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ABSTRACT

The effects of air blast from high explosives detonation on selected

power plant structures and components are investigated analytically. Relying

on a synthesis of state of the art methods estimates of structural response

are obtained. Similarly blast loadings are determined from compilations of

experimental data reported in the literature.

Plastic-yield line analysia is employed to determine the response of

both concrete and steel flat walls (plates) under impulsive loading. Linear

elastic theory is used to investigate the spalling of concrete walls and mode

analysis methods predict the deficction of piping.

The specific problems considered are: the gross deformation of reinforced

concrete shield and containment structures due to blast impulse, the spalling

of concrete wallo, the interaction or impact of concrete debris with steel

containments and liners, and the response of exposed piping to blast impulse.

It is found that for sufficiently close-in detonations and/or large explosive

charge weights severe damage or destruction will result. This is particularly

true for structures or components directly exposed to blast impulse.
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PREFACE

This report summarizes the results of an investigation conducted by

Argonne National Laboratory (ANL) for the U.S. Nuclear Regulatory Commission

(NRC) Office of Standards Development. The work was perf ormed under a

Standard Order for DOE Work (FIN No. A20057) with Dr. J. F. Costello, NRC

serving as project monitor. His helpful suggestions and reviews are great-

fully acknowledged. In addition to the report authors personnel who con-

tributed materially to the project effort are: Dr. B. J. Hsieh, ANL and

Professor P. S. Symonds, Brown University. The latter was responsible for

the development of the pipe response analysis presented in the Appendix.

C. A. Kot, Mechanical Engineer
Components Technology Division
Argonne National Laboratory
October 1978
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EFFECTS OF AIR BLAST ON POWER PLANT STRUCTURES AND COMP 0NENTS

1. INTRODUCTION AND PROBLEM DESCRIPTION

The purpose of the effort, described in this report, is to investigate

the effects of high explosive detonations on structures and components found

typically in nuclear power plants. The specific interest lies in close-in

detonations (1 to 100 feet from the structure) of explosive quantities which

can reasonably be transported on site by motor vehicle (50 to 20,000 lb).

The phenomena associated with such explosions are very complex and in general

involve multiple loading effects, i.e. air blast, ground shock and direct

shock in the case of near contact placement of the explosive. The current

effort is limited to obtaining "first cut" estimates of the response to

explosions and represents a synthesis of existing data, methods and procedures

rather than an attempt at new research. Also attention is restricted ex-

clusively to the effects of air blast on structures, this being the primary

loading mechanism from explosive detonation.

Past ef forts concerned with the ef fects of air blast on structures focus

their attention primarily on the low and moderate overpressure range. It is

usually assumed that the dimensions of the blast wave are large relative to

those of the structure and that the shock wave is plane [1]. While such

treatments are appropriate for very large explosions, such as those resulting

from nuclear events, they are not suitable in the current application where

the dimensions of the blast wave field and structure are of the same order

of magnitude. The blast loadin;; in this case is of ten very local and the

variation of blast wave strength in its interaction with the structure must

be accounted for. Also, blast wave durations may be shorter than the

structure's clearing times, thus limiting the loads to one side of the st ructure.

Past work for such blast loading has been limited to developing design

procedures for explosive storage and manufacturing facilities [2]. The major

. _ . - _ - - _ _ _ _ _
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emphasis in these procedures is to determine the overall response of heavily

reinforced concrete walls to the impulse load generated by the explosion.

Loading on the wall face is assumed to be uniform. Whil e these procedures

are applicable to the problem under consideration, modifications must be

introduced to account for the nonuniformity of loading which is important

for the case of large structures and/or close-in explosions.

In addition to the containment or shield structures much of the nuclear

power plant equipment is susceptible to air blast damage. The inherent redun-

dancies and safety features, which help to minimize the hazards posed by air

blast damage, as well as the physical plant layout may vary from installation

to installation. It is not the objective of this study to investigate the

vulnerability of specific power plants. Therefore, all analysis effort is

concentrated on a few items which are not plant specific and whose failure or

severe damage may by itself constitute a significant hazard. Specifically

the study is limited to estimating the response of containment and shield

structures as well as of piping runs outside of containment, such as main

feedwater and steam lines. Bot h reinf orced concrete and steel containment

structures are considered.

A major simplification in the structural response analysis arises from

the fact, that the loadings in most cases can be considered as impulsive,

and that the details of pressure-time histories are of little consequence.

The reason for this is that in general the structural response times are

significantly larger than the blast wave durations, the latter being of the

order of one millisecond. Thus primary emphasis is placed on gross structural

response produced by the total impulse over the loaded area.

One exception are explosions close-in to concrete structures, where

a direct strong shock wave is also transuitted into the wall due to the

. _- - _ _ _ _ _ _ _ _ _ _ _ _ _ _
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reflection of the air shock at the surface. Wall damage may result in the

form of spallation on the inner wall surface, when the shock wave reflects

as a strong tension wave. This early time effect, produced by shock reflec-

tion, is strongly dependent on the blast wave pressure-time history and may

lead to the formation of high velocity debris. Due to their high tensile

strength steel structures loaded by air blast are not susceptible to

spalling. The motien and deflection of concrete walb produced by the total

blast impulse will continue long after the blast load ceases and can lead to

a secondary spallation called scabbing [2), which is caused by shear and

bending. This tends to separate the layer of concrete which covers the back

face reinforcement. Again, this type of damage coes not occur in steel

structures, which will most likely fail due to the formation of plastic hinges.

The same failure mechanism is expected for reinforced concrete walls. In

fact the most severe damage of concrete valls occurs when the wall deflections
!

| are sufficiently larg_ to cause substantial plastic deformation of the re-

inforcement. Ultimately complete wall destruction by shear plug separation

or fragmentation of the loaded area may occur.

Steel containments are always surrounded by concrete shield structures.

Therefore, they do not experience direct air blast loading, but they may

suf fer damage due to impact of concrete debris formed by spalling or

disintegration of the concrete shield walls. Again the loading in such

cases is primarily impulsive. For piping outside of containment the shock

diffraction phase is of the same order of magnitude as the total duration of

the blast wave. Thus no significant drag loading phase exists and the ap-

proximation of an impulsive load is again in general applicable.

Contact placement of the explosive and the use of special shaped charges

is not considered in the current study. While the employment of these

I
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techniques may result in the severest local structural damage, it is not j

possible to calculate damage estimates for these cases by means of simple

analytical procedures. On the other hand, fairly reliable damage estimates

may be obtained from experimental data contained in the demolition litera-

ture {3,4). Since a precise definition of contact placement cannot be made,
e

the closest charge placement here is arbitrarily limited to a scaled dis-

tance of 0.2 ft/lbm or approximately 1.5 charge radii. While this distance

is well within the fireball (6 charge radii) of the explosion, the peak

reflected pressure at a wall (%68,000 psi) is still sufficiently modecate

so that direct interaction and impedance matching of explosive to wall material

may be neglected. Attention is restricted to the effects of bulk explosives

and the analysis is simplified by assuming that the explosive charge is of

spherical shape. The pressure loading of the wall is assumed to be that of

a rigid surface. Thus structural motion or deformation does not alter the

loading. In light of the impedance mismatch, between air and structural

materials, and the shortness of a typical pressure loading this is a reasonable

assumption.

In the current study response data are obtained for reinforced concrete

walls and pipes subjected to air blast from close-lu explosive detonations.

Further the behavior of steel walls impacted by concrete debris is analyzed

and the deformation of steel liners, attached to the inner side of concrete

structures, under the action of loose concrete debris is estimated. Methods

for calculating the spalling of concrete walls as well as for their deformation

under impulsive blast loading have been presented earlier [5]. These techniques

are summarized here (Sections 3 and 4) and representative results are given.

Section 5 contains an outline of methods and typical results for the deforma-

tion of steel walls and liners under the action of concrete debris. Pipe

- - - .
.
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response under air blast loading is discussed in Section 6 and the details

of the analysis method are presented in Appendix A. The estimation of air

blast parameters and loads is discussed in Section 2.

Where possible, the results are scaled as a function of the explosive

charge weight (energy). Even where scaling is not applicable all data is

presented in terms of the scaled charge standoff distance. The response

estimates are based on simplified engineering analysis and in genaral reduce

to a few simple algebraic expressions. It is not practical in the limited

space of a report, to present sufficient response information to covar all

situations of interest to nuclear power plant applications. Therefore, an

attempt is made to provide sufficient blast loading information, which is

usually more scalable or can be presented in a more compact form, so that

any case of interest is readily computable by using the simple response

formulas.

,

,
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2. AIR BLAST LOADING

The spherical air blast wave generated by an explosion undergoes a

complex reflection and defraction process upon encountering a structure.

The resulting local structural loading is time varying and depends on the

blast wave peak pressure, its decay history, duration, and the angle of

shock wave incidence. Tl'e blast wave structure interaction is best illus-

trated by the example of a flat wall. As chown in Fig. I when the spherical

blast sweeps across the structure an ever increasing circular section of the

wall becomes loaded. For a given explosive charge the local loading at any

given circle of radius x is a function of the standof f y and the angle of

incidence c. The detailed local interaction between the blast wave and

the wall is illustrated in Fig. 2 at two different instances of time. In

the first instant, blast wave reflection is still regular having a small

angle of incidence while at the later time Mach reflection is indicated

forming the familiar three shock configuration. This occurs at large angles

of incidence (approximately angles larger than 40 ) . Also indicated in the

figure are the shock waves induced in the wall by blast wave reflection

and the stress waves resulting from their reflection at the back face of the

wall.

Due to the complexity of the blast wave interaction with the wall, no

'

analytical description of the blast loading is possible. Therefore, loading

definition is obtained from experimental data systematized in the form of

graphs and charts and collected over many years, primarily for defense

applications. In the current work, Army Technical Manual TM5-1300 {2] is

primarily used. Some inconsistencies exist in the data of this document;

however, the information presented is reasonably complete. Where necessary,

the data has been supplemented with information from other sources [6).

l

-- _ _ _ _ _ _ _ _ _
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The basic variables of interest to blast loading of structures are
shown in Fig. 3. These are taken from Figure 4-5 of TM5-1300 [2] and are

!given as a function of scaled distance z = r/W , where r is the distance

from the center of the explosive charge to the point of interest on the

structure and W is the TNT equivalent charge weight. The curve labeled

p is the peak incident shock pressure and i repres nts the scaled positives
s

impulse of the incident blast wave. The p and i curves are respectivelyr r

the peak reflected pressure and the scaled positive reflected impulse for

a normal blast wave incidence on the structure, i.e. a = 0 (see Fig. 1).

It should be noted that quantities refe red to here are scaled but not

nondimensionalized, hence the following units must be used : lb for charge
weight, ft/lb for scaled distance, psi for pressures and psi-s/lb ! for

impulses.

The maximum pressure experienced by a rigid surface that is in the path

of the blast wave is the peak reflected pressure denoted by p This is.

dependent on the angle of incidence, a, which is the angle between the di-

rection toward the center of the explosion and the direction of the normal

to the surface of the wall, and on the value of the incident pressure p at
g

the point under consideration. The reflected pressure p is given by the

relationship

p P (ra ra s

where C (a,p ) is the experimentally determined reflection or amplificationg

factor which is presented graphically in Fig. 4. The values shown are a

synthesis of data given in TM5-1300 [2] and more recent data obtained by

Carpenter and Brode [6]. The latter information is primarily used for values
of a over 40". At large distances and nearly glancing incidence, i.e. a close

to 90*, the explosion in the vicinity of a large structure takes on the

- _ _-_-_-____________ -
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characteristics of a surface burst. This fact was employed to construct the

curves of Fig. 4 at large angles of incidence. While the ratio of pressures

(surface burst to free air burst at the same scaled distance) appears to be

variable [2] the selected value of an amplification factor of 1.5 at 90

represents a reasonable average. The variation of p across the surface of

a structure can thus be obtained from Eq. (1) using the information of Figs.

