## OAK RIDGE <br> NATIONAL LABORATORY

mafriv macicrua

# Uranium Oxide-Iron Oxide Mixed Aerosol Experiments in Steam-Air Atmospheres: NSPP Tests 611, 612, 613, and 631, Data Record Report 

M. L. Tobias
R. E. Adams

Prepared for the
U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research
Under Interagency Agreement DOE 0551-0551-A1

## NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United Statos Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legai liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights

## Available from

Superintendent of Documents
U.S. Government Printing Office

Post Office Box 37082
Washington, D.C. 20013-7982
and

National Technical Information Service
Springfield, VA 22161

## Engineering Technology Division

```
URANIUM OXIDE-IRON OXIDE MIXED AEROSOL EXPERIMENTS
            IN STEAM-AIR ATMOSPHERES:
        NSPP TESTS 611, 612, 613, AND 631,
                DATA RECORD REPORT
        M. L. Tobias R. E. Adams
```

        Manuscript Completed - December 9, 1987
        Date Published - January 1988
    NOTICE: This document contains information of a preliminary
nature. It is subject to revision or correction and there-
fore does not represent a final report.

Prepared for the
U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Commission
Under Interagency Agreement DOE 0551-0551-A1
NRC FIN No. BO121

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC, for the
U.S. DFPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400
Page
SUMMARY ..... v
ABSTRACT ..... 1

1. INTRODUCTION ..... 1
2. NUCLEAR SAFETY PILOT PLANT (NSPP) ..... 4
2.1 NSPP System ..... 4
2.1.1 Equipment for measurement of aerosol parameters ..... 5
2.1.2 Equipment for measurement of system parameters ..... 7
2.1.3 Aerosol generating equipment ..... 8
2.2 NSPP LWR Aerosol Test Procedures ..... 8
3. DESCRIPTION OF INDIVIDUAL AEROSOL TESTS ..... 10
3.1 LWR Aerosol Test 611 ..... 10
3.2 LWR Aerosol Test 612 ..... 11
3.3 LWR Aerosol Test 613 ..... 12
3.4 LWK Aerosol Test 631 ..... 13
4. RESULTS FROM INDIVIDUAL AEROSOL TESTS ..... 15
4.1 Summary and Data Listings for Test 611 ..... 16
4.2 Summary and Data ilstings for Test 612 ..... 26
4.3 Summary and Data Listing for Test 513 ..... 36
4.4 Summary and Data Listing for Test 631 ..... 46
5. REFERENCES ..... 56

This data record report symmarizes the resalts from four tests in which the behavior of mixed aerosols of uranium oxide and iron oxide in steam-air atmospheres was studied. The tests were conducted in the Nuclear Safety Pilot Plant, which is part of the LWR Aerosol Release and Transport Program at the Oak Ridge National Laboratory. This research is sponsored by the Division of Reactor System Safety, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission and the purpose is to provide a data base on the behavior of aerosols in containmer: under conditions assumed to occur in postulated LWR accident sequences. These data are to provide experimental validation of aerosol behavioral codes under development elsewhere.

In three of the tests described, the test aerosols were gengrated and introduced into a quasi-steady-state steam-air environment. The fourth test was in a dry air environment to provide data for comparison with the other experiments. The primary experimental observation was aerosol mass concentration as a function of time. Maximum solid aerocal mass concentrations in these four tests ranged from 0.82 to $2.9 \mathrm{~g} / \mathrm{m}^{3}$,

The data contained in this report should be utilized in preference to data contained in previous progress reports of the program. In particular, the aerosol mass concentration data contained in this report have been revised and are lower than those reported previously as the result of the correction of an error made in the method of calculatiny aerosol sample volumes.
in this report, a brief description is given of each test together with the results in the form of tables and graphs. Included are data or aerosol mass concentration, aeros/; fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures at various locations, tempersture fradients near the vessel wall, and steam condensation rates on the vessct wall.

# URANIUM OXIDE-IRON OXIDE MIXED AEROSOL EXPERIMENTS IN STEAM-AIR ATMOSPHERES: NSPP TESTS 611, 612, 613, AND 631, DATA RECORD REPORT <br> M. L. Tobias R. E. Adams 

ABSTRACT

This data record report summarizes the results from three tests involving mixed aerosols of uranium oxide and iron oxide in a steam-air environment and one test in a dry environment. This research, sponsored by the U.S. Nuclear Regulatory Commission, was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences; this data base will provide experimental validation of aerosol behavioral codes under development. In the report, a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

## 1. INTRODUCTION

The Nuclear Safety Pilot Plant (NSPP) project is part of the LWR Aerosol Release and Transport (ART) Program at the Oak Ridge National Laboratory, sponsored by the Division of Reactor System Safety, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission. The purpose of the project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences. These data are intended to provide experimental validation of aerosol behavior codes under development elsewhere.

The test program provided for the study of the behavior, within containment, of simulated LWR accident aerosols emanating from fuel, reactor core structural materials, and from concrete-molten core materials interactions. Aerosols of $\mathrm{U}_{3} \mathrm{O}_{8}$ (fuel), $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (core structure), and concrete were studied individually to establish the characteristics of their aerodynamic behavior. Various mixtures were then studied to establish their interactive and collective behavior. Tests were conducted in an environment of either dry air [relative humidity (RH) less than 20\%] or stean-air [relative humidity (RH) ~100\%] with aerosol mass
concentra ion as a function of time being the primary observation. This repo - es three tests in a steam-air environment and one test in a dry a: mosphere with mixed aerosols of uranium oxide and iron oxide.

The data contained in this report should be utilized in preference to data contained in previous progress reports of the program. In particular, the aerosol mass concentration data contained herein have been revised and are lower in magnitude than those reported previously as the result of the correction of an error made in the method of calculating aerosol sample volumes.

## 2. NUCLEAR SAFETY PILOT PLANT (NSPP)

### 2.1 NSPP System

The NSPP is composed of a test vessel, aerosol generating equipment, analytical sampling equipment, and system parameter measuring equipment. A schematic representation of the system is given in Fig. 1. The NSPP vessel is a stainless steel cylinder with dished ends having a diameter of 3.05 m , a total height of 5.49 m , and a volume of $38.3 \mathrm{~m}^{3}$. The wall thickness of the vessel is 9.53 mm , the floor area is $7.7 \mathrm{~m}^{2}$, and the internal surface area (including top and floor) is $68.9 \mathrm{~m}^{2}$. For calculation of fallout values, the total area of cpwardfacing horizontal surfaces is $10.3 \mathrm{~m}^{2}$ and the total surface area for plateout within the vessel, including both vertical and horizontal internal structural surfaces, is $75.3 \mathrm{~m}^{2}$. The vessel outer surface (with the exception of two 0.91 m diam flanges - one on the top and one on the sidewall of the vessel) is covered with insulation consisting of 13 of fiberglass and 76 of calcium silicate. The thermal conductivity values are 43.3 (at 294 K ) and 60.6 (at 311 K ) $\mathrm{mW} /(\mathrm{m} \mathrm{K}$ ), respectively. The design cemperature limitation is 423 K , and the design pressure limitation is $0,41 \mathrm{MPa}$ gauge pressure.

Originally, aerosol studies in the NSPP were related to the behavior of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosols released under assumed LMFBR accident conditions into dry secondary containment. To enable aerosol tests to be conducted in steam-air environments, as would be expected to occur in LWR accident situations, certain modifications of and additions to the facility were required. These modifications were completed before conduct of the $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol tests, the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol tests, and the limestone concrete aerosol tests, which were reported previously ( $1,2,3$ ).

Most of the major components of the NSPP system were retained for application in the LWR aerosol studies. The only components removed were the sodium injection system and the sodium burn pan. The $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol generator, used previously, was retained. Steam is supplied to the NSPP by the ORNL plant supply system and is introduced into the vessel at a point $\sim 0.6 \mathrm{~m}$ above the low point of the vessel floor. Instrumentation is included to measure the temperature and pressure of the steam at the steam injection nozzle.

In tests where steam injection continued over a number of hours, a significant amount of steam condersate was collected on the bottom of the vessel. The system has been arranged so that this condensate can be transferred from the vessel to the weighing tark without significant loss of vessel pressure.

A small fan was mounted near the bottom of the vessel to aid in uniformly dispersing the test aerosol in the vessel atmosphere.


Fig. 1. Schematic of Nuclear Safety Pilot Plant (NSPP) Facility.

### 2.1.1 Equipment for measurement of aerosol parameters

All of the aerosol sampling systems in the NSPP were originally designed for operation in a low humidity environment. For successful application in a steam-air environment some modifications were required, either in the system or in the method of operation; the primary problem in all the samplers was control of the steam condensate.

Aerosol mass concentration. Aerosol mass concentrations are obtalned with two types of filter samplers. The in-vessel sampler io a self-contained unit with 12 filter tubes, a sequential valve, and a stepping motor; it is remotely operated from the control room. The wall aerosol sampler penetrates the vessel wall through a ball valve and flange arrangement; it is inserted and retrieved manually. These systems were modified by the addition of water traps and water adsorption tubes to prevent moisture from reaching the pressure- and flow-measuring devices. In addition, to prevent steam from penetrating the in-vessel sampling canisters, an externally controlled, pressurized air system keeps the interior of the canisters at a pressure slightly higher than the vessei atmosphere so that any leakage is outward from the canister. This feature protects the contact points of the small stepping motor which are very susceptible to moisture.

The sampling procedure for either type of sampler requires drawing a measured volume of containment vessel atmosphere through a sampling pack that contains four membrane filters in series. All aerosol mass concentration values are reported under the test conditions that existed within the vessel at the time that the sample was taken. The filter material is Millipore Fluoropore with a 0.5 m-pore size.

The locations of the four in-vessel samplers and the three wall aerosol samplers are noted in Table 1.

Table 1. Locations of aerosol mass concentration samplers

| Sampler name | Radial position | Elevation from lowest point (m) | Radial distance from centerline (m) |
| :---: | :---: | :---: | :---: |
| In-vessel 151 | East | 4.15 | 0.58 |
| In-vessel 152 | Southeast | 4.15 | 1.06 |
| In-vessel 153 | East | 2.30 | 1.09 |
| In-vessel 154 | Southeast | 1.34 | 1.11 |
| Wall 155 | South | 4.15 | 0.61 |
| Wall 156 | Southeast | 2.80 | (25 mm from wall) |
| Wall 157 | Southwest | 2.80 | 1.06 |

Aerosol fallout rate. Aercaol fallout rate is measured with an incremental, retrievable coupon sampler. This system also penetrates the vessel wall through a ball valve and flange arrangement. The sampler is located in the southwest quadrant at 51 mm from the vessel wall and is $\sim 0.56 \mathrm{~m}$ above the low point of the vessel floor.

Aerosol plateout rate. Aerosol plateout rate is measured with an facremental, retrievable coupon sampler; the coupon is in the form of a disk and fits flush with the vessel wall. This system penetrates the vessel wall through a ball valve and flange arrangement and is located in the northeast quadrant $\sim 2.92 \mathrm{~m}$ above the low point of the vessel floor.

Total fallout (TFO) collectors. Total fallout is determined with six shallow dishes, $65-\mathrm{mm}$ in diameter, placed along a vessel radius near the bottom of the vesse? within the northwest quadrant. The dishes are placed $\sim 30 \mathrm{~mm}$ apart; the edge of the first dish (TFO-1) is 13 mm from the wall. The exposed collectors are retrieved with remote tools at the end of test operations and before liquid spray decontamination of the interior of the vessel.

Total plateout (TPO) collectors. Total plateout is determined with four flat disks, 61-m diam, mounted flat on the vessel wall. One disk (TPO-BE) is mounted on the east side of the vessel at an elevation of 0.76 m from the low point of the vessel bottom. Two disks (TPO-Bk and TPO-TW) are mounted on the west side of the vessel, 0.16 m and 2.67 m , respectively, from the bottom of the vessel. The remaining disk (TPOTN) is mounted on the norti side of the vessel 2.67 m from the bottom of the vessel. These plateout disks are also retrleved with remote tools along with the total fallout collectors.

Aerosol particle size. Aerodynamic aerosol particle size is measured with two different instruments. One instrument used was a cascade impactor (Andersen Mark III Particle Sizing Stack Sampler). This eightstage impactor operates at a cas flow rate of $236 \mathrm{~mL} / \mathrm{s}$ and covers the aerodynamic mass median diameter (AMMD) range from 0.54 to $13.6 \mathrm{\mu m}$. The other instrument used was a nodified version of the Stöber Spiral Duct Centrifuge by Research Developments, Los Alamos, NM, and designated as a Spiral Centrifuge Aerosol Spectrometer $(4,5)$. This instrument was applied at a rotor speed of 3000 rpm with a gas sample flow rate of $8.5 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$; useful range in this application was 0.2 to $6 \mu \mathrm{~m}$ aerodynamic mass median diameter.

