 2 and IX. 3 below.
(5) NPAR(17) is the variable NCON used in Section IX. 3 (c).

TABIE A-I
POSSIBIE ANALYSTS USTNG TPPUSS ELAMENTS

FORMULATION

LINEAR ANALYSIS

MATEERIALLY
NONLINEAR ONLY

UPDATED
LAGRANGIAN
FORMULATION

MATERIAL MODEL

LINEAR EIASTIC

NONLINEAR
ELASTIC

LINEAR ELASTIC
NONL.INEAR
UASTIC

YES
POSSIBILITY OF BQUILIBRIUM ITERATION

NO

YES

YES

```
    2. Linear Elastic Material/Section Property Cards
    Skip this set of cards if NPAR(15).NE.1. Otherwise read
    NPAR(16) sets of cards.
        a. material number card (I5)
    columns variable entry
    1-5 N Material/section number
    GE.L; and LE.NPAR(16)
    b. property card (1F10.0)
note columns variable entry
(1)
    1-10 E(N) Young's modulus
    11-20 AREA (N) Cross-sectional area
21-30 DEN(N) Mass density (for dynamic analysis)
31-40 STRAI(N) Initial strain (axial)
NOIES/
(1) NPAR(16) different linear elastic material are input in this section, provided NPAR(15).EQ.1. Note that one material/section is defined to have the same Young's modulus, area, mass density, and initial strain.
2. Nonlinear Elastic Material/Section Property Cards
Skip this set of cards if NPAR(15).NE,2, otherwise read NPAR(15) sets of cards.
a. material number card (I5)
column variable entry
1 - 5 N Material/section number Ge. 1 and LE. NPAR (16)
b. section property card (3F10.0)
```

note columns variable entry
(1)
1 - 10 AREA (\mathbb{N}) Ccoss-sectional area

11-20 DEN(N) Mass density for dynamic analysis
21-30 STRAI (N) Initial axial strain
c. Stress-strain curve card (8F10.0)
note
columns variable entry
(2)

$1-10$	$\operatorname{PROP}(1, N)$	Strain at point $1, e^{1}$
$11-20$	$\operatorname{PROP}(2, N)$	Strain at point $2, e^{2}$
	PROP	
	$(\operatorname{NCON} / 2, N)$	Strain at point NCON/2
	PROP	
	$(N C O N / 2+1, N)$	Stress at point $1, \sigma 1$
	PROP	
	$(N C O N / 2+2, N)$	Stress at point $2, \sigma^{2}$
	$\operatorname{PROP}(N C O N, N)$	Stress at point NCON/2

NOTES/
(1) One section property card is defined to have the same area, density, and initial strain.
(2) The stress-strain curve is defined by straight lines between the input points $\left(e^{1},{ }^{i}\right)$. From the stress-strain curve total stresses and the tangent modulus are evaluated for a given strain (see Fig. A. 2).

The variable NCON was defined in Section IX. 3 by the variable NPAR (17) .

This model can only be used in a nonlinear element group.
4. Element Data Cards (415, F10.0, 315)

NPAR (2) elements must be input and/or generated in this section in ascending sequence beginning with " 1 ".

note	columns	variable	entry
	$1-5$	M	TRUSS element number; GE. 1 and LE.NPAR (2)
(1)	6-10	II	Node number at one end
	11-15	JJ	Node number at other end GE. 1 and LE.NUMNP
	16-20	MIYP	Material property set number; GE. 1 and LE.NPAR (16)
(2)	21-30	PINIT	Initial axial force in the TRUSS: Gr.0, tension
	31-35	IPS	Flag for printing axial stress in TRUSS element;
			EQ.0, no printing EQ.1, print element stress
(3)	36-40	KG	Node generation increment used to corqute node numbers for missing elements; EQ.0, default set to "1"

NOTES
(1) Refer to Figure A. 1.
(2) PINI'P is the axial force in the TRUSS at zero node displacement, and zero initial strain in the truss. The initial strain defined for the material property set number gives rise to an additional force in the truss.
(3) Elements must be input in increasing element number order. If cards for elements ($\mathrm{M}+1, \mathrm{M}+2, \ldots, \mathrm{M}+\mathrm{J}$) are onitted, these "J" missing elements are generated using MTYP and PINIT of element " M " and by incrementing the node numbers of successive elements with the value "KG"; KG is taken from the first card of the element generation sequence (i.e., from the "M-th" element card). The last element cannot be generated.

X. MEMBRANE EIIEMENTS

MEMBRANE elements are 4- to 8-node isoparametric curved quadrilaterals with coordinate input in the global X-Y-Z coordinate system. They conform to the surface of any configuration of the 8-to 21node solid element and can model surfaces of nonorthogonal curvature. Figure A. 3 shows some typical MEMBRANE elements.

Fig. A.1. Truss element.

Fig. A.2. Nonlinear material model for truss.

Fig. A.3. Typical nodal point configurations for membrane elements.
i. Element Group Control Card (20I4)

note	columns	variable	entry
	$1-4$	NPAR(1)	Enter the number " 4 "
(1)	$5-8$	NPAR (2)	Number of MPMBRANE elements in this group; GE. 1
	13-16	NPAR (4)	Coordinate system identifier
			EQ.0, Caitesian coordinates EQ.1, cylindrical coordinates
(2)	25-28	$\operatorname{NPAR}(7)$	Maximum number of nodes used to describe any one elemer,t;
			GE. 4 and LE. 8 E2.O, default set to "8"
(3)	37-40	NPAR (10)	Numer ical integration order to be used in Gauss quadrature formulae;
			E2.O, default set to " 2 " GE. 2 and LE. 4
(4)	49-52	$\operatorname{TPAR}(13)$	Number of stress output location tables; EQ.0, print stresses at integration points
(5)	57-60	NPAR(15)	Material model numin
			GE. 1 and LE. 12 EQ. 1, linear isotropic EQ.2, linear orthotropic EQ.3, elastic-plastic
(5)	61-64	NPAR (16)	Number of different sets of material properties; GE. 1

NOTES

(1) MEMBRANE element numbers begin with one (1) and end with the total number of elements in this group, NPAR(2). Element data are input in Section X. 4 below.
(2) NPAR(7) limits the number of nodes that can be used to describe any of the elements in this group. A minimum of 4 and a maximum of 8 nodes are used to describe the MFMBRANE. For example, for the set of elements shown in Fig. A. 3, NPAR(7) would be set to "7".
(3) For rectangular elements an integration order of "2" is sufficient. If the element is distorted, a higher integration order need be used. Notice that apart from the larger computational effort in the calculation of the element matrices, more working storage may be required if a nonlinear material model is used (see note (5) below). The consistent mass matrix is always calculated with an integration order of 3 .
(4) Element stresses are calculated at the points defined in the stress output location table assigned to the element (see Section X.3). NPAR(13) defines the total number of stress output location tables input in Section X.3. NPAR(13).EQ. 0 for all nonlinear element models, i.e., MODEL. GT. 2 in Section X. 2 .
(5) Only one material model (defined by the value of NPAR(1.5) is allowed in an element group. If NPAR (15) is 1,2 , or 3 , the model exists in the current library for MEMBRANE elements, and the entries for NPAR(17) and NPAR(18) are ignored by the program.