3 a nd 4.

With p determined, Fig. 3 is reentered to find a fictitious value of

the scaled distance z from the reflected pressure (p ) curve. Using this z

value the corresponding scaled positive reflected impulse i is found from

the i curve. This one to one correspondence between p and i postulated
r ra ru

in TM5-1300 [2] is accepted for the purposes of this study even though it leads

t <_ some inconsistencies, eg, impulses which are not compatibic with the peak

pressure and the positive phase duration. The assumption appears to be suff1-

ciently good f or scaled distances below z = 1, where the most severe loading

occurs.

The total positive reflected impulse IT, delivered to any section of

a structure, is computed by integrating the local values of impulse i over

the area of interest. For flat walls this is a simple procedure however

when structural surfaces are curved then a complex numerical procedure is

required to obtain the total impulse. Results of the total impulse loading

for specific configurations are presented in the following sections dealing

with the structural response. In all of these computations the differences

in timing of the impulsive load at various positions on the structure are

ignored. This is just ified since bot h arrival time dif ferences and blast

wave durations are substantially shorter, of the order of one millisecond,

than the structural response times. Thus for all structural calculations it

is assumed that the impulse is applied instantaneously over the entire section

of interest. This should in general give conservative results.
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As pointed out elsewhere [5] the spalling of concrete walls is strongly

dependent on the wave form (pressure-time history) of the reflected blast

wave. Of interest are reflections in the high pressure region, where little

information is available concerning the wave form shape. In general the

pressure decay is exponential, however recent experiments [6] indicate that

the wave forms are more complex, particularly in the Mach-stem reflection

region where two pressure peaks have been observed. To obtain computational

estimates of spalling a simple analytical description of the wave forms,

which was originally derived to describe nuclear explosions in air [7], is

employed. The expressicn was found to be in reasonably good agreement with

wave forms predicted by detailed numerical computations for a TNT explosion [81

The equation takes the form of a trip _a exponential, which relates the time

dependent pressure p to the peak blast wave pressure p and the dimensionless
g

positive phase duration T = t/t,, where t is time measured from shock arrival

and L is the positive phase duration of the pressure,

p(T) = ps (1 - T) ( ae + be~ * + c e ~U ) (2)

The coefficients (a,b,c) and the exponents (a,8,y) are functions of p .
g

Values of these parameters were obtained from Fig. 24 of Reference [7]. Of

interest to spall calculations is the wave form of the reflected pressure.

Consistent with the assumptions for impulse loading made earlier, it is

assumed that the duration of the reflected wave is equal to that of the

incident wave and that the decay of both waves is similar. Hence, the para-

meters corresponding to the incident peak overpressure also describe the

reflected wave.

While equation (2) is simple and could be used when numerical spalling

calculations are carried out, it is not possible to obtain analytical spall
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solutions with this wave form. To generate such analytical estimates the

decaying pressure wave is locally approximated by a simple power law

p(T) = p (1 - tT). (3)
g

The exponent y is a function of peak pressure p and varies also along thes

pressure decay, i.e. it depends on the ratio p/p . Values of y are cal-
g

culated by matching, for each peak pressure p , the pressures p obtained fromg

equation (3) with those from equation (2). Fig. 5 is a graphical presenta-

tion of the values of y thus obtained.

1

1

- -_ _ _ _ _ _ _ _ _ _ _ _ _ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _
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3. CONCRETE WALL RESPONSE TO AlR BLAST IMPULSE

Both flat and curved concrete walls are encountered in shield and

containment structures of nuclear power plants. Their dimensions are of the

order of 50 to 100 f t with radii of curvature having similar magnitudes.

Therefore blast loadings for all charge weights considered here will be

localized. In a "first cut" response analysis it is then conservative to

assume that the walls are flat and uniform extending sufficiently far in all

directions so that boundaries may be neglected. Since the reflected pressures

experienced by the structures are in general very high (>1000 psi) both the

clastic part of the response and the shear resistance of the loaded wall

sections are not significant [5]. It is also assumed that enough structural

ductility exists to sustain large displacements under a constant ultimate

load. Both prestressed or conventionally reinforced concrete walls are

considered.

The structural analysis of the effects of the explosion consists of two

phases: first, computation of the blast loading, according to the procedures

outlined in Section 2, and second, evaluation of the wall resistance. In the

first phase it is assumed that the wall provides no material strength to resist

the impulse associated with the applied blast load. The only resistance

available is provided by the inertia of the mass of the wall. the present

approach, given the total impulse and the total mass, a single velocity

imparted to the entire wall segment under consideration is computed. During

the resistance phase the ultinate load carrying capacity of the reinforced

concrete structure is developed to provide a decelerating force which brings

the wall back to rest. The total wall deflection or its rotation can then

be compar. with damage criteria. The latter rny be either some maximum

permissible material deformation or an emperical limit, which if exceeded is

known to result in severe structural damage.
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3.1 1.0ADING PHASE

The procedure for obtaining the local scaled impulse per unit area

*
i at any point of the wall was outlined in Section 2. Given a charge weight

W these values may be converted to actual impulses per unit area, i.e. 5

I =W i (4)
ra ra

Integration of the local impulses over the loaded area results in the total

impulse. In the case of a flat wall the total impulse I is easily computable.
T

x
I(x,y) 2nx dx (5)I =

T
'O

1
'

liere the notation of Fig. 1 has been used. The local impulse values I(x,y)

are given as functions of the standof f distance y and the radial coordinate x. -

Each 1(x,y) is obviously equivalent to the corresponding I Since no.

analytical expressions exist for the local impulse the integration is carried

out numerically. It should be noted that all the variables on the right

hand side of Eq. (5) are scalable, hence the total impulse can also be scaled.

1/3 1/3
x/W and z = y/W one can writeIntroducing z =

X o

*z
f1, = I /W " 2" i(*'* ) z dz (6) ,

7 T o
'O

,

where i is the scaled total 1:apulse over the circle with scaled radius z.
T

at a scaled standoff distance of z and z is the integration variable (scaled -

o

radius) along the wall. A graphical presentation of the relationship between

i and z for various values of z is given in Fig. 6. This data is universal
T g

and can be used to evaluate the impulse over any circular area on a flat wall.

During the loa ing phase it is assumed that the only resistance offered

to motion is by the inertia of the loaded wall segment. The velocity attained
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by the wall segment is then simply

I

v=-[ (7)

Here M is the mass of the circular wall segment given as

2 2/3 2M=mnx =mnW z (8)x

where m is the mass per unit area of the wall. Since the mass, for a given

wall, is proportional to the square of the radius x it will scale with W~/39
.

This is indicated by the second equality in Eq. (8). The total impulse

scales directly with the charge weight W (see Eq. (6)), hence based on Eq. (7)

the velocity of an impulsively loaded wall segment will scale with the cube

root of the charge weight. This scaled velocity is wall specific because

of its dependence on m the mass per unit area. However, it is possible to

construct a general velocity variable, u, which includes the parameter m,

as follows:

rz
"

3 2 (*'*o) z dz (9)u= =

W z <ox

Again this variabic is only a function of the scaled standoff z and the scaled
g

radius of the wall segment z Fig. 7 represents the velocity variable as.

,

a function of the scaled standoff z for various wall response limits. As
g

will be seen in later sections of this report these curves do not correspond

to any fixed values of scaled radial distance z Rather z varies with the.

x

standoff distance, e.g. for the velocity at the spall limit curve z =z
x o

(a = 45 deg.).

3.2 WALL RESPONSE AND RESISTANCE

An implied assumption in separating the wall response from the

loading phase is that the motion of the wall does not affect the magnitude

.. _ _ _ _ _ _ _ _ _
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of the blast loading. This aesumption is justified because the duration of

the impulse is short relative to the response time of the structure. Any

motion of the structure during the blast loading period is therefore minimal.

Similarily the assumption of no structural resistance during loading is

acceptable because for most cases the shear stresses resulting from the

application of the pressure forces substantially exceed the shear strength

of the concrete [5).

Several mechanisms can be postulated to compute deflections of wall

segments due to the impulse of the blast. Ultimate strength analysis, which

is commonly used for the design of reinf orced concrete structures, was f ound to

be most appropriate for the current application [5]. This analysis assumes

plastic yielding under a constant resistance force F and completely neglectsg

the elastic strength of the material. The deflection of the wall 6 can be

computed from the kinetic energy of the loaded wall segment, of mass M, and

initial velocity v imparted by the blast impulse.

2

6 = "" (10)2F
R

Due to the restraining effect of the inertia of the entire wall surrounding

the loaded wall segment a circular yield line pattern, similar to that of a

~'
clamped circular plate, is expected to form. The uncertainties in the cir-

cumferential support conditions of the loaded wall segment, which is neither

clamped or simply supported, and in the load distribution make an estimate

of the ultimate load capacity F dif fic ul t . Consideration of all the factorsR

[5] Icad to the following simple compromise expression

F = 10 M . (11)g

Here M is the ultimate moment assuming that the wall is equally reinforced ong

both faces, or the average ultimate moment if the reinforcements, are dif f erent .
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For conventionally reinforced concrete walls the ultimate moment is [9]

1
M =A fs (d 2 ) (12)ao s

where A is the reinforcement steel cross-sectional area per unit width
s

(height) of wall, f is the steel yield strength, d is the cffcctive depthg

of reinforcement from the loaded face of the wall, and a is the concrete

compression block depth. The latter can be evaluated by equating the com-

pression force in the concrete to the tension force of the reinforcement

at yielding. The compression is assumed to act over an equivalent block of

uniform stress [9], of intensity 0.85 f , where f is the concrete compression

strength. Hence one obtains

A f
* *

(13)a = 0. 85 f
c

When spalling or scabbing of the concrete covering the reinforcement is ex-

pected, the expression for the ultimate moment is modified [2]

M =A f d (14)o s s c

where d is the distance between the centerlines of the front and backfacee

reinforcement. For prestressed concrete walls the computation of the ultimate

moment M is considerably more complicated. It must be based on the fullg

plastic strength of the prestressing tendons and their location in the wall

cross-section. An average value of M for horizontal and vertical directions
g

as well as different bending directions is determined and used to compute the

ultimate load capacity F,.
h

Eq. (10) can be rewritten in terms of the total impulse I and the
T

ultimate moment M .
o ,

I"
T

6 = 20 M M (15 ''
o

_ ___ _ _ _ _ _ _ _ _ _ _ _ _ ___
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The rate of increase of total impulse with radial distance along the wall

varies significantly, being very high for very small radii and diminishing

as the radius increases (see Fig. 6). On the other hand the mass of the

circular wall segnent increases as the square of the radius. Therefore based

on Eq. (15) one may expect a maximum displacement 6 to exist. Since no

analytical expression for 6 in terms of radius exists the maximum is found

numerically by evaluating the expression over circles with ever increasing

radii until the critical value is located. To be conservative in the wall

deficction estimates it is this maximum value of 6 which is used.

It is readily noted from either Eq. (10) or (15) that the deflection 6

is a scalable quantity. Since the impulse is proportional to the charge

! !weight W and the mass scales as W one finds that 6 scales as W Again.

to eliminate the dependence on specific wall parameters a universal wall

deficction variable may be constructed which represents the maximum deflection

as a function of the scaled standoff distance only, i.e.

