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@ Introduction

The Nuclear Materials Accounting Study, which began in July 1976, had as
its overall objective the examination of the accounting systems used in
safeguarding special nuclear material. The purpose of this examination
was to Took for improvements in the procedures utilized in nuclear
materials accounting so that the overall effectiveness of safeguards can
be enhanced. More specifically, the purpose of the study was (a) to
directly examine the implications of deliberate diversion on nuclear
material accounting (b) to determine the validity of the MUF* concept to
establish assurance concerning the possible unauthorized diversion of
Special Nuclear Material (SNM) and (c) to provide tools for acsessing

licensee material accounting safeguards performance requirements.

The safeguards problem, by its very nature, implies an adversary situation
in which someone seeks to divert nuclear material, and NRC or the licensee
tries to prevent him from succeeding. The theory of games, which developed
as a means of modeling just such competitive situations, is a naturai
candidate for evaluating accounting information. This study is a first
step in investigating the feasibility of applying the game theoretic

approach to nuclear materials accounting.

*The term ID (Inventory Difference) has replaced MUF in NRC terminology.
However, in order to keep this report consistent with NUREG-0290, we
will continue to use the term MUF. There is no difference in meaning
between MUF and ID.






The accounting system keeps track of material inputs and outputs by taking
inventory at regular intervals and locations. If there were no measurement
errors, process errors, mistakes, or diversion the book inventory and the
physical inventory would balance. Due to measuring errors, recording
errors, bias in individuals and instruments, etc., the inventory does not
usually balance leaving a quantity called MUF (Material Unaccounted For).
MUF is a function of the realizations uf the many errors involved and would

include any diversion that may have occurred during the inventory period.

The decision-making problem is, given a MUF reading, what action should be
taken to verify possible theft and/or recover material that may possibly
have been diverted. The present practice in the licensed domestic nuclear
industry follows NRC regulations which establish inventory periods and
Timits on measurement accuracy. The latter term is regulated by placing a
Timit on LEMUF (Limit of Error on MUF) which is defined as two standard
deviations of a normal measurement error distribution. NRC has also
established guidelines and operating suggestions for appropriate action
limits. For instance, when MUF exceeds 2.0 times the LEMUF 1imit approved
for the activity, the facility is shutdown and a clean-out inventory is
conducted with an investigation of the cause initiated. The activity
normally remains shutdown until the MUF calculated as a result of a clean-
out inventory is within 1.5 times the applicable LEMUF 1imits. The opera-
tional procedure at present is to establish a fixed alarm threshold and to

take action when MUF exceeds this threshold. A more complete discussion of

present practice is presented in [1].




The essential safeguards material accounting decision problem is how to
establish the alarm threshold in a manner to satisfy safeguards objectives.
1f the alarm threshold is too high, a potential diverter may not be
detected. If it is too low, there will be an excessive number of false
alarms with consequent additional inventory cost burdens and a desensi-
tizing of the safeguards system from a "Cry Wolf" syndrome. Furthermore,
as discussed later, if the alarm threshold is set at any value prior to an
inventory, a potential diverter could utilize this information for his own

advantage.

The decision problem described in the above paragraph is part of a larger
class of problems that can be characterized as statistical acceptance
sanpling in a competitive environment. Sampling is used as an aid to
decision-making by drawing inferences from limited data. These inferences
depend on the sampling process and the structure of the populétion being
sampled. If the sample is obtained in a competitive environment, the
sampie or the population or both may have been tampered with to accomplish

some objective. Furthermore, the extent of tampering is not known.

The nuclear material accounting problem is an example of sampling in a
competitive environment. This is so because a potential diverter may

control partially the characteristics of the sample distribution. In the



nuclear material accounting case he may control the mean of the MUF dis-
tribution. This could be achieved by stealing from an inventory where
measurements are taken. The mean of the distribution would be related to
the amount stolen. To contend effectively with this kind of non-stochastic
problem, it is necessary that the decisionmaker take into account in his
statistical acceptance sampling not only the uncertainty due to sampling
errors, but also strategies available to a potential competitor for each
specific situation. Classical statistical hypothesis testing is not
appropriate in a competitive environment since such testing assumes only
stochastic situations, i.e., all uncertainties are due to chance and
there is no diversion. If statistical hypothesis testing is used, it is
necessary to know the distribution of MUF when diversion takes place.

A discussion of the limitations of classical statistical hypothesis test-

ing for detecting diversion of nuclear material is presented in [1].

The approach taken by the Nuclear Material Accounting Study and first
presented in [1] was based upon the theory of games. This theory repre-
sents an approach to decision-making under uncertainty in a competitive
environment. The nuclear material accounting problem was formulated as a
game between two players - the diverter and the defender. In particular,

the MUF problem was analyzed by formulating the following two-person game:



Move 1. Diverter removes X grams of SNM.

Move 2. The defender, upor taking a sample inventory, measures that u
grams of SNM are unaccounted for.

Move 3. The defender, knowing u, estimates that y grams of SNM have been
diverted. Also, if the alarm threshold has not been pre-set at a
fixed value a, the defender would determine whether to alarm or
not. (If thc alarm threshold has been pre-set, the decision to

alarm would be determined simply by whether u is greater than a.)