The model defined for the element group must be consistent with the nonlinear formulation used (define by NPAR(3)), and the requirement of equilibrium iteration as defined on card 4 of the Master Control Cards (Section II). As stated in note (3) of card 4, Section II, equilibrium iterations can only be performed if the model allows for iterations, and if at least one nonlinear element group is used in the analysis. For the MEMBRANE element equilibrium iteration can be employed with the elastic-plastic model.

2. Material Property Data

NPAR(16) sets of cards must be input in this section. Card "a" (material number card) is the same for all material models, but card(s) "b" (material property card(s)) depend on the material model number (NPAR(15)).
a. material number card (I5,F10.0)
note
columns variable entry
1 - $5 \mathrm{~N} \quad$ Material property set number;
GE. 1 and LE. NPAR (16).

Mass density of the material used in calculation of the mass matrix, 0 ; GE. 0.0

NOTES/
(1) The mass density defined is used directly in the calculation of the element matrix, i.e., no acceleration constants are applied to the variable $\operatorname{DEN}(N)$.
b. material property card(s) (8F10.0)

FOr MONEL "1" (NPAR(15).EQ.1) (1inear isotropic)
note
columrs variable entry
$1-10 \quad \operatorname{PROP}(1, N) \quad$ Young's modulus, E
11-20 PROP $(2, N)$ Poisson's ratin
21-30 $\operatorname{PROP}(3, N)$ Initial stress RR
31-40 $\operatorname{PrOP}(4, N)$ Initial stress ${ }^{\sigma}$ SS
For MODEL "2" (NPAR(15)EQ.2) (1inear orthotropic)
notes columns variable entry
(1) 1 - $10 \quad \operatorname{PROP}(1, N) \quad$-direction modulus, E_{R}

11-20 $\operatorname{PrOP}(2, N) \quad$ S-direction modulus, ES
21-30 $\operatorname{PROP}(3, N) \quad$ Poisson ratio $V_{R S}$
31-40 $\operatorname{PROP}(4, N) \quad$ Shear modulus, GRS
41-50 $\operatorname{PROP}(5, N) \quad$ Ini+ial stress ${ }^{\sigma} R R$
51-60 $\operatorname{PrOP}(6, N)$ Initial stress ${ }^{\circ} \mathrm{SS}$
NOTES
(1) See Fig. 12 for orientation of the $x-y$ axes with respect to the membrane tangent axes.

For MODEL "3" (NPAR(15).EQ.3) (elastic-plastic material, von Mises yield condition)
note columns variable entry
(1) $1-10 \quad \operatorname{PROP}(1, N) \quad$ Young's modu? us, E

(1)	$11-20$	$\operatorname{FROP}(2, N)$	Poisson's ratio,
(2)	$21-30$	$\operatorname{PROP}(3, N)$	Yield stress in simple tension, y
(3)	$31-40$	$\operatorname{PROP}(4, N)$	Strain hardening modulus, E_{t}
WOIES			

(1) MODEL 3 is a nonlinear library material model for which NPAR(17).Eq. 4 by default. NPAR(18) .EQ.10, since 10 history-dependent variables must be stored for each integration point.

The Young's modulus and Poisson's ratio define the initial elastic behavior of the material.
(2) The yield stress in simple tension defines the initial yield conditions.
(3) Linear isotropic strain hardening is assumed and E_{t} is the tangential modulus (after yield) obtained from a uniaxial tension test.
3. Stress Output Table Cards (915)
note
(1)

Skip this section if stresses at integration points are to be printed, i.e., NPAR(13).EQ.0; otherwise supply NPAR(13) cards. columns variable entry

$1-5$	$\operatorname{ITABLE}(N, 1)$	Stress output location 1.
$6-10$	$\operatorname{ITABLE}(N, 2)$	Stress output location 2
$11-15$	$\operatorname{ITABLE}(N, 3)$	Stress output location 3
$16-20$	$\operatorname{ITABLE}(N, 4)$	Stress output location 4
$21-25$	$\operatorname{ITT} \operatorname{LE}(N, 5)$	Stress output location 5
$26-30$	$\operatorname{ITABLE}(N, 6)$	Stress output location 6
$31-35$	$\operatorname{ITABLE}(N, 7)$	Stress output location 7
$36-40$	$\operatorname{ITABLE}(N, 8)$	Stress output location 8
$41-45$	$\operatorname{ITABLE}(N, 9)$	Stress output location 9.

NOTES/
(1) Stress tables are defined to provide flexibility in element stress output requests. Each element can refer to tables defined, and the element stresses are then calculated
at the points specified in the table. Refer to Fig. A. 4 for selection of the stress calculation points. The first "0" entry in a table will terminate that table. For example. if ITABLE (N,1) EQ. 7 and ITABLE (N.2) EQ.0 then stresses will be printed at point 7 whenever this stress table is referred to.

Ine stress tables are oniy used when MODEL "1" or " 2 " aefine the material benavior.
4. Element Data Carde (I5, I3, 12, 2Fl0.0, 1015)
note
(1)
(2)
(3)
(1)
(2)
4) 45
$\mathrm{NOD}(1)$

NOD (2)
entry
MEMBRANE element numix r; GE. 1 anki E.NPAR (2)

Number of noxies useci t.o ciescribe this element;
ER. 0 , defoults set to "rPAR(7)" LE.NPAR (7)

Number of the stress table to be used for stress calcilation; EQ.0 nu scress sutput for this eleme nt

Material angie $B_{\text {, }}$ in degrees to be used in connection with material mociel "2" (1.inear orthotropic)

Element thick LS; GT.0.0
Material property set number assignea to this element; GE. 1 arda LE.NPAR (16)

Nocie generation parameter used to compute nove numbers for missing elements (given on first card of a sequence) ; Eq. 0 , default set to "l"

Global noce number of element nocaal point I

Glopai noue number of element nodal point 2

Stress print-out table points for membrane elements.

