NUREG/CR-0476

SUMMARY OF REPORTED DROPLET SIZE DISTRIBUTION DATA IN DISPERSED TWO-PHASE FLOW

R.V. Smith B.J. Azzopardi

Wichita State University

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available from National Technical Information Service Springfield, Virginia 22161 Price: Printed Copy\$4.50 ; Microfiche \$3.00

The price of this document for requesters outside of the North American Continent can be obtained from the National Technical Information Service.

NUREG/CR-0476

SUMMARY OF REPORTED DROPLET SIZE DISTRIBUTION DATA IN DISPERSED TWO-PHASE FLOW

R.V. Smith* B.J. Azzopardi (UKAEA, AERE, Harwell, England)

Manuscript Completed: August 1978 Date Published: October 1978

> Wichita State University* 1845 Fairmount Wichita, Kansas 67208

Prepared for the Division of Reactor Safety Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Under Contract No. NRC-04-77-133

Introduction

The primary purpose of this manuscript is to present summary tables of reported work on droplet size and distribution in dispersed twophase flow. The work is primarily intended for use by those engaged in design and analysis of two-phase, dispersed flow systems and by researchers in the field. The nature of the droplet size and distribution plays a major part in the behavior of the system, for example, with respect to heat transfer and pressure drop.

The results are presented primarily in tabular form. They represent the results from a literature search and indicate a summary of the reported work indicating, where possible, the influence of the primary variables on the droplet size.

TABLE I

Table I shows the reported experimental data. It is divided into three parts, (IA) constant flow across sections, (IB) nozzles orfices and sprays and (IC) liquid-liquid systems. Since there is not a consensus on the mechanism of droplet formation and break-up, the relationship between these systems is not known. Despite the substantial difference between the systems, there appears to be a good deal of similarity in the reported droplet size range and in the distributions.

These tables indicate a need for a standardization of measurement techniques (not necessarily for a single technique) and for a standarized system of data reduction and for the reporting of the reliability of the data. Further, it would be extremely helpful if there were a few standard representations of the data reported (such as the Sauter Mean Diameter) in order to provide quick and easy comparisons between one set of data and another. Finally, it would be useful if the distributions could be compared to several of the frequently reported distributions systems such as Mugele and Evans (1951), Rosin-Rammler (1933), and Nukiyama and Tanasawa (1938).

Another substantial need is to have reported experimental data in a form that would be useful to test hypotheses or predictive expressions or to indicate the influence of variables such as gas velocity, on the resultant droplet sizes and distributions.

Many of the reported works satisfy a great deal of the desired conditions listed above and are certainly helpful in understanding the nature of the droplet size and distributions to be expected in certain flow systems. The field, however, seems to be at a point where a greater uniformity of measurement and data presentation, together with systematic experimental planning could and should be followed in the future. Certainly, for achievement of the verification of predictive expressions to be used in the analysis and design of two-phase flow systems, substantially more and carefully planned experimental studies will be required.

In conclusion, much useful and carefully gathered data have been reported, however, there is great need for more work which should be reported in a uniform method. Secondly, experiments should be carefully planned to test proposed mechanisms and show the influence of the primary variables.

TABLE 11

Table II presents a summary of predictive expressions for droplet size and distribution. The predictive expressions for sprays orifices and liquid~liquid systems were omitted. Also, the table was limited to expressions which would appear to be useful in design and analysis studies.

It may to seen that the expressions vary widely in form and that there is not a consensus regarding the identification of the primary variables, except for that of the continuous fluid velocity.

The authors also differ in the mechanism which they have proposed to produce the various droplet sizes and distributions. These mechanisms may be divided into two general classes:

- Those which study formation of the droplet from waves or ligaments. These generally begin with the work of Kelvin-Helmholtz on wave growth.
- Those which study the droplet already formed. The analysis predicts its size and conditions for break-up. This study usually follows a force balance of the pressure gradient opposed by the forces produced by the fluid properties.

TABLE III

Table III attempts to show the state of knowledge with respect to the primary variables as evidenced by the reported experimental data. This table is divided into several parts. The first shows the influence of gas velocity. The second, shows the influence of geometry and the third, the influence of the fluid properties.

These tables show some consensus but, as mentioned previously, there is a considerable need for more data, particularly from carefully planned experimental systems, to show the influence of the primary variables. The reported data could be said to show that the droplet size is generally proportional to the gas velocity to the minus one to the minus two power with the consensus, apparently, toward the minus one power. The influence of the other proposed variables is less clear.

SUMMARY AND CONCLUSIONS

In summary, the reported data on droplet size and distribution is substantial and certainly helpful to those working in the field. If, however, the objective is to obtain reliable predictions of droplet size behavior in various fluid systems with various flow conditions, then, substantial additional work is needed. Further, this work should be reported in a uniform and orderly manner and the experiments should be planned with careful consideration given to the work of current and previous investigators.

NOTES

The means of representing droplet sizes and distributions follow, with notes on:

Effective Droplet Diameters Volume - Mass Diameters Expressions for Droplet Distributions

EFFECTIVE DROPLET DIAMETERS

5

There are general methods of representing effective droplet diameters. These diameters are designed to effectively represent the droplets distribution for specific studies such as size comparisons, heat and mass transfer, etc. The particular effective diameter is designated by subscripts and defined in the following expression:

The subscripts and exponents, p and q, are assigned integer values to produce the effective diameter required. (dn/dd) is the derivative of the droplet distribution curve.