A payoff function was established representing the decision utilities to
the defender. This model was solved in terms of optimal strategies for
both players and the value of the game (the value of the payoff function
when both players play optimally.) Two cases weré_examined. In the first
case the alarm threshold was pre-set at a fixed value. In the second case
the alarm threshold was made a strategic variable for the defender. Eoth
cases were applied to a generic facility representative of a small plu-

tonium fabrication facility (Plant 1 of NUREG-0290, see [1]).

This report describes in detail the rationale for the selectiun of the
specific payoff function, and its relationship co decisions faced by a
decision-maker in a safeguards material accounting environment. The

optimal strategies for both cases will be presented and the implications of



the solution discussed. An appendix will present a sensitivity analysis of
the parameters of the model and another appendix will present some simpli-

fied alternative alarm models.

Application of the game theoretic approach to establish MUF action limits
and alarm thresholds can significantly improve the performance of material
accounting for safeguards. This report will present the analysis and

arguments to support the preceding statement.

2. The Criterion Function Approach to Analysis

In order to> understand how operations research can aid decision-making, we
must first understand decision-making. The process of individual decision-
making can be characterized as either completely intuitive (based only upon
the experience and judgment of the decision-maker) or a combination of
intuition and analyses, the combination varying with the nature, informa-
tion, and difficulty of the problem. There are two basic analytical
approaches to aid a decision-maker. First is a simulation approach. This
consists of creating a synthetic history of event-sequences, all that the
analyst can legitimately evaluate within his computational limitations.

The simulation analysis selects the best from the large number of pos-
sibilities under consideration. It is not aopropriate for optimization;
the optimum may not be contained in the set of event sequences under con-
sideration. A more detailed discussion is presented in the text by Quade

and Boucher [5].



The second type of analytical method is the criterion function approach.
Based upon the objectives of the system about which a decision will be
made, specific criteria are establishea related to the specific decision

being made. These criteria are then translated into measures of effective-

ness. Finally a mathematical model is selected or developed that applies a
suitable criterion to the selected measures of effectiveness. Solution of

the model will provide recommendations to the decision-maker by finding the
optimum. The criterion function approach can optimize, and it provides an

economy and breadth of solution not available by other techniques. Its
limitations are the state-of-the-art of the mathematical techniques employed,
the ability to model the complexity of the decision-maker's problem, and

the availability of data to specify the model.

The selection of a suitable model with which to find an optimum for a
specific criterion function is related to the type of information available
to the decision-maker. It is generally recognized that the validity of a
model's solution is related to the quality of the input data and the model's
Timiting assumptions. What is not so generally recognized is that the
results are also sensitive to the type of model selected to analyze a given
problem. Insofar as possible, the model should match the decision frame-
work. There are two basic types of modcis, deterministic and probabilistic.

In a deterministic model all the parameters are known and the solution has



a specific optimum. Any departures from this optimum will only penalize
the decision-maker insofar as the model represents the real world. The

decision-maker completely controls the outcome.

There are two classes of probabilistic models. One treats problems of
"decision-making under risk." This occurs when the outcome of the decision
is sensitive not only to the decisions of the decision-maker, but also to
chance events. The decision-maker knows the probability distribution, or
the odds, for the occurrence of the chance events. He knows the risks when
he makes a decision. The other class of probabilistic models is "decision-
making unrder uncertainty." The decision-maker does not know the risk when
he makes a decision. A1l situations involving competition belong to this
class of models. The outcome of the decision is sensitive to competing
decision-makers as well as chance events. Optimal decisions are based upon
subjective perceptions of risk by each decision-maker. The nuclear material
accounting safeguards problem when unauthorized deliberate diversion may be

present belongs to this class of problems.

The model selected for analysis by the Nuclear Material Accounting Study
was based upon the theory of games. The nuclear material accounting
problem was formulated by representing the interests of the defender and
the diverter as being in complete conflict. This is a reasonable formula-

tion for the analysis of unauthorized deliberate diversion from domestic
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the measure of effectiveness such as the false alarm rate, which should be
determined by cost-benefit consideration of the utilities of the decision-
maker. On the other hand, the game theory approach has the criteria
explicitly presented in the payoff function. Figure 1 presents a com-

parison of these two approaches.

3. A Game Theoretic Model Formulation

Let us consider a decision-maker's utilities for formulation of a game
theoretic payoff function. Figure 2 presents the weighing of utilities and
disutilities that appear to be representative of the material accounting
safeguards problem. The decision-maker, or defender, may consist of more
than one person, such as NRC and the plant manacement. In general, the
defende: consists of all participants who have the same objective with
respect to the payoff. The defender's decisions are: given a MUF reading,
whether to alarm or not and what preliminary estimate of unauthorized
diversion to make, based upon the MUF reading. This preliminary diversion
estimate will influence the defender in the resources he allocates for the
post-alarm search. A final estimate of diversion should be based upon not
only the results of the post-alarm search, but also relevant information
from other safeguards systems (e.g., the physical security systcm and the
material control system) as well as pertinent external intelligence infor-
mation, police reports, etc. This study, however, is concerned only with the

material accounting system. Consequently when we talk about the estimate



CRITERION FUNCTION APPROACH TO ANALYSIS

Statistical Hypothesis Testing Approach

Detect Diversion

Detect Theft within the Measurement
State-of-the-Art without Major Dis-
ruption to the Industry

False Alarm Rate,
Probability of Detection

Normal Distribution for MUF. Dispersion
Determined by Measurement Error Only.

