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ABSTRACT

An approach based upon the theory of games is presented that determines

an optimal alarm threshold for detecting unauthorized or deliberate

diversion of nuclear material based upon material accounting data. A
.

mathematical model is developed, solved, and applied to a generic

nuclear facility. By considering a malevolent diverter as a basic

ingredient of the analysis this approach offers advantages over con-

ventional statistical hypothesis testing. The results show that periodic

inventories and appropriate interpretation of MUF can provide a high

assurance for indicating diversion in a nuclear material safeguards

situation. The optimal policy is to select the alarm threshold by a

mixed strategy rather than a pre-set single fixed value. Procedures for

doing this are presented in the report. With this approach, MUF data by

itself may be more useful in indicating possible unauthorized diversion

of special nuclear material.
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1. Introduction I

l

The Nuclear Materials Accounting Study, which began in July 1976, had as !

its overall objective the examination of the accounting systems used in

safeguarding special nuclear material. The purpose of this examination

was to look for improvements in the procedures utilized in nuclear

materials accounting so that the overall effectiveness of safeguards can

be enhanced. More specifically, the purpose of the study was (a) to

directly examine the implications of deliberate diversion on nuclear

material accounting (b) to determine the validity of the MUF* concept to

establish assurance concerning the possible unauthorized diversion of

Special Nuclear Material (SNM) and (c) to provide tools for atsessing

licensee material accounting safeguards performance requirements.

The safeguards problem, by its very nature, implies an adversary situation

in which someone seeks to divert nuclear material, and NRC or the licensee

tries to prevent him from succeeding. The theory of games, which developed

as a means of modeling just such competitive situations, is a natural

candidate for evaluating accounting information. This study is a first

step in investigating the feasibility of applying the game theoretic

approach to nuclear materials accounting.

o
The term ID (Inventory Difference) has replaced MUF in NRC terminology.
However, in order to keep this report consistent with NUREG-0290, we
will continue to use the term MUF. There is no difference in meaning
between MUF and ID.
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The results of the first phase of the study were published in NUREG-0290

[1]inJune,1977. Volume 1 of NUREG-0290 described the preliminary work

done on formulating a game theoretic model of materials accounting and

applying it to Nree generic plants. The second phase of the study,

reported in this volume, was in part a more detailed game theoretic ana-

lysis of one of the plants. A sensitivity analysis of the results of

phase I was performed, and a second model was formulated and applied. The

study was sponsored by the Test and Evaluation Branch of the Division of

Safeguards, U.S. Nuclear Regulatory Commission. Mr. S. Moglewer was the

Project Manager for NRC. The prime contractor was Lawrence Berkeley'

Laboratory. Dr. Melvin Dresher served as a mathematical consultant. This

volume can be considered to be a companion volume to Volume I of NUREG-0290.

The report presents the results of the game theory evaluation work as of

January 31, 1978. (Additional work developed in Phase II is presented in

[3] and [4]).

This report (like NUREG-0290), is primarily concerned with decision criteria

for taking action based upon statistical information in a nuclear safeguards'

situation. Nuclear material accounting safeguards in the nuclear industry

relies on material balance accounting. This accounting signals the occur-

rence of losses, if any, and may be the basis for subsequent inspection and

recovery actions.

_...I
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The accounting system keeps track of material inputs and outputs by taking

inventory at regular intervals and locations. If there were no measurement

errors, process errors, mistakes, or diversion the book inventory and the

physical inventory would balance. Due to measuring errors, recording

errors, bias in individuals and instruments, etc., the inventory does not

usually balance leaving a quantity called MUF (Material Unaccounted For).

MdF is a function of the realizations of the many errors involved and would

include any diversion that may have occurred during the inventory period,

i

|

The decision-making problem is, given a MUF reading, what action should be

taken to verify possible theft and/or recover material that may possibly

have been diverted. The present practice in the licensed domestic nuclear

industry follows NRC regulations which establish inventory periods and

limits on measurement accuracy. The latter term is regulated by placing a

limit on LEMUF (Limit of Error on MUF) which is defined as two standard

deviations of a normal measurement error distribution. NRC has also

established guidelines and operating suggestions for appropriate action

limits. For instance, when MUF exceeds 2.0 times the LEMUF limit approved

for the activity, the facility is shutdown and a clean-out inventory is

conducted with an investigation of the cause initiated. The activity

normally remains shutdown until the MUF calculated as a result of a clean-

out inventory is within 1.5 times the applicable LEMUF limits. The opera-

tional procedure at present is to establish a fixed alarm threshold and to

take action when MUF exceeds this threshold. A more complete discussion oi

present practice is presented in [1].
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,

The essential safeguards material accounting decision problem is how to

establish the alarm threshold in a manner to satisfy safeguards objectives.

If the alarm threshold is too high, a potential diverter may not be

detected. If it is too low, there will be an excessive number of false

alarms with consequent additional inventory cost burdens and a desensi- ,

tizing of the safeguards system from a " Cry Wolf" syndrome. Furthermore,

as discussed later, if the alarm threshold is set at any value prior to an

inventory, a potential diverter could utilize this information for his own

advantage.

;

The decision problem described in the above paragraph is part of a larger

class of problems that can be characterized as statistical acceptance

sanpling in a competitive environment. Sampling is used as an aid to

decision-making by drawing inferences from limited data. These inferences

depend on the sampling process and the structure of the population being

sampl ed. If the sample is obtained in a competitive environment, the
'

sample or the population or both may have been tampered with to accomplish

some objective. Furthermore, the extent of tampering is not known. ,

,

The nuclear material accounting problem is an example of sampling in a

competitive environment. This is so because a potential diverter may
Icontrol partially the characteristics of the sample distribution. In the.

,

P
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nuclear material accounting case he may control the mean of the MUF dis-

tribution. This could be achieved by stealing from an inventory where-

measurements are taken. The mean of the distribution would be related to

the amount stolen. To contend effectively with this kind of non-stochastic

problem, it is necessary that the decisionmaker take into account in his

statistical acceptance sampling not only the uncertainty due to sampling

errors, but also strategies available to a potential competitor for each

specific situation. Classical statistical hypothesis testing is not

appropriate in a competitive environment since such testing assumes only

stochastic situations, i.e., all uncertainties are due to chance and

there is no diversion. If statistical hypothesis testing is used, it is

necessary to know the distribution of MUF when diversion takes place. 1

A discussion of the limitations of classical statistical hypothesis test-

ing for detecting diversion of nuclear material is presented in [1].

The approach taken by the Nuclear Material Accounting Study and first'

presented in [1] was based upon the theory of games. This theory repre-

sents an approach to decision-making under uncertainty in a competitive

environment. The nuclear material accounting problem was formulated as a

game between two players - the diverter and the defender. In particular,

the MUF problem was analyzed by formulating the following two-person game:
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Move 1. Diverter removes X grams of SNM.

Move 2. The defender, upon taking a sample inventory, measures that u

grams of SNM are unaccounted for.

Move 3. The defender, knowing u, estimates that y grams of SNM have been

diverted. Also, if the alarm threshold has not been pre-set at a

fixed value a, the defender would determine whether to alarm or

not. (If the alarm threshold has been pre-set, the decision to

alarm would be determined simply by whether u is greater than a.)

A payoff function was established representing the decision utilities to

the defender. This model was solved in terms of optimal strategies for

both players and the value of the game (the value of the payoff function

when both players play optimally.) Two cases were examined. In the first

case the alarm threshold was pre-set at a fixed value. In the second case

the alarm threshold was made a strategic variable for the defender. Both

cases were applied to a generic facility representative of a small plu-

tonium fabrication facility (Plant 1 of NUREG-0290, see [1]).

This report describes in detail the rationale for the selection of the

specific payoff function, and its relationship co decisions faced by a

decision-maker in a safeguards material accounting environment. The

optimal strategies for both cases will be presented and the implications of

d
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the solution discussed. An appendix will present a sensitivity analysis of

the parameters of the model and another appendix will present some simpli-

fied alternative alarm models.

Application of the game theoretic approach to establish MUF action limits

and alarm thresholds can significantly improve the performance of material

accounting for safeguards. This report will present the analysis and

arguments to support the preceding statement.

2. The Criterion Function Approach to Analysis

In order to understand how operations research can aid decision-making, we

must first understand decision-making. The process of individual decision-
;

making can be characterized as either completely intuitive (based only upon

the experience er.d judgment of the decision-maker) or a combination of

intuition and analyses, the combination varying with the nature, informa-

tion, and difficulty of the problem. There are two basic analytical

approaches to aid a decision-maker. First is a simulation approach. This

consists of creating a synthetic history of event-sequences, all that the
,

1

analyst can legitimately evaluate within his computational limitations.

The simulation analysis selects the best from the large number of pos-

sibilities under consideration. It is not aopropriate for optimization;

the optimum may not be contained in the set of event sequences under con-

sideration. A more detailed discussion is presented in the text by Quade

andBoucher[5].

1
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The second _ type of analytical method is the criterion function approach.

Based upon the objectives of the system about which a decision will be

made, specific criteria are established related to the specific decision

being made. These criteria are then translated into measures of effective-

ness. Finally a mathematical model is selected or developed that applies a

suitable criterion to the selected measures of effectiveness. Solution of

the model will provide recommendations to the decision-maker by finding the I

optimum. The criterion function approach can optimize, and it provides an
I

economy and breadth of solution not available by other techniques. Its |

limitations are the state-of-the-art of the mathematical techniques employed,

the ability to model the complexity of the decision-maker's problem, and

the availability of data to specify the model.

i

The selection of a suitable model with which to find an optimum for a
,

specific criterion function is related to the type of information available

to the decision-maker. It is generally recognized that the validity of a

model's solution is related to the quality of the input data and the model's i

limiting assumptions. What is not so generally recognized is that the

results are also sensitive to the type of model selected to analyze a given

problem. Insofar as possible, the model should match the decision frame-

| work. There are two basic types of modcis, deterministic and probabilistic. -

In a deterministic model all the parameters are known and the solution has

!

|

t
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a specific optimum. Any departures from this optimum will only penalize

the decision-maker insofar as the model represents the real world. The

decision-maker completely controls the outcome.