Thus the system of (p q) allows the determination of effective droplet diameters to suit a geometry description and a specific application as shown below

po po po	processing of	1.2.9"	Ph 7	8 2.4	p- 10-	10 23	(f)
***	FL 11	VE	111	AM	P 1	F H	5
Aut 1	20 20 1 4	Y & .	1 A	1.11.1	Aux II.	Sec 2.3	1.00

p		Geometry	Application (Examples)
0	1	Linear	Comparison,
0	2	Surface Area	Surface heat transfer, Absorbtion
0	3	Volume	Hydrology

1	2	Surface-diameter	Absorption
1	3	Volume-diameter	Molecular diffusion
2	3	Volume-surface mean (Sauter)	Mass transfer, reactions
3	4	DeBrakere	combustion, equilibrium

Other droplet diameters frequently used are

dmax = maximum droplet diameter
dmean = average droplet diameter
dmedian = median droplet diameter
dprob = most probable droplet diameter

VOLUME - MASS DIAMETERS

In addition to representations with respect to droplet size, effective diameters have been defined with respect to the volume or mass of the entire droplet population. Most common of these are diameters related to total droplet volume defined as:

 $d_{m}()$ or $d_{v}()$ = droplets diameter such that the number in () indicates the portion of the total volume of droplets with diameters greater than d.

also,

dv (mean) = median volume diameter or diameter where an equal volume of droplets have diameters larger and smaller than d.

EXPRESSIONS FOR DROPLET DISTRIBUTIONS

Several investigators have proposed expressions which will represent droplet size distributions. It is difficult to assess the agreement between these distributions and the reported data because, for example, some allow setting empirical constants or variables to fit any data group. Further, not all investigators have attempted to fit their data to the proposed expressions. Following are four of the often-used expressions.

It is not possible at this present state-of-the-art to determine whether or not the droplet distributions are a strong function of the flow system and the flow conditions.

$$\frac{\Delta n/N}{\Delta d} = \frac{d}{d_{prob}} e^{-(d/d_{prob})}$$

MUGELE and EVANS (1951)

(Upper Limit, Log Normal Distribution)

$$dv/dy = \frac{\delta}{\sqrt{\pi}} e^{-\delta^2 y^2}$$

where

$$y = \ln \frac{ad}{max} - d$$

a = constant

dv = volume diameter

& = distribution parameter

NUKIYAM A - TANASAWA (1938)

$$\frac{\Delta n_{T/N}}{dd} = Bd^2 e^{-bx^{\delta}}$$

$$B = constant$$

$$b = size parameter$$

$$\delta = distribution parameter$$

 Δn_T = number of droplets having a diameter greater than d

ROSIN-RAMMLER (1933)

$$1 - v = e^{-(d/\bar{d}_R)^{\delta}}$$

a series

8

6

4

.

1 - v = volume fraction of total droplet population occuring
 diameter greater than d

 $d_{R} = size parameter$

δ = dictribution parameter

TABLE I (IA)

SUMMARY OF REPORTED DROPLET SIZE - DISTRIBUTION

EXPERIMENTAL DATA

IA - CONST. FLOW CROSS SECTION - GAS-LIQUID SYSTEMS

Description of Study	Flow Condtions	Droplet Data	Misc. Data
Investigators - Date System	Flow <u>Cross</u> Section Quality (x)	Repres <u>entati</u> ve Size Range	Measur <u>ement</u> Method Application
Fluids	Gas Velocity (u _g)	Distribution	Remarks
Azzopardi, Freeman & Whalley (1978) Vertical Upward Air - Water	ID = 32 mm x = .3183 u _g = 23-42 m/s	d ₃₂ = 69-170 µm Rosin-Rammler distri- bution function fit	Diffraction (Laser) Basic Study
Cousins & Hewitt (1968) Vertical Tube Upward Flow Air - Water	ID = 0.375 " <u>.95</u> cm x = 0.15 - 0.67 u _g = 93-163 f/s <u>28-50</u> m/s	d = 70-360 µm	Photography Basic Study For entrained droplets $^{u}d/u_{g} \approx 0.9$
Cumo et al (1974) Vertical Rectangular Upward Flow Freon	0.3 x 0.5 cm x = 0.96 - 1.46 Based on enthalpic balance - superheated vapor.	$d_{prob} = 12-25.9 \ \mu m$ $d_{prob} = \frac{d_{mean}}{2}$ Fitted to proposed distribution function. See section on distribution functions.	Photography Basic Study Increased pressure reduced range of droplet size.
Forslund & Rohsenow (1968) Vertical Tube Upward Flow Nitrogen	D = 0.228" = 0.58 cm = 0.323" = 0.82 cm = 0.462" = 1.2 cm x = 0.3 - 0.8 $u_g = 50-150 \text{ f/s}$ = 15-45 m/s	100-1000 µm	Photography Boiling Burnout Study d = f (q/A)

æ.,

Page 2 TABLE I (IA) (con't)

0

Lindsted, Evans, Gass & Smith (1978) Vertical Tube Upward Flow Air-Water	D = 1.25" = <u>3.2</u> cm x = 0.2 - 0.9 u _g = 30-70 f/s = 9-21 m/s	d = 250-2500 µm	Photography Basic Study
Mayinger & Langner (1976) Vertical Tube Upward Flow R - 12		d = 20 - 850 µm	Photography In-tube boiling
Namie & Ueda (1972) Rectangular channel Horizontal Air-Water Air-Water + surface active agent	D = 1.25" = 3.2 cm u _g = 26 m/s	d = 40 - 450 µm	Photography Examination of entrainment from single wave
Pogson, Roberts & Waibler (1970) Vertical Tube Upward Flow Steam - Water	x = 0.5 - 0.8	$d_{prob} = 30 \ \mu m$ $d_{mean} = 41 \ \mu m$ $\frac{\Delta n}{\Delta d} = 0.0003 d^2 e^{-0.08 d}$	Photography Basic Study Heat Transfer