2-point integration.

3-point integration.

Fig. A.4. Stress print-out convention and integration point-numbering convention for membrane elements.

51-55	NOD (3)	Global node number of element nodal point 3
$56-60$	NOD (4)	Global node number of element nodal point 4
$61-65$	NOD (5)	Global node number of element nodal point 5
$76-70$	NOD (6)	Global node number of element nodal point 6
$76-75$	NOD (7)	

NOTES
(1) Elements must be input in ascending element number order. If data cards for elements ($M+1, M+2, \ldots, M+J$) are omitted, these "J" missing elements are generated using IEL, IPS, BET, THIC, and MIYP given on the card for element "M" and by incrementing node numbers of sucvessive elements with the value " KG^{\prime} : the value of KG used for incrementation is taken from the M-th element card, and only the nonzero nodes appearing on the M-th element card are incremented when generating missing element data. The last element cannot be generated.
(2) The number of nodes in element " M " is defined by "IEL".

However, all 8 entries for $N O D(I)$ are read from the element data card; if IEL.LT. 8 the particular node locations not used in this element need be input as "O" in NOD(1). Fig. A. 5 defines the input sequence that must be observed for element node input.
(3) If IPS.ER. 0 no stress output will be provided for this element. A nonzero entry for the element stress print-out flag "IPS" has a different meaning when used with nonlinear material models than it does when used with linear material models:
a) For linear material models (MODELS " 1 " and "2") IPS specifies the stress output table (Section X.3) to be used for this element. If no stress output tables were input (i.e., if NPAR(13).EQ.0) then IPS.EQ. 1 specifies that stresses are to be printed at all integration points for this element, as shown in Fig. A. 4.
b) For nonlinear material models MODEL. EQ. 3 IPS.EQ. 1 specifies that stresses are to be printed at all integration points for this element, as shown in Fig. A. 4.

Fig. A.5. Element node number input sequence for membrane elements.

XI. 3/D CONTINUTM ELPMENIS

3/D CoNTTNUTM elements are 8- to 21-node isoparametric or subparametric curvilinear hexahedra. Typical elements are illustrated in Figure A. 6.

1. Element Group Control Card (2014)
note colums variable entry
(1) $5-8$ NPAR(2) Number of $3 / D$ CONTINUUM elements in this group;
GE. 1
(2)
(3)
(4)
(5)

37-40
NPAR (10)
(5)
(6)

49-52 NPAR (13)
Flag indicating type of nonlinear analysis;
EQ.0, default set to "1"
QQ.1, material nonlinear analysis only
EQ.2, total lagrangian
E2.3, updated Lagrangian
Coordinate system identifier EQ.O, rectangular coordinates E2.1, cylindrical coordinates

17-20 NPAR (5) Marker for nonuniform time steps GT. 0.
Used only for creep model
Maximum number of nodes used to describe any one element; EQ.0, default set to "2l"

Numerical integration order to be used in Gauss quadrature formula for $r-s$ plane; EQ.0, default set to "2" GE. 2 and LE. 4

Numerical integration order to be used in Gauss quadrature formula for t-direction;
EQ. 0 , default set to " 2 "
GE. 2 and LE. 4
Number of stress output location tables;
EQ.O, print stresses at integration points

Fig. A.6. Typical $3 /$ D continuum elements derived
from the general element in Fig. A. 7 .
(7)
(6) $\quad 65-68 \quad$ NPAR (27)

Material model number:
GE. 1 and LE. 3
ER.1. Linear elastic isotropic
EQ.3. curve description model
EQ. 4, reinforced concrete mociel
EQ. 5 viscoelastic creep mociel
E2.6, elastic-plastic von Mises model
Ex.7, elastic-plastic concrete model
Number of dilferent sets of material properties;

Numier of constants per material property set; leave blank except for material model 5 .

NOIES/
(1) 3/D CONIINUUM element numbers begin with one (1) and end with the total number of elements in this group, NPAR (2). Data for the individual elements are input in Section XI. 4 below.

The following algorithus can be used to determine the maximum number of elements that can be included in any one element group:
$N E=N\left(M E S T-(1+N C)(N M)-(16)(N S)-(N T+1)(L T)-(9 / 2)(M N)^{2}-(33 / 2)(M N)-1\right.$ (ID) $(\mathrm{NG})+(\mathrm{MN})(\mathrm{IT}+7)-3$
where
$\mathrm{NE}=$ Maximum number of elements in the element group
$M N=$ Maximum number of nodes used to describe any element ($=$ NPAR (7))
$N C=$ Number of material property constants (see Table A-2)
$N M=$ Number of sets of material properties $(=$ NPAR (16))
NS $=$ Number of stress output tables ($=$ NPAR(13))
$\mathrm{NT}=$ Number of time steps ($=$ NSTE)
$L T=$ Switch for nonuniformly spaced solution times (= LOGIIM)
ID $=$ Size of storage array (see Table A-2)
NG $=$ Number of integration points $(=\operatorname{NPAR}(10) * \operatorname{NPAR}(10) * \operatorname{NPAR}(11))$
IT $=$ Switch for nodal temperatures (= ABS (ITEM P)
NUMEST $=$ Length of cormon block array.

TABLE A-2. ARRAY SIZES FOR 3-D CONIINUUM EJEMENIS

Material	Model Number	NC	ID
Linear	1	2	0
Curve description	3	24	13
Reinforced concrete	4	11	32
Concrete creep	5	9 to 25	43
Von Mises			
elastic-plastic	6	4	14
Elastic-plastic			
concrete	7	11	14

(2) NPAR(3) is applicable tor nonlinear element groups only and determines the type of geonetrical nonlinearities to be considered in the analysis.
(3) Used with the viscoelastic creep model only.
(4) NPAR (7) is the maximum number of nodes that can be used to describe any one of the elements in this group, i.e., elements in this group must have less than or equal to NPAR (7) nodes. A minimum of 8 and a maximum of 21 nodes are used to describe 3/D CONTINTM elements as indicated in Fig. A.7. Constant strain tetrahedra can be formed from 8 -node elements by having nodes $1,2,3$ and 4 coincide and nodes 7 and 8 coincide.
(5) The selection of appropriate integration orders depends on the element shape and strain state being considered. When the quantities being integrated vary irregularly a higher order is needed. An integration order of " 2 " is sufficient for most problems. Shell or plate problems of ten use thin elements in which strain varies more or less linearly through the thickness, but more irregularly in the plane of the surface of the shell. In these cases it is advantageous to specify a lower order for integration through the thickness, i.e., NPAR(11) < NPAR(10).