Neither instrument can tolerate condensation of a vapor during measurement of the aerosol size distribution. One method by which a gasaerosol sample (containing water vapor) can be processed external to the vessel is to dilute and "dry" the aerosol sample with instrument air before introduction into the sizing instrument. A small auxiliary sampling vessel ( $0.18 \mathrm{~m}^{3}$ in volume) was installed for this purpose next to the NSPP vessel at an elevation of 2.9 m . The external impactors and the centrifuge draw samples from this auxiliary tank.

It is recognized that the AMMD of the "dried" aerosol is not necessarily the same as that of the aerosol existing within the vessel during the test. Operation of a cascade impactor within a steaw-air environment is not a standard application and calibration data are not avallable. However, to be able to pursue an approximate measurement of AMMD within the vessel, a calibration curve was calculated using accepted
mathematical relationships relating to impactor stage constants with corrections made for viscosity and slip factors (6). Gas flow rates were chosen so that the velocity of gas through the holes of the impactor plates of the internal impactors under test conditions would be approximately the same as that of the external impactors.

Two impactors were mounted within the vessel at elevations of 0.56 m (southwest quadrant) and 2.8 m (southeast quadrant). The impactors were installed before the start of the test and allowed to heat up and thermally equilibrate as the vessel was heated during the preliminary steam injection period.

Samples of aerosol for electron microscopy are also taken from the auxiliary sampling vessel. The aerosol is deposited onto carbon-coated copper grids using a Model 3100 Electrostatic Aerosol Sampler (ThermoSystem, Inc.).

### 2.1.2 Equipment for measurement of system parameters

Temperature of the vessel atmosphere. Twelve thermocouples (3.2-mm-diam sheathed Chromel-Alumel) are used for the measurement of the vessel atmospheric temperatures. At each of three elevations in the vessel, there are four thermocouples (one placed in each quadrant). The elevations are $1.22 \mathrm{~m}, 2.74 \mathrm{~m}$, and 4.27 m . Table 2 identifies and locates each thermocouple. Thermocouple responses are recorded with strip-chart recorders and with a Digitrend data logger.

Wall temperature gradients. Two thermocouple arrays, each having five thermocouples ( $.6-\mathrm{mm-diam}$ sheathed Chromel-Alumel) are mounted near the wall, one at 2.7 m elevation on the east radius and the other at 1.2 m elevation on the north radius. The tips of the thermocouples in each array are located at $10 \mathrm{~mm}, 5 \mathrm{~mm}, 2.5 \mathrm{~mm}$, and 1.25 mm distance

Table 2. Location of thermocouples for measurement of temperature of vessel atmosphere

| Thermocouple <br> No. | Elevation <br> $(\mathrm{m})$ | Quadrant | Radial distance <br> $(\mathrm{m})$ |
| :---: | :---: | :---: | :---: |
| $4-1$ | 4.27 | N | 0.48 |
| $4-2$ | 4.27 | W | 1.07 |
| $4-3$ | 2.74 | N | 0.48 |
| $4-4$ | 2.74 | S | 0.97 |
| $4-5$ | 2.74 | W | 1.22 |
| $4-6$ | 1.22 | W | 1.07 |
| $4-7$ | 4.27 | S | 0.97 |
| $4-20$ | 1.22 | S | 0.61 |
| $4-21$ | 4.27 | E | 0.48 |
| $4-22$ | 1.22 | E | 0.81 |
| $4-23$ | 2.74 | E | 0.99 |
| $4-24$ | 1.22 | N | 1.37 |

from the wall and on the wall surface; a sixth thermocouple is located on the outer surface of the vessel at approximately the same location, Thermocouple responses are recorded with strip-chart recorders and with the Digitrend data logger.

Veasel gas pressure. Vessel gas pressure is measured with a pressure cell, and the pneumatic signal is converted to an equivalent electrical signal and recorded on a strip-chart recorder and with the Digitrend data logger.

Vessel atmosphere moisture sampler. The mass of steam per unit volume within the vessel was determined by removing a measured volume of gas through a treatment train where the steam was condensed and trapped in an absorbent column. The mass of steam was then determined by weighing.

This system produced rather imprecise data with a large spread in calculated values of relative humidity. Values for the various tests ranged in a random fashion from around $90 \%$ to about $110 \%$. For this reason the values are not included in this report.

Steam condensation rate samples. The rate at which steam condensed on the vessel walls was measured by defining an area of the wall with perimeter seals. After steam condensed on this defined area the water flowed downward until it reached a funneling trough at the lower edge where it drained into a rollecting tank outside the test vessel for subsequent volume measurement. The defined area was hexagonal in shape, covered $0.324 \mathrm{~m}^{2}$, and was located at an approximate elevation of 2.7 m .

### 2.1.3 Aerosol generating equipment

The mixture of test aerosols was generated using two plasma torch (PT) generators (7). Each cuasists of a commercial plasma metalizing torch assembly (METCO 7M System) and a specia2 high-temperature reaction chamber into which the iron or uraniur metal powder was injected together with argon and oxygen gases. Each of the test aerosols was formed by vaporization and oxidation of the powder in the argon plasma flame. Introduction of the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol was by way of a flange on top of the vessel. The $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol was introduced by way of a flange on the side of the vessel (see Fig, 1).

### 2.2 NSPP LWR Aerosol Test Procedures

Experiments 611,612 , and 613 were in a steam-air environment and experiment 631 was performed in dry air (RH <20\%) at ambient conditions. The basic steps in the steam-air aerosol tests were essentially the same. The vessel initially contained air significantly below ambient pressure. The vessel, and the captive air atmosphere, were heated by infecting steam into the vessel; after about 1 h the temperature of the vessel atmosphere reached the desired value. At this point the rate of steam injection was reduced to a level to match steam losses to the vessel wall. After a period of temperature equilibration, the steam condensate (produced during vessel heatup) was drained from the vessel and
moved to the weigh tank. Aerosol generation commenced after this point with introduction into the semi-steady-state steam-air environment for a brief period. The two torches were started separately and operating times were genarally different. A small fan-mixer located near the bottom of the vessel was employed to augment thermal convection forces and aid in mixing. Steam injection at the low rate continued for 6 h after start of aerosol generation in these three tests. Total test duration was 24 h in all cases. The small fan-mixer operated for the first 10 h of each test.

At termination of test operations the steam condensate was removed from the vessel, weighed and transferred to the liquid waste system. The vessel was then opened and the various samplers were removed; decontamination of the vessel interior by liquid sprays completed the test procedures.

Test 631 was conducted to obtain data on the behavior of mixed aerosols under dry conditions for use in estimating the extent of influence of steam on the aerosol behavior. All steps, with the exception of steam injection, were the same as for the steam-air tests.

All of the sampling devices (filter packs, impactors, coupons, etc.) were disassembled, packaged, and submitted to the ORNL analytical laboratory for determination of the aerosol content. The physical characteristics of the aerosol were studied by use of electron microscopy.

## 3. DESCRIPTION OF INDIVIDUAL AEROSOL TESTS

### 3.1 LWR Aerosol Test 611

Experiment 611 was the first test involving a mixed aerosol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$. To prepare the test atmosphere ${ }_{\star}$ steam was introduced into the vessel, which was inftially at $36 \mathrm{kPa},{ }^{*}$ to bring the vessel atmosphere (air) to an average temperature of 382 K and a pressure of 183 kPa . This step required about 1.3 h ; at this point, the rate of steam injection was reduced, and the accumulated steam condensate was removed to a holding vessel. The two aerosols were then produced with separate PT generators and mixed within the vessel. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol was generated for a period of 11.5 min starting at time 0 ; the $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol generator was operated for a period of 8 min starting at an elapsed time of 2 min , and ending at 10 min , but it sppears that all of the uranium metal powder was probably injected into the generator over the first 4 min of operation. Steam injection at the low rate was maintained for $\sim 6$ h to balance steam losses caused by wall condensation. Over this period, the temperature and pressure slowly increased until, at 6 h , the average temperature was 383 K and the pressure was 203 kPa . The vessel was allowed to cool for 18 h after termination of the steam injection.

The two aerosols were injected into the vessel in the upper quadrant at two different locations, and the steam was introduced near the bottom of the vessel. To facilitate mixing, a small fan-mixer was operated in the center of the vessel near the bottom. This fan-mizer produced e fairly homogeneous mixture of aerosol and steam as indicated by results from the four in-vessel filter samplers installed at four different locations within the vessel.

The first set of aerosol mass concentration samples was taken at 4 min after termination of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation. At this time the average mass concentrations of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol were 0.88 and $0.55 \mathrm{~g} / \mathrm{m}^{3}$, respectively. Extrapolation of these data to the time of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation cutoff $(11.5 \mathrm{~min})$ yields values of 1.4 and $0.9 \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol, respectively. These ratios of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ are about 1.6 , satisfactorily close to a desired equal concentration ratio.

The aerodynamic mass median diameter (AMMD) of the aerosol was measured by both the spiral centrifuge sampler and the cascade impactor (Andersen Mark III). The "wet" aerosol was dried by dilution with clean air before introduction into the samplers. At 18 min after termination of the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation, an AMMD of about $1 \mathrm{\mu m}$ (standard deviation, $\sigma_{\sigma}=1.5$ ) for the mixed aerosol was determined by the centrifuge sampler ${ }^{\xi}$; at 38.7 min , an impactor sample indicated an AMMD of 1.7 mm ( $\sigma_{\mathrm{g}}=1.9$ ) for the aerosol mixture. Determination of the AMMD by using

[^0]only the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ mass fraction or the $\mathrm{U}_{3} \mathrm{O}_{8}$ mass fraction yielded equivalent values to those determined using the total mass of aerosol; this behavior suggests that the two aerosols may be coagglomerating. The rate of disappearance of the two aerosols from the vessel atmosphere was about the same, also suggesting coagglomeration (8).

At the termination of the test $(24 \mathrm{~h})$, the approximate distribution of the mixed aerosol $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{U}_{3} \mathrm{O}_{8}\right)$, as determined by the total fallout samplers, the total plateout samplers, and the final filter samples, was as follows: aerosol settled onto the floor of vessel, $83 \%$; aerosol plated onto internal surfaces, $17 \%$; and aerosol still suspended in the vessel atmosphere, nil.

### 3.2 LWR Aerosol Experiment 612

Experiment 612 was the second test involving a mixed aerosol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$. To prepare the tept atmosphere, steam was introduced into the vessel, which was initially at 36 kPa , to bring the vessel atmosphere (air) to an average temperature of 385 K and a pressure of 218 kPa . This step required about 1.3 h ; at this point the rate of steam injection was reduced, and the accumulated steam condensate was removed to a hoiding vessel. As before, the two aerosols were produced with separate plasma torch aerosol generators and mixed within the vessel. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol was generated for a period of 25.5 min scarting at time 0 ; the $U_{3} O_{8}$ aerosol generator was started at an elapsed time of 20 min and operated for 5 min , ending at an elapsed time of 25 min . Steam injection at the low level was maintained for 6 h to balance steam losses to vessel walls. Over this period, the temperature and pressure increased until, at 6 h , the average temperature was 388 K and the pressure was 234 kPa . The vessel was allowed to cool for 18 h after termination of steam injection.

The two aerosols and the steam were fairly well mixed by the fanmixer as indicated by results for $U_{3} O_{8}$ aerosol from the four in-vessel filter samplers installed at four different locations within the vessel (8).

The first set of aerosol mass concentration samples was taken at 2.8 min after termination of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation. At this time the average mass concentrations of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ were 0.14 and $0.41 \mathrm{~g} / \mathrm{m}^{3}$, respectively. Extrapolation of these data to the time of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generator cutoff $(25.5 \mathrm{~min})$ yields values of 0.22 and $0.6 \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol, respectively. These ratios of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{U}_{3} \mathrm{O}_{8}$ are about 0.3 to 1 ; similar ratios for Run 611 were about 1.6 to 1 . The rate of disappearance of the two aerosol components from the vessel atmosphere is approximately the same, suggesting that the two aerosol components were coagglomerated.

The AMMD of the aerosol was measured by a cascade impactor (Andersen Mark III). Other samples of the aerosol were taken with the spiral centrifuge sampler, but insufficient material was obtained for chemical analysis. The wet aerosol was dried by dilution with clean air before introduction to the cascade impactor. At 4.5 min after termination of the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generator, an AMMD of about $1.5 \mu \mathrm{~m}\left(\sigma_{\mathrm{g}}=2.1\right)$
was determined for the mixed aerosol. Determinqtion of the wh $u$. using only the $\mathrm{Fe} 2 \mathrm{O}_{3}$ mass fraction produced a value c ? $1.2 \mathrm{~km}(\mathrm{cg}=2.3)$; by using the $U_{3} U_{8}$ mass fract on, an AMMD of $1.8 \mu m\left(\sigma_{g}\right.$ a 9.9) was obtained. This oimisari:y in the AMMD's end if 's rrovites some support for the observation that the two aerosols pre possibly wagslomerated.