11

-

Page 3 TABLE I (IA) (con't)

P

Tatterson, Dailman & Hanratty (1977) Horizontal-Rectangular Air ~ Water	î x 12" <u>2.5</u> x <u>30</u> cm	$d_{vm} = 460-720 \text{ µm}$ (volume mean diameter) $\frac{d_{max}}{d_{vm}} = 2.9 \left \frac{d_{30}}{d_{vm}} = 0.34 \right $ $\frac{d_{10}}{d_{vm}} = 0.15$ Fitted to Mugele-Evans distribution function	High Voltage Probe Basic Study Also Anal. Data Woodmanese & Hanratty (1969) Cousins & Hewitt (1968) Wicks & Dukler (1966) Pogson et al (1970) Namie & Ueda (1972)
Wicks & Dukler (1966) Vertical Rectangular	$0.75 \times 6''$ $1.9 \times 15 \text{ cm}$ x = 0.19 - 0.82	d _{max} = 600-2000 µm	Electrical Conductance Needle Points Basic Study
Air - Water	ug <u>23-77</u> m/s		MacVean & Wallis (1969) discuss measurement method & data reduction
Whalley, Azzopardi, Pshyk & Hewitt Vertical tank Upward tube	0.01m x 0.06m x = 0.16 - 0.71 u _g = 34-63 m/s	d _{mean} = 23-41 µm	Oil capture/micruscope Basic Study

8

12

TABLE I (IB)

SUMMARY OF REPORTED DROPLET SIZE - DISTRIBUTION

EXPERIMENTAL DATA

IB - NOZZLES, ORIFICES, SPRAYS

DESCRIPTION OF STUDY	FLOW CONDITIONS	DROPLET DATA	MISCELLANEIOUS DATA
Investigators - Date System Fluids	Geometry Relative Gas Velocity	Representative Size Range Distribution	Measurement Method Application Remarks
Boll, Flais, Maurer & Thompson (1974) Venturi Air - Water	D _{throat} = 14" 35 cm u _g = 100-300 f/s m/s	d ₃₂ = 50-400 µm	Light transmissometer (interferc…eter)
De Corso (°960) Nozzle Air - Water	Nozzle	d ₃₂ = 40.7-108.4 µm	Photography Fuel Nozzle Explored influence of pg (air) Minimum in d ₃₂ ys p
Dombrowski & Munday (1968) (Book Chapter) Sprays Air-Liquid			Summarize reported work of 11 investigators on: Drop Size Relations for Impact Jet Atomizers

×. ..

Page 2 TABLE I (IB) (con't)

-

į.

-

	yorversion and a star start share about about an order and the start of the start of the start start and a start	a na de ser de la cale de la contracte de la constanció de la constanció de la constanció de la constanció de s	namen har den aven in de einer sens namen einer einer einer einer ander einer Arten die einer Mehren auf der Bereiten auf die
Frazer, Dombrowski, and Routley (1963) Twin fluid Atomiser Rotating Cup Air - Oils	D _{cup} = 4" Rotation speeds 1500-6000 rpm x = 0.15-0.19 u _g = 29-198 m/s	d ₃₂ = 23-230 µm 1 _{max} = 210-630 µm Data fitted by Rosin Rammler	Photography Absorption Basic Study
Gooderum & Bus-nell (1969) Superheated Waterjets Air - Water	Superheated water stream into air D _{orifice} =0.01&0.02 in. ≃0.025&0.05 cm.	d ₃₂ = 10-150 µm	Optical light scattering Basic Study d32/Dorifice Correlates with liquid jet temperature
Ingebo & Foster (1957) Spray Air - Iso Octane - JP 5 - Benzene - Carbon tetrachloride - Water	D _{orifice} = 0.010 in. = 0.025 cm. = 0.020 in. = 0.050 cm. = 0.030 in. = 0.075 cm. = 0.040 in. = 0.10 cm.	$d_{30} = 42-103 \ \mu m$ $d_{max} = 75-375 \ \mu m$ $\frac{d_{max}}{d_{30}} \approx 3 \ (for Water)$	Photography Fuel Nozzle
Mugele & Evans (1951) Sprays Anal. data of: Lee (1932) - Houghton (1950) Kolupaev (1941) Johnstone & Kleinschmidt (1938) Air-fuel Cooper (1937) Harkins & Beeman (1929) Oil into Emulsion	Sprays into continuous phase.	Lee (1932) d ₃₂ = 69 µm Houghton (1950) d ₃₂ = 19 µm Kolupaev (1941) d ₃₂ = 239 µm Fitted data to pro- posed distribution function	

•

4.1

Page 3 TABLE I (IB) (con't)