6mM
A= (16)4j3

The resulting curve is shown in Fig. 8. It can be used to estimate the

maximum deflection for any specific wall (parameters m and M ) under the action
g

of an impulsive blast loading resulting from an explosion of charge weight

W, detonated at any arbitrary standof f distance y. The velocity of the wall
4

segment corresponding to this maximum defAcetion is shown in Fig. 7. The

particular shape of this curve results from the fact that for close-in ex-

plosions the maximum deflection occurs when the plastic hinge radius x (radius
'

of loaded segment) is approximately one and one half times the standoff

dietance y, i.e. x/y = 1.5, while for larger standoff distances the ratio is

x/y = 3.7. A sharp transition occurs between these two regimes around a
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l/3scaled standoff distance z = 1 ft/lb ,

o

Another measure of wall damage is the rotation or angular deflection

the wall experiences at the plastic hinge radius. For the circular yield

pattern assumed here the tangent of this rotation angle 0 is simply the

ratio of wall deflection to the radius of the plastic hinge circle, i.e.

tano = b (17)x

Again a maximum rotation exists for each charge standoff distance which

must be found by numerical means, i.e. by integrating over increasing circles.

The maximum rotation angle O does not coincide with the maximum of the

deflection 6. In general it has been found that the maximum 0 occurs before

(at smaller hinge radii than) the maximum 6. For the range of scaled stand-

of f distances from 0.2 to 3.0 the ratio of hinge radius to standoff x/y, at

maximum O, varies from 0.75 to 1.10. To be on the conservative side the
a

maximum value of 0 will be used to indicate wall damage rather than the value

corresponding to the maximum deflection.

From Eq. (17) it is obvious that tanO is a scalable quantity. The

4/3 l/3deficction 6 scales as W and the radius x scales as W , therefore tan 0

is directly proportional to the charge weight W. Again a universal wall

rotatian variable, which contains the wall specific parameters, can be con-

structed.

M m tan 0
0= =1 (18)W zx

The relationship between the scaled wall rotation variable of Eq. (18) and

the scaled standoff distance is shown in Fig. 9 while the wall velocity

corresponding to the same loading is given in Fig. 7. It should be noted

that the scaling pertains only to the function tano and not to the angle 0

- _ _ _ _ _ . __
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itself. The reason for this is, that only tano can be directly expressed in
1

( terms of scaled quantities and that the relationship between 0 and the trig-

|
| onometric function is neither linear nor a simple power law depedence. Never-

|
| theless the information of Fig. 9 can be readily employed to estimate the

maximum rotation at the hinge line for any reinforced concrete wall under

impulsive blast loading.

By virtue of the assumption that the clastic response can be neg1ceted,

the application of the procedure outlined above must be restricted to loadings

which indeed produce large plastic deformations. The upper limit of applica-

bility will be dictated by the failure or rupture strains of the reinforcement

steel. For the circular yield patterns assumed here the relationship between

strain c and the hinge rotation 0 can be approximately stated as

I

coso = 3 , (19)

Thus for example if the rupture strain of the reinforcement is c = 0.10

then the computational results may be applied to rotation angles up to 25 .

Both very small charges as well as extremely large charge weights should

not be treated by the analysis. For small charges there will be no gross

plastic deformation of the wall. For very large charges, particularly at

large standoff distances, the assumption of local loading and deformation of

a single wall becomes invalid. While no precise limits on charge weight can

be established, it appears that applicability of the wall response calculations

should be approximately restric ted to the range of 50 - 20,000 lb of TNT.

3.3 EXAMPLES OF WALL RESPONSE COMPUTATIONS

The methods and procedures outlined above are applied to two

typical walls in order to estimate their maximum deflections and rotations

under the action of explosive charge detonation. The examples also illustrate

s

- - - -_ _ _ _ _ _
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the procedures which may be employed to establish acceptable limits on
|

either charge weight or standoff distance, based on selected damage criteria.

Since the computations for the two example walls have been detailed else-

where [5], only a summary of their physical and geometrical descriptions

is presented below:

a - Conventional Reinforced Concrete Wall

Wall thickness h = 30 in.

Concrete Compression strength f = 4,500 psi

Steel yield strength f = 60,000 psi
g

Reinforcement in each face A = 1.5 in /ft
s

and in each direction

Effective depth of reinforcement d = 27 in.

6Ultimate moment (Eq. (12) and (13)) M = 0.195 x 10 ft-lb/ft
o

6
Ultimate load capacity (Eq. (11)) F = 1.95 x 10 lb

b - Prestressed Concrete Wall

Wall thickness h = 42 in.

Concrete compression strength f = 4500 psi

Conventional steel yield strength f = 60,000 psi
g

Tendon yield strength f = 240,000 psi

6
Plastic strength of each tendon, T = 2.0 x 10 lb

P

170-1/4" diameter strands

Tendon spacing - horizontal s = 27 in.g

vertical s, = 48 in.
z

Tendon location - horizontal l = 6 in., from outside faceg

vertical l = 21 in., at centerliney

Horizontal reinforcement-inside f ace A = 1.27 in /ftg

_-_____________.
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Effective depth d = 39 in.

Ultimate moment - vertical tendons M = 0.7 x 10 ft-lb/ftg
6

horizontal tendons M = 2.0 x 10 ft-lb/ftgg

horizontal M ' O 24 x 10 ft-lb/ft
reinforcement

6Average ultimate moment E - 0.9 x 10 ft-lb/ftg

6
Ultimate load capacity F = 9.0 x 10 ft-lb/ftR

The results for Wall Type-a and Wall Type-b are summarized in Fig. 10

and Fig. 11 respectively. Shown are iso-def1cetion curves and iso-rotation

curves as they depend on charge weight and standoff distance. The results

are for close-in deformations in the range of scaled standoff from 0.2 to

1.0 ft/lb If displacement of the wall is to be limited to a specific.

value, say 1 ft, then the charge weights that can be tolerated at any specific

standoff distance can be determined from the figures. Alternately given a

maximum charge weight the required standorf distance may be obtained again

for a specific deflection limit. The limits on displacement may be considered

as " functional" limits. The severity of the effects caused by a particular

deflection depends not only on wall type and thickness but also on the

structural dimensions. Thus, for the same deflection, a wall with a smal.1

span may suffor considerably more damage than a larger wall. On the other

hand rotation limits can be casier related to local structural damage since

they are based on maximum reinforced concrete ductility. Thus TM5-1300 [2]

recommends that rotation at a yield line, as defined by conventional ultimate

load analysis, be limited to 5* where structural integrity is to be maintained.

If large deformations and scabbing are to be allowed then TM5-1300 [2] recom-
1

mends a 12' limit on yield line rotation. The curves corresponding to these
,

two limits are shown in Figs. 10 and 11. It can be seen that the critical

__ _ _ - _ _ _ - _ _
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explosive charge weight, at any particular standoff distance, can casily

vary over an order of magnitude depending which limits or allowable damage

criteria are chosen. While fairly precise bounds exist for ultimate

strength design of concrete structures [9] under ordinary conditions and

static loadings no such criteria are available for the dynamic response of

air blast loaded structures. At best one can arrive at some criteria based

on the physical appearance of the structure at the end of the response

phase. This is the basis for the above mentioned rotation limits. Similarly

experimental evidence exist [2], that very severe wall damage, in the form

of scabbing and disintegration of the concrete, is to be expected when the

maximum deflections are as large as the wall thickness. In the absence of

more precise information the above criteria may serve as guides for the

setting of charge weight and standoff limits.

3.4 EFFECTS OF WALL CURVATURE

No simple techniques are availabic to estimate the structural

response of curved concrete walls subjected to explosive air blast loading.

For curved walls loaded on the convex side, as would be the case for nuclear

power plant containments, the flat wall estimates should provide conservative

answers. Here only the effect of wall curvature and of finite structural

size (finite radius) on the blast loading and impulse will be examined.

Subsequent response calculations are again carried out with the flat wall

approximations using however the impulses for the curved structure.

The interaction of a spherical blast wave with a cylindrical

utructure results in a tbree-dimensional geometry and flow field. As the

blast sweeps across the structure their line of intersection is distorted

from the circular ring shape of the flat plate to a complex three-dimensional

elliptic shape. An approximate numerical technique was developed to obtain

- - - _ _ _ _ _ _ _ _
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{
l

| the impulse on the structure acting in e direction normal to the axis of

the cylinder. The integration of impulse was performed in a grid network

consisting of circles and longitudinal strips parallel to the cylinder axis.

Again at each point the reflected impulse per unit area was determined by

the procedure outlined in Section 2. Since the blast wave spreads beyond

the width (diameter) of the cylinder appropriate cutoffs are introduced in

the integration procedure for the total impulse. Fig. 12 shows the total

impulse variation with scaled standoff distance over cylindrical structures

with five different radii. Also shown is the total impulse on a flat wall.

The length or height of the cylinder (wall) in all cases was the same 100 f t

and the charge weight was 1000 lb. It can be seen that for large diameter

structures the impulse differs little from the flat wall case. Due to the

sharp reduction of projected area the total impulse is significantly reduced

when the cylinder radius is small (5 ft).

Using the flat wall response analysis of section 3.2 but the impulses

as properly computed for a curved structure one obtains the deflections and

hinge line rotations shown respectively in Fig. 13 and Fig. 14. Again for

large radii there is little deviation from the flat wall results, however

for small cylinder radii the difference is substantial.

Based on these results it may be concluded, that the flat wall analysis

while somewhat conservative will give reasonable estimates of wall response

for typical nuclear power plant containment structures which in general have

cylinder radii on the order of ten's of feet. On the other hand for structures

with diameters of the order of a few feet, such as pipes, the flat wall

computation of impulses is a gross overestimate and the proper numerical

impulse evaluation should be used. An added benefit of using flat wall

ticulations for large diameter structures is that the results are scalabic.

.
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The introduction of an additional length scale, i.e. the diameter of the

1 structure, makes scaling of the impulse load on a cylinder impossible. There-

fore loads on small diameter structures must be computed individually, i.e.

for each charge weight and standoff.

I
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4. SpALLING OF CONCRETE WALLS

It was indicated earlier that spalling may occur on the back face of a

concrete wall which is subjected to air blast on its front phase. The

phenomenon of spall in brittic materials occurs when strong tension waves

are ref1ceted into the wall from the free surface at the back face and

interact with the decaying compression wave in such a way as to produce

locally tension stresses which exceed the dynamic tensile rupture strength

of the material. Since the process has been discussed at length elsewhere

[5,10,11,12] only a brief outline of the assumptions and calculation procedures

will be given here.

It is assumed that the wall material is linear-elastic and the spalling

occurs instantaneously whenever the dynamic tensile ruptures strength is
.

reached. The actual spherical wave interaction with the back face shown in

Fig. 2 is approximated by plane wave theory, using both normal and oblique

reflections, for which analytical solutions are possible.

To obtain the time history of the compression wave incident on the back

face of the wall, it is assumed that the wave form remains similar to that of

the air blast and that the peak pressure in the wall decays linearly with

distance through the wall. This is consistent with a linear-clastic material

behavior and constant wave speed as well as with the spherical divergence

of the pressure wave. llence for any angular position a (angle of incidence)

the value of the peak comprassion arriving at the back face of the wall p
u

is given in terms of the peak reflected pressure p at the front face as:
ra

r J-,p (20)p =p
a ra r + h/cosa ra y+h

.

flere r is the radial distance f rom the point of burst to the wall at angle a,

h is He wall thickness and y is the normal distance from the explosion point

- _ ______ _ _ _ _ _ .
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to the wall (y = r cosa). Once p is determined the decay of the compression
a

wave at the back face of the wall and angular position a is obtained by the

assumption of wave similarity. For analytical estimates of wall spallation

this pressure decay must be represented by a simple mathematical expression.