The expense of stiffness formation is dependent on the integration order, i.e.,

$$
n=\operatorname{NPAR}(11) * \operatorname{NPAR}(10) * \operatorname{NPAR}(10)
$$

where n is the number of points at which B^{T} DB must be calculated in order to find the element stiffness by Gauss integration.

The consistent mass matrix is always calculated using an integration order of three in each direction.
(6) Element stresses are calculated at the points defined in the stress output location table (see Section XI.3) assigned to an element. NPAR(13) defines the total number of stress output location tables input in section XI. 3.

For nonlinear material models (NPAR(15).GE.3) stress output tables cannot be used, and stresses are printed at integration points; NPAR (13) is set to "O" in these cases.
(7) Only one material model (defined by the value of NPAR(15)) is allowed in an element group. The model defined for the element group must be consistent with the nonlinear formulation used (NPAR (3)) and the requirement of equilibrium iteration as defined on Card 4 of the Master Control Cards (Section II). Equilibrium iteration can be performed on all material models except for the linear model and the curve description model. Always input NPAR $(17)=5+4 *$ NDIRCH when using material model 5 , concrete creep.

Fig. A.7. 3/D continuum element node numbering convention.

2. Material Property Data

NPAR (16) sets of cards must be input in this section. Card "a" ("material number card") is the same for all material models, but card(s) "b" ("material property card(s)") depend on the material model number NPAR(15).
a. material number card (I5, Fi0.0)

NOTES
(1) The mass density defined is used directly in the calculation of the element mass matrix, i.e., no acceleration constants are applied to the variable DEN(N).
b. material property card(s) (8F10.0)

FOR MODEF "1" (NPAR(15.). EQ.1) (1inear isotropic elastic)
note columns variable entry

(1) $1-10$	$\operatorname{PROP}(1, N)$	Young's modulus, E
$11-20$	$\operatorname{PROP}(2, N)$	Poisson's ratio,

NOTES/
(1) MODEL 1 is a linear library model defined by two (2) positive constants (E, N); i.e., if NPAR(15).EQ.1, NPAR(17) is set to "2" by default. MODEL l can be used with linear or nonlinear element groups. Since the material constants are independent of history NPAR(18) is "0" by default.

FOR MODEL "3" (NJAR(15).ER.3) (curve description model)
note columns variable entry
first. card

$1-10$	$\operatorname{PROP}(1, N)$	$\mathrm{e}_{\mathrm{V}}{ }^{1}$ volume strain at point "1"
	$11-20$	$\operatorname{PROP}(2, \mathrm{~N})$

21-30	$\operatorname{PROP}(3, N)$	$e \mathrm{v}^{3}$
31-40	$\operatorname{PROP}(4, \mathrm{~N})$	$e_{v}{ }^{4}$
41-50	$\operatorname{PROP}(5, N)$	$e_{v}{ }^{5}$
51-60	$\operatorname{PROP}(6, N)$	$e_{v}{ }^{6}$
61-70	$\operatorname{PrOP}(7, N)$	$K_{L D}{ }^{1}$ loasing bulk modulus at point "1"
71-80	$\operatorname{PROP}(8, \mathrm{~N})$	$k_{L D}{ }^{2} \ldots$
$\begin{aligned} & \text { second card } \\ & 1-10 \end{aligned}$	$\operatorname{PROP}(9, N)$	$K_{L D}{ }^{3}$
11-20	$\operatorname{PROP}(10, N)$	$K_{L D}{ }^{4}$
21-30	$\operatorname{PROP}(11, N)$	$K_{L D}{ }^{5}$
31-40	$\operatorname{PROP}(12, N)$	$K_{T H} \mathrm{D}^{6}$
41-50	PROP $(13, N)$	$K_{U N}{ }^{1}$ unloading bulk modulus at point "l"
51-60	$\operatorname{PROP}(14, N)$	$\mathrm{KUN}^{2} \cdots$
61-70	$\operatorname{PROP}(15, N)$	$\mathrm{K}_{\mathrm{UN}}{ }^{3}$
71-80	$\operatorname{PROP}(16, N)$	KUN^{4}
third card (2) 1. -10	$\operatorname{PROP}(17, N)$	KUN ${ }^{5}$
11-20	$\operatorname{PROP}(L 8, N)$	$K_{U N}{ }^{6}$
21-30	$\operatorname{PROP}(19, N)$	$\begin{gathered} G_{L D} D^{1} \text { loading shear modulus } \\ \text { at point " } 1 \text { " } \end{gathered}$
31-40	$\operatorname{PROP}(20, \mathrm{~N})$	$G_{L D} D^{2} \ldots$
41-50	$\operatorname{PROP}(21, N)$	GLD^{3}
51-60	$\operatorname{PROP}(22, N)$	GLD^{4}
61-70	$\operatorname{PROP}(32, N)$	$G_{L D}{ }^{5}$
71-80	$\operatorname{PROP}(24, \mathrm{~N})$	GLLD^{6}

(1) MODEX 3 is a nor? inear library material model for which NPAR (17).E2.2'i, by default. To characterize history, thirteen (13) varialies--nanely, the previously calculated stresses and strains, and the maximum volumetric strain ever reached in loading--need be saved for each integration point. Therefore, NPAR(18) is set to " 13 " by default.