There are two classes of probabilistic models. One treats problems of

" decision-making under risk." This occurs when the outcome of the decision

is sensitive not only to the decisions of the decision-maker, but also to

chance events. The decision-maker knows the probability distribution, or

the odds, for the occurrence of the chance events. He knows the risks when

he makes a decision. The other class of probabilistic models is " decision-

making under uncertainty." The decision-maker does not know the risk when
i

he makes a decision. All situations involving competition belong to this '

class of models. The outcome of the decision is sensitive to competing
,

!
decision-makers as well as chance events. Optimal decisions are based upon l

|

subjective perceptions of risk by each decision-maker. The nuclear material

accounting safeguards problem when unauthorized deliberate diversion may be

present belongs to this class of problems. l

The model selected for analysis by the Nuclear Material Accounting Study

iwas based upon the theory of games. The nuclear material accounting,

problem was formulated by representing the interests of the defender and

the diverter as being in complete conflict.- This is a reasonable formula-

tion for the analysis of unauthorized deliberate diversion from domestic

|
!

_ _ _ . . _ _ . _ _ _ - _ _ _ _ . _ _ _ _ _ _ _ - . - . . .
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nuclear facilities. The minimax criterion merely indicates that there is

an optimal decision policy (or strategy) for the defender even though he

does not know what policy (or strategy) the diverter may employ or even the

existence of a diverter. Furthermore, the defender by use of this policy

can assure himself a certain payoff (in terms of expected value) no matter

what the diverter does. A theory of games model represents the basic

decision problem for safeguards management when deliberate diversion is

possible.

It should be realized that the suitability of any model for aid in decision-

making rests upon the accurate representation of the utilities influencing

the decision-maker. Utilities are often subjective, particularly aversion

to risk, and thus difficult to model faithfully. This process is the art

of operations research and requires intimate insight into the problem if

effective models are to be developed. However, this difficulty should not

If thepreclude serious efforts to develop suitable criterion functions.
,

material accounting system is to be optimized, it will be necessary to find

the appropriate criterion functions for analysis. The problem cannot be

avoided.

The decision criterion is often implicit in the model rather than explicit.

The classical statistical hypothesis testing approach is a criterion func-

tion model with implicit criteria. The implicit criteria are reflected in
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I

the measure of effectiveness such as the false alarm rate, which should be

determined by cost-benefit consideration of the utilities of the decision-

maker. On the other hand, the game theory approach has the criteria

explicitly presented in the payoff function. Figure 1 presents a com-

parison of these two approaches.

3. A Game, Theoretic Model Formulation

Let us consider a decision-maker's utilities for formulation of a game |
1

theoretic payoff function. Figure 2_ presents the weighing of utilities and
,

disutilities that appear to be representative of the material accounting
1

safeguards problem. The decision-maker, or defender, may consist of more

than one person, such as NRC and the plant management. In general, the

defender consists of all participants who have the same objective with I

respect to the payoff. The defender's decisions are: given a MUF reading,
l

whether to alarm or not and what preliminary estimate of unauthorized

diversion to make, based upon the MUF reading. This preliminary diversion

estimate will influence the defender in the resources he allocates for the

post-alarm search. A final estimate of diversion should be based upon not

only the results of the post-alarm search, but also relevant information

from other safeguards systems (e.g., the physical security systen and the

material control system) as well as pertinent external intelligence infor-

mation, police reports, etc. This study,however,is concerned only with the

material accounting system. Consequently when we talk about the estinate

__ _ -_
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CRITERION FUNCTION APPROACH TO ANALYSIS

Statistical Hypothesis Testing Approach Game Theory Approach

Detect Diversion Detect DimionO ECT VES

1 f

Detect Theft within the Measurement Detect Theft and Allocate Resources for RecoveryState-of-the-Art without Major Dis. CRITERIA of Material with Minimum Penalty to the Defender Lruption to the Industry and without Major Disruption to the Industry ?
If

False Alarm Rate, ME ASURES OF * * " " 'Probability of Detection EFFECTIVENESS

I f

Normal Distribution for MUF. Dispersion CRITERION Game Theory Payoff Function
Determined by Measurement Error Only. FUNCTION .

Mean of Distribution Equal to Zero or Alter. MODEL
natively, Some Specific Amount

Figure 1. ,

, . _ _ _, _.



A DECISION-MAKER'S UTILITY BALANCE

Utility of Utility of
Detecting Recovering
Diversion Material
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MATERIAL ACCOUNTING
DECISION

FRAMEWORK L
Y

A A

Disutility of Plant Disutility of
Shutdown & Crying
Inventory Costs " Wolf"

Figure 2.
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of the amount diverted, we mean only the preliminary estimate based upon

the MUF reading in and of itself, i

1 t

;

'Our discussion of diversion and the game theoretic model essentially

assumes the existence of a diverter. .In particular, the defender makes

decisions to defend against actions by a diverter. Frequently the [
t

defender is uncertain about the existence of a diverter. If this

uncertainty can be represented by a given probability distribution
j

function, then the problem is a combination of a statistical problem and

a game theoretic problem. Otherwise the problem is a game theoretic

problem in which the defender assures the existence of a diverter which

is necessary if the defender is to protect himself against the actions
,

of a possible diverter.
7
;

The utilities influencing the defender's decisions are relatively few ;

v

for the essential material accounting decision. He has the utility of ;

detecting diversion to assist in recovering material and to deter the

I would-be diverter, thereby preventing thef t. This must be balanced

against the disutility of material losses and inventory and post-alarm

search costs. In addition, there is the disutility or penalty from

making an error in the estimate of diversion. This penalty can reflect
.

|
,

from desensitizing the system from a high false alarm rate, from adverse
,

publicity concerning errors in the estinate, and numerous other factors. :

The optiaal decision is thus seen to be a trade-off of these utilities.
.

,I
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The decision-maker does not know the outcome of the decision when he ,

makes it since this is influenced by decisions of a possible diverter

and also the chance errors in measurement and process systems.

There are many payoff functions that can be assumed with respect to

nuclear material accounting actions and decisions. For example, the

objective of the defender might be to minimize the loss of nuclear j

material, or to maximize the probability of detecting diversion, or to

minimize the errors in detection, etc. By formulating a payoff in terms

of costs and benefits obtained from efficient use of MUF data to detect

diversion, we can include the above objectives. These costs and benefits

to the defender may be summarized by the following five categories: i
i

1) cost of material diverted

2) cost for search and recovery of diverted material

3) benefit obtained from recovery of diverted material

4) costs associated with search errors

5) cost of alarm, if alarm occurs.

The following payoff is considered to essentially embrace the major

elements of the nuclear material accounting decision and will be used as

a basis for this study.

|
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The payoff function selected for this analysis is expressed as the penalty

to the defender as follows:

Penalty to defender = [ Inventory Cost + Search / Recovery Cost] +

[ Replacement Value of Material Lost] - [ Utility of Material

Recovered] + [ Penalty for Error in the Estimate of Diversion]

This can be represented as #ollows:

M = 8 + cy + x 'o min (x, y) + e|y-x|

where:

M payoff function representing penalty to defender=

special clean-out inventory cost (if applicable)8 =

amourt deliberately diverted by diverterx =

y estimate by the defender of the amount diverted=

cy recovery search cost=

b min (x,y) = value to defender of recovery of the material diverted

ely-xl = error penalty from a wrong estimate by defender
.

The diverter may have a goal to divert sufficient material to constitute a

credible threat. The defender desires to make decisions so as to minimize

his penalties. He generally does not know the diverter's decisions or even

the existence of a diverter, but he must take into account that a possible

diverter may make decisions in such a fashion as to maximize the defender's

penalties,
|

i

|

.
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Let us assume that an amount of material k constitutes a credible threat

to the defender. Furthermore assume that the facility under consideration

has an amount of material vulnerable to diversion equal to or greater

than k.

The defender can either pre-set a fixed value of the alarm threshold, z=a,

or else he can select a value of the alarm z after the inventory is

taken. From the inventory a MUF reading of u is obtained. In this

model the actions the defender takes will be based upon the relationship

of the MUF reading to the alarm threshold. If u > a, the defender will
_

close the plant down for a special clean-out inventory, estimate an

amount diverted y2, and take search and recovery actions based upon the

estimate y2 If u < a, the defender will estimate an amount diverted y)

and take more limited search and recovery actions based upon this ;

|

estimate y). It is assumed that the amount diverted is bounded:

!

o<x<k.

The value k can be interpreted as the minimum of the plant inventory and

the credible threat amount.

in general each component of the vector (z, y), y2) is a function of u,

the MUF reading, since each of the strategic variables z, y), y2 are functions

(ofu). Further, we need consider only those functions which are monotonic

|

1
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non-decreasing in u, since we can show that for any x, non-monotonic

functions are dominated by monotonic functions. Thus we need consider

only the vector space (z, y), y2) where each component is a choice of a

number within a prescribed interval.

The defender desires to estimate y) and y2 (as well as z when applicable)

in such a fashion as to minimize M whereas a possible diverter may select

x in such a fashion as to maximize M. Since the defender and diverter

never cooperate, the problem may be treated as a zero-sum game.

The expected payoff for this game is:

M = [c)y) + x-b) min (y),x)+e)|y)-x|]F(z,x)

2 *i"(Y ,x) + e IY -x|] G(z,x)+ [8 + c Y2 2 + x-b 2 2 2

The term F(z,x) represents the probability that the MUF reading u is

below the alarm threshold z when an amount x has been diverted.

F(z,x) = P(u < z)

Also G(z,x) = P(u > z)

and G(z,x) = 1 - F(z,x).

The defender desires to select a set (z,y), y2) in order to minimize the

payoff M not knowing how much material x has been diverted nor the value

|
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of MUF, u, that will be obtained (although he does know the form of the

distribution, F and G for u). The parameters of this model are

c), c , S, b), b ' *1' *2 and k which are site specific or unique to each2 2

facility under consideration.