We assume that the power law of Eq. (3) locally approximates the pressure

decay with the variation of the exponent given in Fig. 5.

4.1 SPALL AT NORMAL INCIDENCE

The reflection of a plane compression wave from a free surface at

normal incidence is a one-dimensional problem as shown in Fig.15. Assuming

that the material is linearly elastic with constant wave speed, the condition

of a stress free boundary implies that a tension wave, equal in strength

and wave shape to that of the compression wave, is reflected back into the

wall as illustrated in Fig. 15 (a). The actual state of stress of any

location is then the algebraic sum of the two stress waves (compression and

tension). Whenever this net stress o at the head of the reflected tensileN

wave equals the dynamic tensile rupture strength c f the material, spallation
T

will occur as illustrated in Fig. 15 (b). Designating all stress values as

positive quantities, p for compression and a for tension, one can write for

the first spall

o l 1) = P - P ( }T"#N1 " -Eo
g 1 1*

Here the subscripts o refer to the peak initial value of stress in the wave

and p is the stress in the compression wave at the location of the firsty

spall. Considering the symmetry of the waves and the constant wave speed it

can be easily demonstrated that time ty, which corresponds to pressure p1

in the compression wave, is given by

26
1

(22)t *
,

1 c

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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where 6 is the thickness or depth of the first spall and c is the wave speed.

If the initial peak compression is much larger than the tensile rupture

strength and the wave form is decaying with time then it is possible to
T

obtain multiple spalls. In fact, the theoreticai number of spalis n is given

as
p

(23)ns .

T

Since a new free surface is generated every time a spall appears, the reasoning

applied to the first spall can be extended to all spalls. Thus, Eq. (21) can

be generalized for an arbitrary spall k as follows:

a ~#
T Nk " Ek-1 k-1 k k~E *

Here pk is the value of the compression wave when the k's spall occurs and

is the value corresponding to that for the preceding spall. Again con-pg

sidering wave symmetry and constant wave speed the time t along the wave form

corresponding to stress pk can be simply obtained .

2(6 +62 + ... + 6k-1 + 6 )k
(25)t =

k c

From the above it can be seen that the thickness of the spalls depend strongly

on the wave form of the compression wave.

The velocity of the spall layers for this simple one-dimensional case is

obtained by equating the momentum of the spall layer to the portion of the

impulse imparted to it by the compression wave and still trapped in it at the

time of spall. Expressing all quantities per unit area one can write for the

first spall

1 p(t)dt =p 6u (26)=

1 yy
'o

_ _ _ _ _ _ _ _ _ _ _
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a

where i is the trapped impulse, p the density of the wall material and u
l y

the velocity of the first spall layer. By simple analogy, the velocity u

for any arbitrary spall k can be obtained from:

't

p(t)dt = p 6 "k (27)i =
.

k
t

Again, the strong dependence of spall velocity on the form of the compression

wave can be readily discerned.

To derive specific expressions for spall thickness and velocity, the

wave form approximation given by Eq. (3) must now be employed. Substituting

into Eq. (21) and using Eq. (22) yields the following relationship for the

first spall depth

ct o 1/YT
6 (28)=

7
, .

p-
o

A general relationship is derived for the k-th spall by using Eqs. (24) and (25)

together with expression (3). After simplification one obtains

~(k - 1)o ~ 1/y et+et+i / koT)l/y _ T _] 31/y
-o

- (k - 1) /yY|6 k= | ,
,

p 2 p2 [ {pg j
_

g
_

| j9

(29)
The spall velocities obtain from the impulse expressions. Eq. (8) can

be integrated using (3). Substitution of Eqs. (22) and (28) and subsequent

simplification yields the velocity of the first spall

2p
~

~

o
1 (30)1-u = .

1 cp y+1 p
_ g .

The same procedure can be applied to any spall and after much simplification

one obtains for the velocity of the k-th spall

2p o
T 1o y

- k+ (31)1-=u
k cp y+1 p k 1/y _ .

g
-

k - 1)
-

- _ _ _ _ _ _ _
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It is interesting to note that the spall velocities do not depend explicitly

on the blast wave duration t and thus the explosive weight.

4.2 SPALL AT OBLIQUE INCIDENCE

Rhen a plane compression wave in an elastic nedium strikes a free

surface obliquely the reflection process becomes considerably more complex

than in the case of normal incidence. To maintain a stress free boundary at

the surface two waves must be reflected back into the material, namely a

dilatational wave and a shear wave [13] . A typical reflection process of this

type is illustrated in Fig. 16. For linear-clastic media the reflection angle

for the dilatational wave must be equal to a the angle of incidence because

its wave speed is equal to that of the incident wave. However, the shear

wave having a different wave speed c', reflects at a different angle 8 in

order to stay in contact with the point of wave incidence as it moves across

the surface. The relationship between these angles, wave speeds, and the

Poisson's ratio v of the material can be obtained from Snell's law [13] and

is written as
~ -1/2sin a _t 2(1 - v)

(32), ,

sin B c 1 - 29
- -

Concerning the strengths of the reflected waves, these are obtained from the

condition that the sum of the resultant stresses normal to the surface must

be zero. Using a reflection coefficient n it can be shown [5,12] that the
R

following relationships hold.

#R " U "I (33)R

[(nR + 1) cot 28] E,o (34)T =
R c I

2
, tan 8 tan 28 - tan a

(35)
tan s tan' 26 + tan a

- _ _ _ _ _ _ - _ _ _ _ _
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llere o is the amplitude of the incident dilatation wave and #y
R R

are the amplitudes of the reflected dilatational and shear wave respectively.

For physically acceptable values of v the dilatational wave speed is
|

always larger than the shear wave speed and thus angle S is smaller than

angle c. The above equations also indicate that the reflection process is

independent of the amplitude of the incident wave and is only a function of

material properties and the angle of incidence. Using typical material

properties for concrete, i.e., v = 0.15 and c = 10 fps values of the angle 8,

and the reflection coefficient n waves ar btained (Fig. 17). It is
R

'
interesting to note that the reflection factor nR (Fig. 17 b) changes sign

twice as thz angle of incidence varies from zero to 90 degrees. Since such

a sign change implies a phase reversal of the :eflected dilatational wave,

no spalling should be e: pected in concrete for angles of incidence larger

than 45 .

The geometry of a typical oblique spall is showr in Fig. 18. Also

shown are the profiles of the compression and ref .d tensfon wave. Intro-.

ducing again the pressure notation p (positive quantities) fer the stress
E

in the incident compression wave and letting n be the absolute value of the

reflection coefficient nR*'"" # #8' "P"

~E(1 ~ UE ~ E(l (oT " "R l a l

where the second expression obtains from (33) together with the identity '

n "I = np . The thickness of the spall S is now related to the t (whenR a y y

the pressure is p ) by the following modified equation:y

26 cos a
3

(37)t =
.

1 c

For strong compression waves multiple spalls are again possible. Their

theoretical total number n can be estimated from the following expression (5]
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_

p" + 12n (1 - n)
ns- - - (38).

2nn

For an arbitrary spall k the relations giving spall depth are:

k

U(1-n
k

~ E ('k} ( }T " UPk-1( k-1O ~E k k ""P ~ T 1-n ka

and
i
'

2(6 +62 + .... + 6g + 6 )cos a
c

Spall velocities are again obtainable from the impulse integral. However,

since that impulse is acting in the direction of the incident wave, the

velocity will also be in this direction and the impulse is trapped in a

length given by 6/cosa. Thus for the first spall the relationship is

6 t
7 y

p(t)dt (41)p u =
.g y gg

'O

For an arbitrary spall k one obtains

S 'tk k
p(t)dt (42)ou =

.

w k cos a
,

k-1

Applying the approximate ur/c form, given by Eq. (3), to the above

relationships one obtains specific expressions for spall thicknesses and

velocities.

Thickness of 1st spall

h 1/Yct / O

2 cos a (1 - n + T
I | (4 3)6 =

1 p j

Thickness of k-t h spall

+ ~ ) 1+1-ap j(44)(1 - n ) - (1 - n
'

6 =

k 2 cos u
. .

- . . _ _ . _ _ _ _ _ - . _ _ _ _ _ _ _ _ _
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Velocity of 1st spall

2p"
-

o -,

cos'a (Y + n) 3 (46)u =
1 (Y + 1)cP p"W L _

Velocity of k spall

.! "\ k-11-n+T 102 1

{ k2p cos a
(y + n ) - | l - n )| pk T ( PW (47)u =

k (y + 1)cp k )1/y1-aj [y _

\ 1 -nk-1)s

4.3 SPALL CALCULATIONS AND RESULTS

With the relationships derived above it is possible to calculate

the spall variables in any given situation. The required inputs are the

charge weight, wall thickness, and charge standoff distar.cc. The spall

parameters at any arbitrary incidence angle may then be readily obtained.

Since the detailed procedure has been outlined before [5] only representative

results which concern the most salient features of spalling will be given

here. These results will be used to indicate trends rather than provide de-

tailed information for all possible ranges of spalling.

Evidence exists [10] that the dynamic tensile rupture strength of

brittle materials is substantially higher than the static value. In recent

experiments with concrete [14], values in excess of 2000 psi were measured.

This information was used to generate the computational results presented

here. The other required physical parameters are typical for the quality

of concrete used in nuclear power plant structures. In summary the values

used in the computations are:

Compressive Strength f = 4000 psi

4D11atational Wave Speed c = 10 ft/s

Poisson's Ratio v = 0.15

Dynamic Tensile Rupture Strength a,= 2000 psi
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D

Since all of the blast wave parameters including the positive over-

pressure phase duration t,can be scaled [2], the spall results would also

be scalable except for the finite wall thickness h which affects the com-

pression wave attenuation (see Eq. (20)). However, by using the expedient
'

of a scaled wall thickness [5] it is possible to present the results in a

more compact form. Thus all length dimensions will be scaled with the cube

root of the explosive charge weight (W ! ).

Fig. 19 presents spall thickness (depth) and velocity at normal shock

incidence (a = 0), as a function of charge standoff distance with spall

number as a parameter as indicated in the figure. The results are for a wall

of zero thickness, i.e. no attenuation of shock wave in the wall is assumed

to take place. The spall depth increases with spall number but the spall

velocity shows an opposite trend. Thus the first spall has the highest

velocity while it, thickness is a minimum. Spall thickness al so increases

with standof f distance but again the spall velocity decreases. These trends

reflect the dependence of spall thickness on the profile of the compression

wave which is steepest at the shock front and flattens out as the pressure

decays. Similarly, the wave forms become less steep as the peak pressure

decays, i.e., the standoff distance increases.

The most notable aspect of the results is that high spall velocities

(100-500 f t/s) are associated only with very thin spall layers. Even for

charges of 10 lb the corresponding spalls are less than one quarter inch

thick. On the other hand for substantial spall layers (2 1 in.) the velocities

are quite low (about 15 ft/s). Because of this in the case of normal

incidence, the kinetic energy per unit area of spall does not vary appreciably

over the entire range of blast parameters considered. Similarly the total

depth of spall, i.e., the sum of all spall layer thicknesses, is near]y

. _____ _ _ _ _ _ _ _ _ . _
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3constant, being on the order of 0.25 f t/lb This is not an unexpected.

result. It can be shown (5) that the total depth of spall D is approximately

equal to one half the wave length of the compression wave, i.e., D 2 ct,/2,

and this quantity is remarkably constant in the pressure range of interest.