Mean of Distribution Equal to Zerc or Alter-

natively, Some Specific Amount

SYSTEM
OBJECTIVES

i
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MEASURES OF
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FUNCTION
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Figure 1.

Game Theory Approach

Detect Diversion

Detect Theft and Allocate Resources for Recovery
of Material with Minimum Penalty to the Defender
and without Major Disruption to the industry

Penalty to the Defender

Game Theory Payoff Function
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A DECISION-MAKER'SUTILITY BALANCE

Utility of Utility of
Detecting Recovering
Diversion Material

MATERIAL ACCOUNTING
DECISION
FRAMEWORK

Disutility of Plant  Disutility of
Shutdown & Crying
Inventory Costs “Wolf"”

Figure 2.
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of the amount diverted, we mean only the preliminary estimate based upon

the MUF reading in and of itself.

Qur discussion of diversion and the game theoretic model essentially
assumes the existence of a diverter. In particular, the defender makes
decisions to defend against actions by a diverter. Freguently the
defender is uncertain about the existence of a diverter. If this
uncertainty can be represented by a given probability distribution
function, then the problem is a combination of a statistical problem and
a game theoretic problem. Otherwise the problem is a game theoretic
problem in which the defender assumes the existence of a diverter which
is necessary if the defender is to protect himself against the actions

of a possible diverter.

The utilities influencing the defender's decisions are relatively few
for the essential material accounting decision. He has the utility of
detecting diversion to assist in recovering material and to deter the
would-be diverter, thereby preventing theft. This must be balanced
against the disutility of material losses and inventory and post-alarm
search costs. In addition, there is the disutility or penalty from
meking an error in the estimate of diversion. This penalty can reflect
from desensitizing the system from a high false alarm rate, from adverse
publicity concerning errors in the estimate, and numerous other factors.

The optimal decision is thus seen to be a trade-off of these utilities.
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The decision-maker does not know the outcome of the decision when he
makes it since this is influenced by decisions of a possible diverter

and also the chance errors in measurement and process systems.

There are many payoff functions that can be assumed with respect to
nuclear material accounting actions and decisions. For example, the
objective of the defender might be to minimize the loss of nuclear
material, or to maximize the probability of detecting diversion, or to
minimize the errors in detection, etc. By formulating a payoff in terms
of costs and benefits obtained from efficient use of MUF data to detect
diversion, we can include the above objectives. These costs and benefits

to the defender may be summarized by the following five categories:

1) cost of material diverted

2) cost for search and recovery of diverted material
3) benefit obtained from recovery of diverted material
4) costs associated with search errors

5) cost of alarm, if alarm occurs.

The following payoff is considered to essentially embrace the major
elements of the nuclear material accounting decision and will be used as

a basis for this study.



o

The payoff function selected for this analysis is expressed as the penalty

to the defender as follows:

Penalty to defender = [Inventory Cost + Search/Recovery Cost] +
[Replacement Value of Material Lost] - [Utility of Material

Recovered] + [Penalty for Lrror in the Estimate of Diversion]

This can be represented as *ullows:

M=pg+cy+x-0omin (x, y) + e|y-x|

where:

M = payoff function representing penalty to defender
B = special clean-out inventory cost (if applicable)
X = amourt deliberately diverted by diverter

y = estimate by the defender of the amount diverted
gy = recovery search cost

b min (x,y) = value to defender of recovery of the material diverted

ely-x| = error penalty from a wrong estimate by defender

The diverter may have a qoal to divert sufficient material to constitute a
credible threat. The defender desires to make decisions so as to minimize
his penalties. He generally does not know the diverter's decisions or even
the existence of a diverter, but he must take into account that a possible
diverter may make decisions in such a fashion as to maximize the defender's

penalties.
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Let us assume that an amount of material k constitutes a credible threat
to the defender. Furthermore assume that the facility under consideration
has an amount of material vulnerable to diversion equal to or greater

than k.

The defender can either pre-set a fixed value of the alarm threshold, z=a,
or else he can select a value of the alarm z after the inventory is

taken. From the inventory a MUF reading of u is obtained. In this

model the actions the defender takes will be based upon the relationship
of the MUF reading to the alarm threshold. If u > a, the defender will
close the plant down for a special clean-out inventory, estimate an
amount diverted Yo and take search and recovery actions based upon the
estimate Yo If u < a, the defender will estimate an amount diverted Y1
and take more limited search and recovery actions based upon this

estimate Yy It is assumed that the amount diverted is bounded:
0 <x<k.

The value k can be interpreted as the minimum of the plant inventory and

the credible threat amount.