4. Solution for the Fixed Alarm Threshold Model

The model described in the previous section was solved for the case z = a

for any value of a and published in NUREG-0290 (A Study of Nuclear
iMaterial Accounting), June 1977. This represents the case of the fixed

alarm threshold and corresponds to present practice. The model as

applied to a generic plant will be briefly reviewed in this section. j

The plant to be used for purposes of illustration is a small M0X fabrica-

tion plant. This generic facility is similar to an existing small plu-

tonium fabrication facility, and was referred to as Plant 1 in NUREG-0290.

The plant characteristics and model parameters are shown in Figure 3. A I
l

more complete descriptior. is presented in NUREG-0290 [1]. In general, even I

in the absence of diversion, the distribution of MUF is not normal for any

real-world facility. Although measurement errors can be modeled with a

nonnal distribution as characterized by LEMUF, there are other random

errors not accounted for by the LEMUF values. These errors could be caused

by such facility operations as unmeasured side streams, difficulties in

measurement, human errors, adjustments, etc. In order to properly model

._ __-_ ____ ___ _.



__ __ _ - - _ _ _ _ _ _ _ _ _ . . . .-_

! PLANT CHARACTERISTICS AND MODEL PARAMETERS

! Plant 1 - Small Plutonium Fabrication Facility

Characteristic Symbol Valuei

| LEMUF(Bimonthly) 2a 0.6 Kg
i Total Inventory 297 Kg

Throughput (Annual) 864 Kg
Replacement Value of SNM $10,000 per Kg

,

Special Inventory Cost $ 5,000 (dollar units) y
Special Inventory Cost # 1.67 (sigma units) '

Variable Search Cost, Small MUF c3 .017
Variable Search Cost, Large MUF c2 .167
Utility of Recovery, large MUF b 1002
Utility of Recovery, Small MUF b 10j

Error Coefficient e 50
Safeguards Objective k 10 (sigma units)
Safeguards Objective k 3 (Kg units)

Figure 3.

Refer to Appendix A and Reference 1 for
Discussion of Parameter Derivations.

. ~ . - . .
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these random phenomena, it is necessary to understand the operations of

each specific facility. The resulting MUF distribution will be site

specific. Reference [3] presents results from modeling of a specific

facility demonstrating the viability of the approach. For the generic

facility under consideration in this report, it will be assumed that the

distribution of MUF s normal as characterized by LEMUF. This is only

for mathematical convenience. Any other distribution could be used for

development of the game theoretic solution.

Under the assump' tion of a normal distribution for MUF, the following

expressions hold:

l

1 - (u-x)2
ZF(z,x)=f /2h2 e 2z du

|

+= 1 - (u-x)2
and G(z,x)=fz ge 2oz du, i

The minimax theorem was used to derive a solution for the game. The

optimal strategies and game value for Plant 1 are presented in Figure 4,
i

for the fixed alarm threshold case. The optimal alarm threshold, repre- I

l

senting the minimum penalty to the defender, occurs at a = 1.91 c. |

Consider the case when the alarm is set at the optimum. If MUF is

greater than a, the defender should estimate that y2 = 3.25a = 975 grams

;
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OPTIMAL SOLUTION FOR PLANT 1 FIXED ALARM THRESHOLD CASE

Alarm Defender Estimates Amount Value of Prob.of
Threshold of Diversion Diverted Game Diverting X

a Y1 Y2 X V P(X)

0. .006 2.920 0. 74.217 .040
0. .006 2.920 .064 74.217 .947
0. .006 2.920 10.000 74.217 .013

1.000 .236 3.178 0. 35.499 .272
1.000 .236 3.178 .617 35.499 .638
1.000 .236 3.178 10.000 35.499 .091

1.911 .416 3.249 0. 24.823 .372
1.911 .416 3.249 1.104 24.823 .504

i 1.011 .416 3.249 10.000 24.823 .124

2.000 .433 3.249 0. 24.903 .378
2.000 .433 3.249 1.154 24.903 .496
2.000 .433 3.249 10.000 24.903 .126

3.000 .668 3.191 0. 33.573 .420
3.000 .668 3.191 1.776 33.574 .440
3.000 .668 3.191 10.000 33.573 .140

4.000 .986 3.086 0. 49.339 .437
4.000 .986 3.086 2.507 49.339 .417
4.000 .986 3.086 10.000 49.339 .146

5.000 1.366 3.389 0. 68.323 .373
| 5.000 1.366 3.389 3.337 68.323 .341

5.000 1.366 3.389 3.451 68.323 .285

6.000 1.779 4.267 0. 88.959 .374
6.000 1.779 4.267 4.227 88.959 .335
6.000 1.779 4.267 4.312 88.959 .292

! 8.000 2.632 6.089 0. 131.634 .374
l 8.000 2.632 6.089 6.063 131.634 .3 28

8.000 2.632 6.089 6.117 131.634 .298

10.000 3.506 7.962 0. 175.379 .374
10.000 3.506 7.962 7.943 175.379 .324
10.000 3.506 7.962 7.981 175.379 .302

Values of a, Y , Y , X and V are in a Units (a= 0.3 kgs.)
| 3 2

The Mixed Strategy of the Diverter Contains 3 Values of X.

Figure 4.
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for the amount diverted and should search for this amount. When MUF is

less than a, the defender should estimate that y) = .43o = 130 grams and

should conduct a more limited search for this amount. In this model if

the defender interprets diversion based upon MUF in this manner he will

protect himself in the best way against any diversion decision the

diverter may make.

Whereas the defender has a best strategy, the diverter does not have a

single strategy which is best. It is important for the diverter to

withhold information about diversion. He accomplishes this by using a

mixed strategy, which is a probability distribution of the amount he

diverts. |

The optimal decision for the diverter (in terms of penalizing the defender)

when a = 1.91o is to divert nothing with probability .372, to divert 330
|

grams with probability .504, or to divert 3 kgs. with probability .124. !
'

Note that in this case the diverter favors taking a small amount relative

to his objective of 3 kgs, but does so with a mixed strategy so that his

moves will not be predictable by the defender. The expected amount

diverted is 539 grams. Both diverter and defender optimal strategies

are very sensitive to the alarm threshold. Note that in this game with |
i

these parameters, the defender should not estimate zero diversion when |

|
MUF is below the alarm threshold. To do so would be to expose himself j

l

to greater penalties than need be. j

-
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The distribution of MUF under the condition of optimal diversion can be

expressed as:

P(MUF 5 u) = P F(u,o) + P F(u,x2) + Pk F(u,k) where 0 $x2 5 kg

where (P , P ,Pk ) represent probabilities for the diverter's mixedg

strategies and F(u,t) is a cumulative normal distribution with mean t.

For Plant 1 under conditions of a = 1.91o,

P(MUF 1 u) = .372 F(u,o) + .504 F(u,1.104) + .124 F(u,10).

Note that this distribution is trimodal and is not normal. Let us

calculate the probability that MUF will be less than a.

Then u = 1.91a and

P(MUF 5 a) = .372 (.972) + .504 (.790) + .124 (.000) = .760

Thus under conditions of optimal diversion there is a .76 probability

that MUF will be below the alarm and a .24 probability that MUF will be

greater than the alarm. (There is a .63 probability that some diver-

sion has taken place which compares with the .24 probability that the

alarm will ring. The diversion will be detected by alarming only 38% of

the time.) The null hypothesis, i.e., there is no diverter operating,
.

,

1
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would indicate a probability of .97 that MUF will be below the alarm.

(This is the one-sided probability.) Thus the alarm rate will vary from

.03 to .24 from best to worst case estimates.

These results are based upon the nominal parameter values given in

Figure (3). Some of these parameters are based upon engineering cost

estimates for the facility. The others represent subjective utilities

to the decision-maker, particularly where societal values are involved.

In order to determine the applicability of the game theoretic approach,

it is necesary to examine the sensitivity of the results to variations

in the values of the parameters. The approach to the sensitivity analysis

is to examine the behavior of the optimum alarm threshold, the value of

the game, and the defender's diversion strategies as the plant parameters

are varied.

.

The nominal value of the parameters from Plant I were derived from the

following considerations. Based upon engineering data for the facility,

the standard deviation of the measurement accuracy distribution was

determined to be c = 0.3 kg. of special nuclear material (SNM). It was

assumed that 3 kg. of SNM would constitute a credible threat and represent

a reasonable safeguards objective. Therefore we took k = loc. The inven-

tory cost model reported in [1] gave $5,000 for the cost of a special

cleanout inventory. Using a " replacement" market value of $10,000 per

kg. of SNM gave s = 1.670.
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The remainder of the parameter values were based on these inventory costs.

We assumed that the maximum cost of the variable search effort when MUF
1

exceeds the alarm threshold would be equal to the fixed cost of the clean-

out inventory c k = s. Moveover we assumed that when fluF was less than
2

the alarm threshold the variable search would be performed at ten percent

of the cost of a search effort for the same quantity of material above the

alarm threshold. Thus c2 = 0.167 and c) = 0.017.

Next, the utility of recovering the material was related to the disutility

of plant shutdown and inventory. In this model the maximum utility of

recovery is b k and the plant shutt'own costs are 6 We chose b2 = 1002

which gave a utility ratio of b k/8 = 600 for plant 1. Again we took b) at2

50 by assuming that theten percent of b . We decided that e) = e2
a

2

penalty for making en error in the estimate of the amount diverted has a

maximum value of one-half of the maximum utility of recovering material,

j It is difficult, if not impossible, to make accurate estimates of all

the parameters of this model. What is important is their consistency

with each other and the sensitivity of the results to these estimates.

flowever, the model may still be quite useful if results are reasonably

insensitive to wide variations in parameter values. The sensitivity

analysis explored this. Figure (5) shows the range of parameter values

;
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RANGE OF PARAMETER VALUES FOR SENSITIVITY ANALYSIS

PARAMETER NOMINAL RANGE
ITEM SYMBOL VALUE STUDIED

Standard Deviation o 0.3 Kg .03-3.0 Kg
,.