All six input points must be defined, as indicated below:

Note that
$e_{V}{ }^{J}>\mathrm{eV}^{J-1,} R_{U N}{ }^{J} \geq R_{L D}$ and $G_{L D}{ }^{J}<1.5 K_{I D}{ }^{J}$
where "J: is the J-th table input point. Linear interpolation
is used to define the loading and unloading bulk moduli,
${ }^{t_{K D D}}$, ${ }^{K_{U N}}$, and the loading shear modulus, ${ }_{G L D}$, at
time t between input points. If the volumetric strain during
any time or load step exceeds ev ${ }^{6}$, a diagnostic message results.
(2) The unloading shear modulus at time t is calculated as
$t_{G U N}=\left(t_{K_{U N}} t_{K_{L D}} t_{G L D}\right.$.

```
FOR MODEL "4" (NPAR(15) EQ.4) }->\mathrm{ (reinforced concrete)
```

note column variable entry
first card
(1) 1 - $10 \quad \operatorname{PROP}(1, N) \quad$ Young's modulus of concrete, E_{C}
11-20 $\operatorname{PROP}(2, N) \quad$ Young's modulus of reinforcing, E_{S}
21-30 $\operatorname{PROP}(3, N) \quad$ Campressive strength of concrete, $\mathrm{f}^{\prime} \mathrm{C}$
31-40 $\operatorname{PROP}(4, N) \quad$ Yield strength of reinforcing, f_{ys}
41-50 $\operatorname{PROP}(5, N) \quad$ Concrete poisson's ratio,
51-60 $\operatorname{PROP}(6, N)$ Tensile strength of concrete, f_{t}
61-70 $\operatorname{PROP}(7, N) \quad$ Steel percentage in global x-direction
71-80 $\operatorname{PROP}(8,9) \quad$ Steel percentage in global y-direction
second card
$1-10 \operatorname{PrOP}(9, N)$
11-20 $\operatorname{PROP}(10, N)$ Zero strain reference temperature
21-30 $\operatorname{PROP}(11, N)$ Coefficient of linear thermal expansion
NOTES/
(1) MODEL 4 is a nonlinear library element model for which NPAR(17). Eq. 11 by default. To characterize history 35 variables -- namely, the previously calculated stress and strain histories in concrete and reinforcement and the direction cosines and closing strains for cracks in concrete-need be saved at each integration point.

FOR MODET "5" (NPAR(15).EQ.5) \rightarrow (viscoelastic creep)

Second card
(2) $1-10$

11-20 PROP (20)
21-30 PROP (11)
31-40 PROP (12)
41-50 PROP (13)

Relaxation parameter TAU(1) in Dirichlet series

A (2)
B(2)
EX(2)
TAU(2)
Etc.

NOTES
(1) MODEL 5 is a linear time dependent library element model for which $\operatorname{NPAR}(17)=5+4 * N D I R C H$. This number must be imput on the element group control card. The number of terms in the Dirichlet series must be NDIRCH.LE.5. To characterize the history 43 variables--namely, the previously calculated stresses and strains, the temperature, and at most 30 hidden variables--need be saved at each integration point.
(2) The coefficients in the Dirichlet series can be defined in either of two ways--either with age dependence or with temperature dependence. The relaxation function is of the form

$$
J(t, t)=\frac{1}{E}+\sum_{N=1}^{N D I R C H} \frac{1}{\hat{E}(N)}\left(1-e^{-t / \tau(N)}\right)
$$

For age dependence (requiring that ITMMP $=0$) the coefficient $E(N)$ is given by
$E(N)=A(N)+B(N) t-E X(N) \quad(t$ is time)
For temperature dependence (requiring that ITPMP= 1) the coefficient $\mathrm{E}(\mathrm{N})$ is given by
$E(N)=\frac{1}{A(N)+B(N) * T} \quad(T$ is temperature $)$
FOR MODEL "6" (NPAR(15).EQ.6) \rightarrow (elastic-plastic von Mises)
note viumns variable entry
(1) $\quad 1-10 \quad \operatorname{PrOP}(1, \mathrm{~N}) \quad$ Young's modulus, E

11-20 $\operatorname{PrOP}(2, N) \quad$ Poisson's ratio,
21-30 $\operatorname{PROP}(3, N) \quad Y i e l d$ stress in simple tension,
(2)

31-40
$\operatorname{PROP}(4, N)$
Strain hardening modulus, E_{t}

NOTES/

(1) MODE 6 is a nonl inear time independent model for which NJPAR(17).EQ. 4 by default. NPAR(18).EQ. 14 since 14 historydependent variables must be stored for each integration point.
(2) Isotropic and linear strain hardening is employed in this model. FOR MODEL ${ }^{\text {" } 7 " ~}$ (NPAR(15). EQ.7) \rightarrow (elastic-plastic concrete mociel)
note columns variable entry

First card

(1)	1-10	PROP (1)	Young's modulus, E
	11-20	PROP (2)	Poisson's ratio, v
(2)	$2:-30$	PROP (3)	Parameter A_{0}, compression region
	$31-40$	PROP (4)	Parameter ${ }^{\text {co, }}$, compression region
	41-50	PROP (5)	Parameter A_{u}, compression region
	51-60	PROP (6)	Parameter ' u, compression region
	61-70	PROP (7)	Parameter Aor tension region
	71-80	PROP (8)	Parameter To, tension region

Second card

	1-10	PROP (9)	Parameter A
	11-20	PROP (10)	Parameter
(3)	21-30	PROP (11)	Ultimate pla

NOTES
(1) Model 7 is a nonlinear time-independent model for which NPAR(17). Ex. 11 by default. NPAR(18) is again equal to 14 since 14 history-dependent variables must be stored at each integration point.
(2) Equations (9) and (10) of Section II. A define the parameters $A_{0}, T_{0}, A_{u}, T_{u}$ in terms of the compressive, tensile, and biaxial strengths and initial yield stresses of the concrete.
(3) Use a value of . 003 for ε_{u}.
3. Nonuniformly Spaced Solution Times (8F10.0)

Skip this section of NPAR(5). B2.0. Otherwise, read NSTE+1 times starting with the initial value $t_{0}=t^{\prime}$ where t^{\prime}, is the age of concrete used to obtain the compliance data to which the Dirichlet series is fit. Since only time increments are used the initial time can be offset to any desired value.
note
columns variable entry
(1)

$1-10$	TIM (1)	Initial time
$11-20$	TIM (2)	Time at the end of first time step
\vdots	\vdots	Etc.