In general each component of the vector (z, Yy yz) is a function of u,

the MUF reading, since each of the strategic variables z, Y1s Yo are functions

(of u). Further, we need consider only those functions which are monotonic
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non-decreasing in u, since we can show that for any x, non-monotonic
functions are dominated by monotonic functions. Thus we need consider
only the vector space (z, Y1 y2) where each component is a choice of a

number within a prescribed interval.

The defender desires to estimate Y and Yy (as well as z when appiicable)
in such a fashion as to minimize M whereas a possible diverter may select
x in such a fashion as to maximize M. Since the defender and diverter

never cooperate, the problem may be treated as a zero-sum game.
The expected payoff for this game is:

M= [C]y] i X‘b] min(y],x) + e]{y]-xi] F(st)

+ [g + Co¥p *+ X=by min(yz,x) + eziyz-xg] G(z,x)

The term F(z,x) represents the probability that the MUF reading u is

below the alarm threshold z when an amount x has been diverted.

F(z,x) = P(u < 2)
Also G(z,x) = P(u > 2)
and G(z,x) = 1 = F(z,x).

The defender desires to select a set (z,yl. y2) in order to minimize the

payoff M not knowing how much material x has been diverted nor the value
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of MUF, u, that will be obtained (although he does know the form of the
distribution, F and G for u). The parameters of this model are
Cps Cps By b]. b2, €1s € and k which are site specific or unique to each

facility under consideration.

4. Solution for the Fixed Alarm Threshold Model

The model described in the previous section was solved for the case z

a
for any value of a and published in NUREG-0290 (A Study of Nuclear
Material Accounting), June 1977. This represents the case of the fixed
alarm threshold and corresponds to present practice. The model as

applied to a generic plant will be briefly reviewed in this section.

The plant to be used for purposes of illustration is a small MOX fabrica-
tion plant. This generic facility is similar to an existing small plu-
tonium fabrication facility, and was referred to as Plant 1 in NUREG-0290.
The plant characteristics and model parameters are shown in Figure 3. A
more complete description is presented in NUREG-0290 [1]. In general, even
in the absence of div-rsion, the distribution of MUF is not normal for any
real-world facility. Although measurement errors can be modeled with a
normal distribution as characterized by LEMUF, there are other random
errors not accounted for by the LEMUF values. These errors could be caused
by such facility operations as unmeasured side streams, difficulties in

measurement, human errors, adjustments, etc. In order to properly model



PLANT CHARACTERISTICS AND MODEL PARAMETERS

Piant 1 — Small Plutonium Fabrication Facility

Characteristic Symbol Value

LEMUF (Bimonthly) 20 0.6 Kg

Total inventory 297 Kg

Throughput {Annual) 864 Kg

Replacement Value of SNM $10,000 per Kg

Special Inventory Cost $ 5,000 (doltar units)

Speciat Inventory Cost B 1.67 (sigma units)

Variabie Search Cost, Small MUF 4 017

Variable Search Cost, Large MUF ¢y 167

Utility of Recovery, Large MUF by 100

Utility of Recovery, Small MUF by 10

Error Coefficient e 50

Safeguards Objective k 10 (sigma units)

Safeguards Objective k 3 (Kg units)
Figure 3.

Refer to Appendix A and Reference 1 for
Discussion of Parameter Derivations.

-OZ-
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these random phenomena, it is necessary to understand the operations of
each specific facility. The resulting MUF distribution will be site
specific. Reference [3] presents results from modeling of a specific
facility demonstrating the viability of the approach. For the generic
facility under consideration in this report, it wili be assumed that the
distribution of MUF is normal as characterized by LEMUF. This is only
for mathematical convenience. Any other distribution could be used for

development of the game theoretic solution.

Under the assumption of a normal distribution for MUF, the following

expressions hold:

2
] - (u-x)
F(z,x) = ffw fz-n‘;j'e o du
2
+o 1 - (u=-x
and G(z,x) = [, mere 207  du.

The minimax theorem was used to derive a solution for the game. The
optimal strategies and game value for Plant 1 are presented in Figure 4,
for the fixed alarm threshold case. The optimal alarm threshold, repre-
senting the minimum penalty to the defender, occurs at a = 1.91 o.
Consider the case when the alarm is set at the optimum. If MUF is

greater than a, the defender should estimate that Yy = 3.25¢ = 975 grams



0.

OPTIMAL SOLUTION FOR PLANT 1 FIXED ALARM THRESHOLD CASE

Alarm Defender Estimates Amount Value of Prob. of
Threshold of Diversion Diverted Game Diverting X
a Y1 Y2 X Vv PiIX)
0. .006 2.920 0. 74.217 .040
0. 006 2.920 .064 74.217 947
0. .006 2.920 10.000 74.217 013