#

Safeguards Objective k 100 1-100o
Inventory Cost # 1.67a 0-100
Search Cost Coefficient c1 .017 0-0.1 i

Search Cost Coefficient c2 .167 0 1.0 $.
'

Recovery Coefficient b1 10 1.L 100
Recovery Coefficient b2 100 10-1000

1

Error Coefficient e1 50 5-500
-

Error Coefficient e2 50 5-500

Figure 5.

i

i

|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . , _ , . . ~ . .
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studied. We attempted to cover a range from an order of magnitude below I

to an order of magnitude above the nominal value.

!

Appendix [A] presents the details of the sensitivity analysis. These

results will be summarized here for the determination of the optimal

alarm threshold. The other variables are examined in the Appendix.

Figure (6) shows the value of the game as a function of the alarm thres-

hold. As can be seen, an optimum exists and is at a sharp point in the

region of optimality. For Plant 1 a* = 1.91c where a* is the optimum

fixed alarm threshold. flow we will consider sensitivity of this optimum

value to variations in the parameters. Figure (7) shows that a linear {
relationship exists between a* and the value of the safeguards objective

k. This is not surprising since k represents the goal toward which system

design is based. It has to be selected carefully and realistically with |

reference to what constitutes a credible threat.
.

The sensitivity analysis determined that a* is insensitive te variations
fand inventory cost E. It is also insensi-in the cost coefficients c), c2

tive to the value of the recovery coefficient b). Details are presented
,

in Appendix A. However a* is sensitive to the recovery coefficent b
2

,

for relatively small values of b . When b is greater than 100, it is
2 2

insensitive. This is illustrated in Figure (8).

i

|

_ _ _ _ _ _ _ _ _ . _ - _ _ _ _ _ _ - _ _ _ _ _ - _ _ - . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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VALUE OF GAME AS A FUNCTION OF ALARM
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RELATIONSHIP OF ALARM TO SAFEGUARDS OBJECTIVE
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RELATIONSHIP OF ALARM TO RECOVERY COEFFICIENT 1
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The greatest sensitivity of a* was to the estimates of the error coeffi-

cients e) and e . Figure (9) presents the sensitivity to e). a* is a
2

decreasing function of e . Figure (9) also presents the sensitivity toj

e. a* is an increasing function of e . Although the effects of e and
2 2 j

e tend to cancel each other if the errors are in the same direction, e
2 2

i has the most significant influence on a*. Figure (10) shows the effect

on a* when e) = e . It becomes more significant for values of e greater
2

than 50. Of all the parameters in the model, e has the greatest influence
2

on selection of an optimal alarm threshold. This represents the sensitivity

to the decision-maker to making an error in the estimate of the amount

diverted when MUF is large.
,

t

A review of the sensitivity of the optimal alarm to parameter values shows

it to be reasonably insensitive. Thus, the result of the sensitivity

analysis indicates that for Plant 1 it is feasible to establish fixed alarm

thresholds based upon parameter estimation for the game theory model

presented here. The greatest care must be exercised in estimates of e *
2

i Since the penalty in the error of the estimate of diversion should be based

| only on the magnitude of the error and not the value of MUF, it is reason-

able to assume that e) = e . Thus, the effects of e are reduced to a2 2

manageable dimension.

|
|-

|

|

|
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RELATIONSHIP OF ALARM TO ERROR COEFFICIENTS
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RELATIONSHIP OF ALARM TO EQUAL ERROR COEFFICIENTS
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5. Alarm Threshold as a Strategic Variable

The previous solution was based upon the assumption that the alarm

threshold is predetermined and fixed at some value prior to the start of

the game. Since the alarm threshold in this case is a parameter, its

value is therefore known to the diverter as well as the defender. This

information gives an undue advantage to the diverter. By making the

alarm threshold a strategic variable of the defender rather than a

parameter, we no longer restrict the defender to any particular value of

the alarm threshold. This procedure withholds information about the

alarm from the diverter at the time he makes a decision about the amount

of material he will divert.
|

The game model will now be extended by introducing the alarm threshold i

as a strategic variable; one of the moves of the defender is the choice
1of an alarm threshold. The particular alarm threshold is known by the '

defender, but not by the diverter. Thus the strategic variables for the i

defender are the alarm threshold and the estimates of diversion for MUF

values both above and below the alarm. This yields a three dimensional

strategy space for the defender which will be analyzed for optimal

strategies.

As will be recalled, the game in extensive form is described as follows:
1

Move 1. Diverter removes x grams, 0 < x < k.

Move 2. Defender receives information that u grams are unaccounted for.

w
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Move 3. Defender decides

i) Whether or not to alarm and take reinventory.

ii) How much effort to expend on search and recovery of diverted .

material based upon his estimate of diversion in each of

the two cases of i).

i In normalized form the above game may be described as follows:

1. Diverter picks a strategy x where 0 1x5 k.

2. Defender picks a strategy which is a three-component vector of func-

tions [z(u), y)(u), y2(u)] where z(u) is the alarm threshold, y)(u)

is the estimate of diversion when u < z and y2(u) is the estimate of

diversion when u 1 z.

In other words, if:
,

u < es), then action based upon y)(u) is taken

u 1 z(u), then action based upon y2(u) is taken.

These action' include search for and recovery of diverted material.

Now since u is a random variable, the payoff of the game will consist of

two parts.
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i) M) if u < z('u)

ii) M if u 1 z(u)2

Therefore the expected payoff M will be

M = M) P(u < z) + M P(u t z)2

and the complete payoff function in terms of the parameters is

M = [c) y) + x - b) min (y), x) + e)|y)-x|] P(u < z)

2 *I" (Y '*) * *2 !Y-x|]P(u1z)+ [8 + c2 Y2+x-b 2 2

Using the results of NUREG-0290 and the results of the one-dimensional

game of Appendix [B], it is easy to show that

Max Min M(x,z,y),y2) < Min Max M(x,z,y),y ).p

x z,y),y2 z,y),y2 *

Hence this game requires mixed strategies for both players. Based upon

the results in Appendix [C] it can be shown that the optimal mixed

strategy for each player consists of a finite number of strategies rather

than a density function.

If F*(x) and G*(z,y),y2) represent the optimal mixed strategies of the

diverter and defender respectively, then we need to solve the following

optimizing equation:

Max fM(x,z,y),y2)dG*(z,y),y2)= Min fM(x,z,y),y2)dF*(x)

x z,y),y2

Due to the complex form of the payoff function M(x,z,y),y2) which involves

exponential and rational functions, a closed form solution is not possible.

i
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Some approximating or iterative process is required to solve this mathe-

matical problem. We shall use an iterative process designed specifically

for game problems - the method of " fictitious play" or successive approxi-

mations. See Reference [2] for an explanation of the method.

Using this method of fictitious play, the three-dimensional game described

above was solved. Figure (11) presents the value of the game for Plant 1

for the strategic alarm threshold case and compares it with alternative

fixed alarm threshold policies. As can be seen from the figure, there

is a substantial decrease in the defender's losses when he uses the

alarm threshold as a strategic variable. The difference in value between

the value of the game under an optimal fixed alarm and an optimal variable

alarm represents the value to the defender for denying information to

the diverter as to the location of the alarm with respect to the MUF

reading. For Plant 1 it is considerable and is a 51% improvement in the

payoff.

Figure (12) shows the optimal strategy for the defender. There are

eleven pure strategy sets in the optimal mixed strategy solution for the

defender. These strategies are approximate since we used a grid of

points rather than a continuum. The alarm threshold range is from - 0.5 a to

4.0 a with a specific probability for selection of any specific alarm.

Note that y) = 0 is optimal; the defender assumes that there is no

diversion when MUF is below the alarm. However, the alarm level is

selected by a mixture of several alarms. For any fixed alarm, y) > 0.

J

- _ _ _ _ _ _ _
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VALUE OF THE GAME FOR ALTERNATIVE ALARM POLICIES

VALUE- ,

!

ALARM THRESHOLD
A STR ATEGIC VARI ABLE 12.2o

'

FIXED ALARM THRESHOLD,

at Optimum (1.91o) 24.820 &
at LEMUF (20) 24.900 ?
at 2 LEMUF (40) 49.340

-- at 3 Kgs 175.40a
t

Figure 11.

i
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OPTIMAL STRATEGY FOR THE DEFENDER
PLANT 1 (a = 0.3 Kgs)

Z Y1 Y2 P(Z, Y1]p)
-0.5 0 0.5 .050
0 0 0.5 .188

+ 0.5 0 1.0 .113
1.0 0 1.0 .090 1
1.0 0 1.5 .090 ?
1.5 0 1.5 .011
1.5 0 2.0 .083
2.0 0 2.5 .028
2.0 0 3.0 .096
3.5 0 10.0 .204
4.0 0 10.0 .039

NOTE: Z, Y , and Y are in o units.1 2

Figure 12.
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Figure (13) shows the optimal mixed strategy solution for the diverter.

There are eight pure strategies in his optimal mix.

The expected value of y2, E(y2), is equal to 5.14 a = 1.54 kgs. Figure

(14) shows % e cumulative probability distribution for the selection of an

alarm threshold based upon the value of MUF.

Notice the large deterrence effect derived from a veriable alarm policy.

The probability of no diversion, P(x = 0), is .62. This compares with a

probability of no diversion for the optimal fixed alarm threshold of .37.

Thus the deterrence effect of a variable alarm threshold policy shows an

improvement by a factor of 1.7. The expected amount of material diverted

E(x) = .437 a or 131 grams. This compares to the case where E(x) = 1.8 e

or 539 grams in the optimal fixed alarm case, an improvement by a factor of

4.l. Figure (15) shows a comparison of the results for alternative alarm

threshold policies. The superiority of a mixed strategy policy for the

defender is clearly evident.