Nukiyama & Tanasawa (1939) Orifices-Nozzles Air - Water -Alcohol-Water - Glycerene- Water	Sharp Edged Orifices Cylindrical Nozzles	$d_{\text{mean}} = \frac{1.83}{(u_g - u_g)} \sqrt{\frac{\sigma}{\rho}}$	Encapsulation in oil then microscopic measurement Basic Study
Simmons (1977) Spray Air-JP 4	21 Nozzles 16 Different Designs	d = 10-500 μ m d ₃₂ α d _{mass} Median	Optical-TV camera and wax droplet capture. Both methods produce same results Fuel Nozzle
Vorontsov (1976) Nozzle Steam - Water	Nozzle	d = 10-80 µm	Electrical conuction needle points Basic Study Larger droplets at nozzle cantes lire than at edge or cone.
Wang & Tien (1972) Nozzles N ₂ - Carbopol (non-newtonian) - Water - Glycerene	Nozzle Grooved core	Square Root Normal Distribution $f(d) = \frac{1}{s\sqrt{2\pi}} e^{-\frac{(d^{1/2}-d^{1/2})^2}{2s^2}}$ s = standard deviation	Droplet freezing and sieving Basic Study Same relationships hold for Newtonian and non- Newtonian

.

-

.

TABLE I (IC)

-

¢

REPORTED DROPLET SIZE - DISTRIBUTION

EXPERIMENTAL DATA

IC LIQUID-LIQUID SYSTEMS

Description or Study	Flow Conditions	Droplet Data	Miscellaneous Data
Inves <u>tigators -</u> Date <u>System</u> Fluids	<u>Geometry</u> Continuous Fluid Velocity	Repr <u>esentative</u> Size <u>Range</u> Distribution	Mea <u>surement Me</u> thod Ap <u>plication</u> Remarks
Collins & Mundsen (1970) Vertical Tube Downward Flow Water - Shell Solv. - Light Oil - Iso Alcohol	D = 0.745 in. 1.9 cm. u = 14-20 f/s water = 4.3 - 6.1 m/s	$d_{32} = 250-420 \ \mu m$ Light 0il $d_{32} = 210-400 \ \mu m$ Shel <u>l Solv.</u> $d_{32} = 80-110 \ \mu m$ Iso Alcohc!	Photographic Basic Study (Reactors) Light Oil & Shell Solv. show substantial d ₃₂ change up to 576 L/D downstream of injection.
Karabelas (1978) Horizontal Tube Water - Hydrocarbons	D = 5.04 cm u = 1-3 m/s water	d ₃₂ = 350-850 μm Distribution fits Rosin-Rammler (1933) & uppr. log. limit Mugele - Evans (1951) reasonably well Does not agree with Collins-Kundsen (1967)	Encapsulation & Photo- graphic Basic Study Encapsulation believed more accurate measure- ment method
Kubie & Gardner (1977) Horizontal Tube Helical Tube Upward Flow Water-Isoamyl Alcohol -nButyl Acetate	D _{horiz} = 1.72 cm D _{helix} = 2.54 cm 6° angle (to horiz) u = 1-3.4 m/s water	d = 100-700 µm	Photographic Basic Study Aiso analized data of Wicks-Dukler (1966) Cousins-Hewitt (1968)

2

.

TABLE II

: J .: .

-

SUMMARY OF PREDICTIVE EXPRESSIONS

FOR

DROPLE'T SIZE

and the second	UNITING SPRATS, UNITICE	13, LIQUID-LIQUID SISILI	 О Примена со продата на примената на примената на примената на примената на примената со примената примената на примената на примена примената на примената на примена на примената на примената на примената на примената на примена на примената на примената на примената на примената на примената на примената на примената на на примената на примената на на примената на примена на примената на примената на Примената на примената на примена Примената на примената на применат
Investigator(s)	Predictive Expression	Comparisons	Remarks
Cumo et al (1973)	$Re_{prob} = \frac{u_g \rho_g d_{prob}}{\nu_g}$ $= 123.1 (1 - p/pc)^{0.31}$ $P_c = Fluid Critical$	Own Data	Expression shows: ^p g/p _l a significant factor
Hinze (1949)	We = $\frac{p_{g}(u_{g} - u_{\ell})^{2} d_{max}}{\sigma}$ = Const. (13 to 22)	Isshiki (1959) Const = 6.5	Forces on Formed Droplet
		Wicks & Dukler (1966) Agreement with range of Hinze const. if $\left(\frac{u_g - u_g}{2}\right)$ is used Forslund & Pohsenow (1966) Const. = 7.5	

TTTING SERANS ODTETOES I TOUTO_I TOUTO SYSTEMS)

.

Ċ.

Page 2 TABLE 11 (con't)

.

2

.

-15

		AND ADDRESS OF A DESCRIPTION OF A DESCRIPT	A STATE OF A
James (1976)	dα <mark>1</mark> ug ²		Extends work of Bradley (1973) (Kelvin-Helmholtz) Droplet formation frcm waves (ligaments)
; "in et al (1960)	$We = \frac{pg \left(\frac{d_{max}}{2}\right)u_g^2}{\sigma}$ $Re = \frac{\left(\frac{d_{max}}{2}\right)u_gp_g}{\mu_g}$ $Const. = (We)(Re)^{1/2}$ $Const. = 0.45-0.5$ $Non-burning$ $Const. = 0.55-0.71$ $Burning$	Own Data	Studied: Single, formed droplet subjecand to shock wave
Tatterson et al (1977)	$\frac{d_{mass}}{D} \left(\frac{\rho_g u_g^2 D f s}{\sigma}\right)^{1/2}$ = 0.016 fs = smooth wall friction factor	Own Data Wicks & Dukler (1966) Cousins & Hewitt(1968) General Agreement Namie & Ueda (1972) Pogson et al (1970) Some Agreement	Kelvin-Helmholtz droplet formation from waves (ligamenus).