1.000 236 3.178 0. 35.499 b
1.000 .236 3.178 617 35.499 638
1.000 .236 3.178 10.000 35.499 091
1.911 416 3.249 0. 24,823 372
1.911 416 3.249 1.104 24823 504
1.911 416 3.249 10.000 24.823 124
2.000 433 3.249 0. 24.903 378
2.000 433 3.249 1.154 24.903 496
2.000 .433 3.249 10.000 24.903 126
3.000 668 3.191 0. 33573 420
3.000 .668 3.191 1.776 33574 440
3.000 .668 3.191 10.000 33.573 .140
4.000 .986 3.086 0. 49,339 437
4.000 986 3.086 2.507 49,339 417
4.000 .986 3.086 10.000 49,339 .146
5.000 1.366 3.389 0. 68.323 375
5.000 1.366 3.389 3.337 68.323 341
5.000 1.366 3.389 3.451 68.323 .285
6.000 1.77¢ 4.267 0. 88.959 374
6.000 1.779 4.267 4.227 88.959 335
6.000 1.779 4.267 4312 88.959 292
8.000 2.632 6.089 0. 131.634 374
8.000 2632 6.089 6.063 131.634 .328
8.000 2.632 6.089 6.117 131.634 .298
10.000 3.506 7.962 0. 175.379 374
10.000 3.506 7.962 7.943 175.379 324
10.000 3.506 7.962 7.981 175.379 302

Values of 8, Y4, Y5, X and V are in ¢ Units (0= 0.3 kgs.)

The Mixed Strategy of the Diverter Contains 3 Values of X.

Figure 4.
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for the amount diverted and should search for this amount. When MUF is

less than a, the defender should estimate that 5. .430c = 130 grams and
should conduct a more Timited search for this amount. In this model if

the defender interprets diversion based upon MUF in this manner he will

protect himself in the best way against any diversion decision the

diverter may make.

Whereas the defender has a best strategy, the diverter does not have a
single strategy which is best. It is important for the diverter to
withhold information about diversion. He accomplishes this by using a
mixed strategy, which is a probability distribution of the amount he

diverts.,

The optimal decision for the diverter (in terms of penalizing the defender)

when a = 1,910 is to divert nothing with probability .372, to divert 330
grams with probability .504, or to divert 3 kgs. with probability .124.
Note that in this case the diverter favors taking a small amount relative
to his objective of 3 kgs, but does so with a mixed strategy so that his
moves will not be predictable by the defender. The expected amount
diverted is 539 grams. Both diverter and defender optimal strategies

are very sensitive to the alarm threshold. Note that in this game with
these parameters, the defender should not estimate zerc diversion when

MUF is below the alarm threshold. To do so would be to expose himself

to greater penalties than need be.
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The distribution of MUF under the condition of optimal diversion can be

expressed as:

P(MUF < u) = P, F(u,0) + Px7 Flu,x,) + P, F(u,k) where 0 < x, < k

0
strategies and F(u,t) 1s a cumuilative normal distribution with mean t.

where (P, P, , Py ) represent probabilities for the diverter's mixed
2

For Plant 1 under conditions of a = 1.914g,

P(MUF < u) = .372 F(u,0) + .504 F(u,1.104) + .124 F(u,10).

Note that this distribution is trimodal and is not normal. Let us

calculate the probability that MUF will be less than a.

Then u = 1.910 and
P(MUF < a) = .372 (.972) + .504 (.790) + .124 (.000) = .760

Thus under conditions of optimal diversion there is a .76 probability
that MUF will be below tiie alarm and a .24 probability that MUF will be
greater than the alarm. (There is a .63 probability that some diver-
sion has taken place which compares with the .24 probability that the
alarm will ring. The diversion will be detected by alarming only 38% of

the time.) The null hypothesis, i.e., there is no diverter operating,



would indicate a probability of .97 that MUF will be below the alarm.
(This is the one-sided probability.) Thus the alarm rate will vary from

.03 to .24 from best to worst case estimates.

These results are based upon the nominal parameter values given in

Figure (3). Some of these parameters are based upon engineering cost
estimates for the facility. The others represent subjective utilities

to the decision-maker, particularly where societal values are involved.

In order to determine the app]icabi]ity of the game theoretic approach,

it is necesary to examine the sensitivity of the results to variations

in the values of the parameters. The approach to the sensitivity analysis
is to examine the behavior of the optimum alarm threshold, the value of
the game, and the defender's diversion strategies as the plant parameters

are varied,

The nominal value of the parameters from Plant 1 were derived from the
following considerations. Based upon engineering data for the facility,
the standard deviation of the measurement accuracy distribution was
determined to be o = 0.3 kg. of special nuclear material (SNM). It was
assumed that 3 kg. of SNM would constitute a credible threat and represent
a reasonable safeguards objective. Therefore we took k = 100. The inven-
tory cost model reported in [1] gave $5,000 for the cost of a special
cleanout inventory. Using a "replacement” market value of $10,000 per

kg. of SNM gave g = 1.670.
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The remainder of the parameter values were based on these inventory costs.
We assumed that the maximum cost of the variable search effort when MUF
exceeds the alarm threshold would be equal to the fixed cost of the clean-
out inventory czk = f. Moveover we assumed that when MUF was less than
the alarm threshold the variable search would be performed at ten percent
of the cost of a search effort for the same quantity of material above the

alarm threshold. Thus c, = 0.167 and ¢y = 0.017.