Figure (16) presents the expected alarm rates for alternative alarm policies

for the defender for two cases. In the first case a diverter . laying

optimally is assumed. There is not much significant change in the alarm

rate. In the second case, there is no diverter present but the defender

does not know this. The false alarm rate is higher for the variable alarm

policy than for a fixed alarm policy. ;
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OPTIMAL STRATEGY FOR THE DIVERTER
PLANT 1 (a = 0.3 Kgs)

X P(X)
0 .620
0.5 .241
1.0 .052
1.5 .043 i

2.0 .012 $
'2.5 .008

3.5 .013
10.0 .011

NOTE: X is in o units.

Figue 13.

|
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PROBABILITY DISTRIBUTION FOR ALARM SELECTION

Plant 1 o = 0.3 Kgs
MUF PROBABILITY

RANGE OF
(o units) ALARM
> 4.0 1.000
3.5-4.0 .961
2.0-3.5 .757 ,

1.5-2.0 .633 8
'1.0-1.5 .539

O.5-1.0 .359
0-0.5 .246

-0.5-0 .058
< -0.5 0.00

Figure 14.
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COMPARISON OF RESULTS FOR ALTERNATIVE ALARM POLICIES

EXPECTED
AMOUNT OF PROBABILITY OF

M ATERI AL, DIVERTED NO DIVERSION

ALARM THRESHOLD
A STR ATEGIC VARI ABLE 131 grams 0.62

FIXED ALARM- ?
at Optimum (1.910) 539 grams 0.37

at LEMUF (20) 550 grams 0.38

at 2 LEMUF (40) 750 grams 0.44

Figure 15.
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EXPECTED ALARM RATES
!

DIVERTER ACTING FALSE
OPTIMALLY ALARM

L

ALARM THRESHOLD
A NTR ATEGIC VARI ABLE .287 .088

FIXED ALARM THRESHOLD
at Optimuni (1.91o) .240 028.

at LEMUF (2o) .233 .023
at 2 LEMUF (40) .174 <.001

:

Figure 16.
,
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r

The effectiveness of the alarm policy is not determined by the false alarm {

rate as is often the case when a classical statistical approach is taken, |
but rather by the probability of the alarm going off when a diversion has

.

!

occurred. This can be expressed quantitatively by the conditional probabil- i

ity P(u > zlx > i) where i represents the expected amount of material *

,

diverted when the diverter uses his optimal strategy. This term represents ;
q

the minimum probability of detecting a diversion of at least i because x
Ihas been chosen from the diverter's optimal distribution. Figure (17)

presents this value for the alarm threshold as a strategic variable as well j
, .,

as a fixed optimum value for several different expected values of X. The ,

f
'

probability of detecting a diversion of expected amount greater than 123

grams is .75 for the variable alarm case. This compares to .38 for 550 :

i

grams for the optimal fixed alarm case and .02 for 1495 grams for the case !
,

!of the alarm at 3 kgs. This means that the values presented on Figure (17)
:

are the' assurance values for the material accounting system. The results ;

;

indicate the advantages that may be realized by the game theoretic approach, ;

; particularly when the alarm threshold is treated as a strategic variable.

:
'

6. Summary and Conclusions :

: In this report we have presented the results of applying a game theoretic ;

i

| model to the interpretation of MUF data at a specific plant. We have shown -

'

in this case that there is a clear advantage in this approach over classical
!

| statistical hypothesis testing in terms of reducing the costs or penalty to |
i

!

:
,

I

p

.-
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PROBABILITY OF ALARM WITH THREE DIFFERENT TYPES

OF ALARM THRESHOLD

ALARM THRESHOLD ALARM FIXED ALARM FIXED
AMOUNT A STR ATEGIC VARI ABLE AT OPTIMUM (1.91o) AT 3 Kas

,

131 GMS. .75 - -

281 GMS. .88 - - ,

O
539 GMS. - .38 -

'

700 GMS. - .41 -

1495 GMS. 1.00 - .02

Note: Table is incomplete and Represents Only Calculations Made to Data.

Figure 17.
-

-
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the defender. Withholding knowledge of the alarm threshold from the diverter,

by treating it as a strategic variable, further decreased the defender's

penalties. These results suggest that game theory may provide a better

method for making decisions based on material accounting data.

It must be emphasized that this study is only a first step toward the

possible use of game theory for material accounting purposes. We have

examined in detail only one plant, and we have not completed the

sensitivity analysis for the variable alarm threshold model. We should

also apply the two models to other facilities.

Alternative formulations of the game also have to be explored. A fi rst

step would be to examine a variety of payoffs incorporating different

utilities or functional forms. A realistic probability distribution

for MUF, which could come from the simulation podel described in

Reference 4, should be used. The diverter may resort to other strategies

to cover his diversion, e.g., tampering with the accounting records or

wi th LEMUF. These possibilities should be investigated and means found

for incorporating then into the model. Furthermore, the whole field of

multi-move games remains to be examined. Before a game theoretic model

can be implemented it must realistically incorporate the capabilities

of the diverter as well as the utilities and behavior of the defender.

i
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Other parts of the safeguards system can supply information on the

existence and behavior of a diverter. Such information can be made use

of by a game theory model in several ways. If these data include an

a priori estimate of the probability of there being a diverter, then

using the results of the game theoretic analysis one can set up a
,

statistical test by which the a postiori probabilility of there being a

optimal diverter can be calculated from the MUF value. A second approach

is to restructure the game to incorporate this a priori probability.

Finally, the game can be enlarged to model the behavior of other parts

of the overall safeguards systems, thereby optimizing this larger system.

Some of the results of strategic analysis are applicable to the existing

system. As we have shown for a specific case, denying the diverter

information about the alarm threshold is advantageous to the defender.

The alarm threshold can be determined by NRC before the inventory period

and kept secret, or the decision whether to alarm can be made after the

MUF value is determined. The latter procedure is advantageous because

it precludes the possibility of the diverter gaining access to classified

data. However the legal and institutional ramifications of a variable

alarm threshold have to be investigated. We believe that procedures j

necessary for implementing a variable alarm policy should be investitated.

Since our results to date suggest that game theory may provide an

improvement in the method for interpreting and acting upon materials

|
|
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accounting data, we believe a vigorous program of research and develop-

ment in this area would be benefit.

Fixing the alarm at predetermined amounts based on classical statistics

can be shown to penalize the defender. The alarm should be the result of an

analysis based upon modeling the competitive interaction that exists

between a diverter and a defender. The theory of games is a logical

methodology for this modeling.

In summary, alarm thresholds based upon classical statistical inference are
,

not optimal in the sense defined in this study and in general penalize the

defender. Furthermore, game theoretic derived optimal alarm thresholds are

completely plant specific whereas those derived by the classical statistical

approach are only partially plant specific. The results of this study

suggest that steps to optimize alarms on a completely plant specific

basis to achieve a common standard performance requirement throug:.:ut

the industry should be evaluated.

:

,

|

!
|
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APPENDIX A

SENSITIVITY ANALYSIS

INTRODUCTION
|

( During the first phase of this study a game theoretic model of nuclear

material accounting systems was formulated. The model was applied to make

a preliminary analysis of the material accounting systems at three generic

plants. To perform the analysis it was necessary to evaluate the parameters

of the model for each of the plants. Some of the parameter values could

be chosen by engineering cost estimates, while for others we could only

make rule-of-thumb estimates. The results of this preliminary analysis

were published in NUREG-0290.

|

In order to determine the applicability of the game theoretic approach to

evaluating material accounting systems, it is necesary to examine the

sensitivity of the results to variations in the values of the parameters

of the model . This is especially true in this case where some of the ;

parameters represent societal values. In this report we present the
i

results of a more detailed sensitivity analysis for one of the three

plants, the small plutonium fuel fabrication facility.

We make the sensitivity analysis from the defender's point of view. He

determine what the optimal strategies for him to follow are for different

1

- --- --------------- -
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sets of plant parameters. Results are presented for the level at which

the alarm threshold should be set, the defender's estimates of the amount

of material diverted, and the maximum penalty to the defender when he

use.s the optimal strategy.

In applying the game theoretic model to a plant, all the plant parameters

are fixed except the alarm threshold. The solutions are found for a

series of alarm thresholds, and the alarm threshold which gives the lowest

value of the game is determined. See Figure A-1. The purpose of the

sensitivity analysis is to examine the behavior of this optimum alarm

threshold a*, the value of the payoff v*, and the defender's strategic

variablesyyandyjastheplantparametersarevaried.

1.0 Plant Parameters

In the game theoretic model the plant is characterized by ten parameters.

| Measurements of MUF are assumed to have normally distributed errors with

mean x and a known standard deviation c. This latter quantity is used as

the unit in which we measure amounts of SNM. Thus k, a, x, y) and y2

are all measured in units of o.

The parameter k, which is defined as the amount of SNM vulnerable to

diversion, has to be carefully interpreted. It does not represent
i

the amount of material in the plant, only the amount the defenderl

I
:
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(

believes would constitute a credible threat. Thus k can be considered the

safeguards objective. In this model if an amount greater than k were

diverted, it would not increase the defender's losses.

i

Under current practice the alarm threshold is set as some multiple of the

|
regulatory limit on LEMUF. The value chosen is a compromise between a high

false alarm rate and not detecting a small diversion. In the game theoretic

model the optimal alarm threshold a* is an outcome of the analysis. It

therefore is a function of the other parameters.

The remaining parameters 6, b), b , c), c ' *1 and e are costs and cost2 2 2

coefficients in the payoff function. The cost of a special cleanout

inventory 6, which in this model is done if MUF exceeds the alarm thres-

hold, can be determined using the inventory cost model developed during
'

the first phase of this study. The cost coefficients c) and c for the2

variable search effort also can be found by engineering estimates of labor .!

and materials involved. The other coefficients have to be determined by

less well established methods. The b) and b coefficients contain such2

factors as the value to the defender (or to society in general) of

recovering the material diverted and the probability of recovering it.

The e) and e coefficients, which represent penalties to the defender2

for wrongly estimating the amount diverted, also depend on societal

values.