For reinforced concrete walls spalling is expected to be limited to the

concrete layer covering the reinforcement, since this layer is thinner than

the predicted total spalling depth.

Fig. 20 again gives spall depth and velocity information but as a function

of spall number with scaled standoff distance as a parameter. This is a

clearer illustration of the spall number cut-off at various standoff distances,

e.g. , for the assumed dynamic tensile rupture strength of 2000 psi, 33 spalls

may occur at a standoff of 0.2 ft/lb while only 3 spalls will be possible

!at a standoff of 1.0 ft/lb It should be obvious, that due to the dis-.

crete nature of spalling, the spall number cut-off is not a continuous function

of standoff but proceeds in steps.

The offeet of wall thickness on spall velocity and depth is illustrated

in Fig. 21, where results are given for the first spall variables at normal

incidence as a function of scaled charge standoff distance with scaled wall

thickness as parameter. For fixed charge weight and distance the spall thick-

ness increases with increasing wall thickness while the spall velocity de-

creases. Similar results are obtained for subsequent spalls. Typically for

a 10 lb charge at 3 ft standoff a wall thickness of 3 ft will result in a

threefold increase in spall thickness relative to zero wall thickness and a

twofold decrease in spall velocity. For larger standof f distances the ef fect

becomes less pronounced.

A very strong effect on spall thickness and velocity is produced by

variations in angle of shock incidence a. This is illustrated in Fig. 22

- _ _ _ _ _ _ _ _ _ _ - _ _
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which gives the spall verlables for the first spall as a function of scaled

standoff distance for various values of the angle of incidence a. Again the

case of zero wall thickness or no shock attenuation by the wall is presented.

As indicated earlier no spalls occur beyond a = 45* because the reflection

factor changes phase at this point (see Fig. 17). For a given standoff distance

the spall thickness increases with angle of incidence while the velocity

decreases. Relative to normal incidence the spall thickness for the oblique

case is increased by the factor 1/cosa as well as by the effect of the reflection

coefficient. The velocity is decreased by cos a and again by a reflection

coefficient effect. In computing the kinetic energy per unit area for oblique

incidence, values substantially higher than those for normal incidence are

encountered. The maximum in kinetic energy, for all standoff distances con-

sidered, occurs at an angle of incidence of about 20 .

The formation of a typical spall crater as calculated by the plane wave

theory is shown in Fig. 23. Scaled variables are used in the illustration

with both the charge standoff and wall thickness being 0.2 ft/lb . The

jaggedness of the crater profile is due primarily to the fact that spall deptb

is computed discretely at a finite number of incidence angles a neglecting all

interactions in angular direction between adjacent layers. This is a severe

11mitatton of the plane wave theory. However, the results appear to give a

reasonable qualitative picture of crater formation.

A comparison of the tiaximum spall velocities (first spall, normal incidence)

with the maximum wall velocities induced by the total impulse of the blast is

shown in Fig. 24. The latter velocities are obtained by considering the gross

motion of the entire loaded portion of the wall and are calculated by the yield

line analysis procedures outlined in Section 3. The results are given in

scaled form as a function of charge standoff distance for a number of wall

thicknesses. It is seen that except for the thickest wall (Z 0.6 ft/lbm /3)1
=

W

- - _ _ _ _ _ _ _ _ _ _ _
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the velocities induced by impulse loading are substantially higher than those

produced by direct spalling. A similar behavior is observed at other angular

positions. Hence coupling between the two motions can be expected. The

impulse motion is a late time ef fect and a number of stress wave reflections

will occur before this mots n commences. Therefore, the small high velecity

spall debris is expected to be ejected from the wall before the gross mot'on

takes effect. However, the heavier spall debris which has but little velocity

is expected to staf in contact (or near contact) with the wall and will be

later ejected by the wall motion at quite high velocities. The kinetic

energies of this debris are at least one order of magnitude higher than the 5

values produced by direct spall. It therefore appears that the severest

effects of spallatiou may be due to coupling to the gross wall motion which

arises from the total blast impulse loading.

Based on the foregoing analysis and cceputational results a number of

important conclusions may be reached. First it appears that a cut-off for

spalling of concrete may be expected at an angle of about 45 degrees because

of the phase reversal in the reflection coef ficient. The angle will be

smaller for larger standof f distances because the tensile stresses will not

exceed the rupture strength at large angles. In fact, if the tensile rupture

strength is indeed 2000 psi no spalling can take place for scaled standof f

distances larger than 1.8 f t/lb The second important point is the above.

described coupling between spalling and the wall motion produced by impulse

which leads to the high velocity ejection of most spall debris. Finally for

explosions of interest, the total spall depth throughout the crater is greater

than the thickness of the concrete cover on the backface reinforcement. Thus

unless very severe wall deformations occur the concrete cover depth will be

the limit on ejected debris. All these facts lead to a simple "first cut"
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estimate of spall debris ejection, without performing any detailed spali

calculation. The debris mass is simply limited by the spall cut-of f (45

or smaller) and the depth of the concrete covering the reinforcement, while

its velocity is obtained f rom the w il i motion produced by impulse, as

given in Fig. 7.

_ _ - - _ _ _ _ _ _ _ _ - _ _
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5. CONCRETE DEBRIS EFFECTS

The debris produced by concrete wall spalling or disintegration, when

ejected at high velocity may upon impact produce severe damage to structures

and equipment. Nuclear power plants have typically one of two arrangements:

(1) a free standing steel containment surrounded by a concrete shield

structure or (2) a concrete containment with an attached thin steel liner.

Since the prime purpose of steel liners is to provide air leak tightness,

they are shallowly anchored in the concrete and contribute little to the

strength of the containment wall. However, unless complete wall disintegra-

tion occurs, the liners may be able to contain or retard the concrete debris.

The debris may separate from the concrete wall as individual concrete

f ragments or as a large coherent mass of concrete. For f ragment impact, the

loading on the steel is very local and the analysis of the phenomenon must

be based on penetration mechanics. When large masses of concrete impact

a steel structure, the load is more distributed and the phenomenon may be

approximated as the impact of two plates or as the impulsive loading of a

plate. Consistent with the assumptions made in the concrete wall analysis,

the steel structures are approximated as flat plates with the boundaries

sufficiently far removed from the impact region, so that their presence may

be neglected.

5.1 1HPACT OF CONCFETE FRACMENTS

All of the existing penetration mechanics analyses, including the

most recent work, e.g., [2,3,15,16), concerns the impact of metal fragments

(or projectiles) on concrete, steel, etc. Usually it is assumed that the

missile is either rigid (nondeformable) [2,3] or that it deforms plastica 11y (15].

.___ _ _ _________ ..
_ - - _ _ - _ _ _ _ _ _ . ._ _
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Neither of these assumptions is obviously appropriate for concrete fragments

impacting on steel. Due to the differences in compressive strength and the

lack of ductility in concrete, either considerable crushing or rebound of

the missile is to be expected depending on the impact velocity range. Assuming

a rigid, noncrushable and nonrebounding concrete missile should therefore
'

result in very conservative penetration estimates. Concrete fragments may

be expected to have irregular shapes while the existing analyses assume a

regular shaped missile. Because of all these discrepancies between concrete

fragment impact and the existing penetration analyses and theories, estimates

of the concrete on steel penetration were made using the simplest available

empirical relationship [16], which is based on the most recent compilation of

missile penetration data.

The missile is assumed to be of a standard cylindrical shape with the

diameter d (in.) being equal to the length and with the nose curvature

r = d/2 (see sketch in Table 1). The penetration x (in.) is then

x=KDdv" (48)

where, D = W/d is t'.te caliber density, W is the weight of the proj ec tile

(1b), and v is the impact velocity (K ft/s). The exponent a depends on the

target material and has a value a = 1.22 for steel. The constant K depends

on the hardness of the missile material; we use for concrete the same value

for armor piercing steel K = 2.33. These values together with a typicalas

specific weight of concrete (0.0868 lb/in ) lead to the following relationship

1"x = 0.128 d v '" (4 9)

_ _ _ - _ _ _ _ _ _ _ - _ _ _ _ _ _ _
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TABLE 1

CONCRETE FRAGMENT IMPACT ON STEEL

i

.- d %

STANDARD MISSILE a

SMPE r

d

r=d/2
U

PENETRATION-x (In.)

DIAMETER VELOCITY-v (ft/s)
"'

50 100 200 300 400

1.0 .0033 .0077 .018 .030 .042

2.0 .0066 .0154 .036 .059 .084

3.0 .0099 .0231 .054 .086 .125

4.0 .0132 .0308 .072 .118 .167

6.0 .0198 .0462 .108 .177 .251

12.0 .0396 .0924 .216 .354 .502

__ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __.
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Typical penetration results calculated with eg. (49) are given in

Table 1. With all the conservativeness built into this expression, the

penetrations are still very minimal. It therefore appears that the impact

of individual concrete fragments on steel structures will have littic or

no detrimental effects. This is particularly true for steel containments

which are relatively massive structures with wall thicknesses far in

excess of penetrations one can realistically expect from concrete fragment

impact. It appears from eq. (49) that penetrations are proportional to

the missile diameter d and would further increase as the diameter increases.

However, the underlying assumptions [16] of very localized loading make the

application of this empirical expression unacceptable for f ragments of

larger size.

5.2 1MPACT OF LARGE DEBRIS MASSES

As pointed out earlier, the impact of large masses of concrete

debris on a steel containment structure can be approximated as the impact

of a concrete plate on a steel plate. The size and thickness of the concrete

plate can be ascertained from the response analyses of the concrete shield

wall. Depending on the severity of concrete wall deformation, the debris

may be producerl by spalling, scabbing or wall disintegration. The last

two are late-time mechanisns occurring near the end of the deformation period

when the wall velocity is diminishing and ultinately approaches zero. Thus

the debris velocity will in general be small. On the other hand, the

spalling debris separates before high wall deflection velocities are attained.

Thus it is assumed that it is the spalling debris which may be ejected at

high velocities. The mass of the spalling debris is assumed to be in

the form of a circular plate wit.h a depth equal to the concrete cover depth

over the rear face reinforcement. The radius of the debris mass, a, is given

by the spall cutoff, i.e., by an angle of incidence of 45 or smaller, and

- _ _ _ _ - _ - _ _ _ - - _ _ _ _ - _ _
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l

is obtained from the following expression

(h + y) tan a (50)a=

where y is the standoff distance, h is the wall thickness and a is the

spall cut-of f angle which in general may be taken as 45*. Since the debris

radius, a, depends on the wall thickness, it is not a scalable quantity.

This in turn implies that the steel plate response cannot be scaled since,

as will be seen, it depends on the radius of the loaded area.

The relative timing between spalling and gross wall motion is not known,

therefore it is not at all clear which velocity should be used as the debris

velocity. We arbitrarily select as the debris velocity, the velocity of

the wall produced by the blast impulse acting on an area with radius equal

to that of the spall cutoff. As seen in Fig. 7, this velocity is in general

higher than the velocity corresponding to the impulse which produces maximum

wall deflection. The resulting impact should therefore be conservative.

For impact velocities in the range of 50-400 ft/s the impact pressures

computed by impedance matching between steel and concrete (assuming clastic

behavior for both materials) vary f rom 1.3 x 10 psi to over 10 psi.