NOTES
(1) Keep in mind that load curves are defined in terms of uniform load steps rather than in terms of nonuniform time steps.
4. Stress Output Table Cards (I6I5)

Skip this section if stresses are to be printed at integration points, i.e., if NPAR(13).EQ.0; otherwise, supply NPAR(13) cards.
note
(1)

colums	variable	entry
$1-5$	$\operatorname{ITABLE}(N, 1)$	Stress output location 1
$6-10$	$\operatorname{ITABLE}(N, 2)$	Stress output location 2
$11-15$	$\operatorname{ITABLE}(N, 3)$	Stress output location 3
$16-20$	$\operatorname{ITABLE}(N, 4)$	Stress output location 4
$21-25$	$\operatorname{ITABLE}(N, 5)$	Stress output location 5
$26-30$	$\operatorname{ITABLE}(N, 6)$	Stress output location 6
$31-35$	$\operatorname{ITABLE}(N, 7)$	Strers output location 7
$36-40$	$\operatorname{ITABLE}(N, 8)$	Stress output location 8
$41-45$	$\operatorname{ITABLE}(N, 9)$	Stress output location 9
$46-50$	$\operatorname{ITABLE}(N, 10)$	Stress output location 10
$51-55$	$\operatorname{ITABLE}(N, 11)$	Stress output location 11
$56-60$	$\operatorname{ITABLE}(N, 12)$	Stress output location 12

61-65	$\operatorname{ITABLE}(\mathrm{N}, 13)$	Stress output location 13
$66-70$	$\operatorname{ITABLE}(\mathrm{~N}, 14)$	Stress output location 14
$71-75$	$\operatorname{ITABLE}(\mathrm{~N}, 15)$	Stress output location 15
$76-80$	$\operatorname{ITABLE}(\mathrm{~N}, 16)$	Stress output location 16

NOTES/

(1) Stress tables are defined to provide flexibility in element stress output requests. Each element can refer to one of the tables defined, and the element stresses are then calculated at the points specifled in that table. Figure A. 8 defines the locations of the 27 possible points within an element where stresses may be prirted.

Any one table may contain a maximum of sixteen (16) stress output points. The first " 0 " entry in a table will terminate that table. For example, if ITABLE(N,1).EQ. 21 and $\operatorname{ITABLE}(N, 2) . E Q .0$, then stresses will be printed only at point 21 (the centroid of the element) whenever this stress table is referred to.

Stress output tables are used only with linear material models (NPAR(15).Ex.1). For elements using nonlinear material models (NPAR(15). GE. 3), stresses can be printed at integration points only.

For reference, $2 \times 2 \times 2$ NONSAP-C integration points are drfined in Fig. A. 9 .
5. Element Data Cards (16I5)

Three cards must be prepared for each element that appears in the input:

First Card

note	columns	variable	entry
(1)	1-5	M	3/D Conrinurm element number;
			GE. 1 and LE.NPAR (2)
(2)	6-10	IELD	Number of nodes to be used in describing the element's displacement field;
			EQ. 0 , default set to NPAR (7) LE.NPAR (7)

Fig. A.8. 3/D continum element stress output points.

Fig. A.9. $3 / \mathrm{D}$ continuum element $2 \times 2 \times 2$ integration point numbering oonvention.

(3)	11-15	IEIX	Number of nodes to be used in the description of the element's geanetry;
			EQ.0, default set ot IELD GE. δ and LE. TELD EQ.IEID isoparametric element LT.IEID subparametric element
(4)	16-20	IPS	Number of the stress output location table to be used for this element (if a linear material model is used) or flag for printing stresses at element integration points; EQ.0, no stress output for this element
	21-25	MIYP	Material property set number assigned to this element;
			GE. 1 and LE.NPAR (16)
(5)	26-30	IST	Flag indicating that the stiffness and mass matrices for this element are the same as those for the preceding element;
			$\begin{aligned} & \text { E2.0, no } \\ & \text { EQ.1, yes } \end{aligned}$
(6)	31-35	KG	Node number increment for element data generation;
			E2.0, default set to "1"
Secon			
note	columns	variable	entry
(2)	1-5	NOD (1)	Global node number of element nodal point 1
	6-10	NOD (2)	Global node number of element nodal point 2
	11-15	$\mathrm{NOD}(3)$	Global node number of element nodal point 3
	16-20	NOD (4)	Global node number of element nodal point 4
	21-25	NOD (5)	Global node number of element nodal point 5

26-30	NOD (6) Global node number of element nodal point 6	
$31-35$	NOD (7)	Global node number of element nodal point 7
$36-40$	NOD (8)	Global node number of element nodal point 8

Thitd card

note	columns	variable	entry
(2)	1-5	$\mathrm{NOD}(9)$	Global node number of element nodal point 9
	6-10	NOD (10)	Global node number of element nodal point 10
	11-15	NOD (11)	Global node number of element nodal point 11
	16-20	NOD(12)	Global node number of element nodal point 12
	21-25	NOD (13)	Global node number of element nodal point 13
	26-30	NOD (14)	Global node number of element nodal point 14
	31-35	$\mathrm{NOD}(15)$	Global node number of element nodal point 15
	36-40	$\mathrm{NOD}(16)$	Global node number of element nodal point 16
	41-45	NOD (17)	Global node number of element nodal point 17
	46-50	NOD (18)	Global node number of element nodal point 18
	51-55	NOD (19)	Global node number of element nodal point 19
	56-60	NOD (20)	Global node number of element nodal point 20
	61-65	NOD (21)	Global node number of element nodal point 21

(1) Element cards must be input in ascending element number order beginning with one (1) and ending with NPAR (2). Repetition of element numbers is illegal, but element cards may be anitted, and missing element data are generated according to the procedure described in note (6).
(2) IELD is a count of the node numbers actually posted on Cards 2 and 3 which must immediately follow Card 1 . IELD must be at least eight (8) but must be less than or equal to the limit NPAR (7), which was given on the element group control card, Section XI.l. Element displacements are assigned at the IELD nonzero nodes, and thus the order of the element matrices is three (i.e., translations X,Y,Z) times IEID. The eight corner nodes of the hexahedron must be input, but nodes 9 to 21 are optional, and any or all of these optional nodes may be used to describe the element's displacement field. However, all 21 $\frac{\text { entries for } N O D(I) \text { are read from element data cards } 2 \text { and } 3 \text {; }}{\text { IELD.LT. } 2 \text { I the particular node locations not used in this }}$ element must be input as zero (0) in $\operatorname{NOD}(I)$. Figure XI. 3 defines the input sequence that must be observed for element input.