..
_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The values of these parameters for plant 1 that were determined in the

first phase are shown in Figure 5 of the main report. They were derived '

from the following considerations. First, based on engineering data for

the plant, the standard deviation of the measuring error distribution was

determined to be o = 0.3 kg of SNM. It was assumed that 3 kg of SNM would

constitute a credible threat for the diverter; therefore, we took k = 10a. -

The inventory cost model gave $5,000 for the cost of a special cleanout
!

inventory at plant 1. Using a " market" price of $10,000 per kg of SNM gave

e = 1.670.'

The rest of the cost coefficients were based on the inventory costs. We

assumed that the maximum cost of the variable search effort when MUF

exceeds the alarm threshold would be equal to the fixed cost of the

|
cleanout inventory c k = 6. Moreover, we assumed that when MUF was less

2

than the alarm threshold the variable search would be performed at ten
| percent of the cost of a search effort for the same quantity of material

above the alarm threshold. Thus c2 = 0.167 and c) = 0.017.

Next, the utility of .ecovering the material was related to the disutility

of plant shutdnwn and inventory. In this model the maximum utility of

recovery is b k and the plant shutdown costs are 6. We chose b2 = 1002

which gave a utility ratio b k/8 = 600 for plant 1. Again we take b) at2

ten percent of b . We decided that e) = e2 = 50 by assuming that the2

penalty for making an error in the estimate of the amount diverted has a
1
'

maximum value of one-half of the maximum utility of recovering the material.

_-. - _ _ _ _ _ _ _ _ - _ _ _ - _ _ - _ _ _ _ - _ _ - _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ - _ _ _
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It should be clear from this discussion that it is difficult, if not

impossible, to make accurate estimates of all the parameters of this model.

The best we can do is put plausible limits on the range of their values.

In performing a sensitivity analysis we therefore attempted to vary the

parameters by an order of magnitude in both directions from their nominal ,

values. The range of parameter values studied are shown in Figure 5 of the

main report.

2.0 RESULTS OF THE SENSITIVITY ANALYSIS

2.1 Nominal Values

Before presenting the results of the sensitivity analysis for plant 1, we

will first discuss the results for the nominal values of the plant para-

meters. Figure A-1 shows the value of the game and the defender's strategic

variables as a function of the alarm threshold. The penalty to the defender

is large when the alarm threshold is much higher or lower than its optimal

value a* = 1.911a and v* = 24.80. Note than even if u < a* the defender's

optimal strategy is to estimate that there has been a small amount of SNM

diverted and to make a search to recover any of this material. This is

in contrast to the classical statistical hypothesis testing approach under

which no diversion would be assumed if the alarm threshold has not been

exceeded.

2.2 Sensitivity to Safeguards Objective

The parameter k represents the amount of SNM at a plant that is vulnerable

to diversion measured in units of a.
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The results of varying k from 1 to 1000 are plotted in Figure A-2. These

plots show a linear behavior with plaat size except at the smallest values

of k. The functional dependence can be expressed as:

a* 0.885 + 0.919 k=

yy -0.027 + 0.0445 k=

yj 0.059 + 0.3249 k=

'

3.266 + 2.157 kv* =

For large k, these quantities are proportional to the safeguards objective.

This analysis demonstrates that NRC must consider its safeguards objective

in setting the alarm threshold for a plant. It is not sufficient to con- '

sider measurement errors only. A larger safeguards objective in physical

units of material requires a proportionally larger alarm threshold and

will result in larger losses to the defender.

2.3 Sensitivity to Cleanout Inventory and Recovery Search Costs
)

We now examine the sensitivity of our results to the costs for performing a r

cleanout inventory 8, and to the cost coefficients for the recovery search,

c) and 2 These parameters can be fairly well evaluated using engineering

cost estimates. In performing the sensitivity analysis, we varied these
r

parameters from zero up to six times their nominal values. The results are "

shown in Table A-I.

1

!
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Table A-1

Sensitivity to Cleanout Inventory and Recovery Search Costs

Parameter a* yy yj v*
I

tJominal Values 1.911 0.41 6 3.249 24.8

8=0 1.901 0.410 3.240 24.6

s = 10 1.960 0.445 3.296 26.1

c) = 0.0 1.912 0.416 3.249 24.8

= 0.1 1.910 0.416 3.249 24.9
c)

2 = 0.0 1.908 0.414 3.246 24.7c

2 = 1.0 1.928 0.426 3.265 25.2c

I
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It is clear from these results that there .is very little change in the four |

variables over this range of variation of the parameters. Since there is ;

i

.relatively little uncertainty in these parameters, we have not further
$investigated their sensitivity.
r

!

2.4 Sensitivity to the Value of Material Recovered >

i

The parameters b) and b measure the value to the defender of recovering 1
2

any SNM that has been diverted. We first examine the case where one of

these two parameters is held fixed at its nominal value while the other is

allowed to vary up or down by a factor of ten. These results are displayed'

i

in Figures A-3 and A-4. Over the range shown both a* and yj show slight linear |
,

increases with b), whereas yj shows a slight linear decrease. The value of *

the game also decreases slowly with increasing b); it changes by less than j

!

a factor of two when b) changes by two orders of magnitude. ;

,

The results show a much stronger dependence on b . All four quantities2,

decrease rapidly with increasing b for values of b less than 100, the
2 2,

.

: nominal value. Above b2 = 100, yJ, yj and v* continue decreasing although
t

! at a slower rate. The optimal alarm threshold, however, goes through a

j minimum near b = 400 and then increases very slowly. This behavior is due ,

2

to the fact that the term with the b coefficient has a negative sign in
2

F

the payoff function. Therefore, as the value of the material recovered

increitses, the diverter removes less on the average. The defender can then

decreese his alarm threshold and his estimates of the amount diverted, thus

decreasing his penalties. |
|

:

. . _ . - . . _ _ _ - - - - . .
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Since b) and b2 both measure the value of the material recovered, we

varied them simultaneously keeping the ratio b /b) = 10 fixed. These
2

'

results, which are displayed in Figure A-5, are very similar to those where

we varied only b . This again shows that variations in b have larger
2 2

effects than variations in b). For larger values of b neither variable
2

'has much effect.

We have also varied b) and b independently over their full range. Contour
2

plots of the results are presented in Figures A-6 to A-9. For b less than
2

about 100, the results are nearly independent of b). For larger values of

b neither variable has much effect.
2

Our overall conclusion is that the model is very insensitive to variations

in b) over the range studied. For larger b the optimal alarm threshold
2

,

is nearly independent of b and the defender's strategic variables and
2

penalties decrease slowly. Only for small values of b do the results
2

show much sensitivity. Because the value to society of recovering any

diverted material is likely t; be high, we believe these recovery value

coefficients are well enough determined to allow NRC to set a meaningful
|

alarm threshold.

i 2.5 Sensitivity to Incorrect Estimates of the Amount Diverted

We examined the sensitivity to the error penalty coefficients e) and e2

in a similar way to that for the b parameters. The results for varying
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fixed at its nominal value are shown in Figure A-10;e) while holding ep

the corresponding plots varying e2 for fixed e) are shown in Figure A-ll.

Whene'isincreasedbothyyandyjstayconstantandthendecreasej

slightly. The alarm threshold decreases as e) increases and becomes

negative for e) larger than 400. Since this parameter increases the

penalty to the defender below the alarm threshold, the defender prefers

a low-alarm threshold when e) is large. We see exactly the opposite

behavior when e isincreased;a*,yyandyjallbecomelarger. In both
2

cases the value of the game increases as the parameters increase.

When we vary the two parameters simultaneously keeping e) = e , the2

behavior is more complex as shown in Figure A-12. Both the alarm threshold

up to 50; then they increaseand yy stay nearly constant for e) = e2

slowly. The value of yj increases rapidly at first and then more slowly

for larger values of the parameters. The penalty to the defender also

increases and becomes nearly linear in e. The explanation for this behavior

is as follows. As e) and e become larger, the diverter attempts to remove2

a larger amount of material because the recovery value terms become relatively
iless important. The defender counters by increasing his estimate of the

amount diverted, thus keeping ely-x| small. The optimal alarm threshold

liesbetweeny{andyjwhichbalancesthecontributionstothepayofffrom

the e) and e terms.2

,

h

_ _ _ _ _ _ - _



- _ - _

,

- All-

These results indicate that the model is most sensitive to the error

penalty coefficients and that the variations are more sensitive above

threshold than below. In order to use this type of model to set the alarm

threshold, these parameters have to be well determined, especially if they

are large. Of all the parameters in this model, the largest effort must

be put into evaluating e . Refer to Figures A13 - A16 for an illustration
2

of this.

2.6 Other Two-Variable Correlations

We have looked at correlations when we vary the below-threshold parameters,

andb) and e), and also when we vary the above-threshold parameters, b2

Contour plots of the results for b) - e) are shown in Figures A-17 toe.
2

in Figures A-21 to A-24.A-20 and for b2-82

The results for a*, yj and v* show very little sensitivity to the b)

parameter as compared to the e) parameter. The below-threshol4 estimate

ofdiversionyyshowsamorecomplexbehavior. It is nearly independent

of b) when e) is large. When e) is small, the dependence on b) becomes

more important.

The results when we varied e and b show a strong negative correlation.
2 2

All four quantities increase rapidly when b decreases and e increases.
2 2

and e increaseThereisalmostnochangeiny{,yjandv*whenb2 2

simultaneously. The optimal alarm threshold does increase in this case

|
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because penalties are lower if the alarm threshold is exceeded less often.

These plots reinforce our conclusion that.the e2 parameter is the one

that must be most carefully evaluated. For safeguards purposes, the

best situation is where b is large and e small.
2 2

with the results of varyingComparing the results when we vary b2-82

b3 - e , we see that they are more dependent on the parameters that deter-j

mine the payoff above alarm threshold than those below alarm threshu!J.

This agrees with our intuitive feeling that we must be more careful when

we think that there may be a large diversion.