Ċ

TAB_E III (IIIAa)

SUMMARY OF EXPERIMENTAL DROPLET SIZE DATA

WHICH SHOWS INFLUENCE OF:

IIIA CONTINUOUS PHASE (GAS) VELOCITY

IIIAa CONSTANT CROSS SECTION CONDUITS

AUTHOR SYSTEM GEOM. FLUIDS	DATA RANGE	APPARENT INFLUENCE
Azzopardi et al (1973) Vertical Upward 3.2 cm dia Air - Wate:	u _g = 35-66 m/s x ~ 0.25-0.9 d ₃₂ = 17-170µm	$\frac{d_{32} \alpha \frac{1}{u_1^{1+*}}}{g}$
Cumo et al (1973) Vert. Rectangular 0.5cri x 0.3 cm Freon	d = 12-26 µm prob	Re _{prob} = $\frac{G \times d_{prob}}{\mu}$ Implies first power gas velocity
Forslund & Rohsenow (1968) Vertical Tube 0.23, 0.32, 0.46 in.D cm	u = 50-150 f/s 5 15-46 m/s x = 0.3 - 0.8 d = 100-1000 µm	We (d _{max}) = 7.5 Indirectly verified
Lindsted et al (1978) Vert. Upward 1 1/4" diameter Air - Water		Data available but reduction required

ø

.

Page 2 TABLE III (IIIAa) con't

Tatterson et al (1977) HorizRectangular 1" high, 1/2" wide Air-Water	$u = 7-15 \text{ f/s} \\ g = 2.1-4.6 \text{ m/s} \\ x \approx 0.1 - 0.9 \\ dvu = 460-720 \mu\text{m} \\ (volume mean dia) \end{cases}$	$\frac{d_{50\%}}{h} \propto \frac{-(1)}{g}$ $d \propto u_g^{\left(\frac{1.8}{2}\right)}$
Wicks - Dukler (1966) Vert. Downward (rect) 3/4" x 6" channel Air - Water	u _g = 77-253 f/s 24-77 m/s d _{max} = 600-2000 μm	We = $\frac{1}{\frac{u_g}{2}}$

 (\mathbf{j})

TABLE III (IIIAb)

.

SUMMARY OF EXPERIMENTAL DROPLET SIZE DATA

WHICH SHOWS INFLUENCE OF:

CONTINUOUS PHASE (GAS) VELOCITY

IIIAb; b = Nozzles, Orifice, Sprays

AUTHOR		
SYSTEM GEOM.	DATA RANGE	REMARKS
FLUIDS		
Banerjee et al (1969) Air Nozzle thru liquid entrains droplets Air - Water - Water Glycerine	d ₃₂ = 400-800 µл;	d ₃₂ a $\frac{1}{u_g^{1-8}}$
Boll et al (1974) Venturi Scrubber Air-Water	$u_{g} = 100-300 \text{ f/s}$ (throat) = 30-91 m/s $\tilde{m}_{L/\tilde{m}g} = \frac{5-20 \text{ gal}}{1000 \text{ f}^3}$ $d_{32} = 50-400 \mu \text{m}$	^d :32 ° $\frac{1}{u_g^{1.602}}$
Dombrowski & Monday (1968) Summary Jet Atomizers Swirl Nozzles Air-Water -Fuels		Atomizers $d = u_g^{-1/2} (2EQ)$ $= u_g^{-(1)} (1EQ)$ $= u_g^{-0.79} (1EQ)$

Page 2 TABLE IIIAb (con't) Nozzles, Orifice, Sprays

1 6 m

ke.

TABLE III (IIIAc)

SUMMARY OF EXPERIMENTAL DROPLET SIZE DATA

WHICH SHOWS INFLUENCE OF:

CONTINUOUS PHASE (GAS) VELOCITY

IIIAc LIQUID-LIQUID SYSTEMS

AUTHOR SYSTEMS FLUIDS	DATA RANGE	REMARKS
Collins & Kundsen (1970) Downward - vert 0.745 inches Water-Shell Solv. -Light Oil -Iso Alcchol	u _{cont} = 14-20 f/s = 4.3-6.1 m/s Conc (vol) = 0.6-10 d ₃₂ = 80-420 µm	Complex expression roughly d α <u>1</u> cont
Karabelas (1978) Horiz 5.04 cm D Water-Hydrocarbons	u _{cont} = 1-3 m/s d ₃₂ = 350-850 µm	$d_{95} \propto \frac{1}{u^{1} \cdot 1}$
Kubie & Gardner (1977) Horiz. Tube Helical Tube Water-Isoaml Alcohol -nbutyl Acetate	u _{cont} = 1-3.4 m/s d = 100-700 µm	d same for helical & horiz. $d \propto \frac{1}{u(1+1)}$ cont

2.8 . 1.

ŝ

23

é. .