Next, the utility of recovering the material was related to the disutility
of plant shutdown and inventory. In this model the maximum utility of

recovery is b,k and the plant shutcown costs are . We chose b2 = 100

2
which gave a utility ratio of b?k/a = 600 for plant 1. Again we took b1 at
ten percent of b2. We decided thatc e, = e, " 50 by assuminyg that the
penalty for making &én error in the estimate of the amount diverted has a

maximum value of one-half of the maximum utility of recovering material.

It is difficult, if not impossible, to make accurate estimates of all
the parameters of this model. What is important is their consistency
with each other and the sensitivity of the results to these estimates.
However, the model may still be quite useful if results are reasonably
insensitive to wide variations in parameter values. Th2 sensitivity

analysis explored this. Figure (5) shows the range of parameter values



RANGE OF PARAMETER VALUES FOR SENSITIVITY ANALYSIS

PARAMETER NOMINAL

ITEM SYMBOL VALUE
Standard Deviation o 0.3 Kg
Safeguards Objective k 100
Inventory Cost B 1.67¢
Search Cost Coefficient €4 017
Search Cost Coefficient  Co 167
Recovery Coefficient b 10
Recovery Coefficient ba 100
Error Coefficient eq 50
Error Coefficient e 50

Figure 5.

RANGE

STUDIED
.03-3.0 Kg

1-100¢
0-100
0-0.1
010
1L 100
10-1000
5-500
5500
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studied. We attempted to cover a range from an order of magnitude below

to an order of magnitude above the nominal value.

Appendix [A] presents the details of the sensitivity analysis. These
results will be summarized here for the determination of the optimal
alarm threshold. The other variables are examined in the Appendix.
Figure (6) shows the value of the game as a function of the alarm thres-
hold. As can be seen, an optimum exists and is at a sharp point in the
region of optimality. For Plant 1 a* = 1.97c where a* is the optimum
fixed alarm threshcld. Now we will consider sensitivity of this optimum
value to variations in the parameters. Figure (7) shows that a linear

relationship exists between a* and the value of the safeguards objective

k. This is not surprising since k represents the goal toward which system

design is based. It has to be selected carefully and realistically with

reference to what constitutes a credible threat.

The sensitivity analysis determined that a* is insensitive 1. variations

in the cost coefficients Cys S and inventory cost £. It is also insensi-

tive to the value of the recovery coefficient b]. Details are presented
in Appendix A. However a* is sensitive to the recovery coefficent b2
for relatively small values of b2' When b2 is greater than 100, it is

insensitive. This is illustrated in Figure (8).
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The sreatest sensitivity of a* was to the estimates of the error coeffi-
cients e, and €. Figure (9) presents the sensitivity to e a* is a
decreasing function of €. Figure (9) also presents the sensitivity to

€. a* is an increasing function of €. Although the effects of € and

e, tend to cancel each other if the errors are in the same direction, e,
has the most significant influence on a*. Figure (10) shows the effect

on a* when e, = e,. It becomes more significant for values of e greater
than 50. Of all the parameters in the model, e, has the greatest influence
on selection of an optimal alarm threshold. This represents the sensitivity
to the decision-maker to making an error in the estimate of the amount

diverted when MUF is large.

A review of the sensitivity of the optimal alarm to parameter values shows
it to be reasonably insensitive. Thus, the result of the sensitivity
analysis indicates that for Plant 1 it is feasibl: to establish fixed alarm
thresholds based upon parameter estimation for the game theory model
presented here. The greatest care must be exercised in estimates of e,.
Since the penalty in the error of the estimate of diversion should be based
only on the magnitude of the error and not the value of MUF, it is reason-
able to assume that e = e,. Thus, the effects of e, are reduced to a

manageable dimension.
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5. Alarm Threshold as a Strategic Variable

The previous solution was based upon the assumption that the alarm
threshold is predetermined and fixed at some value prior to the start of
the game. Since the alarm threshold in this case is a parameter, its
value is therefore known to the diverter as well as the defender. This
information gives an undue advantage to the diverter. By making the
alarm threshold a strategic variable of the defender rather than a
parameter, we no longer restrict the defender to any particular value of
the alarm threshold. This procedure withholds information about the
alarm from the diverter at the time he makes a decision about the amount

of material he will divert.

The game model will now be extended by introducing the alarm threshold
as a strategic variable; one of the moves of the defender is the choice
of an alarm threshold. The particular alarm threshold is known by the
defender, but not by the diverter. Thus the strategic variables for the
defender are the alarm threshcld and the estimates of diversion for MUF
values both above and below the alarm. This yields a three dimensional
strategy space for the defender which will be analyzed for optimal

strategies.

As will be recalled, the game in extensive form is described a¢< follows:

Move 1. Diverter removes x grams, 0 < x < k.

Move 2. Defender receives information that u grams are unaccounted for.
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Move 3. Defender decides
i)  Whether or not to alarm and take reinventory.
i1) How much effort to expend on search and recovery of diverted
material based upon his estimate of diversion in each of

the two cases of i).

In normalized form the above game may be described as follows:

1. Diverter picks a strategy x where 0 < x < k.

2. Defender picks a strategy which is a three-component vector of func-
tions [z(u), yy(u), yz(u)] where z(u) is the alarm threshold, y1(u)
is the estimate of diversion when u < z and yz(u) is the estimate of
diversion when u » z.