At the iermination of (he test ( 24 k ), the approximate distribution of the maxed aerusol $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{U}_{3} \mathrm{O}_{8}\right)$, as determined by the total fallout samplers, the totzl plateout ssmplers, and the final filter samples, was as follows: aerosol settled onto the floor of the vessel, $76 \%$; aerosol plated onto siterual cyrfaces. $24 \%$; art aerosol still suspended in the vessel atmosphere, nil.

### 3.3 LWR Aerosol Experiment 613

Experiment 613 was the third in a series involving a mixed aerosol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$. To prepare the test atmosphere, steam was iricroduced into the vessel, which was initially at 37 kPa and ambient temperature, to bring the vessel atmosphere (air) to an average temperature of 381 K and an absolute pressure of 178 kPa . This heating step required about 1.2 h ; at this point, the rate of steam injection was reduced and the accumulated steam condensate in the bottom of the NSPP vessel was removed to a holding vessel. The two test aerosjls were then produced with separate plasma torch aerosol generators and mixed within the vessel. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol gas generated for a period of 26 inin starting at time 0 ; the $U_{3} O_{8}$ aerosol generator was operated for 3 min starting at 13 min and ending at 16 min (measured from time 0). Steam injection at the low rate was maintained for $\sim 6 \mathrm{~h}$ ro balance stean losses at the vessel wall. Over this period, the temperature anc pressure slowly increased until, at 6 h , the average temperatare was 386 K and the pressure was 220 kPa . The vessel was allowed to cool for 18 h after teraination of steam injection.

The two aerosols were injected into the vessel in the upper quadrant at two different locations, and the steam was intruduced near the bottom of the vessel. To facilitate mixing of the two aerosols and the steam, a small fan-mixer was installed in the center of the vessel near the bottom. Operation of the fan-mixer produced a fairly nomogeneous mixture of aerosol and steam as indicated by the results for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol from the four in-vessel filter samplers installed at four different locations within the vessel (9).

The first set of aerosol mass concentration samples was taken at $24 \mathrm{~min}(2 \mathrm{~min}$ before terminntion of aerosol generation), and the aerosol mass concentration values were scattered indicating nonhomogeneous conditions. The second set of samples was taken at $34.4 \mathrm{~min}(8.4 \mathrm{~min}$ after termination of aerosol generation), and the values were comparable, indicating aore complete mixing of the aerosol within the vessel. At this time, the average mass concentrations of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol were 0.58 and $0.072 \mathrm{~g} / \mathrm{m}^{3}$, respectively. Extrapolation of these data to the time of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generator cutoff ( 26 min ) yields values of 0.80 and $0.13 \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol, respectively. The ratio of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ to $\mathrm{U}_{3} \mathrm{O}_{8}$ was, therefore, 6.2 to 1 , which is reasonably close to
the target ratio of 10 to 1 . The rate of disappearance of the two aerosols from the vessel environment was approximately the same, suggesting that the two aerosols were coagglomerated (9).

The aerodynamic mass median diameter (AMMD) of the aerosol was measured by both the spiral centrifuge sampler and the cascade impactor (Andersen Mark III). The "wet" aerosol was dried by dilution with clean air before introduction into the samplers. At 29.3 min after start of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation, an AMMD of about $1.7 \mu \mathrm{~m}\left(\sigma_{\mathrm{g}}=1.7\right)$ for the mixed aerosol was determined by the spiral centrifuge sampler; at 138 min , an impactor sample indicated an AMMD of $1.0 \mu \mathrm{~m}\left(\sigma_{\mathrm{g}}=2.1\right)$ for the aerosol mixture. Determination of the AMMD by using only the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ mass fraction or the $\mathrm{U}_{3} \mathrm{O}_{8}$ mass fraction yielded nearly equivalent values for the AMMD in the previous two mixer aerosol experiments (Nos. 611 and 612). The same behavinr was true in this experiment for the early centrifuge sample; in the later impactor sample, the $\mathrm{U}_{3} \mathrm{O}_{8}$ mass fraction produced an AMMD of $1.1 \mathrm{\mu m}\left(\sigma_{\mathrm{g}}=3.3\right)$, however. In this later sample ( 138 min ), the mass of sample taken was 10 w , and this could account for the large difference in the value of $\sigma_{\mathrm{g}}$. On the whole, the sizing data suggest coagglomeration of the two aerosols.

At the termination of the experiment ( 24 h ), the approximate distribution of the mixed aerosol $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{U}_{3} \mathrm{O}_{8}\right)$, as determined by the total fallout samplers, the total plateout samplers, and the final filter samples was as follows: aerosol settled onto floor of vessel, $65 \%$; aerosol plated onto internal surfaces, $35 \%$; and aerosol still suspended in the vessel atmosphere, nil.

### 3.4 LWR Aerosol Experiment 631

This experiment involved study of the behavior of $\mathrm{U}_{3} \mathrm{O}_{8}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ mixed aerosol in a dry air environment. Results from this test serve to illustrate the magnitude of the influence of steam on mixed aerosol behavior as studied in Tests 611,612 , and 613.

The two aerosols were generated simultaneously with separate PT aerosol generators and mixed within the vessel. The initial test atmosphere was dry air at ambient temperature and pressure; the relative humidity was $<20 \%$. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol was generated for a period of 16.2 min starting at time 0 ; the $U_{3} \mathrm{O}_{8}$ aerosol was generated for a period of 4.3 min starting at elapsed time 11 min and ending at 15.3 min .

Although this experiment did not involve steam, the small fan-mixer was operated in the same manner as in Tests 611-613 to promote mixing of the two aerosols. The mixing was fairly complete as indicated by the results for the $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol component from three of the four in-vessel filter samplers; sampler 152 did not operate satisfactorily after the first sample was taken.

The first set of aerosoi mass concentration samples was taken at $22.3 \mathrm{~min}\left(\sim 6\right.$ min after termination of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generation). At this time, the average mass concentrations of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ were 0.87 and $1.17 \mathrm{~g} / \mathrm{m}^{3}$, respectively. Extrapolation of these data to the time of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol generator cutoff ( 16.2 min ) yields values of 1.2 and $1.7 \mathrm{~g} / \mathrm{m}^{3}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol, respectively. The rate of
disappearance of the two aerosols from the vessel environment was approximately the same, suggesting that the two aernsols were coagglomerated.

The aerodynamic mass median diameter (AMMD) of the aerosol was measured by both the spiral centrifuge sampler and the cascade impactor (Andersen Mark III). Although the vessel did not contain steam, sampling procedures identical to those used in steam, were followed. Six samples as a function of elapsed time were taken for size analysis: four were taken from the auxiliary osmpling tank external to the NSPP vessel, and two were taken inside the ISPP vessel. Determination of the AMMD was made in three ways, one using the $U_{3} O_{8}$ fractional mass, one using the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ fractional mass, and one using the total aerosol mass, $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{U}_{3} \mathrm{O}_{8}$. For the most part, equivalent values were calculated, lending support to the contention that the two aerosols were coagglomerated (9).

At the termination of the experiment $(24 \mathrm{~h})$, the approximate distribution of the mixed aerosol $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}+U_{3} \mathrm{O}_{8}\right)$, as determined by the total fallout samplers, the total plateout samplers, and the final filter samples was as follows: aerosol settled onto the floor of the vessel, $52 \%$; aerosol plated onto internal surfaces, $48 \%$; and aerosol still suspended in the vessel atmosphere, nil .

## 4. RESULTS FROM INDIVIDUAL AEROSOL TESTS

The results from each test are summarized in this section in the form of tables and graphs. At the beginning of each subsection a summary sheet is presented listing information on aerosol source, vessel test atmosphere, aerosol parameters and system parameters for each test. Following this summary sheet are graphs and tables reporting aerosol mass concentrations, fallout and plateout rates, total fallout and plateout masses, aerosol particle sizes, absolute vessel pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel walls. Time is measured from start of aerosol generation. To aid in the interpretation of these graphs and tables, the following comments are offered.

Mass concentration. Results from the seven mass concentration filter samplers are presented in two forms; a table lists the values obtained frow each individual sampler, and a graph presents the numerical average value obtained by computation from the values from individual samplers operated at the same time period. Values of mass concentrations are for the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol component and the $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol component within the vessel atmosphere computed under vessel atmospheric conditions existing at the time of the sample. The location of each sampler may be found in Table 1.

Aerosol fallout and plateout rates; cumulative values for fallout and plateout mass. The data reported in these tables were obtained from the coupon samplers. An average fallout or plateout rate was computed from the mass of aerosol deposited on the coupon over the time interval of exposure. The average elapsed time from the start of aerosol generation is taken as one-half of the time interval of exposure added to the elapsed time at the start of the coupon exposure.

Values for cumulative mass fallout or plateout were computed by summing the values obtained by multiplying the fallout and plateout rate by the appropriate time period for exposure of the coupon and the appropriate area within the vessel.

Total aerosol fallout and plateout. Fallout cups placed near the bottom of the vessel and plateout coupons mounted on the vessel wall were exposed over the full term of each experiment. The mass of aerosol collected by these samplers is used to estimate the total fallout and plateout of aerosol within the vessel. Values determined in this manner should be comparable with the total values computed from results obtained from the rate samplers, but this is not true in every case. Difficulty in obtaining representative samples may be the cause of these inconsistent data.

Aerosol particle size. The data presented were derived with an Andersen Mark III Particle Sizing Stack Sampler (cascade impactor) and a Spiral Centrifuge Aerosol Spectrometer. The raw data were processed to the extent necessary to produce the tables in this report. An aerodynamic mass median diameter (AMMD) may be determined by plotting on log probability paper the "percent smaller than" values against the calibrated aerodynamic diameter value for each stage and reading the AMMD value at $50 \%$.

Vessel atmosphere pressure. For all tests, the vessel initially contained a captive volume of air at ambient pressure, or below. The increase in vessel pressure resulted from the steam injection and the hot gases introduced by the plasma torch aerosol generator. The graph depicts the absolute pressure as a function of time after start of aerosol generation.

Vessel atmosphere temperatures. Three graphs are presented displaying the temperstures within each of the four quadrants at three elevations. The elevations are $1.22 \mathrm{~m}, 2.74 \mathrm{~m}$, and 4.27 m from the low point on the vessel floor; radial distance of each thermocouple from the vessel centerline is given on each graph. Some of the thermocouples at the 4.27 m level can sense the heat of the plasma torch generator and may temporarily indicate a temperature higher than others at this level during aerosol generation.

Temperature profile near vessel wall. Two tables are presented indicating the temperature profiles near the vessel wall on the north radius at an elevation of 1.22 m and on the east radius at an elevation of 2.74 m . One thermocouple is attached to the inner wall surface and five othars are located at varying distances from the vessel wall. Sets of data are listed for various times after start of aerosol generation.

### 4.1 Summary and Data Listings for Test 611

Aerosol source

| of uranium metal powder into generator | 2 kg |
| :---: | :---: |
| Mass of iron meta! powder into generator | 5 kg |
| Duration of aerosol generation | 11.5 min |
| Maximum measured $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol concentration <br> (at 4 min after end of serosol generation) | $0.88 \mathrm{~g} / \mathrm{m}^{3}$ |
| Maximum measured $U_{3} \mathrm{O}_{8}$ aerosol concentration (at 4 min after end of aerosol generation) | $0.55 \mathrm{~g} / \mathrm{m}^{3}$ |
| Estimated average $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol concentration at end of aerosol generation (under test conditions) | $1.4 \mathrm{~g} / \mathrm{m}^{3}$ |
| Estimated average $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol concentration at end of aerosol generation (under test conditions) | $0.9 \mathrm{~g} / \mathrm{m}^{3}$ |

Vessel atmosphere

| Vessel air pressure before steam injection | 36 kPa |
| :--- | ---: |
| Relative humidity at start of aerosol generation | $\sim 100 \%$ |
| Duration of steam injection after start of | 6 h |
| aerosol generation | 237 kg |
| Mass of steam condensate collected after |  |

Aerosol parameters measured
Aerosol mass concentration (average)
Fig. 2
Aerosol mass concentration (individual Tables 3-4
samplers)

```
Aerosol fallout and plateout rates; cumulative
Table 5
fallout and plateout mass
Aerosol integral fallout and plateout mass
Andersen impactor data
Spiral centrifuge aerosol sample data
Table 6 Tables 7-8 Table 9
System parameters measured
Vessel atmosphere pressure
Fig. 3
Figs. 4-6
Vessel atmosphere temperature
Temperature gradient near wall
Steam condensation cate
```

Tables 10-11
Table 12


Fig. 2. Average aerosol mass concentration - NSPP Test 611.