TABLE IIIB

SUMMARY OF EXPERIMENTAL DROP SIZE DATA

WHICH SHOWS INFLUENCE OF:

CONDUIT SIZE (DIAMETER OR HYDRAULIC DIAMETER)

AUTHOR SYSTEM FLUIDS	DAYA RANGE	REMARKS
Karabelas (1978) Horiz. 5 cm D Liquid - Liquid Water-Hydrocarbons	D _t = 5 cm d ₃₂ = 350-850 um u = 1-3 m/s cont. phase	d ₉₅ αD
Kubie et al (1977) Horiz Tube 17.2 mm dia. Helical 25.4 mmD Liquid-Liquid Water - Iso-Alcohol -nButl Acetate	D _t = 17.2 mm horiz D _z = 25.4 mm helical d = 100-700 µm u = 1-3.4 m/s cont	Wicks-Dukler Air-Water Cousins-Hewitt Air-Water Incl. date W-D C1966 C-H L1968 d _m α D ^{3/4}
Tatterson et al (1977) Horiz-Rectangular lin. x 12 in. Plus Wicks-Dukler (1966) Pogson et al (1970) Cousirs-Hewitt(1968) Air-Water Steam-Water (Pogson)	D = 1" x 12" Horiz $\frac{3/4" x 6" \text{ Down}}{3.4 \text{ cm } \text{Vert}}$ $\frac{3/8" \& 1 1/4" \text{ Vert}}{\text{Up}}$ $u_g = 7-253 \text{ f/s}$ $2-77 \text{ m/s}$ $d = 6-2000 \text{ µm}$	d a D ^{1/2}

TABLE IIIC

SUMMARY OF EXPERIMENTAL DROPLET SIZE DATA

WHICH SHOWS INFLUENCE OF:

FLUID PROPERTIES, ($\sigma,\mu)$ Droplet, ρ_g (Continuum)

Y

	and a second s	n na an
AUTHOR SYSTEM FLUIDS	DATA RANGE	REMARKS
Collins & Knudsen (1970) Downward Vert 0.745" diameter Liquid-Liquid Water-Shell Solv. -Light Oil -Iso Alcohol	$\frac{dyne/cm}{y} \frac{cp}{p} \frac{Lbm/f^3}{p}$ Shell Solv 40 1 48 Light Oil 17.6 15 33 Iso Alcohol 13 8.5 53 Water 72 Measured at Sta. Downstream of injection L/D = 27.3-576	Station Downstream (L/D) 27.3 576 $d_{32} = 420$ 250 = 400 210 = 110 80 Expression for $d_{()}$ complex. Cannot easily separate property effect. Initial droplet size may indicate effect of σ (certainly not linear). Breakup pattern over length may indicate a strong time (rate) factor for some property combinations.
Cumo et al (1974) Vert. Rectangular 5 mm x 3 mm Freon	d _{prob} = 12-26 µm	$d_{prob} = f\left(\frac{\rho_{\ell}}{\rho_g} \right)$
Ingebo & Foster Orifices Air - Iso Octane - JP 5 - Benzine - Carbon Tetrachloride - Water		$D \propto \left(\frac{We}{Re}\right)^{1/4}$

Page 2 TABLE IIIC (con't)

4

-

TABLE III D

SUMMARY OF EXPERIMENTAL DROPLET DATA

WHICH SHOWS INFLUENCE OF:

Ü

ø

-

.

-

QUALITY OR FILM THICKNESS

AUTHOR SYSTEMS FLUIDS	DATA RANGE	REMARKS
Azzopardi et al (1978) Upward flow - 32 mm diameter Air - Water	u _g = 35-66 m/s x = 0.25-0.9 d ₃₂ = 17-162µm	 For behavior with quality: 1) Predictions of James(1976) & Hinze (1949) for d₃₂ shows moderate increase with decreased quality. 2) Correlations of Boll et al (1974) and Nukiyama & Tanasawa (1938) show no change in d₃₂ with quality. 3) Experimental data of authors show a minimum for d₃₂ at 25-30% quality. 4) Measured size below all predictions.
Boll et al (1974) Venturi Air - Water	$\frac{L}{G} = \frac{5-100 \text{ gal}}{1000 \text{ f}^3}$ $u_g = 100-300 \text{ f/s}$ $u_g = 30-90 \text{ m/s}$ $d_{32} = 50-400 \mu\text{m}$	2 Term Expression $d_{32} \approx \left(\hat{m}_{g} \right) 1.9$
Nukiyama & Tanaswa (1939) Orifce Air - Water - Alcohol Water - Glycerene Water		For Q_{A/Q_L} Small $d_{32} \propto \frac{m_2}{m_g}$

27

-

Page 2 TABLE III D (con't)

.

ι

i.

ŝ

 $\frac{d_{50\%}}{\tilde{h}} = f\left(\frac{\sigma}{\rho g u_g^2 \tilde{h}}\right) 1/2$ x = 0.1 - 0.9Tatterson et al (1977) $u_g = 7-15 \text{ f/s}$ g = 2-4.6 m/sHoriz-Rectangular l" high, 12" wide h is a function of quality d_{50%} = 460-720 µm Air - Water

Norenclature

t

-

- d drop diameter
 D conduit diameter (or equivalent diameter)
- fs smooth surface friction factor
- h mean liquid film thickness
- m mass rate of flow
- n specific number of droplet population
- N total number of droplets
- q heat transfer rate
- Re Reynolds number, udp
- u fluid velocity
- We Weber number, $\frac{\rho_g u_g^2 d}{\sigma}$
- x quality
- u viscosity
- σ surface tension
- p density

Subscripts

- cont continuum fluid
- g gas
- e liquid

For special subscripts of (d) see the section on Effective Droplet Diameter.