For example, the 10-node element (IELD. EQ. 10) shown below

is defined by
$\operatorname{NOD}(I)=(\times \times \times \times \times \times \times \times 00 \times 000 \times 0000000)$, where the nonzero entries (X) are the global mesh node numbers (Section III) of the 10 nodes.
(3) When element edges are straight it is unnecessary computationally to include side nodes in the numerical evaluation of coordinate derivatives, the Jacobian matrix, etc., and since regular element shapes are cammon, an option has been included to use fewer nodes in these geonetric calculations than are used to describe element displacements. The first IELX nonzero nodes posted on Cards 2 and 3 are used to evaluate those parameters which pertain to element geanetry only. IEIX must be at least eight (8), and if anitted is reset to IELD. A conmon application might be a 20 -node element (i.e., IELD.EQ.20) with straight edges, in which case IELX would be entered as " 8 ".
(4) If IPS.EQ. 0 no stress output will be provided for this element. A nonzero entry for the element stress print-out flag "IPS" has a different meaning when used with nonlinear material models than it does when used with linear material models:
a) For a linear material model (MODEL.E2.1) "IPS" specifies the stress output table (Section XI.3) to be used for this element. If no stress output tables were input (i.e., if NPAR(13) .EQ.0), then IPS.EQ. 1 specifies that stresses are to be printed at all integration points for this element.
b) For a monlinear material model (MODEL.GE. 3) TPS, EQ. 1 specifies that stresses are to be printed at all integration points for this element.
(5) The flag IST allows the program to bypass stiffness and mass matrix calculations providing the current element is identical to the preceding element, i.e., the preceding and current elements are identical except for a rigid body translation. If IST.EQ. 0 , new matrices are computed for the current element.
(6) When element cards are anitted, element data are generated autonatically as follows:
a) All data on Card 1 for generated elements is taken to be the same as that given on the first element card in the sequence;
b) Nonzero node numbers (given on Cards 2 and 3 for the first element) are incremented by the value "KG" (on the first element's Card 1) as element generation progresses; zero (or blank) node number entries are generated as zeroes
c) The last element cannot be generated.

The purpose of this section is to describe the procedure required for program restart following a successful step-by-step solution. The restart option has been included in the program in order to make it possible to continue a step-by-step solution at the point it was terminated in an earlier analysis. It may be noted that the restart option can conveniently be uced to continue a nonlinear analysis of a structure for different loading conditions, each to be specified individually in a run of job type (2) below.

An analysis utilizing the restart feature requires that the job be run in two steps:
$J O B(1)$: Step-by-step solution for NSTE time or load steps, after which program files TAPEA, TAPE7, TAPE8, and TAPE9 are saved on the restart tape.

JOB (2) : Reinstatement of program files [APEA, TAPE7, TAPE8, and TAPE9 fiom the restart tape followed by a continuation of the step-by-step solution using the MODEX.EQ. 2 option (see Section II, card 1).

In the first job, analysis for "NSTE" time or load steps was carried out. The final material properties of the nonlinear elements, displacements, velocities, etc., and all linear structure matrices are saved on the restait tape. The restart tape, together with the input defined in JOB (2), then contains all the information that is needed for the continuation of the analysis. More than one second j jo (JOB(2) may be run using the restart tape as initial input. Also, TAPEA, TAPE7, TAPE8 and TAPE9 can be saved at the end of $\mathrm{JOB}(2)$ for subsequent restart.

APPENDIX B. MEMBRANE ETEMERTI FORMUIATION

The following is a synopsis of the mathematical formulation used for the 4 -to 8 -node membrane element. Latin subscripts refer to a threedimensional Cartesian space and Greek subscripts refer to a two-dimensional membrane space. Repeated subscripts within a term are summed unless otherwise noted.

Following Chapter 5 of Reference 28, q_{1} and g_{2} are nonunit covariant base vectors tangent to the nonorthogonal curvilinear (isoparametric) coordinates of the unstrained membrane. For small strains, the strain tensor is given by

$$
\begin{equation*}
\gamma_{\alpha \beta}=\frac{1}{2}\left({\underset{\sim}{\alpha}}_{\alpha} \cdot \underset{\sim}{v}, \beta+{\underset{\sim}{g}}_{\beta} \cdot{\underset{\sim}{v}}_{\alpha}^{v}\right), \tag{B.1}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{\alpha}=x_{\ell, \alpha}{\underset{\sim}{\ell}} \tag{B.2}\\
& \underset{\sim}{v}{ }_{\beta}=v_{\ell, B} e_{\ell} \\
& x_{\ell}=\text { Cartesian coordinates } \\
& v_{\ell}=\text { Cartesian displacements } \\
& {\underset{\sim}{e}}=\text { Cartesian unit vectors. }
\end{align*}
$$

The partial derivatives in B. 2 and B. 3 can he expressed in terms of clement nodal coordinates and nordal displacements by use of iosparametric shape functions

$$
\begin{align*}
x_{l, \alpha} & =\sum_{n=1}^{N} H_{n, \alpha} x_{n \ell} \\
v_{l, \beta} & =\sum_{n=1}^{N} H_{n, \beta} v_{n \ell}, \tag{B.5}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{H}_{n}=\text { shape function for node } n \\
& \mathrm{x}_{n \ell}=\text { coordinates of node } n \\
& \mathrm{v}_{\mathrm{nl}}=\text { displacements of nome } n .
\end{aligned}
$$

Equations B.? through B. 5 may be combined to express membrane strains as a function of norlal displacements in the form

$$
\left\{\begin{array}{c}
r_{11} \\
r_{22} \\
r_{12}
\end{array}\right\}=[b] \quad\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right\}_{N}
\end{array}\right.
$$

Metric coefficients used in coordinate transformations are expressed as

$$
\begin{equation*}
g_{\alpha \beta}=g_{\alpha} \cdot g_{2 \beta}, \tag{B.7}
\end{equation*}
$$

and a unit membrane surface area is transformer from Cartesian to membrane coordinates as
$d A=\left|{\underset{\sim}{1}}^{g_{1}} \times g_{2}\right|=\sqrt{g_{11} g_{22}-g_{12} g_{21}} d \xi d \zeta=\sqrt{g} d \xi d \zeta$.