In other words, if:

U < «.i), then action based upon y](u) is taken
u > z(u), then action based upon yz(u) is taken.

These actionc include search for and recovery of diverted material.

Now since u is a random variable, the payoff of the game will consist of

two parts.
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i) My if u < z(u)
i) M2 if u> 2(u)
Therefore the expected payoff M will be
M= M1 Plu<z) + M2 P(u > z)
and the complete payoff function in terms of the parameters is
M= [c] Yy * X = by min (y], x) + elly]-xl] P(u < z)
+ {B + Cr Yo * X - b, min (yz,x) + ezlyz-x!] P(u > 2)
Using the results of NUREG-0290 and the results of the one-dimensional
game of Appendix [B], it is easy to show that
Ma x Min M(x.z.y1.y2) < Min Max M(x,z.y].yz).
il e ot bl il
Hence this game requires mixed strategies for both players. Based upon
the results in Appendix [C] it can be shown that the optimal mixed
strategy for each player consists of a finite number of strategies rather

than a density function.

If F*(x) and G*(z.y],yz) represent the optimal mixed strategies of the
diverter and defender respectively, then we need to solve the following

optimizing equation:

Ma x f M(X.Z..Y] ‘.YZ) dG*(z.y] ’.Yz) = Min I M(X’Z;y]-yz) dF*(X)
X Z2¥14Yy
Due to the complex form of the payoff function M(x.z.y],yz) which involves

exponential and rational functions, a closed form csolution is not possible.






VALUE OF THE GAME FOR ALTERNATIVE ALARM POLICIES

VALUE
ALARM THRESHOLD
ASTRATEGIC VARIABLE 12.20
FIXED ALARM THRESHOLD
at Optimum (1.910) 24820
at LEMUF (20) 24.900
at 2 LEMUF (40) 49 340
at 3 ¥gs 175.400

Figure 11.
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Figure (13) shows the optimal mixed strategy solution for the diverter.

There are eight pure strategies in his optimal mix.

The expected value of y,, E(y,), is equal to 5.14 o = 1.54 kgs. Figure
(14) shows “.e cumulative probability distribution for the selection of an

alarm threshold based upon the value of MUF.

Notice the large deterrence effect derived from a voriable alarm policy.
The probability of no diversion, P(x = 0), is .62. This compares with a
probability of no diversion for the optimal fixed alarm threshold of .37.
Thus the deterrence effect of a variable alarm threshold policy shows an
improvement by a factor of 1.7. The expected amount of material diverted
E(x) = .437 o or 131 grams. This compares to the case where E(x) = 1.8 ¢
or 539 grams in the optimal fixed alarm case, an improvement by a factor of
4.1. Figure (15) shows a comparison of the results for alternative alarm
threshold policies. The superiority of a mixed strategy policy for the

defender is clearly evident.

Figure (16) presents the expected alarm rates for alternative alarm policies
for the defender for two cases. In the first case a diverter laying
optimally is assumed. There is not much significant change in the alarm
rate. In the second case, there is no diverter present but the defender
does not know this. The false alarm rate is higher for the variable alarm

policy than for a fixed alarm policy.



OPTIMAL STRATEGY FOR THE DIVERTER
PLANT 1 {0 = 0.3 Kgs!)

X P(X}
0 620
0.5 .241
1.0 052
15 .043
2.0 012
25 .008
35 .013

10.0 0on

NOTE: X is in 0 units.

Fig..e 13.
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PROBABILITY DISTRIBUTION FOR Al ARM SELECTION

Plant 1 « = 0.3 Kgs

MUF PRORABILITY
RANGE OF
{0 units) ALARM
~4.0 1.000
3540 961
2035 757
1520 633
1.0-15 539
0510 .359

005 .246
050 .058

-0.5 0.00

Figure 14,
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COMPARISON OF ILTS FOR ALTERNATIVE ALARM POLICIES

EXPECTED
AMOUNT OF PROBABILITY OF
MATERIAL DIVERTED NO DIVERSION

ALARM THRESHOLD
ASTRATEGIC VARIABLE 131 grams 0.62

FIXED ALARM

mum (1.91 539 grams

it LEMUIF 550 grams

it 2 LEMUF (4 750 grams

Figure 15




EXPECTED ALARM RATES

DIVERTER ACTING FALSE
OPTIMALLY ALARM
ALARM THRESHOLD
A*TRATEGIC VARIABLE .287 .088
FIXED ALARM THRESHOL
at Optimum {1.910) .240 .028
at LEMUF (20) .233 .023
at 2 LEMUF (40) 174 <.001

Figure 16.
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The effectiveness of the alarm policy is not determined by the false alarm
rate as is often the case when a classical statistical approach is taken,
but rather by the probability of the alarm going off when a diversion has
occurred. This can be expressed quantitatively by the conditional probabil-
ity Plu » 2ix > Xx) where x represents the expected amount of material
diverted when the diverter uses his optimal strategy. This term represents
the minimum probability of detecting a diversion of at least x because x

has been chosen from the diverter's optimal distribution. Figure (17)
presents this value for the alarm threshold as a strategic variable as well
as a fixed optimum value for several different expected values of x. The
probability of detecting a diversion of expected amount greater than 123
grams is .75 for the variable alarm case. This compares to .38 for 550
grams for the optimal fixed alarm case and .02 for 1495 grams for the case
of the alarm at 3 kgs. This means that the values presented on Figure (17)
are the assurance values for the material accounting system. The results
indicate the advantages that may be realized by the game theoretic approach,

particularly when the alarm threshold is treated as a strategic variable.