3. CONCLUSIONS

Plant 1 is characterized by having a relatively small measuring error

compared to the amount of material vulnerable to diversion. For this

plant the optimal alarm threshold and the expected losses are proportional

to k. The safeguards objective must be specified in order to set the

| alarm threshold for the plant. This is in contrast to the current practice

of setting the alarm threshold based on measuring errors alone.

Since plant 1 is small, the special cleanout inventory costs are also

small compared to the value of recovering diverted material. (The utility|

|

| ratio b k/B = 600 is large.) Consequently the alarm threshold and losses
2

| are insensitive to cleanout inventory and recovery search costs The

| |

|

|
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parameters s, c) and c can be determined by considerations outside this2

model, for example, by how much they contribute to the amant of material

recovered.

Because the value of recovering material t:at has been diverted is high

relative to the inventory and recovery search costs, the value of the alarm

Parameters for this plant.threshold is nearly independent of the b) and b2

As long as the b2 p rameter is known to be large, it does not have to be

well determined. The error penalty coefficients are the parameters in the

model for which the most effort must be expended to determine accurately.

This is especiaily true for the e2 parameter when it is large.

In general it appears that the model shows greater sensitivity to the

parameters that determine the defender's losses when MUF is above the alarm

threshold than those when MUF is below threshold. This is in line with the

intuitive notion that we need more accurate knowledge when we think a

significant amount of material has been diverted.
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APPENDIX B

SOME ALARM THRESH 0LD MODELS

1. INTRODUCTION

In this, appendix we extend.the game model of NUREG-0290 by introducing the

alarm threshold as a strategic variable. We shall assume that one af the

moves of the defender is the choice of an alarm threshold whereas in

NUREG-0290 the alarm threshold was fixed. The particular alarm threshold

chosen is known by the defender, but not by the diverter. We shall

formulate some games in which the alarm threshold is the only strategic

variable of the defender. This simplification yields a one-dimensional
,

strategy space for the defender which can be analyzed for optimality in

closed form. This was not possible when the defender's strategy space

was three-dimensional.

2. THE GENERAL ALARM THRESH 0LD GAME MODEL

The general strategic and competitive situation that exists in nuclear

material accounting and what we wish to model may be described as follows:

The nuclear material accounting system reports that u grams of SNM is4

unaccounted for, or the imbalance of inventory, u, is due to measuring

errors and possible unauthorized removal of SNM. Based on this value of u,
,

a decision is to be made or some action is to be taken with respect to this
i
i

|

:

l
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I

material unaccounted for. From the set of possible alternatives or actions

available, the problem is to choose the optimal action--optimal in the i

sense that it satisfies some objective or criterion of the decision-maker.
i

l
|

This situation may be modeled by formulating a two-person rame. We shall

first describe the game in extensive form--in terms of the moves of the

game. From this extensive form we shall derive the normalized form of the

game, which will be used for the analysis.

The game may be reduced to the following three-move game:

Move 1. Diverter removes x grams of SNM

Move 2. Defender observes that u grams of SNM are unaccounted for

Move 3. Defender takes some action a.

The first move of the game is a strategic decision by the Diverter. It

is a choice x where 0 1x5 k. Move 2 is a chance move, a choice u(x)

by Nature. Move 3 is a strategic decision a(u) by the Defender.

|

| Having described the game in extensive form, one may now formulate the

game in normal form. This is necessary for analytic purposes. This is

accomplished by defining a strategy for each player. A strategy for the

Diverter is a number x, where 0 1x5 k. A strategy for the Defender is

a function, since he has information about u. Thus a strategy for the

Defender is a function a where

_ _ _ _ _ _ . _ _ _ . __. _. .
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(u) 1 a(u) 1 a)(u) !a
o !

1

From the above it is clear that the Diverter has a one-dimensional

strategy space, namely the line 0 to k. However, the strategy space of

the Defender may be any dimension. We shall analyze the game where a is '

one-dimensional. This is the situation where the alarm threshold is the

only strategic variable.

3. PAYOFF

In order to complete the description of the game, we need to describe the

payoff to the Defender for each strategic choice of the Diverter and

Defender. Suppose the Defender wishes to minimize his losses; then we

need to describe how these losses depend on x and a(u)--1.e., we need to

give the function M(x,a(u)).

In general, it is also necessary to describe the payoff to the Diverter--

N(x,a(u)). However, if we assume that with respect to these payoffs, M -

and N, the Diverter and Defender are non-cooperative, then this is equiva-

lent to a constant-sum game and we need to consider only one payoff, M.

This rules out the possibility of collusion and cooperation between the

Diverter and Defender.

An optimal strategy of the Defender in such a situation protects the Defender

against anything the Diverter may do and even against any payoff the Diverter

may set for himself. It also includes the case that no Diverter exists.
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4. ALARM THRESHOLD GAME WITH OPTIMAL PURE STRATEGIES
,

Let us analyze the one-dimensional alarm threshold game, when the alarm

threshold is the only strategic variable of the Defender. This game is

described as follows: ,

i

Dive'rter diverts x where 0 < x < k
'

Defender, knowing u, chooses alarm threshold a(u) where -= 1 a(u) 1 =.
T

6

,

Since a(u) is the alarm threshold, this implies that
i

i) Defender takes action 1 if u 1 a(u) !

:

ii) Defender takes action 2 if u > a(u)
'

Further, since -- 1 a(u) 1 = this is equivalent to the Defender picking a
,

strategy z where -- 1 z 1 = with the condition that

! i) Defender takes action 1 if u 1 2

ii) Defender takes action 2 if u > z
t

t

Having formulated the strategy spaces., we now need to formulate the payoff

associated with these strategies. The payoff to the Defender is measured;

;
by his losses or costs as follows:

'

;

1) If Defender takes action 1, a minimal effort, he loses the

diverted material, x, or M) = x.

_ _ _ _ _ _ _ _ _ _ _ ____ _ .____ ._ . ._
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2) If Defender takes action 2, for instance by taking inventory at
Ia cost 8, then with probability b he recovers the diverted

material. His losses and costs are
|

M2 = 8 + x - bx = s 4 (1-b)x. |

Now M) and M2 are conditional payoffs, conditional upon MUF being below

or above, respectively, the alarm threshold. Letting P(uiz) = F(z,x) and

P(u>z) = G(z,x), then the expected payoff to'the Defender or his expected

losses are given by

M(x,z) = xF(z,x) 4 [s+(1-b)x]G(z,x) (1)

In order to solve this game, we shall first obtain upper and lower bounds

to the game value. First, let us derive the lower game value, Max Min
x z

M(x,z). Since

G(z,x) = 1 - F(z,x)

we can rewrite the payoff as

M(x,z) = 8 + (1-b)x + (bx-8)F(z,x) (2)

For any x, we have

s+(1-b)x+(bx-s)MinF(z,x),ifx>h
Min M(x,z) = z

_ |

s + (1-b)x + (bx-s)MaxF(z,x), if x s hz
z

Now let us assume that F(z,x) is a normal distribution function with'

mean x, then

Min F(z,x) = 0, Max F(z,x) = 1,
z z

and
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x>hs + (1-b)x, if
_

Min M(x,z) =
xshz x, if

Now maximizing with respect to x we have
9

f
Max [s+(1-b)x] Max x,

Max Min M(x,z) = Max bx>s bx<8 (3)
x z j_

Supposehi,thenfrom(3)wegetk

MaxMinM(x,z)= Max [s+(1-b)k,h]
x z

Further, we have that

s+(1-b)k>s+(1-b)h=h

Hence we have

Max Min M(x,z) = s + (1-b)k
x 2'

' and the maximum is assumed at x=k.

Nowsupposethath;k,thenfrom(3)weget
Max Min M(x,z) = Max [;, k] = k

x z
where ? is the null function (over a null set). The maximum is assumed

at x=k. -

We have thus shown that
E + (1-b)k, iff-<k

Max Min M(x,z) =
x z k, if f > k

In each case the maximum is assumed at x=k.

.

- - - - _ - - _ _ _ _ - _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _
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Now let us compute Min Max M(x,z)
z x

where

M(x,z) = xF(z,x) + [8 + (1-b)x]G(z,x)
_

We have for any fixed z

Max M(x,z) = kF(z,k) + [8 + (1-b)k]G(z,k)
x

= 8 + (1-b)k + (bk-8)F(z,k) .

Now minimizing with respect to 2, we have

s + (1-b)k, ifh~<kMin Max M(x,z) = (5)
z x k, ifh>_k

where the minimum is assumed at z = -= and z = +=, respectively.

Comparing (4) and.(5) we see they are the same. We have proven that this

game has a saddle-point at (k,-=) or (k,=) depending on the parameters

B, b, k.

The solution of this game can be summarized as follows:

1) The Diverter should always divert the maximum amount k.

ii) The Defender has an optimal pure strategy, -- or +=, depending

on the relative costs 8 and bk. If s > bk then the Defender

sets the alann threshold at -=. If 8 1 bk, then the Defender

sets the alarm threshold at +=.

| iii) The game value is

e + (1-b)k, if s 1 kb i

v=
k, if s > kb

i

1

l
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5. ALARM THRESHOLD GAME WITH OPTIMAL MIXED STRATEGIES

We now keep the strategy space the same as in the previous game but modify

the payoff as follows: If an inventory is taken at a cost 6, then with

probability r the Defender will recover the diverted material. The payoff

in this game becomes

M(x,z) = xF(z,x) + (6-rx)G(z,x) (6)

This game model, as compared to the previous one, does not include a penalty

to the defender for loss of diverted material when an inventory is taken.

We shall show that this game does not have a saddle-point, and hence mixed

strategies will be required. We shall also obtain upper and lower bounds

of the game.

First, we rewrite the payoff as follows:

M(x,z) = (6-rx) + [(1+r)x-B]F(z,x) (7)

We have for any x
8(s-rx) + [(1+r)x-B]MinF(2,x), if x 1 1r

zMinM(x,z)=
8* (6-rx) + [(1+r)x-B]MaxF(z,x), if x 1 97

z

if x t h6 - rx,

6
x, if x 1 9

i
,
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Now maximizing with respect to x we have

Max (8-rx), Max x
Max Min M(x,z) = Max

x1 +g ** 1+r
g

x z 1r
.