Table 3. Aerosol mass concentration as determined with individual in-vessel samplers - Test 611


Table 4. Aerosol mass concentration as detecmined with individual wall filter samplers - Test 611

| Sampler - <br> Sampler No. | $\begin{aligned} & \text { Time } \\ & (\min ) \end{aligned}$ | $\begin{aligned} & \text { Mass } \\ & \text { concentration, } b \\ & \mathrm{Fe} 2 \mathrm{2}^{3} \\ & \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{aligned}$ | $\begin{gathered} \text { Mass } \\ \text { concentration, } \\ U_{3} 0_{8} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 155-1 | 138.1 | $190^{\text {c }}$ | $610^{\text {c }}$ |
| 156-1 | 138.1 | 380 | 220 |
| 157-1 | 138.6 | 760 | 170 |
| 155-2 | 188.1 | 2400 d | 150 |
| 156-2 | 188.4 | -- | 70 |
| 157-2 | 188.8 | 1100 | 64 |
| 155-3 | 250.1 | 25 | -- |
| 156-3 | 250.3 | -- | 42 |
| 157-3 | 250.8 | 170 | 39 |
| 155-4 | 376.0 | 120 | -- |
| 156-4 | 376.0 | 110 | 41 |
| 157-4 | 376.0 | 32 | 28 |
| 155-5 | 561.0 | -- | 30 |
| 156-5 | 561.0 | 320 | 28 |
| 157-5 | 561.0 | --, | 29 |
| 155-6 | 1413.0 | 1300 d | 23 |
| 156-6 | 1426.0 | -- | 21 |
| 157-6 | 1426.0 | 410 | 15 |
| $a_{\text {Tine measured }} \mathrm{from}$ start of aerosol generation. $b_{\text {Aerosol mass concentration in the vessel under te }}$ |  |  |  |
| $c_{\text {Note }}$ units. These entries are $0.00019 \mathrm{~g} / \mathrm{m}^{3}$ and |  |  |  |
| concentration ${ }^{\text {Doubtful }}$ value omitted from calculation of average |  |  |  |

Table 5. Fallout and plateout data for aerosol components: rate and cumalat (ve asss us tise - NSPP Test 611

| Samplet nase | $\begin{aligned} & \text { Midpolnt } \\ & \text { of } \\ & \text { sampi } 1 \frac{1}{4} \text { g } \\ & \text { tise } \\ & \text { (s) } \end{aligned}$ | Duration of sample ${ }^{a}$ <br> (s) | Fallout, Fe203 |  | Plateont. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  | Fallout, ${ }^{1 / 308}$ |  | Platecut, $\mathrm{U}_{3} \mathrm{Oc}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rate | Cumulative | Race | Cumatative | Rave | Cumulative | Rate | Cumulat ive |
|  |  |  | $\left[\log /\left(s^{2}+s\right)\right]$ | (g) | $\left[\log /\left(\mathrm{m}^{2}+\mathrm{s}\right)\right]$ | (g) | $\left[\log /\left(\mathrm{a}^{2}-\mathrm{s}\right)\right]$ | (g) | $\left[\mathrm{mg} /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (3) |
| FO-1 | 1.033 | 2.065 | 347.6 | 5.2 |  |  | 177.6 | 2.7 | 712.9 | 80.6 |
| $\mathrm{PO}-1$ | 820 | 1,640 |  |  | 628.7 | 71.0 |  |  | 712.9 |  |
| F0-2 | 3,057 | 1,496 | 128.7 | 6.6 |  |  | 59.8 | 3.4 | 20.9 | 82.8 |
| $\mathrm{PO}-2$ | 2,612 | 1.537 |  |  | 136.1 | 85.4 |  |  | 20.9 | 82.8 |
| FO-3 | 4.960 | 1,848 | 25.6 | 6.9 |  |  | 67.2 | 4. 3 | 3.5 | 83.3 |
| PO-3 | 4,545 | 1.896 |  |  | 2. | 92.3 |  |  | 3.5 | 83.3 |
| F0-4 | 8,024 | 3,842 | 8.67 | 7.1 |  |  | 4.5 | 4.4 | 1.1 | 83.6 |
| $\mathrm{PO}-4$ | 7.620 | 3,877 |  |  | 35.3 | 101.8 |  |  | 1.1 | 83.6 |
| FO-S | 12,697 | 5,118 | 6.51 | 7.3 |  |  | 3.1 | 4.5 | 0.35 | 83.7 |
| P0-5 | 12,308 | 5.088 |  |  | 123.4 | 145.1 |  |  | 0.35 | 83.7 |
| F0-6 | 25.034 | 19.126 | 0.85 | 7.4 |  |  | 0.52 | 4.6 | 0.17 | 83.9 |
| PO-6 | 24,629 | 19.228 |  |  | 14.0 | 163.6 |  |  | 0.17 | 83.9 |
| FO-7 | 60,642 | 51, 545 | 0.10 | 7.4 |  |  | 0.26 | 4.7 |  | 84.0 |
| PO-7 | 60,156 | 51.469 |  |  | 2.15 | 171.2 |  |  | 0.03 | 84.0 |

[^1]Table 6. Aerosol fallout and plateout data: integral samples - NSPP Test 611

| Fallout |  |  | Plateou* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sampler name | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\mathrm{mg}) \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ U_{3} 0_{8} \\ (\mathrm{mg}) \end{gathered}$ | Sampler <br> name | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\mathrm{mg}) \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ U_{3} \mathrm{O}_{8} \\ (\mathrm{mg}) \end{gathered}$ |
| TFO-1 | 37.18 | 33.01 | FPO-BW | 0.26 | 1.23 |
| TFO-2 | 25.74 | 31.83 | TPO-BE | 0.14 | 1.00 |
| TFO-3 | 31.46 | 36.55 | TPO-TW | 0.13 | 1.20 |
| TFO-4 | 28.60 | 36.55 | TPO-TN | 0.12 | 1.19 |
| TFO-5 | 47.19 | -- |  |  |  |
| TrO-6 | 34.32 | 36.55 |  |  |  |
| Average | 34.08 | 34.90 | Average | 0.16 | 1.16 |
| Estimate fallout | $\begin{aligned} & \text { total } \\ & 74.7 \mathrm{~g} \end{aligned}$ | 76.5 g | Estimate plateou | $\begin{gathered} \text { tocal } \\ 3.9 \mathrm{~g} \end{gathered}$ | 27.9 g |

${ }^{a}$ Calculated from vessel-to-sample area ratios.

Table 7. Internal Andersen impactor data - Test 611

| Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sauple No. | Component | $\begin{aligned} & \text { Time } \\ & (m i n) \end{aligned}$ | Aerodynamic diameter (um) |  |  |  |  |  |  |  |
|  |  |  | 14.2 | 8.9 | 6.0 | 4.1 | 2.6 | 1.3 | 0.82 | 0.61 |
| $1^{\text {a }}$ | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 45.3 | 94.7 | 90.5 | 82.8 | 71.3 | 53.7 | 20.7 | 5.8 | 1.2 |
| 1 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 45.3 | 97.8 | 95.2 | 88.6 | 83.4 | 70.8 | 26.1 | 8.2 | 2.1 |
| 1 | Total | 45.3 | 96.2 | 92.9 | 85.7 | 77.3 | 62.2 | 23.4 | 7.0 | 1.7 |

[^2]Table 8. External Andersen 1mpactor data - Test 611


Table 9. Spiral centrifuge aerosol sampler data - Test 611

| Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample No. | Component | Tine <br> (min) | Aerodynamic diameter ( $\mu \mathrm{m}$ ) |  |  |  |  |  |  |
|  |  |  | 4.4 | 2.2 | 1.5 | 1.2 | 1.0 | 0.91 | 0.70 |
| 1 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 17.9 | 95.5 | 90.0 | 81.3 | 64.7 | 46.1 | 39.6 | 13.1 |
| 1 | U308 | 17.9 | 98.3 | 90.4 | 77.7 | 63.3 | 50.7 | 39.4 | 18.0 |
| 1 | Total | 17.9 | 97.0 | 90.2 | 29.3 | 64.0 | 48.6 | 39.5 | 15.8 |



Fig. 3. Vessel atmosphere absolute pressure - NSPP Test 611.


Fig. 4. Vessel atmosphere temperature at 1.22 m elevation - NSPP test 611.


Fig. 5. Vessel atmosphere temperature at 2.74 m elevation - NSPP test 611 .


Fig. 6. Vessel atmosphere temperature at 4.27 m elevation - NSPP test 611 .

Table 10. Temperature profile at 1.22 m elevation for various times after start of aerosol generation - NSPP Test 61 i

| $\begin{aligned} & \text { Time } \\ & (\mathrm{s}) \end{aligned}$ | Temperature readings (K) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance from vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 mm | 255 mm |
| 80 | 382 | 382 | 382 | 382 | 382 | 382 |
| 1,074 | 382 | 383 | 383 | 383 | 383 | 383 |
| 16,022 | 382 | 383 | 383 | 383 | 383 | 383 |
| 18,122 | 382 | 383 | 383 | 383 | 383 | 383 |
| 21,422 | 382 | 383 | 383 | 383 | 383 | 383 |
| 31,073 | 366 | 366 | 366 | 366 | 367 | 366 |
| 87,190 | 324 | 324 | 324 | 324 | 324 | 325 |

Table 11. Temperature profile at 2.74 m elevation for various times after start of aerosol generation - NSPP Test 611

| $\begin{aligned} & \text { Time } \\ & (\mathrm{s}) \end{aligned}$ | Temperature readings ( $K$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance from vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 mm | 533 mm |
| 80 | 381 | 381 | 381 | 381 | 381 | 382 |
| 1,074 | 382 | 382 | 382 | 382 | 382 | 383 |
| 16,022 | 382 | 382 | 382 | 382 | 382 | 383 |
| 18,122 | 382 | 382 | 382 | 382 | 382 | 384 |
| 21,422 | 382 | 382 | 383 | 382 | 383 | 384 |
| 31,073 | 365 | 366 | 366 | 366 | 367 | 368 |
| 87,190 | 324 | 325 | 325 | 325 | 325 | 325 |

Table 12. Steam condensation rates on vessel wall - Test 611

| Sample <br> No. | Sanpling <br> start <br> time <br> $(\mathrm{min})$ | Sample <br> duration <br> $(\mathrm{min})$ | Volume of <br> condensate <br> $\left(\mathrm{cm}^{3}\right)$ | Rate <br> $\left[\mathrm{cm}^{3} /\left(\mathrm{min} \mathrm{m}^{2}\right)\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0 | 32.3 | 37 | 3.5 |
| 2 | 32.8 | 28.0 | 29 | 3.2 |
| 3 | 61.4 | 33.6 | 22 | 2.0 |
| 4 | 45.6 | 67.5 | 37 | 1.7 |
| 5 | 163.7 | 87.3 | 54 | 1.9 |
| 6 | 252.1 | 115.6 | 44 | 1.2 |
| 7 | 368.3 | 206.0 | 14.5 | 0.22 |
| 8 | 574.7 | 859.2 | 5 | 0.02 |

### 4.2 Sumnary and Data Listings for Test 612

Aerosol source
Mass of uranium metal powder into generator 0.1 kg
Mass of 1 ron metal powder into generator
Duration of aerosol generation
0.9 kg
25.5 min

Maximum measured $\mathrm{Fe}_{2} \mathrm{O}_{3}$ aerosol concentration
(at 2.8 min aiter end of aerosol generation)
Max'mum measured $\mathrm{U}_{3} \mathrm{O}_{8}$ aerosol concentration $0.14 \mathrm{~g} / \mathrm{m}^{3}$
(at 2.8 min after end of aerosol generation)
Estimated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration at end of
$0.4: \mathrm{g} / \mathrm{m}^{3}$
aerosol generation (under test conditions)
Estimated $\mathrm{U}_{3} \mathrm{O}_{8}$ concentration at end of aerosol
$0.22 \mathrm{~g} / \mathrm{m}^{3}$
generation (under test conditions)
Vessel atmosphere
Vessel air pressure before steam injection 36 kPa
Relative humidity at start of aerosol generation ~100\%
Duration of stean injection after start of 6 h
aerosol generation
Mass of steam condensate collected after 314 kg start of aerosol generation

Aerosol parameters weasured
Aerosol mass concentration (average)
Fig. 7
Aerosol mass concentration (individual samplers)
Aerosol fallout and plateout rates; cumulative
Table 15
fallout and plateout mass
Aerosol integral fallout and plateout mass
Andersen impactor data
Table 16
Tables 17-18
System parameters meas:ured
Vessel atmosphere pressure
Fig. 8
Figs. 9-11
Vessel at mosphere temperature
Temperature gradient near wall
Steam condensation rate Tables 19-20 Table 21


Fig. 7. Average aerosol mass concentratioa - NSF Test 612.