Constitutive laws are formulated in a local Cartesian system or iented with respect to the membrane coordinates as shown in Figure B. 1. The $y_{1} y_{2}$ plane is coplanar with the ${\underset{\sim}{2}}_{1}-g_{2}$ plane. Transformations of stresses, strains, and the constitutive matrix between the local Cartesian plane and membrane coordinates are taken from chapter 1 of Reference 29. Letting

$$
\begin{aligned}
& \left\{\sigma^{\top}\right\}=\left(\sigma_{11^{\prime}} \sigma_{22^{\prime}} \sigma_{12}\right) \\
& \left\{\varepsilon^{\top}\right\}=\left(\varepsilon_{11^{\prime}} \varepsilon_{22^{\prime}} \varepsilon_{12}\right)
\end{aligned}
$$

and the subscripts c and m refer to local Cartesian and membrane coordinates, respectively, then

$$
\begin{align*}
& \left\{\sigma_{c}\right\}=[B]_{\left\{\sigma_{m}\right\}} \\
& \left\{\varepsilon_{c}\right\}=[A]\left\{\varepsilon_{m}\right\} \tag{Br}\\
& \left\{\sigma_{m}\right\}=\left[A^{\top}\right]\left\{\sigma_{c}\right\} \\
& \left\{\varepsilon_{m}\right\}=[B]\left\{\varepsilon_{c}\right\} \\
& {[C]_{m}=\left[A^{\top}\right][C]_{c}[A],}
\end{align*}
$$

where [C] is the constitutive matrix. The transformations in equations B. 9 are

$$
\left.\begin{array}{l}
{[A]=\left[\begin{array}{ccc}
\left(d_{1}^{1} d_{1}^{1}\right) & \left(d_{1}^{2} d_{1}^{2}\right) & \left(d_{1}^{1} d_{1}^{2}\right) \\
\left(d_{2}^{1} d_{2}^{1}\right) & \left(d_{2}^{2} d_{2}^{2}\right) & \left(d_{2}^{1} d_{2}^{2}\right) \\
2\left(d_{1}^{1} d_{2}^{1}\right) & 2\left(d_{1}^{2} d_{2}^{2}\right) & \left(d_{1}^{1} d_{2}^{2}+d_{2}^{1} d_{1}^{2}\right)
\end{array}\right],} \\
{[B]=\left[\begin{array}{lll}
\left(c_{1}^{1} c_{1}^{1}\right) & \left(c_{1}^{2} c_{1}^{2}\right) & \left(c_{1}^{1} c_{1}^{2}\right) \\
\left(c_{2}^{1} c_{2}^{1}\right) & \left(c_{2}^{2} c_{2}^{2}\right) & \left(c_{2}^{1} c_{2}^{2}\right) \\
2\left(c_{1}^{1} c_{2}^{1}\right) & 2\left(c_{1}^{2} c_{2}^{2}\right) & \left(c_{1}^{1} c_{2}^{2}+c_{2}^{1} c_{1}^{2}\right)
\end{array}\right],} \tag{B.11}
\end{array}\right],
$$

$$
\left[\begin{array}{ll}
d_{1}^{1} & d_{1}^{2} \tag{B.12}\\
d_{2}^{1} & d_{2}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\left(\frac{\cos \theta}{\sqrt{911}}-\frac{g_{12} \sin \theta}{\sqrt{9} g_{11}}\right) & \left(\sqrt{\frac{g_{11}}{g}} \sin \theta\right) \\
-\left(\frac{g_{12} \cos \theta}{\sqrt{9} g_{11}}+\frac{\sin \theta}{\sqrt{911}}\right)\left(\sqrt{\frac{g_{11}}{9}} \cos \theta\right)
\end{array}\right] \text {, and }
$$

$$
\left[\begin{array}{ll}
c_{1}^{1} & c_{1}^{2} \tag{B,13}\\
c_{1}^{1} & c_{2}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\left(\sqrt{g_{11}}\right. & \cos \theta)
\end{array}\right]-\left(\sqrt{g_{11}} \sin \theta\right) .
$$

The stiffness of an individual element is

$$
\begin{equation*}
\left.[S]=\int_{-1}^{+1} \int_{-1}^{+1}([A][b])^{\top}[C]\right]_{C}([A][b]) \sqrt{9} \text { dids. } \tag{B.14}
\end{equation*}
$$

Membrane stresses $T^{\alpha \beta}$ and membrane strains $\gamma_{\alpha \beta}$ are transformer to physical components following the ievelopment in Chapter 5 of Reference 28. For small strains, extensions along the membrane coordinate curves are

$$
\begin{equation*}
e_{\alpha}=\gamma_{\alpha \alpha} / g_{\alpha \alpha}, \quad(\alpha \text { not summed }) \tag{B.15}
\end{equation*}
$$

and the angle change (engineering shear strain) between nonorthogonal coordinate curves is

$$
\begin{equation*}
\phi_{\alpha \beta}=\frac{2 \gamma_{\alpha \beta}-g_{\alpha \beta}\left[\gamma_{\alpha \alpha} / g_{\alpha \alpha}+\gamma_{B B} / g_{B B}\right]}{\sqrt{g}}(\alpha \neq \beta) \text {. } \tag{B.16}
\end{equation*}
$$

Physical stress components are

$$
\begin{equation*}
\sigma_{\alpha \beta}=\sqrt{g_{\beta \beta} / g^{\alpha \alpha}} \quad T^{\alpha \beta} \text {, (no sums) } \tag{B.17}
\end{equation*}
$$

where

$$
\begin{equation*}
g^{\alpha \alpha}=\text { cofactors of } \operatorname{det}\left(g_{\alpha \beta}\right) / g \tag{B.18}
\end{equation*}
$$

Fig. B.1. Orientation of local Cartesian plane.

APPENDIX C - RETATED CODES

This appendix contains brief descriptions of the INGEN mesn generating code and the MOVIE.LASL graphics code and shows how these codes can be used with the NONSAP-C code.

INGEN is a general-purpose mesh gencrator for two- and threedimensional finite element codes. Thu basic parts of the coce are surface and three-dimensional region generators that use linear blending interpolation formulae. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, at.3 develop displacement and traction boundary conditions. The INGEN code is available from the Argonne code center.

MOVIE.LASL is an interactive FORIRAN program for displa.' and animation, both of finite element models and of results of their analysis. The user may manipulate the model (rotate, t'anslate, zoom, etc.) specify colors for the backgroural and the different element groups, and select various display devices. Both line arawings and continuous-tone color images can be produced. Single frames or animated movie sequences are also available and can be displayed on any of the output devices. All data to be displayed must exist in the form of nocial values. The program runs on the LOS Alamos Scientific Laboratory LTSS operating system and contains much installation-dependent coding.

Figure C.1 shows the relationship of the cocies INGEN, NONSAP-C, and MOVIE-LASL. Linkages shown as solid lines exist, whereas those shown in clashed lines do not.

Fig. C.1. क US oovennmer phro ing uffice 1978-671-013/76