These pressures are many times larger than the compressive strength of

concrete, thus crushing of the debris should be expected. At high impact

velocities, the yield strength of steel, which is of the order of 3 x 10 psi,

is also exceeded, while at low impact velocit steel structure may be

expected to respond elastica 11y. It is theref .at all obvious which

type of impact analyais is appropriate. Because of the complexities of

clastic analysis, the assumption is made that the steel st.ucture can be

treated as a rigid perfectly plastic plate with a priori assumed deformation

modes. Further the load is again assumed to be impulsive, permitting the

.. - - _ _ _ _ - _ - _ _ - - _ _ - _ - _ _ - _ _ _ _ _
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1

the decoupling of the loading and response phases.

Initial velocity estimates of the steel plate can be obtained by con-

sidering the impact to be either fully plastic or perfectly clastic. Again

the true impact process is probably more complex. However, reasonable velocity

bounds can be based on the plastic and elastic impact velocities. Assuming

only inertial resistance during loading, the clastic velocity will be an upper

bound. A true elastic impact analysis should consider the wave motion in

the plates. However, due to all the other uncertainties we limit our estimate

to an instantaneous perfectly clastic impact. Then the momentum and energy

equations are respectively:

i

mv +mv =mv +mv (51)
cc ss e co s so

2 z 2 2
v v v v
' 8 C 8

m +m =m +m (52)
c 2 s 2 e 2 s 2

Here m = p h is the mass per unit area, p is the density, h is the plate

thickness, v is the velocity. Subscripts e and s refer respectively

to the concrete and steel plate. Subscript o desigantes the state before

impact while the nonsubscripted velocities occur af ter impact. For the

current application v = 0. Solving equations (51) and (52) simultaneously
gg

yields:

2v 2y

(53)v = =

se m p h
1+ 1+

m p h
c c c

where subscript e designates clastic impact.

Whe' the impact is perfectly plastic the energy equation (52) is not.

applicable. The momentum equation together with the condition that after

- _ _ _ _ _ _ _
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impact the two velocities are equal, i.e., v =v (subscript p refers to
sp cp

plastic impact) gives the following expression

Vv en co
(54)= - =y

sp m p h
g g1+-g 1+

m p h
c c c

For any given situation the velocity imparted to the steel plate under

elastic impact is twice as high as that resulting from plastic impact. It

should also be noted that for fixed material properties the ratio of the

steel plate velocity to the concrete debris velocity is in both cases only

a function of the plate thickness ratio. For typical concrete and steel

properties the ratio of the densities is p/p = 3.37. Thus equations
s C

(53) and (54) may be rewritten as follows:

2
v /v (55)=

se co 1 + 3.37 h /hs c

1
v /v (56)=

sp co 1 + 3.37 h /hs e

Mach work has been done in recent years on the rigid-plastic response

of plates under impulsive loading [17,18,19,20]. In most cases a finite

size circular plate with either simple or clamped supports at the edges

is considered. Taking into account p2 ate bending, membrane stresses and

strain rate effects it is only possible to obtain simple deflection

relationships for the case of uniform impulse over the entire plate [171

The only analysis directly applicable to our problem [20] considers an

infinite thin plate with the load applied over a finite circular area

o f radius r = a. The plate is assumed to be rigid-ideally plastic with

a deflection mechanism consisting of a hinge at the center r = 0 and a

hinge circle at r=r For impulsive loading the final deflection 6.

o
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1at the center is predicted to be [20]:

2 2 2 2
mr v r I

g g
(57)~ ~

48 M 48 m M
o o

Here m is the mass per unit area of plate, I is the impulse per unit area,

v is the initial plate velocity, and M is ultimate (yield) moment. The
9

latter quantity is given as

1 *
h' o (58)M =-

i o 4 s o
t

where h is the plate thickness and o the yield strength of the plate
g g

material. Estimates of the initial velocity v can be obtained from either

eq. (55) or eq. (56) depending on the assumptions made regarding the impulse

process. The size of the initial hinge radius r is not known. However,g

considering the case of a pulse of constant intensity, p, and short duration

it can be shown [20], that the hinge radius is a constant which can be

expressed in terms of the load radius, a, as follows:

2
b ,"E (59)a=r

pa' - 4 M g

In the current application, load intensities of the order of 10 psi

are expected, while typical radii of the impacting debris will be on the

order of feet. With a steel plate thickness on the order of a couple inches

and typical yield stresses for steel one finds that pa >> 4 Mo. Therefore

eq. (59) may be approximated as

% 4 (60)= -ar
o 3

Using the above expression in eq. (57) one finds that central plate deflection

can be calculated from

- - - - _ - - _ - - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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2 2

6 = *2 (61)
"

M
o

Typical results are shown in Fig. 25, where the deflection is given

as a function of scaled standoff distance for three different charge weights.

Computations for both elastic and plastic impact velocities are given. As

mentioned earlier, these shou.'d bracket the true results. The approach of

the spall limit causes the rapid drop-off in the deflection curves at a

!scaled standoff distance of about 1.6 ft/lb Due to the direct dependence.

of the load area radius, a, on the wall thickness the results are not scalable.

However, the computations are so simple that deflection estimates are

readily obtainable for any wall.

A comparison of deflections for two walls of different strength and

thickness is shown in Fig. 26. It should be noted that the ul timate moment s

indicated both in Figs. 25 and 26 refer to the wall and not the impacted

plate. For a charge weight o f 10 lb the deflections are seen to be quite

moderate, even for the 2.5 ft wall. except at the very close-in charge

to 10' lb, severe damage can belocations. When charge weight :Inc rease s

expected since plate deflections in excess of 1 ft are predicted for much

o f the standof f range.

It is not possible to formulate precise failure criteria. Since a

circular yield pattern was assumed, eq. (19) can be used to estimate the

relationship between strain c and hinge rotation 0 where tan 0 = 6/r .
o

Knowing the rupture strain limit for the noterial a f ailure criterion

based on local deformation effects might be postulated. This however

provides no information on what effect the local deformation might have

on gross structural response, i.e., structural stability.

_ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _
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5.3 EFFECT OF CONCRETE DEBRIS ON STEEL LINERS-

The p esence of a steel liner on the inside face of a concrete

containment str2cture centributes little to the strength of the wall. Thus

the liner is expected to deform together with the gross motion of the wall.
-

However, in the region where spalling takes place, the liner becomes

detached from the wall and additional liner deformation may occur due to

the action of the loosened debris. At the same time the liner acting as a

membrane may prove effective in containing the spall debris.

The process of liner detachment and subsequent deformation is very

complex. Since liners attach to the concrete by means of structural steel

members, a certain amount of bending resistance should be expected. Here,

however, it will be assumed that only membrane stresses are important in

.escribing liner deformation. Since the liner also moves with the wall it

is not at all obvious what velocity should be used to obtain the relative

motion between liner and wall. It will be conservative to assume that the

wall velocity at spall cut-off (see Fig. 7) can be used as an estimate of

the liner velocity relative to the wall. In effect this 'mplies that the wall

comes to rest at that time while in reality its motion continues past that

point.

Assuming the liner to deform into a spherical membrane the deflection

normal to the wall C at any radial position r is given in terms of the central

deflection 6 as

2

( = 6(1 # 2) (62)

o

where r is the radius of the membrane (radius of liner attachment). The
g

value of r is taken as the spall cut-off radius, i.e., the radial distance
g

-. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -_ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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at the backface of the wall at 45* angle of incidence. The problem of a

plastically deforming membrane under impulsive loading has been treated by

many investigators. Following the analysis presented by Cole [21] it is

found that the plastic work WP in deforming a spherical membrane is

2 2
WP = n a h 6 -4nM 6 /h (63)o s o s

where o is the liner yield stress, M the liner ultimate moment and h
g s

the liner thickness. At the final state this work must equal the kinetic

energy KE imparted to the membrane by the impulse

1 9 1 2 9

KE = 7 Mv"=7mnr v" (64)g

Here M is the total mass moving at the initial velocity v i.e., M is the,

sum of the detached liner mass and of the spalled concrete debris mass.

Similarly m is the combined mass per unit area of liner and concrete,

m=m +m. Equating the two energies given by eqs. (63) and (64) oneg

obtains the final central deflection of the liner.

h)1/2 = r v (m h
1/2

6=rv (65)2a g 8Mo s o

It should be noted that while m is the combined mass per unit area the

thickness h is only that of the liner. Again since r depends on theg g

concrete wall thickness the deflections cannot be scaled. However, with

v known (from Fig. 7) the deflection is readily computable. Results for

a typical 2.5 ft thick wall and a 0.25 in. thick liner are shown in Fig. 27.

Deflections in excess of 1 ft. are obtained for the entire range of standoffs
4when the charge is 10 lb and for close-in distances at a charge weight of

_ ____--
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3
10 lb. Also shown in the figure are the spall radii r for the three

o

charge weights. The decrease in radias at larger standoffs occurs because

the actucl spall cut-off limit is shifted to angles of incidence smaller

than 45 degrees, i.e., the reflected pressure at angles beyond the cut-off

is insufficient to produce spalling.

It should be kept in mind that the computed deflections are a rough

estimate of liner deformation relative to the concrete wall. Thus,Vien

actual wall displacements are large there will be additional liner deforma-

tions. However, in these cases, membrane liner response may be of little

interest because other failure modes such as buckling and locai tearing,

which are associated with substantial wall disintegration will predominate.

The only membrane failure criterion which may be readily formulated

is again based on the strain at rupture. Since the increase in area of

a spherical membrane may be approximated by [21] AA = n6 and the original

plate area is A = nr the ratio of AA/A nay be used as a measure of theg

plastic membrane strain, i.e.,

2
6

c = (7-) (66)
o

When this ratio exceeds the value of the rupture strain of the liner material

failure may be expected.

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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6. AIR BLAST EFFECTS ON PIPES

Severe damage to piping, cuch as the main feedwater or steam lines,

located outside of containmer.t in nuclear power plants may pose a grave.

safety hazard. It is therefore necessary to obtain estimates of the

deformation whwh may result when such piping is subjected to air blast

!
/ loading from high explosives detonation. No satisf actory analysis method of

this problem exists currently and no empirical data from controlled experi-

ments is available. A method of obtaining pipe deformation estimates which

utilizes recent results in dynamic plasticity is therefore developed.

Details of this analysis are presented in the Appendix. It should b,noted

that the method outlined provides only a rough approximation. Also when

the loading of the pipe is from close-in detonations many assumptions of
'

the at alysis are open to question.

It is again assumed that the loading is impulsive and that deforma-

tions are related to the total transverse impulse I , experienced by the

pipe. As indicated earlier (Section 2) the blast impulse acting on

a pipe must be obtained by numerical integration of the local reflected

impulses over the pipe surface. The results so obtained cannot be

scaled with charge weight because of the finite pipe diameters. Figures

28 to 32 present the total transverse air blast impulse, each for a pipe

of different diameter (1 ft to 5 ft) as a function of scaled standoff

distance. In each case results are given for three different charge

weights (10 ,10 and 10 lb) and four dif ferent pipe length (20, 30, 40

and 50 ft). For fixed charge weight and pipe length, the impulses differ

by more than a factor of three over the range of pipe diameters from 1 ft

to 5 ft. It is also readily apparent that the impulses are not directly

proportional to the charge weight as is the case for a flat wall (see Fig. 6).