We have to consider two cases. Suppose

6' 6
Hr < k, then Max Min M(x,z) = Max [1 r ' I r3 * 1+r

x z
8

and the maximum is assumed at x = Mr *

8
Now suppose Mr 1 k, then

Max Min M(x,z) = Max [4,k] = k
x z

where 4 is a null function (over a null set). The maximum is assumed at

x = k.

We have thus proven that

6
Max Min M(x,z) = min (p7 ,k). (8)

x z
8

and the maximum is assumed at x = min (1 r , k).

Now let us compute the upper bound of the game or Min Max M(x,z). For any
z x

z, we can show that, by computing dM(x,z)/dx, that the function M(x,z) has

at most two critical values and hence at most one maximum point which is

also a critical point. Let this critical maximum be designated by x (z),
m

then Max M(x,2) will be assumed at one of the following three values
x

x = 0, x (z), k
m

- _ _ _ _ _ _ _ _ . __
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depending on z. Further, small values of z are associated with x = 0,

large values yield x = k and intermediate values of z yield x , where
m

0<x < k and M'(x ,z) = 0.
m m

We have from the preceding argument

Min Max M(x,z) = Min Min M(0,z), Min M(x ,z), Min M(k,z) ,9)
m

z x --121z z 1z1z2 z 1z1=3 2

Min ti(x ,z)=

m
z)1ziz2

Clearly,

8Min M(x ,z) f Min (1 r ' k) 'm
z)1ziz2

We have shown that

Min Max M(x,z) t Max Min fi(x,z) (10)
z x x z

and hence this game requires mixed strategies for both players.

6. SOLUTIO" 0F ALARM THRESH 0LD GAME--0PTIMAL MIXED STRATEGIES

In Section 5 we showed that the one-dimensional game of alarm threshold as

a strategic variable requires mixed strategies for both players. Since the
i

payoff function is continuous in the strategic variables, there exists a
,

l

solution which requires mixing over a finite number of strategies for each

j player, rather than a density function. Thus the game is fundamentally a

finite game in the sense that only a finite number of strategies are

selected from the continuum of strategies. Thus the solution problem is

reduced to finding a finite set of x's and a finite set of z's such that



|
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(k+=

Max M(x,z)dG*(z) = Min M(x,z)dF*(x)
x * /oz=-=

,

where F*(x) and G*(z) are the optimal mixed strategies of the diverter

and defender, respectively. Both F*(x) and G*(z) are step-functions with

jumps at the critical points of the integral functions.

Analyzing these integral functions, we can prove that for any z,

fM(x,z)dG*(z)

can assume a critical maximum, at most twice. Similarly for any x,

fM(x,z)dF*(x)

can assume a minimum for at most three different values of z. This implies

that

F*(x) = aIx (x) + (1-a)lx()
2

and

G*(z) = EI (z) + sIz()+YI7 z
2 3

where

i+e+y=1.

In order to obtain a solution of the game, it is necessary to solve the

following equations in closed form

f.
Max M(x,z)dG*(z) = v,

/-~X

Ik
N"

j M(x,z)dF*(x) = v

| ao

. __ _ _ - - - - _ -__ -______ _ _____- -_ .
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where v is the value of the game. Because of the form of the payoff

function, M(x,z), which involves exponential functions as well as algebraic

functions, this is impossible. Hence only solutions for particular values

of the parameters can be obtained. '

,

We shall do this for three sets of o, s, k parameters and five values of

the recovery parameters. In order to reduce the computing time to a

minimum, we shall use the method of " fictitious play" to solve the game,

rather than the classical methods of optimizing a function. Both methods

are iteration processes requiring many iterations. However, the technique

of " fictitious play" can perform high numbers of iterations at negligible

costs.

Table 1 presents game values for each of the three plants and for five

probabilities of recovery. We also present, for comparison, game values

when the alarm threshold is not a strategic variable but strictly determined

at LEMUF.

The table shows the improvement in game value--i.e., the defender's losses

are reduced--by using a mixed strategy of three alarm thresholds.

Table 2 shows the optimal mixed strategy for the defender for each of the

three plants and for each of the five recovery rates.
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Table 1

Game Values--Losses of Defender
One-Dimensional Alarm Threshold Game

Plant #1 Plant #2 Plant #3 :

o=0.3 o=1.62 o=15.9
Probability of 8=1.61 B=6.17 s=3.14

Recovery k=10 k=10 k=10
Alarm Threshold Alarm Threshold Alarm Threshold

r LEMUF Strategic LEMUF Strategic LEMUF Strategic

0.1 1.83 1.51 5.78 5.60 2.92 2.84

0.3 1.61 1.26 5.15 4.72 2.50 2.40
,

0.5 1.44 1.09 4.59 4.08 2.22 2.07
?

0.7 1.29 0.97 4.16 3.60 1.99 1.81 C

0.9 1.21 0.84 3.73 3.20 1.82 1.61

.

_ - _ - - - - - - - _ - _ 4
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Table 2

Optimal Strategy for Defender
G*(z) = al + SI + TI

z) z z
2 3

Plant #1 Plant #2 Plant #3
r

z P(z) z P(z) z P(z)

0.2 0.16 4.2 0.27 1.0 0.38

0.1 0.6 0.68 4.6 0.71 1.4 0.59

1.0 0.16 5.0 0.02 1.8 0.03

0.2 0.39 3.4 0.02 1.0 0.24

0.3 0.6 0.59 3.8 0.53 1.4 0.72

1.0 0.02 4.2 0.45 1.8 0.04'

0.6 0.18 3.4 0.02 1.4 0.02

0.5 1.0 0.78 3.8 0.62 1.8 0.58 ,

1.4 0.04 4.2 0.36 2.2 0.40

-0.2 0.11 3.4 0.40 1.0 0.06*

0.7 0.2 0.58 3.8 0.58 1.4 0.83

0.6 0.31 4.2 0.02 1.8 0.11

0.2 0.16 3.0 0.53 1.4 0.11

0.9 0.6 0.79 3.4 0.46 1.8 0.83

1.0 0.05 3.8 0.01 2.2 0.06

z represents alarm threshold value
P(z) represents probability of Dafender selecting that

value of z.

|

|

;

|

_ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ . _ _ _ _ _ _
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It should be pointed out that playing G*(z) by the defender is not the

same as playing z* = E(z) because the defender must use a mixed strategy )
and E(z) is a pure strategy.

Also note that for Plant #1, at r = 0.,7, a negative z(0.2) is optimal.

Table 3 shows the diverter's optimal strategy which is a mixture of two

strategies for each plant and each recovery rate. lie also show the

expecteddiversion,E(x).
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Table 3

Optimal Strategy for Diverter
F*(x) = aI + si

Plant #1 Plant #2 Plant #3r

x P(x) E(x) x P(x) E(x) x P(x) E(x)

1.5 0.93 5.5 0.65 2.5 0.16
0.1 1.54 5.67 2.922.0 0.07 6.0 0.35 3.0 0.84

1.0 0.33 4.5 0.42 2.0 0.12
0.3 1.33 4.78 2.441.5 0.67 5.0 0.58 2.5 0.88

1.0 0.73 4.0 0.75 2.0 0.80 5

0.5 1.13 4.13 2.10 *
1.5 0.27 4.5 0.25 2.5 0.20

0.5 0.02 3.5 0.73 1.5 0.25
0.7 0.99 3.63 1.871.0 0.98 4.0 0.27 2.0 0.75

0.5 0.21 3.0 0.50 1.5 0.69
0.9 0.89 3.25 1.651.0 0. 79 3.5 0.50 2.0 0.31

x represents amount diverted.
p(x) represents probability of diverter selecting that value of x.
E(x) represents expected value of x.

.
-- ___
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APPENDIX C

MATHEMATICAL PROOF FOR FORM 0F DIVERTER OPTIMAL STRATEGY

.

We will present a semi-constructive proof that the diverter optimal

strategy, F*(x), is a step function with a finite number of jumps. Define

as follows the generalized moments associated with each distribution

function F(x) of the diverter. First let us set:

4

fZ

~I"[)2
I du = f(x)e

5 | -.
Now define the following hypercurve, parametrically in x, where 0 < x < k:

3 = f(x)r

r '" *f(*)2

3 * *i"(Y '*) f(*)r l

4=|y)-x[f(x)r

5 * I~fIX)r

6 = xD-f(x)]r

7 * *i"(Y '*)ll-f(*)3r
2

g =ly2-xjI1-f(x)].r

These functions are obtained from the payoff M(x,y).

.

As x varies between 0 and k, the above curve is trcced out in 8-dimensional

space (at most). Now form the convex hull of this curve. This convex

hull, H, will be at most an 8-dimensional convex volume.

_ _ - - - - _ _ _ _ _ _ _ - . -.
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Let F(x) be any distribution function (density or~ step function). We

can compute the.following 8 noments:

K

pg= F(x)df(x) I<i<8'

j
o ,

,

for that F, or we can associate a p = (pl, p2, ...p8), a point inp ,

8-dimensional space. Letting F vary over all possible distribution

functions, we obtain an 8-dimensional volume R which is closed, bounded,

and convex. Further R = H, the convex hull of the previously defined

curve.
!

Thus selecting a distribution function F(x) is equivalent to selecting ,

a point p in H = R, an 8-dimensional convex set. In this convex set
,

each vertex corresponds to a distribution function with a single. step at.,

x where 0 < x < k, or F(x) = I (x). Now from Fenchel's Theorerm on !
x

.

convex sets--every point of an n-dimensional convex set can be represented i

by a convex linear combination of (n+1) vertices of the convex set--it
,

follows that there exists an F*(x) such that it consists of at most 9

steps.
)

i
.

. _ _ - _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ - - - _ . _
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