Tabie 13. Aerosol mass concentration as determined with individual in-vessel samplers - Test 612

| Sampler Sampler No. | $\begin{aligned} & \text { Time }{ }^{a} \\ & (\mathrm{~m} \mid \mathrm{n}) \end{aligned}$ | $\begin{gathered} \text { iass } \\ \text { concentration, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \left(\mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ U_{3} 0_{8} \\ \left(\mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 151-1 | 26.7 | 0.17 | 0.49 |
| 152-1 | 27.3 | 0.17 | 0.56 |
| 153-1 | 29. | 0.10 | 0.37 |
| 154-1 | 29.7 | 0.13 | 0.47 |
| 151-2 | 35.8 | 0.061 | 0.30 |
| 152-2 | 36.3 | 0.036 | 0.25 |
| 153-2 | 38.6 | 0.044 | 0.21 |
| 154-2 | 38.9 | 0.029 | 0.20 |
| 151-3 | 45.1 | 0.017 | 0.15 |
| 152-3 | 45.5 | 0.023 | 0.14 |
| 153-3 | 47.8 | 0.011 | 0.14 |
| 154-3 | 48.1 | 0.020 | 0.12 |
| 151-4 | 56.7 | 0.0087 | 0.058 |
| 152-4 | 57.4 | 0.0005 | 0.057 |
| 153-4 | 60.0 | C. 0043 | 0.054 |
| 154-4 | 60.3 | 0.0026 | 0.054 |
| 151-5 | 81.1 | 0.00030 | 2.013 |
| 152-5 | 81.5 | 0.0010 | 0.0079 |
| 153-5 | 81.7 | -- | -- |
| 154-5 | 82.0 | 0.00043 | 0.010 |
| 15:-6 | 107.7 | $0.0038{ }^{\text {c }}$ | 0.0014 |
| 152-6 | 108.0 | 0.00022 | 0.0013 |
| 153-6 | 108.3 | 0.00035 | 0.00095 |
| $154-6$ | 108.4 | 0.00032 | 0.0012 |
| 151-7 | 140.2 | 0.0014 | 0.00023 |
| 152-7 | 140.5 | 0.00076 | 0.00019 |
| 153-7 | 140.8 | 0.00065 | 0.0004 ? |
| 154-7 | 141.1 | 0,0021 ${ }^{\text {c }}$ | 0.00023 |
| 151-8 | 171.6 | $0.0063^{\text {c }}$ | 0.00010 |
| 152-8 | 172.1 | 0.00034 | 0.00018 |
| 153-8 | 172.5 | 0.00013 | 0.00013 |
| 154-8 | 172.9 | 9.00013 | 0.00013 |
| Time measured from start of aerosol generation.berosol mass concentration in the vessel underAnditions that existed at time the sample was taken. |  |  |  |
| Doub concentrat | value o | ed from calcul | of average |

Table 14. Aerosol mass concentration as determined with individual wall filter samplers - Test 612

| $\begin{aligned} & \text { Sampler - } \\ & \text { Sampler No. } \end{aligned}$ | $\begin{aligned} & \text { Time }{ }^{a} \\ & (\mathrm{~min}) \end{aligned}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Mass } b \\ \text { concentration, } \\ U_{3} 0_{8} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 155-1 | 151.1 | 1,700 ${ }^{\text {c }}$ | $250{ }^{\text {c }}$ |
| 156-1 | 151.5 | 2,900 | 69 |
| 157-1 | 151.9 | 1,800, | 91 |
| 155-2 | 205.4 | 13,000 ${ }^{\text {d }}$ | 100 |
| 156-2 | 205. 6 | 1,600 | 37 |
| 157-2 | 205.8 | 1,800 | 110 |
| 155-3 | 277.0 | 2,100 | 40 |
| 156-3 | 278.0 | 860 | 28 |
| 157-3 | 278.0 | 510 | 27 |
| 155-4 | 401.0 | 320 | 82 |
| 156-4 | 401.0 | 410 | 9 |
| 157-4 | 401.0 | 560 | 14 |
| 155-5 | 550.0 | 1,200 | 33 |
| 156-5 | 550.0 | 850 | 11 |
| 157-5 | 550.0 | 210 | 16 |
| 155-6 | 1384.0 | 170 | 9 |
| 156-6 | 1384.0 | 410 | 6 |
| 157-6 | 1384.0 | 150 | 10 |

$a_{\text {Time measured }} f$ rom start of aerosol generation.
${ }^{b}$ Aerosol mass concentration in the vessel under test conditions that existed at time the sample was taken.
${ }^{c}$ Note units. These entries are 0.0017 and $0.00025 \mathrm{~g} / \mathrm{m}^{3}$, respectively.
${ }^{d}$ Doubtful value omitted from calculation of average concentration.

Table 15. Fallout and plateout data for aerosol components:
rate and cumulative mass vs time - NSPP Test 612

| Sampler name | $\begin{aligned} & \text { Midpoint } \\ & \text { of } \\ & \text { sampling } \\ & \text { tise } \\ & \text { (s) } \end{aligned}$ | Duration of sample ${ }^{a}$ (s) | Fallout, Fe203 |  | Plateout, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  | Fallout, U3O8 |  | Plateout, $\mathrm{Ul}_{3} \mathrm{Os}_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rate | Cumulative | Rate | Cumulative | Rate | Cumblative | Rate | Cunclative |
|  |  |  | $\left[\log /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (8) | $\mid \log /\left(\mathrm{m}^{2}-\mathrm{s}\right) \mathrm{]}$ | (8) | $\left[u g /\left(m^{2}-s\right)\right]$ | (g) | $\left[\lg /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (8) |
| FO-1 | 1,396 | 2.792 | 100.3 | 2.04 |  |  | 36.7 | 0.7 |  |  |
| $\mathrm{PO}-1$ | 1,254 | 2,508 |  |  | 125.1 | 21.6 |  |  | 26.0 | 4.5 |
| *0-2 | 3,708 | 1.272 | No sample |  |  |  | No sample |  |  |  |
| PO-2 | 3,263 | 1,135 | No samle |  | 158.0 | 34.0 |  |  | 529.7 | 45.9 |
| F0-3 | 5.730 | 2,351 | 9.0 |  |  |  | 12.9 |  |  |  |
| PO-3 | 5,273 | 2,425 |  |  | 30.2 | 39.0 |  |  | 25.9 | 50.2 |
| FO-4 | 9,179 | 4, 147 | 4.2 |  |  |  | 3.0 |  |  |  |
| PO-4 | 8,820 | 4,203 |  |  | 120.9 | 74.0 |  |  | 4.4 | 51.5 |
| FO-S | 14.299 | 5,658 | 2.2 |  |  |  | 1.5 |  |  |  |
| PO-5 | 13,907 | 5,645 |  |  | 22.8 | 82.9 |  |  | 3.1 | 52.7 |
| $\mathrm{FO}-6$ | 25,236 | 16,004 | 0.8 |  |  |  | 0.3 |  |  |  |
| PO-6 | 24.955 | 15,980 |  |  | 3.5 | 86.8 |  |  | 1.0 | 53.8 |
| FO-7 | 58, 101 | 49,076 | 0.2 |  |  |  | 0.2 |  |  |  |
| PO-7 | 57,756 | 49,188 |  |  | 1.5 | 91.9 |  |  | 0.1 | 54.1 |

[^3]Table 16. Aerosol fallout and plateout data: integral samples - NSPP Test 612

| Fallout |  |  | Plateout |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sampler name | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe} \mathrm{O}^{2} 3 \\ \text { (mg) } \end{gathered}$ | Sample mass, ( $\mathrm{m}_{3} \mathrm{O}$ ) | Sampier name | $\begin{gathered} \text { Sample mass } \\ \mathrm{Fe}_{2} 0 \\ (\text { (ing }) \end{gathered}$ | Sample mass, $\mathrm{U}_{3} \mathrm{O}$ (ing) |
| TFO-1 | 24.31 | 11.28 | 1:O-BW | 0.744 | 0.324 |
| TFO-2 | 27.17 | 14.38 | TPO-BE | 0.586 | 0.134 |
| TFO-3 | 24.31 | 13.79 | TPO-TW | 1.273 | 0.377 |
| TFO-4 | 32.89 | 17.33 | TPO-TN | 0.972 | 0.369 |
| TFO-5 | 28.60 | 12.26 |  |  |  |
| TFO-6 | 30.03 | 19.69 |  |  |  |
| Average | 27.88 | 14.79 | Average | 0.894 | 0.301 |
| Est1mate fallout | $\begin{aligned} & \text { total } \\ & 61.1 \mathrm{~g} \end{aligned}$ | 32.4 g | Estimate plateou | $\begin{aligned} & \text { total } \\ & 21.6 \mathrm{~g} \end{aligned}$ | 7.26 g |

${ }^{\text {a Csloulated }}$ from vessel-to-sample area ratios.

Table 17. Internal Andersen impactor data - Test 612

| Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | n) | 14.2 | 8.9 | 6.0 | 4.1 | 2.6 | 1.3 | 0.82 | 0.61 |
| $8^{a}$ | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 77.8 | 82.0 | 78.9 | 75.7 | 70.1 | 67.0 | 63.6 | 35.8 | 16.2 |
| 8 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 77.8 | 95.4 | 92.5 | 80.6 | 73.2 | 63.6 | 48.0 | 17.9 | 4.6 |
| 8 | Total | 77.8 | 89.0 | 86.0 | 78.2 | 71.7 | 65.2 | 55.4 | 26.5 | 10.2 |
| $9{ }^{6}$ | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 120.5 | 87.2 | 78.0 | 69.9 | 57.4 | 41.5 | 33.7 | 9.0 | 2.6 |
| 9 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 120.5 | - Insufficient sample |  |  |  |  |  |  |  |
| 9 | Total | 120.5 | 86.3 | 77.8 | 70.0 | 58,4 | 43.6 | 36.0 | 11.5 | 3.8 |

[^4]
## Table 18. External Andersen impactor data - Test 612

| Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Component | Time <br> (min) | Aerodynamic diameter ( $\mu \mathrm{m}$ ) |  |  |  |  |  |  |  |
| No. |  |  | 13.7 | 8.5 | 5.8 | 4.0 | 2.5 | 1.3 | 0.78 | 0.53 |
| 1 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 30.0 | 99.8 | 99.2 | 95.6 | 91.4 | 79.9 | 62.2 | 50.7 | 11.6 |
| 1 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 30.0 | 99.2 | 99.1 | 95.5 | 88.1 | 69.8 | 32.7 | 11.5 | 7.9 |
| 1 | Total | 30.0 | 99.4 | 99.1 | 95.5 | 88.9 | 72.2 | 39.9 | 21.1 | 8.8 |



Fig. 8. Vessel at mosphere absolute pressure - NSPP Test 612.


Fig. 9. Vessel atmosphere temperature at 1.22 m elevation - NSPP test 612.


Fig. 10. Vessel atmosphere temperature at 2.74 m elevation - NSPP test 612.


Fig. 11. Vessel atmosphere temperature at 4.27 it elevation - NSPP test 612.