- _ - _ _ _ _ _ _ _
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The analysis method outlined in Appendix A assumes two major forms

of deformation for pipes under air blast loading. These are a beam like

bending with no cross-sectional distortion and a local " ring" deformation

of the pipe. For the latter no interaction between adjacent pipe sections

is assumed. Similarly interactions between the two forms of deformation

are neglected. For each cype of deformation both a plastic mode and a

bound or limit analysis method are employed to estimate the deflections

and response times. To make the analysis simple a sine distribution
-

of the transverse impulse is assumed. This leads in the case of the mode

analysis method, which is expected to yield more realistic resul ts, to

the following maximum (central) deflection formulas:

Beam Deflection

S

4n M -
(67)b"" 2

"

p
o

Ring Deformation
>

7 ( I,7/2)'
6 = u, = 0.0286 (68)3 2

ao h Lys

Here eq. (67) is identical to eg. (Al2a) of Appendix A and eg. (68)

corresponds to eq. (A26a). For the latter I /2 was substituted for t he
T

I f Appendix A so that the symbol I always has the unique meaning of
T T

total transverse impulse, o is the yield stress of the pipe material,

o the pipe material density, h the pipe wall thickness and R the half
g

length of the pipe. The fully plastic moment M and mass per unit lengt h

ofpipe3,which includes both the st eel pipe and water, are given by

the following expressions:

- _ _ _ _ _ _ _ _ _
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= b(RM -Ri)o (69)o 3 o y

and
2 2 2-

(R -Ri )p + nR p (70)p=n
o s i w

where p is the liquid (water) density and R and R are respectively the

outer and inner radius of the pipe.

Once the total transverse impulse I n a pipe is determined, it
T

becomes a simple matter to calculate both the beam and ring deformation

using eqs. (67) and (68). Deflection results for a fixed charge weight

o f W = 10 lb and five different pipe diameters (1, 2, 3, 4 and 5 f t)

are presented in Figs. 33 to 37. In each figure both the beam and ring

mode deformations are given each for four different pipe length (20, 30,

40 and 50 ft.). The pipes approximate Schedule 80 piping with the wall

thickness assumed to be h = D/20, where D is the pipe diameter. A yield
4stress for steel at 600*F was used ; its value is a = 2 x 10 psi.y

The calculations clearly indicate that the ring deformation is only

weakly dependent on the pipe length. Based on physical considerations,

this is an expected result. In fact, if the proper local impulse rather

than the total impulse were used in the computations, then the dependence

of the ring deformation on pipe length should be negligible. The crossover

observed in ring deformation curves can be explained by the variation of the

term (I /21) . At close-in standoffs where the impulse depends only weaklyT

on pipe length (see Figs. 28-32), the t term dominates and ring deformations

obtained from eq. (68) are smallest for the longest pipe. At far distances

where I is strongly affected by pipe length, there is little difference inT

the deformations or they increase with pipe length.

As expected beam deficctions at a fixed pipe diameter increase with

increasing pipe length. If the pipe length is held constant, both ring

deformations and beam deflections decrease with increasing pipe diameter.

- _ - _ - - _ - - -
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It is the strong (cubic) inverse dependence of the deformations on the

pipe diameter (or wall thickness) that leads to this result. The effect

is more clearly illustrated in Fig. 38 which gives the deflections for a

30 ft. pipe at five different pipe diameters.

In the graphical presentation of the results, maximum ring deformations

were limited to one pipe diameter and beam deflections were restricted to

the smaller of 1/2 or 10 feet. Since both types of analysis are based

on the assumption of small deflections (see Appendix A), the true range of

applicability is probably much more restrictive. In general, the results

are much more uncertain for small standoff distances. Here the deformations

are large and are strongly influenced by local impulse intensity rather

than the total impulse on the pipe. Based on the magnitude of the deflections

it appears that the results for large pipe diameters may be more reliabic

than those for smaller pipes.

At the current stage of analysis development it is not possible to

arrive at any precise failure criteria. Some intuitive notion on the

severity of damage may be arrived at based on the physical appearance of

the pipe. Thus at a ring deformat ion of one half the pipe diameter, one

would expect severe pipe damage. For beam deflections a damage criterion

must consider both the deflection itself and the pipe length. The ratio

6/ which is a measure of the hing rotations both at the supports and
b

the pipe center nay therefore provide an appropriate criterion. However,

no information on allowable mat;nitudes of hinge rotations exist and arbitrary

limits must be selected. Since both in the analysis and in reality the pipe

is not restrained longitudinally at the supports, no failure criterion based

on pipe elongation can be formalated.

__ _ _ _ _ _ _ _ _ _ - _
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7. DISCUSSION AND CONCLUSION

The analysis methods and results presented in the foregoing sections

provide a means for estimating the susceptibility of nuclear power plant

structures and equipment to air blast loading generated by high explosives

detonations. As indicated before, the effort was limited to investigating

the response of only a few critical items such as containment and shield

structures and important piping located outside of containment.

No developmental effort was undertaken during the course of this

study, and the results are based on a synthesis of state of the art methods.

In many cases extreme simplifying assumptions werc made to permit the

derivation of simple structural response relationships. In the presenta-

tion of results no attempt was made to cover the complete range of values

which may be of interest in analyzing nuclear power plant susceptibility.

However, sufficient blast loading data is presented so that response

estimates for specific cases may be calculated using the simple equations

given in the report.

It should be obvious that if more precise structural response data

are required then additional effort must be expended to improve the analysis

methods. Both the blast load determination and the response calculations

can be improved. Concerning the first, the inconsistencies in impulse

loading arising from the assumption of a one to one correspondence between

reficcted pressure and impulse should be eliminated. The structural

response analysis for flat walls and plates can be improved by considering

not only perfectly plastic bending and hinge formation but also the membrane

and strain rate effects. An analysis which takes into account wall curvature

would further improve the response predictions. An area that merits
-

particular attention is the response of piping under blast loading.

Neglecting the interaction between bending and local ring deformation makes

_ - - _ _ _ _ - _ _ /
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the validity of the results in certain cases very questionabic. An analysis

procedure which takes into account the coupling between these deformation '

modes should therefore be developed.

A significant limitation on the applicability of the analysis pro-

cedures is the lack of appropriate failure and damage criteria. Some

att empts were made to establish approximate relationships between the

computed deformations and allowa' ~ e (rupture) strains. However, much more

effort is required to determine tne damage levels which are unacceptabic

for a particular structure. In establishing such limits both the local

structural deformations and the functional aspects of the struc ture should

be considered.

Finally it is again pointed out that only air blast loading from

explosive detonation was taken into account in the current study. For

large charges placed close to the structure ground shock and cratering

ef fects raay prove as damaging as the air blast. Regardless of charge

we!.ght the contact placement of explosives may produce the severest local

damage. Thus in an overall analysis of nuclear power plant vulnerability

these loading mechanisms should also be considered.

- ---_ __ _ _ _ - _ _ - - _ _ _ _ - _ _ _ _ - _ _ - - _ - _ _ _ _
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APPENDIX |

Methods for Estimating Pipe

Deformation lue to Explosive Loading

The basic problem is to ootain engineering estimates of the total

plastic deformation which results when a segment of piping is subjected

to explosive loading frou a known charge weight located a fixed distance

from the pipe. The methods outlined below utilize recent results in dy-

namic plasticity to obtain such deformation estimates. It should be noted,

however, that no entirely satisfactory method is currently available for

analysis of this problem. The methods outlined provide only rough approxi-

mations in many cases of importance. In particular, when the loading is the

result of a nearby charge, many of the assumptions used in this analysis are

open to question. Further, since no controlled experiments on explosive

loading of piping are available, validation of this analysis is not. currently

P possible.

It is assumed that the total transverse impulse, I is known and thatT,

this is a pure impulse. That is, it produces instantaneous velocities pro-

portional to the local impulse (per unit length or per unit area, depending

on the formulation). The analysis is further simplified by splitting the

impulsive loading into two parts, " symmetric" and " ant 1 symmetric" as shown in

Fig. A1. The symmetric impulsive loading causes no translation of the trans-

verse diameter pp' of the cylinder, hence it produces shape changes of the type

(etched in Fig. A2(a). The antisymmetric loading produces a rigid-body transla-

ion of each ring section, together with some deformations out of the initial

circular shape. If the latter deformations are neglected, the antisymmetric

impulsive loading produces mainly bending of the pipe as a beam constrained

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
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Fig. A2, Local Ring Deformation and Bending Deflection of Pipe
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at its supports, as in Fig. A2(b).

A method of damage calculation that is crude, but should be adequate

in certain circumstances, is to treat the two loadings and responses as in-

dependent of each other, and to obtain the total displacement of the point

of the cylinder nearest the charge point W as the sum of the " ring deformation"

due to the symmetric loading and the " beam bending" deformation due to de-

flection of the pipe as a beam between supported sections. The interactions

being neglected are (1) the effect of the compressive beam-bending stresses

in augmenting the local ring deformations in the area closest to the charge

location; and (2) the ef fect of the inward deflection of the ring in decreasing

the effective plastic section modulus. These interactions would be important

in a thin-walled cylinder.

The first type of interaction is compensated for qualitatively by

treating the deformation of the central ring section as independent of those

of the adjacent ring sections. These deform less and hence constrain the

deformations of the section closest to the charge point. In the " isolated ring"

calculation these constraints are neglected. In the region of maximum de-

formation this can be regarded as roughly equivalent to the weakening effect

of the compressive stresses involved in the bending of the cylinder as a beam.

It should also be noted that this discussion presupposes that the two types

of deformation - local damage at the central ring section and bending as a

beam between supports - are of approximately equal importance. This may not

be the case when the impulse distribution is localized near the center of the

pipe span or when the charge is very near the pipe.

The known transverse impulse I produces instantaneous velocities
T

proportional to impulse per unit distance along the pipe axis in the treat-

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
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ment as a " beam", and per unit area in the treatment as a " ring". This

isn't entirely satisfactory since I depends on the dimensions of the pipe
T

(radius R, length 2E between supports) as well as on the stand-off distance;

however, without more detailed information on actual impulse distributions

function of dimensions and charge weight, no more exact treatment canas a

be justified.

The mode and the bound approximation methods are employed to estimate

deflections and response times. In both cases these have been used in their

simpl es t forms - first for the pipe treated as an ordinary beam, hinged at

the supports and at midsection, and then treated as a ring deforming as shown

in Fig . A2(a) .

The distribution of total impulse is needed in order to apply the mode

technique, while the total initial kinetic energy is needed to calculate the

deflection bound. Lacking better information, a simple sine distribution of

transverse impulse per unit length iT (x) 1 ng the beam axis is assumed:

(A1)i (*) " i sin f f .T m

t

bisinffdx=Since I =2 i ,

T
d o

I
"

(A2)i =
.

m 4 E

This gives initial transverse velocities at the beam axis of

i I

I=w (x) = p s sin f { ; G = f 7f (A3)g

_
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where p is mass per unit length, including steel pipe and water, with mass

densities p, and p , respectively:

2 ' 2
p=AP +AP = n(R - R})p +nR p (A4)ss ww o g f

The total initial kinetic energy K of transverse motion then can be esti-
g

mated as

2
k <t 21

fp (0 (x)) dx = "32 Epd (A5)K =2
o

,g

1. " Beam" Deflections: The pipe is treated as an ordinary beam and estimates

must be developed for maximum central deflection.

a. Mode Approximation

With the initial transverse velocity of the beam axis given by (A5),

the mode velocity field is:

h*(x,t)=0,(t)f,O Ix5 1. (A6)

The initial velocity magnitude, 0, , is obtained by the mode matching

technique as

"L

0(x)fdx 7

=f
'

O (A7)= .,g

(f) dx
'O

" ' , is obtained from the energy-dissipation rate equationThe acceleration w

_
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.l 4*
5(0,f) (w,{)dx=4M-2 (A8)7 ,g

l

and hence,

6M

U=- (^9)n 2'
L9

where M is the fully plastic moment of the pipe sectiong

2 2

M = 2 ( nRn 4% , g g) Y = i (R - R)o. (A10)a
3 o i Yo 2 3n 2 3n

Integrating (A9) yields

0, = E, - t (All)
L9

fThe final midpoint displacement, w, , and stopping time, t 7, are

,
' 2 I'

wf= (w ) (A12a)'=
g 2

o 4n M Fg

(A12b)t = =
.g 6 *

o o

b. Upper Bound Estimate

An upper bound on the midpoint deflection is given by

w'
-

w" b< (A13)=

m m P

_
. _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ .
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where K is the kinetic energy due to the impulse and P is the limit load
g

magnitude of a force applied at the midsection. Assuming small deflections

this is

4M
p =

L 1 (A14)

Taking K from Eq. (A5),
g

2 2
2 I 2 I

fu I_ _I E n T
(A15),

, w ,

! m 32 Ep 4M 128 MEg

A comparison of (A15) with (Al2a) shows that the two estimates are quite

close. The upper bound is probably quite close to the mode technique since

the latter is itself an overestimate when compared to a complete rigid-

plastic solution. The overstimate compared to such a solution is probably

about 15%. Strain rate sensitivity could reduce the deficction by as much

as 50% in the case of a mild steel.