REFERENCES AND BIBLIOGRAPHY

- AZZOPARDI, B.J. (1977). Measurement of drop sizes, UKAEA Report AERE-R8667. HTFS FS 192.
- AZZOPARDI, B.J., FREEMAN, G. and WHALLEY, P.B. (1978). Drop sizes in annular two phase flow, UKAEA Report AERE-R9074.
- BANERJEE, T.S., ROY, N.K., and RAO, M.N. (1969). Studies of entrainment of drops in flow through orifices - Part I: Mechanism of entrainment and drop size distribution, Indian J. Technol., Vol. 7, pp. 301-307.
- BOLL, R.H., FLAIS, L.R., MAURER, P.W. and THOMPSON, W.L. (1974). Mean drop size in a full scale venturi scrubber via transmissometer, J. Air Pollution Control Assoc., Vol. 24, p. 934.
- BRADLEY, D. (1973). On the atomisation of liquids by high velocity gases, J. Phys. D.: Appl. Phys., Vol. 6, p. 1724.
- COLLINS, S.B. and KNUDSEN, J.C. (1970). Drop size distributions produced by turbulent pipe flow of immiscible liquids, AICHe Journal, Vol. 16, No. 6, pp. 1072-1080.
- COUSINS, L.B. and HEWITT, G.F. (1968). Liquid phase mass transfer in annular two-phase flow: droplet deposition and liquid entrainment, UKAEA Report AERE-R5657.
- CUMO, M., FARELLO, G.E., FERRARI, G. and PALAZZI, G. (1972). On twophase highly dispersed flows, CNEN-RT ING (72) 19, pp. 203-217.
- CUMO, M., FARELLO, G.E., FERRARI, G. and PALAZZI, G. (1974). On twophase highly dispersed flows, ASME J. of Heat Transfer, Vol. 96, Series C, No. 4.
- DE CORSO, S.M. (1960). Effect of ambient and fuel pressure on spray drop size, J. Eng. Power, pp. 10-18.
- DOMBROWSKI, N. and MUNDAY, G. (1968). Spray drying, Biochem. Biolog. Engineering Science, Vol. 2, p. 209.
- DOMBROWSKI, N. and TAHIR, M.A. (1977). Atomisation of oils by swirl spray pressure nozzles, J. Inst. Fuel, Vol. 50, p. 59.
- FORSLUND, R.P. and ROHSENOW, W.M. (1966). Thermal non-equilibrium in dispersed flow film boiling in a vertical tube, M.I.T. Report No. 75312-44.
- FRAZER, R.P., DOMBROWSKI, N. and ROUTLEY, J.H. (1963). The atomization of a liquid sheet by an impinging air stream. Chemical Engineering Science, Vol. 18, pp. 339-353.

- GOODERUM, P.B. and BUSHNELL, D.M. (1969). Measurement of mean drop sizes for sprays from superheated waterjets, J. Spacecraft Rockets, Vol. 6, No. 2, pp. 197-198.
- HINZE, J.O. (1949). Forced deformation of viscous liquid globules, Applied Sci. Res., Vol. Al, p. 263.
- HUGHMARK, G.A. (1967). Liquid-liquid spray column drop size, holdup, and continuous phase mass transfer, I. & E.C. Fundam., Vol. 6, No. 3, pp. 408-413.
- INGEBO, R.D. and HAMPTON, H.F. (1957). Drop size distribution for crosscurrent breakup of liquid jets in airstreams, Natl. Advisory Comm. for Aeronautics, TN#4087.
- ISSHIKI, M. (1959). Theoretical and experimental study on atomization of liquid drop in high speed gas stream, Report No. 35, Transportation Technical Research Institute, Tokyo, Japan.
- JAMES, P.W. (1976). A note on the applicability of a simple model of gas atomisation to entrainment in annular two phase flow, UKAEA Report AERE-M2820.
- KARABELOS, A.J. (1978). Droplet size spectra generated in turbulent pipe flow of dilute liquid/liquid dispersions, AIChE, Vol. 24, No. 2, p. 170-180.
- KUBIE, J. and GARDNER, C. (1977). Drop sizes and drop dispersion in straight tudes and in helical coils, Chem. Engr. Sci., Vol. 32, p. 195-202.
- LINDSTED, R.D. (1977). A photographic technique to obtain droplet and flow pattern data in two phase flow for use in modeling, Ph.D. Thesis, University of Oklahoma.
- LINDSTED, R.D., EVANS, D.L., GASS, J. and SMITH, R.V. (1978). Droplet and flow pattern data, vertical two phase (air-water) flow using axial photography, Wichita State University Engineering Report.
- MACVEAN, S.S. and WALLIS, G.B. (1969). Experience with the Wicks-Dukler probe for measuring drop size distributions in sprays, Dartmouth College, Hanover, New Hampshire, Report, 29 pages.
- MAYINGER, F. AND LANGNER, H. (1976). Steady state and transient entrainment behavior in upward co-current annular flow, NATO Advanced Study Institute in Two Phase Flow, Istanbul.
- MUGELE, R.A. and EVANS, H.D. (1951). Droplet size distribution in sprays, Indust. Engng. Chem., Vol. 43, p. 1317.

NAMIE, S. and UEDA, T. (1972). Droplet transfer in two-phase annular mist flow, Bull. J.S.M.E., Vol. 15, p. 1568.

NUKIYAMA, S. and TAMASAWA, Y. (1938). An experiment on the atomisation of liquid - Part 4: The effect of the properties of liquid on the size of drops, Trans. Soc. Mech. Engrs. Japan, Vol. 5, p. 136.

POGSON, J.T., ROBERTS J.H. and WAIBLER, P.J. (1970). An investigation of the liquid distribution in annular-mist flow, J. Heat Transfer, Vol. 92, p. 651.