Table 19. Temperature profile at 1.22 m elevation for various times after start of $a /$ rosol generation - NSPP Test 612

| $\begin{aligned} & \text { Time } \\ & (\mathrm{s}) \end{aligned}$ | Temperature readings (K) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance from vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 man | 255 mm |
| 91 | 384 | 385 | 385 | 385 | 385 | 385 |
| 1,081 | 385 | 386 | 386 | 386 | 386 | 386 |
| 4,450 | 387 | 388 | 388 | 388 | 388 | 388 |
| 8,138 | 389 | 388 | 389 | 389 | 389 | 389 |
| 24,875 | 383 | 383 | 383 | 383 | 383 | 383 |
| 30,875 | 370 | 370 | 370 | 370 | 370 | 370 |
| 57,194 | 343 | 343 | 343 | 343 | 343 | 343 |
| 84,989 | 324 | 324 | 324 | 324 | 324 | 325 |

Table 20. Temperature profile at 2.74 m elevation for various times after s.art of aerosol generation - NSPP Test 612

|  | Temperature readings $(\mathrm{K})$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Time <br> (s) | Thermocouple | locations - distance | from vessel | wall |  |  |
|  | On wall | 1.25 | 2.5 mm | 5 mm | 10 mm | 533 mm |
| 91 | 384 | 384 | 384 | 384 | 384 | 385 |
| 1,081 | 385 | 385 | 385 | 385 | 385 | 386 |
| 4,450 | 386 | 386 | 386 | 386 | 386 | 388 |
| 8,138 | 388 | 388 | 388 | 388 | 388 | 389 |
| 24,875 | 382 | 382 | 382 | 382 | 382 | 383 |
| 30,875 | 374 | 374 | 374 | 374 | 374 | 375 |
| 57,194 | 343 | 343 | 343 | 343 | 343 | 344 |
| 84,989 | 324 | 325 | 325 | 325 | 325 | 325 |

Table 21. Steam condensation rates on vessel wail - Test 612

| Sample <br> No. | Sampling <br> stait <br> time <br> $(m i n)$ | Sample <br> duration <br> (min) | Volume of <br> condensate <br> $\left(\mathrm{cm}^{3}\right)$ | Rate <br> $\left(\mathrm{cm}^{3} /\left(\mathrm{min} \mathrm{m}^{2}\right)\right]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0 | 52.9 | 190 | 11.1 |
| 2 | 53.5 | 15.0 | 7 | 1.4 |
| 3 | 70.3 | 42.4 | 16 | 1.2 |
| 4 | 113.6 | 71.6 | 29 | 1.3 |
| 5 | 185.8 | 97.2 | 54 | 1.7 |
| 7 | 283.9 | 256.4 | 10 | 0.12 |
| 7 | 553.8 | 820.2 | 16 | 0.06 |

NOTE: Area of sampler $=0.324 \mathrm{~m}^{2}$.

### 4.3 Summary and Data Listings for Test 613

## Aerosol source

Mass of uranium metal powder into generator 0.1 kg
Mass of iron metal powder into generator 0.9 kg
Duration of aerosol generation 26 min
Maximud measured $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration
$0.58 \mathrm{~g} / \mathrm{m}^{3}$
(at 8.4 min after end of aerosol generation)
Maximum measured $U_{3} \mathrm{O}_{8}$ concentration
$0.072 \mathrm{~g} / \mathrm{m}^{3}$
(at 8.4 min after end of aerosol generation)
Estimated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration at end of
$0.80 \mathrm{~g} / \mathrm{m}^{3}$
aerosol generation (under test conditions)
Estimated $\mathrm{U}_{3} \mathrm{O}_{8}$ concentration at end of
$0.13 \mathrm{~g} / \mathrm{m}^{3}$
aerosol generation (under test conditions)
Vessel atmosphere
Vessel air pressure at start of $\quad 37 \mathrm{kPa}$
orosol generation
Relative humidity at start of aerosol generation $\sim 100 \%$
Duration of steam injection after start of 6 h aerosol generation
Mass of steam condensate collected after 221 kg start of aerosol generation

Aerosol mass concentration (average)
Aerosol mass concentration (individual samplers)
Aerosol fallout and plateout rates; cumulative
fallout and plateout mass
Aerosol integral fallout and plateout mass
Andersen impactor data
Spiral centrifuge aerosol sample data

## System parameters measured

Vessel atmosphere pressure
Vessel atmosphere temperature
Temperature gradient near wall
Steam condensation rate

Fig. 12
Tables - $2-23$

Table 24

Table 25
Tables 26-27
Table 28

Fig. 13
Figs. $14-16$
Tables 29-30
Table 31


Fig. 12. Average aerosol mass concentration - NSPP Test 613.

Table 22. Aerosol mass concentration as determined with individual in-vessel samplers - Test 613

| $\begin{aligned} & \text { Sampler - } \\ & \text { Sampler No. } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \left(\mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ | Mass ${ }^{b}$ concentration, $\mathrm{U}_{3} \mathrm{O}_{8}$ $\left(\mathrm{~g} / \mathrm{m}^{3}\right)$ |
| :---: | :---: | :---: | :---: |
| 151-1 | 22.5 | 4.92 | 0.61 |
| 152-1 | 22.9 | 1.41 | 0.19 |
| 153-1 | 25.8 | 0.95 | -- |
| 154-1 | 26.1 | -- | 0.092 |
| 151-2 | 32.6 | 0.60 | 0.076 |
| 152-2 | 32.9 | 0.64 | 0.077 |
| 153-2 | 35.9 | 0.50 | 0.062 |
| 154-2 | 36.2 | -- | -- |
| 151-3 | 43.5 | 0.18 | 0.028 |
| 152-3 | 43.8 | 0.20 | $0.16{ }^{\text {c }}$ |
| 153-3 | 47.2 | 0.13 | 0.021 |
| 154-3 | -- | -- | -- |
| 151-4 | 53.9 | 0.077 | 0.014 |
| 152-4 | 54.1 | 0.082 | 0.015 |
| 153-4 | 54.3 | 0.090 | 0.017 |
| 154-4 | 54.7 | 0.072 | 0.013 |
| 151-5 | 65.6 | 0.052 | 0.011 |
| 152-5 | 65.8 | 0.041 | 0.0081 |
| 153-5 | 66.0 | 0.045 | 0.0093 |
| 154-5 | 66.2 | 0.065 | 0.0095 |
| 151-6 | 80.8 | 0.023 | 0.0056 |
| 152-6 | 81.1 | 0.020 | 0.0047 |
| 153-6 | 81.3 | 0.020 | 0.0049 |
| 154-6 | 81.5 | 0.015 | 0.0037 |
| 151-7 | 104.2 | 0.0090 | 0.0026 |
| 152-7 | 104.4 | 0.0094 | 0.002 |
| 153-7 | 104.6 | 0.0076 | 0.0024 |
| 154-7 | 104.8 | 0.0093 | 0.0023 |
| 151-8 | 134.6 | 0.0041 | 0.0011 |
| 192-8 | 134.8 | 0.0025 | 0.00065 |
| 153-8 | 135.0 | 0.0028 | 0.00076 |
| 154-8 | 135.2 | 0.0024 | 0.00064 |
| 151-9 | 179.9 | 0.00092 | 0.00033 |
| 152-9 | 180.1 | 0.00064 | 0.00013 |
| 153-9 | 180.5 | 0.00093 | 0.00021 |
| 154-9 | 180.8 | 0.0011 | 0.00034 |

$a_{\text {Time measured }} \mathrm{from}$ start of aerosol generation.
Aerosol mass concentration in the vessel under test conditions that existed at time the sample was taken.
${ }^{\text {C Doubtful }}$ value omitted from calculation of average concentration.

Table 23. Aerosol mass concentration as determined with individual wall filter samplers - Test 613

| $\begin{aligned} & \text { Sampler - } \\ & \text { Sampler No. } \end{aligned}$ | $\begin{aligned} & \mathrm{Time}^{a} \\ & (\mathrm{~min}) \end{aligned}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \left(\mathrm{\mu g} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Mass }{ }^{\mathrm{b}} \\ \text { concentration, } \\ \mathrm{U}_{3} \mathrm{O}_{8} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 155-1 | 156.7 | 16,000 ${ }^{\circ}$ | $380^{\text {c }}$ |
| 156-1 | 157.1 | 6,300 | 150 |
| 157-1 | 157.4 | 2,100 | 320 |
| 155-2 | 204.4 | 1,500 | 200 |
| 156-2 | 204.7 | -- | -- |
| 157-2 | 205.1 | 1,000 | 120 |
| 155-3 | 263.3 | 1,300 | 100 |
| 156-3 | 263.6 | 1,400 | 110 |
| 157-3 | 263.9 | 2,600 | 35 |
| 155-4 | 367.6 | 3,800 | 47 |
| 156-4 | 367.7 | 550 | 34 |
| 157-4 | 367.9 | 520 | 26. |
| 155-5 | 521.0 | 790 | $450^{\text {d }}$ |
| 156-5 | 521.0 | 460 | 15 |
| 157-5 | 521.0 | 290 | 19 |
| 155-6 | 1438.0 | 690 | 23 |
| 156-6 | 2438.0 | 820 | 16 |
| 157-6 | 1438.0 | 430 | 19 |
| $a_{\text {Time measured }}$ from start of aerosol generation. <br> ${ }^{b}$ Aerosol mass concentration in the vessel under test conditions that existed at time the sample was taken. |  |  |  |
| ${ }^{\text {c }}$ Note units. These entries are $0.016 \mathrm{~g} / \mathrm{m}^{3}$ and |  |  |  |

Table 24. Fallout and plateout data for aerosol components; rate and cumulative mass vs tiae - NSPP Test 613

| Sampler name | $\begin{aligned} & \text { Midpoint } \\ & \text { of } \\ & \text { sampling } \\ & \text { time } \end{aligned}$ <br> (s) | Duration of sample ${ }^{a}$ <br> (s) | Fallout. $\mathrm{Fe} 2 \mathrm{O}_{3}$ |  | Plateout. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  | Fallout, U3Oe |  | Plateout, $\mathrm{U}_{3} \mathrm{Cl}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rate | Cumolative | Rate | Cumulative | Rate | Cumulative | Rate | Cumalative |
|  |  |  | $\left\lceil\log /\left(m^{2}-s\right)\right]$ | (g) | $\left[\log /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ | (g) | $\left[\log /\left(m^{2}-\mathrm{s}\right)\right]$ | (g) | $\left[\log /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (g) |
| F0-1 | 1,488 | 2,975 | 882.7 | 19.2 |  |  | 274.1 | 5.9 |  | 2.0 |
| P0-1 | 1,244 | 2,488 |  |  | 150.2 | 25.7 |  |  | 11.9 | 2.0 |
| FO-2 | 3,562 | $1{ }^{-14}$ | 102.9 | 20.1 |  |  | 36.9 | 6.2 | 6.2 | 2.6 |
| PO-2 | 3,135 | 1.294 |  |  | 75.1 | 32.4 |  |  | 6.2 |  |
| F0-3 | 5.772 | 2,513 | 31.4 | 20.7 |  |  | 10.9 | 6.4 |  |  |
| PO-3 | 5, 381 | 2,487 |  |  | 25.8 | 36.8 |  |  | 1.9 | 2.9 |
| FO-4 | 9,180 | 3.907 | 22.0 | 21.3 |  |  | 4.8 | 6.5 |  |  |
| P0-4 | 8,796 | 4,001 |  |  | 6.7 | 38.6 |  |  | 0.97 | 3.2 |
| FO-S | 13,854 | 5.030 | 5.6 | 21.5 |  |  | 1.8 | 6.6 | 0.56 | 3.4 |
| PO-S | 13,494 | 5.009 |  |  | 6.6 | 40.9 |  |  | 0.56 | 3.4 |
| F0-6 | 24.114 | 15,132 | 3.1 | 21.8 |  |  | 0.74 | 6.6 |  |  |
| PO-6 | 23, 722 | 15,108 |  |  | 0.46 | 41.4 |  |  | 0.12 | 3.5 |
| FO-7 | 58, 693 | 53,674 | 0.52 | 22.0 |  |  | 0.11 | 6.7 |  | 3.6 |
| $\mathrm{PO}-7$ | 58,264 | 53,512 |  |  | 0.36 | 42.8 |  |  | 0.03 | 3.6 |

[^5]Table 25. Aerosol fallout and plateout data: integral samples - NSPP Test 613

| Fallout |  |  | Plateout |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sampler name | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe}_{2} \mathrm{O} \\ (\mathrm{mg}) \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ \text { U }{ }_{3} \text {, } \\ \left(\begin{array}{l} \text { ing } \end{array}\right) \end{gathered}$ | Sampler name | $\begin{gathered} \text { Sample mass } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\mathrm{mg}) \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ \mathrm{U}_{3} \mathrm{O} 8 \\ (\mathrm{mg}) \end{gathered}$ |
| TFO-1 | 57.2 | 9.38 | TPO-BW | 3.86 | 0.60 |
| TFO-2 | 54.3 | 12.85 | TPO-BE | 4.43 | 0.48 |
| TFO-3 | 55.8 | 25.35 | TPO-TW | 4.29 | 0.71 |
| TFO-4 | 80.1 | 28.30 | TPO-TN | 3.86 | 0.54 |
| TFO-5 | 97.2 | 25.58 |  |  |  |
| TFO-6 | 107.3 | 20.75 |  |  |  |
| Average | 77.08 | 20.4 | Average | 4.11 | 0.58 |
| Estimate fallout | $\begin{aligned} & a^{\text {total }} \\ & \qquad 168.8 \mathrm{~g} \end{aligned}$ | 44.7 g | Estimat plateou | $\begin{aligned} & \text { total } \\ & 99.1 \mathrm{~g} \end{aligned}$ | 14.1 g |

${ }^{2}$ Calculated from vessel-to-sample area ratios.