The defect of taking the load magnitude as specified by the total im-

pulse I is indicated by the form of the expressions for final deflection.
T

2Both methods give this as proportional to I /M p , with no dependence on L.T o

The result would be more useful if the dependence on pipe dimensions, ex-

plosive charge weight, and stand-off could ba shown explicitly.

2. " Ring" Deflection Estimate:

To estimate deformations of the central ring section from its initial

circular shape, there is need for a distribution of impulse per unit area

around the circumference. For lack of better information, the radial impul se

is taken as a cosine function of central angle

-. - _ - _ - _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ ._ _ __
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i

1

i' ( $) = i cos $. (A16)g

At the midsection of the span the impulse per unit length is i so,

n/2 n/2, 9
i =2 i' cos4 Rd$ = 2i cos"$ Rd4 = 7, Ri' (A17)g

0 'O'

where R is the mean radius. Thus

fi' (A18)= =
,

The total impulsive loading on the middle ring section can be split into

" anti-symmetric" and "synnetric" parts as in Fig. Al, each with half the

intensity magnitude of the supposed distribution i'($). Intuitively, the

antisymmetric loading produces mainly translation of the section without

large changes of the circular shape, while the synunetric loading produces

the shape changes of the ring we are interested in, the transverse diameter

remaining stationary. This is not rigorous since no superposition principle

can be claimed; however, it seems to be a reasonable assumption if the

impulse isn't too localized.

The initial velocity field due to the impulse can be expressed in terms

of components u, u shown in Fig. A3(a). The equations relating these

velocity components to the total impulse are:
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6 =6 sin $ = f#) sin $=O cos$ sin $ (A19a)g

1

0 =0 cost = f* cos$ = 6 cos $ (A19b)2 r p o

l' i' I

where O (A20)= = =

o p p,h 20 hREs

where p' =ph is the mass density per unit area of the pipe wall, thickness h.y

a. Mode Approximation

The mode form deformation is taken to be symmetric in each half of

the ring, as shown in Fig. A3(b). This has plastic hinges at A, B, B', with

rigid 'uody rotation rate 5 about the instantaneous center at C. Thus the

velocity field has components

0 = -y ' 5 = 0, (- )=6 (-1 + cos$) (A21a)7 3

X'* *

0 = x'O = 0, y = 6, (1 - sint) (A21b)2

,

Here 0,(t) is the mode form velocity amplitude, whose initial value 0, is

found by the standard technique from the assumed initial field, as

O =O
~

= 0.201 (^ }o /2 - hRE
*

The acceleration magnitude *', of the mode deformation is obtained from theu

energy rate equation

m/2 , ,

"u}, 6 ) Rd$ = 4M
,

-2 p ' (il O +y 2 o (A23)*o

. _ _ _ _ _ _ _ _ _ _ _ _ _
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where p ' = ph is mass per unit area of wall and M' is fully plastic bending

moment per unit length along the pipe axis,

M' = a (A24)y.

Using eqs. (A21) we obtain

l*V hay
(A25)| '6, = - 2 2

*_ .

! (3n-8)R p s 1.425R p s

.

Integrating gives the following results for the final deformation and

stopping time:

I

uf=0.0286 (A26a),32aph2
ys

RI
T

t = 0.285 (A26b).
g 2

ah2y

The intuitive argument illustrated in Fig. Al suggests that the deformation

cut of the circular shape is due to the symmetric loading with amplitude

1 1

7 '. This corresponds to replacing I by 7T in Eqs. (A26).1 1
T

b. Upper Bound Estimate

Alternatively the deflection bound method can be applied. This

requires the initial kinetic energy K' per unit length at the span mid-

section and the plastic collapse load P' of the half ring subjected to a

pair of forces at the middle diameter of the ring. These are

K' = f p ' RO, fp hR (20 ^=
g Rt

_ - -_ _ -- - -
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4M' ho
P'= ^"

R R

The upper bound is given by

K' 1

u" (Au < = =

32, g
y8

1where again one replaces I with
T 7T to account for only the symmetric1

impulsive loading producing ring deformation.

The upper bound is much larger than the final displacement predicted

by the mode method. This may be traced to the small value,0.401,of the

ratio 6 /0 , which implies that the mode method underestimates the final

deflection. In the bound method, the distribution of kinetic energy is

never specified. Thus the bound must allow for cases where the maximum de-

flection is sensitive to the distribution of kinetic energy.

The deformation estimates developed above may be summarized as follows:

,

g 3 I{Beam:

(m de) (A12a)"* 2ME
~

,

4r o

2 I
w"= , (bound) (A15)128 M D

o

2Ring: Ig T0.0286 (m e) (A a)=
,32,

oohL
ys

I
I "u"= -

32 (bound) -(A29),o 16
o hg
y8

In summary, the two deflection estimates, (a) treating the structure
,

as a beam, and (b) treating the mid-section as an isolated ring, are here

____-__ _ _ - _ _ _
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assumed independent of each other, based on a conjectural splitting of the

impulsive load into an anti-symmetric and a symmetric part, with the former

causing mainly translational motion of the whole ring, and the latter pro-

ducing deformations of the initial circular shape. The two types of response

are obviously not independent; energy used in local deformation is not

| available for producing translational (beam type) deformations. A mode ap-

proximation could be developed which couples the bending and ring deformations;

however, such a development effort is not consistant with the overa'l objec-

tives of the current study.

The deformation estimates contained in the body of this repect are

based on eqs. (A12a), ( A 15 ) , (A26a), (A29) above - suitably modified to

include charge weight and standoff distance by proper subs'citution for I *
T

3. Sample Calculations

To compare the various deformation estimates, the following sample problem

is considered:

I = 14.72 x 10 lb-see
T

t = 120 inches

12 in., h = 2 in.R = 10 in., R =

f g

o = 40 x 10 psi

p = 0.73 x 10~ lb. in.~ see
s

p = 0.094 x 10~ lb. in." sec
w

6
M = 38.8 x 10 in. Ib.

o

p = 0.131 lb. in.~ see

This corresponds approximately to a 20 f t. span of 2 ft. outside dia., sch 140,

. _ .. _ ____ - - _ _ _ _ _ _ _ _ - _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ - _ _ . _ _ _ _ _ _ _ _ ____-_ __



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _

107

water-filled pipe subjected to a 1000 lb. charge detonated 10 f t. from the

pipe center. The various estimates are as follows:

f
Beam: w = 3.24 in. (mode)g

v'" = 3.29 in. (bound)m

f
Ring: u, = 0.46 in. (mode)

u " = 3.16 in. (bound)o

For this particular case, the beam response would appear to dominate (using the

mode approximation) and the predicted deformation are small enough that the

small strain response limitation of the theory is probably a good approximation.

The previously mentioned dif ferences in the ring approximations can also be

seen.

4. Possible Modification due to Impulse Distribution

All of the above computations were based on simple sine and cosine dis-

i

tributions of impulse. Clearly the distribution of impulse can deviate from

such distributions by wide margins - particularly in the case of close-in

detonations. To illustrate this point consider a larger diameter pipe sub-

jected to a close-in detonation. Using a pipe of 24 in. radius, 2 in, wall

thickness and a stand-off distance of 2 ft. produces a more concentrated

impulse pressure. Local damage becomes more pronounced than beam bending

deformation and calculations based on an isolated ring appear unsatisfactory -

probably leading to gross overestimation of local deformation.

To illustrate this, consider the following impulsive loading distribution:

x= 0 1 2 4 10 ft

Case 1: 2 ft stand-off i'(x,0) = 33 24 10.2 3.0 1.0 psi-sec

I = 14.7 x 10 lb-sec
T

.

__ _ _ _ _ . _ - . _ _ _ _ . _ , _ _ _ _
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|
0 5 10 15 ftCase 2: 10 ft stand-off x =

3
I = 6.7 x 10 1b-see i'(x,0) 3.5 3.0 1.5 0.8 psi-see=

T

where l'(x,0) is the impulsive pressure (psi-see) at a point x from the

central section and at angle 0 from the " horizontal" diameter. The ring

deformations are predicted to be:

Case 1: 2 ft stand-off

6$=2 = 4690 in.-sec~
s

u, = 3.74 x 10-6 (0,) 2f o
= 82.4 in.

Case 2: 10 ft stand-off

-1
6$=2 = 524 in.-sec

s

uf=3.74x10-6 (g,)2o
= 1.03 in.

The very large value of displacement in Case 1 (2 ft stand-off) is

meaningless quantitatively, since the analysis is valid for small deflections.

Qualitatively it indicates only that in this mode of deformation the local

(out-of-circular) displacement is of the order of the pipe radius, and would

probably lead to failure by rupture.

A similar calculation can be performed for the beam mode. To account

for the localized nature of the impulse, a bell shaped distribution of im-

pulse is used. Tabulr.ted impulse per unit area data at x = 0 is computed

to give i where

1

|

- --- _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _
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<tr / 2
i =2 i' (0,0) cose Rd6
m o

,g

and the axial distribution is assumed to be

2 2
1(x) = 1 exp (-x /2a ).

m

Knowing the total impulse

i exP (-x /20 ) dx = 6 o 1,IT" m

allows computation of the parameter o as

1 Ta= ,

5i
m

Applying the mode technique gives the following results:

Case 1 (2 f t stand-of f):

i = 806 lb-sec-in~
m

1 = 14.7 x 10 lb-sec
T

o = 7.3 in.

v, 493 in-sec~
fw, = 0.61 in.

Case 2 (10 ft stand-off):

i = 118 lb see in~
m

I = 6.7 lb-sec
T

o = 22.7 in.

- _ _ _ _ _ _ _ _ _ _ _ _
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0 = 201 in-sec~
fw, = 0.10 in

Evidently for these examples the local (out-of-circular) deformation

of the central ring section greatly exceeds that of the beam bending mode.

The present estimated deflections are smaller than those of the previous

section in part because of the change of dimensions of the pipe (R = 24 in.

Instead of R = 11 in.) and because of the change of the initial mode am-

plitude; the latter is due both to the change of dimensions and to the use

of more detailed data on impulse distribution.

Clearly,to obtain definitive estimates of final plastic deformation

requires development of more exact impulse data and development of refined

analysis methods.
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