RABIN, E.A., SCHALLENMULLER, R. and LAWHEAD, R.B. (1960). Displacement and shattering of propellant droplets, Final summary report. Rocketdyne, North American Aviation, Inc.

ROSIN, P. and RAMMLER (1933). J. Inst. Full. 7, 29.

- SIMMONS, H.C. (1977). The correlation of drop size distributions in fuel nozzle sprays: Part 1: The drop size/volume fraction distillation. Trans. ASME: J. Engineering for Power, Vol. 99, p. 309.
- SLEICHER, C. (1962). Maximum stable drop size in two-phase flow, AIChE J., Vol. 8, p. 471-477.
- TATTERSON, D.F. (1975). Rates of atomisation and drop size in annular two phase flow, Ph.D. Thesis, University of Illinois, Urbana.
- TATTERSON, D.F., DALLMAN, J.C. and HANRATTY, T.J. (1977). Drop size in annular gas liquid flows, AIChE J., Vol. 23, p. 68.
- VORONTSOV, V.D. (1976). Experimental determination of drop size in a flow of moist water vapor in nozzles, High Temp., Vol. 14, No. 3, pp. 506-511.
- WANG, K. and TIEN, C. (1972). Indian Engr. Chem. Proc. Design and Develop., Vol. 11, No. 2.
- WHALLEY, P.B., AZZOPARDI, B.J., PSHYK, L. and HEWITT, G.F. (1977). Axial view photography of waves in annular two phase flow, UKAEA Report AERE-8787.
- WICKS, M. and DUKLER, A.E. (1966). In situ measurements of drop size distribution in two phase flow: A new method for electrically conducting liquids, International Heat Transfer Conference, Chicago, Illinois.
- WOODMANSEE, D.E. and HANRATTY, T.J. (1969). Mechanism for removal of droplets from a liquid surface by a parallel air flow, Chem. Eng. Sci., 24, 299.

(7.77)	U.S. NUCLEAR REGULATORY COMMISSIO BIBLICGRAPHIC DATA SHEET	N	NUREG/CR-04	(Assigned by DDC) 76	
. TITLE AND SUBTIT	LE (Add Volume No., if appropriate)		2. (Leave plank)		
Summary of Reported Droplet Size Distribution Data in Dispersed Two Phase Flow		3. RECIPIENT'S ACC	3. RECIPIENT'S ACCESSION NO.		
7. AUTHOR(S)			5. DATE REPORT C	OMPLETED	
R. V. Smith	and B. J. Azzopardi		MONTH	YEAR	
PERFORMING ORG	ANIZATION NAME AND MAILING ADDRESS	(Include Zip Code)	DATE REPORT IS	ISUED	
Wichita State University		August	1 1978		
1845 Fairmo	bunt		6. (Leave blank)		
Wichita, Ka	inasas 67208			S // save blank/	
			8. (Leave blank)		
2. SPONSORING ORC	SANIZATION NAME AND MAILING ADDRESS	5 (INCLUOR 210 COOR)	10. PROJECT/TASK/	10. PROJECT/TASK/WORK UNIT NO.	
Washington.	D. C. 20555		11. CONTRACT NO.	11. CONTRACT NO.	
Systems E	ngineering Branch		NRC-04-77-	NRC-04-77-133	
13. TYPE OF REPORT		PERIOD	COVERED (Inclusive dates)		
Topical Rep	port	1			
5. SUPPLEMENTARY	NOTES		14. (Leave blank)		
Summary tab	les of reported work on drop]	et size and	distribution in		
Summary tab dispersed f across sect liquid syst droplet siz gas velocit	oles of reported work on dropl two phase flow are presented. tions, flow from nozzles, orif tems is reported. A summary t ze and distribution is given, ty, geometry and fluid propert	et size and Results for ices and spr able of pred and the appa ies is repor	distribution in tests with constan ays and flow in lig ictive expressions rant influence of ted.	t flow uïd - for	
Summary tab dispersed f across sect liquid syst droplet siz gas velocit	Document AKALYSIS	et size and Results for ices and spr able of pred and the appa ies is repor	distribution in tests with constan ays and flow in liq ictive expressions rant influence of ted.	t flow uïd - for	
Summary tab dispersed f across sect liquid syst droplet siz gas velocif	DOCUMENT ANALYSIS	et size and Results for ices and spr able of pred and the appa ies is repor	distribution in tests with constant ays and flow in liquictive expressions rant influence of ted.	t flow uîd - for	
Summary tab dispersed f across sect liquid syst droplet siz gas velocit	Document ANALYSIS	et size and Results for ices and spr able of pred and the appa ies is repor	distribution in tests with constant ays and flow in liquictive expressions rant influence of ted.	t flow uïd - for 21. NO. OF PAGE	
Summary tab dispersed t across sect liquid syst droplet siz gas velocit 75. IDENTIFIERS/OF 18. AVAILABILITY ST UNRESTRICTED	DOCUMENT ANALYSIS	et size and Results for ices and spr able of pred and the appa ies is repor	distribution in tests with constant ays and flow in liquictive expressions rant influence of ted. RIPTORS ECURITY CLASS (This report) ECURITY CLASS (This report)	t flow uid - for 21. NO. OF PAGE 22. PRICE	

•()

 1^{\uparrow}

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

1

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

f.)

2

POSTAGE AND FEES PAID U.S. NUCLEAR REGULATORY COMMISSION