Table 26. Internal Andersen impactor data - Test 613

| Percent of total sampled aerosol mass made up of particles swaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample No. | Component | Time$(m i n)$ | Aerodynamic diameter (Hm) |  |  |  |  |  |  |  |
|  |  |  | 14.2 | 8.9 | 6.0 | 4.1 | 2.6 | 1.3 | 0.82 | 0.61 |
| $8^{a}$ | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 54.6 | 96.2 | 91.0 | 79.5 | 72.4 | 33.3 | 20.4 | 5.1 | 1.0 |
| 8 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 54.6 | 98.2 | 94.8 | 87.2 | 82.6 | 68.5 | 36.6 | 12.8 | 3.3 |
| 8 | Total | 54.6 | 96.5 | 91.5 | 80.6 | 73.8 | 55.4 | 22.6 | 6.2 | 1.3 |
| $9^{3}$ | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 95.7 | 90.8 | 83.7 | 74.9 | 67.6 | 57.6 | 31.8 | 10.1 | 2.4 |
| 9 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 95.7 | 95.9 | 94.0 | 88.9 | 85.2 | 77.3 | 54.9 | 25.2 | 9.4 |
| 9 | Total | 95.7 | 91.5 | 85.2 | 76.9 | 70.2 | 60.4 | 35.1 | 12.3 | 3.4 |

[^6]Table 27. External Andersen impactor data - Test 613

| Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter 11sted |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | Component | Time ( 1 m ) | kerodynamic diameter (um) |  |  |  |  |  |  |  |
| No. |  |  | 13.7 | 8.5 | 5.8 | 4.0 | 2.5 | 1.3 | 0.7 | 0.53 |
| 2 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 137.6 | 98.4 | 98.1 | 96.5 | 93.8 | 91.3 | 66.8 | 36.4 | 15.6 |
| 2 | $\mathrm{U}_{3} 0 \mathrm{~g}$ | 137.6 | 97.5 | 93.2 | 91.4 | 85.7 | 78.6 | 57.9 | 39.4 | 24.5 |
| 2 | Total | 137.6 | 98.2 | 97.5 | 95.5 | 92.2 | 88.8 | 65.0 | 37.0 | 17.4 |

Table 28. Spiral centrifuge aerosol sampler data - Test 613

| Sasple No. | Percent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Component | $\begin{aligned} & \text { Time } \\ & (m i n) \end{aligned}$ | Aerodynamic diameter (um) |  |  |  |  |  |  |
|  |  |  | 4.4 | 2.2 | 1.5 | 1.2 | 1.0 | 0.91 | 0.70 |
| 1 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 29.3 | 93.7 | 69.7 | 40.0 | 26.0 | 19.9 | 14.3 | 6.0 |
| 1 | $\mathrm{USO}_{8}$ | 29.3 | 98.1 | 73.9 | 38.7 | 23.3 | 15.5 | 10.9 | 4.5 |
| 1 | Total | 17.9 | 29.3 | 10.0 | 39.9 | 25.8 | 19.5 | 14.0 | 5.8 |
| 2 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 71.8 | 96.7 | 92.4 | 75.1 | 63.7 | 56.0 | 32.5 | 24.5 |
| 2 | $\mathrm{U}_{9} \mathrm{O}_{8}$ | 71.8 | 97.1 | 92.3 | 79.3 | 60.1 | 45.7 | 35.6 | 20.2 |
| 2 | Total | 45.3 | 71.8 | 92.4 | 18.2 | 63.5 | 55.4 | 32.8 | 24.2 |



Fig. 13. Vessel atmosphere absolute pressure - NSPP Fest 613.


Fig. 14. Vessel atmosphere temperature at 1.22 m elevation - NSPP test 613.


Fig. 15. Vessel atmosphere temperature at 2.74 m elevation - NSPP test 613.


Fig. 16. Vessel atmosphere temperature at 4.27 m elevation - NSPP test 613.

Table 29. Temperature profile at 1.22 melevation for various times after start of aerosol generation - NSPP Test 613

| $\begin{aligned} & \text { Time } \\ & (\mathrm{s}) \end{aligned}$ | Temperature readings ( $K$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance from vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 mm | 255 man |
| 15 | 380 | 382 | 382 | 382 | 382 | 382 |
| 758 | 381 | 382 | 383 | 383 | 383 | 384 |
| 3,603 | 383 | 384 | 384 | 384 | 384 | 384 |
| 11,438 | 384 | 335 | 385 | 385 | 386 | 386 |
| 20,349 | 386 | 386 | 387 | 387 | 387 | 387 |
| 28,742 | 372 | 373 | 373 | 374 | 374 | 374 |
| 71,878 | 329 | 329 | 329 | 329 | 329 | 330 |

Table 30. Temperature profile at 2.74 m elevation for various times after start of aerosol generation - NSPP Test 613

|  | Temperature readings (K) |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Time <br> Time <br> (s) | Thermocouple | locations - distance | from | vessel | wall |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 mm | 533 mm |
| 15 | 380 | 380 | 380 | 380 | 380 | 382 |
| 758 | 382 | 382 | 382 | 382 | 382 | 383 |
| 3,603 | 383 | 383 | 383 | 383 | 383 | 384 |
| 11,438 | 384 | 384 | 384 | 384 | 384 | 386 |
| 20,349 | 386 | 386 | 386 | 386 | 386 | 388 |
| 28,742 | 372 | 372 | 372 | 372 | 372 | 374 |
| 71,878 | 329 | 329 | 329 | 329 | 329 | 230 |

Table 31. Steam condensation rates on vessel wall - Test 613

| Sample <br> No. | Sampling <br> start <br> time <br> $(\mathrm{min})$ | Sample <br> duration <br> $(\mathrm{min})$ | Volume of <br> condensate <br> $\left(\mathrm{cm}^{3}\right)$ | Rate <br> $\left\{\mathrm{cm}^{3} /\left(\mathrm{min} \mathrm{m}^{2}\right)\right\}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0 | 47.0 | 94.0 | 6.2 |
| 2 | 47.2 | 22.9 | 10.5 | 1.4 |
| 3 | 71.2 | 43.2 | 13.0 | 0.93 |
| 4 | 114.7 | 69.3 | 26.0 | 1.2 |
| 5 | 184.3 | 86.3 | 42.0 | 1.5 |
| 6 | 271.6 | 103.2 | 44.0 | 1.3 |
| 7 | 375.4 | 150.2 | 1.55 | 0.03 |
| 8 | 526.0 | 895.2 | 1.0 | 0.003 |

NOTE: Area of sampler $=0.324 \mathrm{~m}^{2}$.
4.4 Sumnary and Data Listings for Test 631
(Dry Atmosphere)

Aerosol source
Mass of uranium metal powder into generator 0.19 kg
Mass of iron metal powder into generator 0.50 kg
Duration of aerosol generation 16.2 min
Maximum measured $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration $\quad 0.87 \mathrm{~g} / \mathrm{m}^{3}$ at 6 min after end of aerosol generation)
Maximum measured $\mathrm{U}_{3} \mathrm{O}_{8}$ concentration
$1.17 \mathrm{~g} / \mathrm{m}^{3}$
(at 6 min after end of aerosol generation)
Estimated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ concentration at end of
$1.2 \mathrm{~g} / \mathrm{m}^{3}$ aerosol generation (under test conditions)
Estimated $\mathrm{U}_{3} \mathrm{O}_{8}$ concentration at end of
$1.7 \mathrm{~g} / \mathrm{m}^{3}$ aerosol generation (under test conditions)
Vessel atmosphere
Vessel air pressure at start of aerosol generation Ambient Relative humidity at start of aerosol generation
<20\%

Aerosol parameters measured
Aerosol mass concentration (average)
Fig. 17
Aerosol mass concentration (individual
Tables 32-33
samplers)
Aerosol faliout and plateout rates; cumulative
Table 34
fallout and plateout mass
Aerosol integral fallout and plateout mass
Andersen impactor data
Table 35

Spiral centrifuge aerosol sample data
Tables 36-37
Table 38
System parameters measured
Vessel atmosphere pressure
Fig. 18
Vessel atmosphere temperature
Figs. 19-21
Temperature gradient near wall
Tables 39-40


Fig. 17. Average aerosol mass concentration - NSPP Test 631.

Table 32. Aerosol mass concentration as determined with individual in-vessel samplers - Test 631

| $\begin{aligned} & \text { Sampler - } \\ & \text { Sampler No. } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & (m 1 n) \end{aligned}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ \text { Fe2O3 } \\ \left(\mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$ | $\begin{gathered} \text { Mass }{ }^{b} \\ \text { concentration, } \\ U_{3} 08 \\ \left(\mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 151-1. | 20.8 | 1.22 | 1.46 |
| $152-1{ }^{\text {c }}$ | . | -- | -- |
| 153-1 | 23.4 | 0.64 | 0.88 |
| 154-1 | 23.6 | 0.63 | 1.02 |
| 151-2 | 30.4 | 0.89 | 1.22 |
| 152-2 | -- | -- | -- |
| 153-2 | 30.9 | 0.63 | 0.89 |
| 15 +-2 | 31.1 | 0.62 | 0.84 |
| 151-3 | 37.9 | 0.60 | 0.78 |
| 152-3 | -- | -- | -- |
| 153-3 | 38.2 | 0.40 | 0.60 |
| 154-3 | 38.4 | 0.33 | 0.62 |
| 151-4 | 50.3 | 0.30 | 0.45 |
| 152-4 | -- | -- | -- |
| 153-4 | 50.5 | 0.24 | 0.42 |
| $154-4$ | 50.7 | 0.24 | 0.50 |
| 151-5 | 61.6 | 0.29 | 0.49 |
| 152-5 | -- | -- | -- |
| 153-5 | 61.8 | 0.22 | 0.39 |
| 154-5 | 62.2 | 0.24 | 0.49 |
| 151-6 | 76.0 | 0.19 | 0.31 |
| 152-6 | -- | -- | -- |
| 153-6 | 76.3 | 0.17 | 0.32 |
| 154-6 | 76.6 | 0.19 | 0.36 |
| 151-7 | 100.8 | 0.12 | 0.20 |
| 152-7 | -- | -- | -- |
| 153-7 | 101.0 | 0.075 | 0.18 |
| 154-7 | 101.2 | 0.081 | 0.21 |
| 151-8 | 134.1 | 0.090 | 0.16 |
| 152-8 | -- | -- | -- |
| 153-8 | 134.4 | 0.11 | 0.14 |
| 154-8 | 134.6 | 0.046 | 0.15 |
| 151-9 | 171.4 | 0.036 | 0.10 |
| 152-9 | -- | -- | -- |
| 153-9 | 171.7 | 0.028 | 0.085 |
| 154-9 | 172.0 | 0.027 | 0.10 |

[^7]
# Table 33. Aerosol mass concentration as determined with individual wall filter samplers - Test 631 

| $\begin{aligned} & \text { Sampler - } \\ & \text { Sampler No. } \end{aligned}$ | Time $(m i n)$ | $\begin{gathered} \text { Mass } \\ \text { concentration, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \left(\mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$ | ```Mass concentration, U3O8 (g/m``` |
| :---: | :---: | :---: | :---: |
| 155-1 | 148.6 | 0.063 | 0.13 |
| 156-1 | 199.4 | 0.056 | 0.13 |
| 157-1 | 1*., | 0.038 | 0.098 |
| 155-2 | 193.8 | 0.028 | 0.080 |
| 156-2 | 194.0 | 0.028 | 0.072 |
| 157-2 | 194.6 | 0.019 | 0.080 |
| 155-3 | 256.4 | 0.016 | 0.053 |
| 156-3 | 256.7 | 0.014 | 0.049 |
| 157-3 | 257.0 | 0.015 | 0.057 |
| 155-4 | 368.0 | 0.0068 | 0.030 |
| 156-4 | 368.0 | 0.0058 | 0.031 |
| 157-4 | 368.0 | 0.0063 | 0.032 |
| 155-5 | 584.0 | 0.0023 | 0.013 |
| 156-5 | 584.0 | 0.0020 | 0.015 |
| 157-5 | 584.0 | 0.0019 | 0.014 |
| 155-6 | 1,451.0 | 0.00072 | 0.0028 |
| 156-6 | 1,451.0 | 0.00028 | 0.0030 |
| 157-6 | 1,451.0 | 0.00030 | 0.0028 |

Table 34. Aerosol fallout and plateout data for aerosol components: rate and cumulative mass vs time - NSPP Test 631

| Samplersase | $\begin{aligned} & \text { Midpoint } \\ & \text { of } \\ & \text { samp } 11 \mathrm{ng} \\ & \text { tise } \\ & \text { (s) } \end{aligned}$ | Duration of sample ${ }^{2}$ (s) | Fallout. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ |  | Plateout. $\mathrm{Fe}_{2} \mathrm{OH}_{3}$ |  | Fallout, ${ }_{3} \mathrm{OH}_{8}$ |  | Plateout, $\mathrm{U}_{3} \mathrm{Os}_{8}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rate | Cumulative | Rate | Cumulative | Rate | Cumulative | Rate | Cumulative |
|  |  |  | [ $\left.\mathrm{ug} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$ | (g) | $\left\{\log /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right\}$ | (8) | $\left[\mathrm{mg} /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (8) | $\left[\log /\left(\mathrm{m}^{2}-\mathrm{s}\right)\right]$ | (g) |
| FO-1 | 1,054 | 2,107 | 515.2 | 7.9 | 21.0 | 2.6 | 703.6 | 10.8 | 11.7 | 1.4 |
| $\mathrm{PO}-1$ | 892 | 1,783 |  |  |  |  |  |  |  |  |
| FO-2 | 2,824 | 1.434 | 293.0 | 11.0 | 11.1 | 3.7 | 423.8 | 15.2 | 9.2 | 2.3 |
| PO-2 | 2.522 | 1,477 |  |  |  |  |  |  |  |  |
| FO-3 | 5,189 | 2.534 | 24.2 | 11.4 | 29.1 | 8.9 | 165.2 | 2.8. 3 | 5.2 | 3.2 |
| PO-3 | 4.939 | 2,614 |  |  |  |  |  |  |  |  |
| FO-4 | 8.547 | 3,804 | 18.9 | 11.9 | 3.2 | 9.7 | 55.8 | 19.8 | 1.8 | 3.7 |
| PO-4 | 8.293 | 3.815 |  |  |  |  |  |  |  |  |
| FO-5 | 12,994 | 4.789 | 6.2 | 12.1 | 3.1 | 10.7 | 20.2 | 20.5 | 1.3 | 4.1 |
| PO-S | 12.801 | 4,8:1 |  |  |  |  |  |  |  |  |
| F0-6 | 25.028 | 19,004 | 1.0 | 12.2 | 0.04 | 10.8 | 5.8 | 21.3 | 0.23 | 4.4 |
| PO-6 | 24.815 | 18,958 |  |  |  |  |  |  |  |  |
| FO-7 | 60.554 | 51,723 | 0.33 | 12.3 | 0.44 | 12.4 | 1.6 | 21.9 | 0.07 | 4.6 |
| $\mathrm{PO}-7$ | 60.225 | \$1,530 |  |  |  |  |  |  |  |  |

[^8]Table 35. Aerosol fallout and plateout data: integral samples - NSPP Test 631

| Fallout |  |  | Plateout |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Sampler } \\ & \text { name } \end{aligned}$ | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \text { (10g) } \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ U_{3} \mathrm{O}_{8} \\ (\mathrm{ag}) \end{gathered}$ | Sampler name | $\begin{gathered} \text { Sample mass, } \\ \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\mathrm{mg}) \end{gathered}$ | $\begin{gathered} \text { Sample mass, } \\ U_{3} \mathrm{Os}_{8} \\ (\mathrm{mg}) \end{gathered}$ |
| TF0-1 | 31.46 | 36.20 | FPO-BW | 3.15 | 4.15 |
| TFO-2 | 32.89 | 35.84 | TPO-BE | 2.29 | 3.15 |
| TFO-3 | 32.89 | 37.02 | TPO-TW | 2.15 | 3. 51 |
| TFO-4 | 34.32 | 39.85 | TPO-TN | 2.43 | 3.33 |
| TFO-5 | 34.32 | 37.26 |  |  |  |
| TFO-6 | 34.32 | 38.02 |  |  |  |
| Average | 33.37 | 37.36 | Average | 2.50 | 3.54 |
| Estimate fallout | $\begin{aligned} & \text { total } \\ & 73.14 \mathrm{~g} \end{aligned}$ | 81.9 g | Estimated plateout | $\begin{aligned} & \text { total } \\ & 60.4 \mathrm{~g} \end{aligned}$ | 85.3 g |

Table 36. Internal Andersen impactor data - Test 631


Table 37．External Andersen impactor data－Test 631

| Percent of total sampled aerosol asss made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample No． | Component | Time （ m 1 n ） | Aerodynamic diameter（U⿴囗十） |  |  |  |  |  |  |  |
|  |  |  | 13.7 | 8.5 | 5.8 | 4.0 | 2.5 | 1.3 | 0.78 | 0.53 |
| 1 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 19.6 | 99.4 | 98.2 | 92.2 | 78.1 | 53.9 | 20.6 | 3.9 | 1.3 |
| 1 | $\mathrm{U}_{3} 0_{8}$ | 19.6 | 99.6 | 98.8 | 94.8 | 86.4 | 63.2 | 23.2 | 4.5 | 1.5 |
| 1 | Total | 19.6 | 99.5 | 98.6 | 93.6 | 82.6 | 59.0 | 22.0 | 4.29 | 1.39 |

Table 38．Spiral cent＇fuge aerosol sampler data－Test 631

| Fercent of total sampled aerosol mass made up of particles smaller than the aerodynamic diameter listed |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Component | $\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$ |  |  |  |  |  |  |  |
| No． |  |  | $\cdots 4$ | 3.6 | 2.2 | 1.8 | 1.5 | 1.31 | 1.0 |
| 1 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 26.0 | 90.3 | 81.2 | 61.1 | 42.6 | 31.4 | 23.4 | 14.8 |
| 1 | $\mathrm{U}_{3} \mathrm{O}_{8}$ | 26.0 | 97.3 | 89.3 | 62.4 | 37.4 | 20.7 | 12.6 | 4.5 |
| 1 | Total | 26.0 | 93.7 | 85.2 | 61.7 | 40.0 | 26.1 | 18.0 | 9.7 |
| 2 | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 73.5 | 92.7 | 73.1 | 51.4 | 38.1 | 29.2 | 23.5 | 18.3 |
| 2 | $\mathrm{USO}_{8}$ | 73.5 | 72.1 | 48.6 | 23.9 | 11.8 | 6.68 | 4.5 | 2.1 |
| 2 | Total | 73.5 | 80.4 | 58.5 | 35.0 | 22.4 | 15.7 | 12.2 | 8.6 |




Fig. 19. Vessel atmosphere temperature at 1.22 m elevation - NSPP test 63i.


Fig. 20. Vessel atmosphere temperature at 2.74 m elevation - NSPP test 631.


Fig. 21. Vessel atnosphere temperature at 4.27 ale elevation - NSPP test 631.

Table 39. Temperature profile at 1.22 m elevation for various times after start of aerosol generation - NSPP Test 631

| $\begin{aligned} & \text { Time } \\ & \text { (s) } \end{aligned}$ | Temperature readings ( K ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance from vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 mm | 5 mm | 10 um | 255 ma |
| 93 | 298 | 298 | 298 | 298 | 298 | 300 |
| 13,014 | 299 | 300 | 301 | 301 | 301 | 302 |
| 26,854 | 298 | 302 | 302 | 302 | 302 | 302 |
| 89,406 | 298 | 299 | 299 | 299 | 299 | 300 |

Table 40. Temperature profile at 2.74 m elevation for various times after start of aerosol generation - NSPP Test 631

| $\begin{aligned} & \text { Time } \\ & (s) \end{aligned}$ | Temperature readings ( $K$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thermocouple locations - distance frou vessel wall |  |  |  |  |  |
|  | On wall | 1.25 mm | 2.5 um | 5 mm | 10 mm | 255 mm |
| 93 | 298 | 298 | 298 | 298 | 298 | 300 |
| 13,014 | 300 | 361 | 301 | 301 | 301 | 302 |
| 26,854 | 301 | 301 | 301 | 301 | 301 | 303 |
| 89,406 | 299 | 299 | 299 | 299 | 299 | 300 |

## 5. REFERENCES

1. R. E. Adams and M. L. Tobias, Unaniwm Oxide Aerorol Experimente in Stear-Air Atmoepheres: NSPP Tests 401-407, Data Reoond Report, NUREG/CR-4716 (ORNL/TM-10165) (September 1986),
2. R. F Adams and M, L. Toblas, Iron Oxide Aenosol Expeniments in Steam-Air Atmospheres: NSPP Teste 501-5n5 and 511, Data iecond Report, NUREG/CR-4798 (ORNL/ M-10301) (February 1987).
3. M. L. Tobias and R. E. Adams, Limestone Conorete Asrosot Experiments in Steam-A ir Atmospheres: NSPP Tests 521, 585, and 531, Data Recond Report, NUREG/CR-5017 (ORNL/TM-10587) (October 1987).
4. T. S. Kress and M. L. Toblas, $\angle M F B R$ Aenosol Release and Tranepont Prognam Quanterty Progrese Report for Apmil-tume 1980, NUREG/CR1791 (ORNL/NUREG/TM-417) (December 1980).
5. T. S. Kress and M. L. Toblas, ZMFBR Aerosol Release and Tranepont Program Quarterly Progrese Report for Jily-September 1980, NUREG/CR-2117 (ORNL/TM-7806) (June 1981).
6. R. E. Adams and M. L. Toblas, Aerosol Release and Tranmort Program Semiannual Prognees Report for April-September 2:884, s.uREG/CR-3830 Vol. 2 (ORNL/TM-9217/V2) (December 1984).
7. T. S. Kress and A. L. Wright, LMFBR Aymoeot Release and Tranepont Program Guanterly Progrese Report for July-September 1978, ORNL/NUREG/TM-276) (January 1979).
8. R. E. Adars and M. L. Toblas, Aerosol Release and Tranoport Program Quanterly Progrese Report for 'Mity-September 198?, NUREG/CR-3422 Vol. 3 (ORNL/TM-8849/V3) (Apri1 1984).
9. Re E. Adams and M. L. Toblas, Aerobol Releaee and Troneport Program Somiarnual Progrees Report for Ootober 1983-Maroh 1994, NUREG/CR3830, Vol. 1 (ORNL/TM-9217/V1) (August 1984).

## Internal Distribution

1. R. E. Adams
2. J. R. Buchanan
3. D. W. Burton5-6. U. Gat
7-8. J. A. Getsi
4. H. W. Hoffran
5. M. T. Hurst
6. T. S. Kress
7. A. W. Longest
8. R. A. Lorenz
9. G. W. Parker
10. C. E. Pugh

16-19. M. L. Tobias
20. H. E. Trammell
21. J. L. Wantland
22. A. L. Wright
23. ORNL Patent Office
24. Central Research Library
25. Document Reference Section

26-27. Laboratory Records Department
28. Laboratory Records (RC)

## Externa. istribution

29. L. D. Muhlestein, Westinghouse Hanford, P.0. Box 1970, Richland, WA 99352
30. R. Hobbins, EG\&G Idaho, P.O. Box 1625, Idaho Palls, ID 83415
31. Hans Jordan, Battelle Golumbus Laboratories, 505 King Ave., Columbus, OH 43201
32. R. L. Ritzman, EPRI, P.O. Box 10412 , Palo Alto, CA 94303
33. M. Silberberg, Division of Reactor System Safety, Nuclear Regulatory Comaission, Washington DC 20555
34. P. Worthington, Division of Reactor System Safety, Nuclear Regulatory Commission, Washington, DC 20555
35-39. Director, Office of Nuclear Regul ory Research, Nuclear Regulatory Commission, Washington, DC 20555
35. Office of Assistant Manager for Energy Research and Development, Oak Ridge Operations Office, Oak Ridge, TN 37831
41-42. Technical Information Center, Oak Ridge, TN 37831
43-242. Given distribution as shown in category R7 (NTIS-10)


$$
\begin{aligned}
& 120555078877 \text { I } 1 \text { ANIRT } \\
& \text { US NRC-OARM-AOM } \\
& \text { OTV OF PUB SVCS } 8 \text { PO -PDR NUREG } \\
& W=537 \text { ONGTON OC } 20555
\end{aligned}
$$


[^0]:    *Unless otherwise specified, all pressures cited are absolute.

[^1]:    a Uncertainty in sampling times. 45 .

[^2]:    ${ }^{\text {Impactor at }} 2.8$ melevation.

[^3]:    anncertainty in samplif; times, 25 s.

[^4]:    $a_{\text {Impactor }}$ at 2.8 m elevation.
    bimpactor at 0.56 m elevation.

[^5]:    Qncertainty in sampling times, -5 s.

[^6]:    ${ }^{2}$ Impactor at 2.8 m elevation.
    ${ }^{b}$ Impactor at $0,56 \mathrm{~m}$ elevation.

[^7]:    ${ }^{\text {Time measured }}$ from start of aerosol generation.
    ${ }^{b}$ Aerosol mass concentration in the vessel under test conditions that existed at time the samole was taken.
    ${ }^{0}$ Sampler 152 did not operate satisfactorily.

[^8]:    Uncertalinty in sampling times. -5 s.