6. Surmary and Conclusions

In this report we have presented the results of applying a game theoretic
model to the interpretation of MUF data at a specific plant. We have shown
in this case that there is a clear advantage in this approach over classical

statistical hypothesis testing in terms of reducing the costs or pemalty to

e e
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PROBABILITY OF ALARM WITH THREE DIFFERENT TYPES
OF ALARM THRESHOLD

ALARM THRESHOLD ALARM FIXED ALARM FIXED
AMOUNT A STRATEGIC VARIABLE AT OPTIMUM (1.810) AT 3 Kgs
131 GMS. 75 .-
281 GMS. 88 A - .
539 GMS. 38 i i
700 GMS. - a1
1495 GMS. 1.00 - 02

Note: Table is Incomplete and Represents Only Calcutations Made to Data.

Figure 17.
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Other parts of the safeguards system can supply information on the
existence and behavior of a diverter. Such information can be made use
of by a game theory model in several ways. If these data include an
a_priori estimate of the probability of there being a diverter, then
using the results of the game theoretic analysis one can set up a
statistical test by which the a postiori probabilility of there being a
optimal diverter can be calculated from the MUF value. A second approach
is to restructure the game to incorporate this a priori probability.
Finally, the game can be enlarged to model the behavior of other parts

of the overall safeguards systems, thereby optimizing this larger system.

Some of the results of strategic analysis are applicable to the existing
system. As we have shown for a specific case, denying the diverter
information about the alarm threshold is advantageous to the defender.
The alarm threshold can be determined by NRC before the inventory period
and kept secret, or the decision whether to alarm can be made after the
MUF value is determined. The latter procedure is advantageous because

it precludes the possibility of the diverter gaining access to classified
data. However the legal and institutional ramifications of a variable

alarm threshold have to be investigated. We believe that procedures

necessary for implementing a variable alarm policy should be investitated.

Since our results to date suggest that game theory may provide an

improvement in the method for interpreting and acting upon materials
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accounting data, we believe a vigorous program of research and develop-

ment in this area would be benefit.

Fixing the alarm at predetermined amounts based on classical statistics

can be shown to penalize the defender. The alarm should be the result of an
analysis based upon modeling the competitive interaction that exists

between a diverter and a defender. The theory of games is a logical

methodology for this modeling.

In summary, alarm thresholds based upon classical statistical inference are
not optimal in the sense defined in this study and in general penalize the
defender. Furthermore, game theoretic derived optimal alarm thresholds are
completely plant specific whereas those derived by the classical statistical
approach are only partially plant specific. The results of this study
suggest that steps to optimize alarms on a completely plant spe-ific

basis to achieve a common standard performance requirement throug. ut

the industry should be evaluated.
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sets of plant parameters. Results are presented for the level at which
the alarm threshold should be set, the defender's estimates of the amount
of material diverted, and the maximum penalty to the defender when he

uses the optimal strategy.

In applying the game theoretic model to a plant, all the plant parameters
are fixed except the alarm threshold. The solutions are found for a
series of alarm thresholds, and the alarm threshold which gives the lowest
value of the game is determined. See Figure A-1. The purpose of the
sensitivity analysis is to examine the behavior of this optimum alarm
threshold a*, the value of the payoff v*, and the defender's strateaic

variables y? and y5 as the plant parameters are varied.

1.0 Plant Parameters

In the game theoretic model the plant is characterized by ten parameters.
Measurements of MUF are assumed to have normally distributed errors with
mean x and a known standard deviation o. This latter quantity is used as
the unit in which we measure amounts of SNM. Thus k, a, X, 2 and Yy

are all measured in units of o.

The paraneter k, which is defined as the amount of SNM vulnerable to
diversion, has to be carefully interpreted. It does not represent

the amount of material in the plant, only the amount the defender
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The values of these parameters for plant 1 that were determined in the
first phase are shown in Figure 5 of the main report. They were derived
from the following considerations. First, based on engineering data for
the plant, the standard deviation of the measuring error distribution was
determined to be o = 0.3 kg of SNM. It was assumed that 3 kg of SNM would
constitute a credihle threat for the diverter; therefore, we took k = 10s.
The inventory cost model gave $5,000 for the cost of a special cleanout
inventory at plant 1. Using a "market" price of $10,000 per kg of SNM gave
g = 1.670.

The rest of the cost coefficients were based on the inventory costs. We
assumed that the maximum cost of the variable search effort when MUF
exceeds the alarm threshold would be equal to the fixed cost of the
cleanout inventory c2k = g. Moreover, we assumed that when MUF was less
than the alarm threshold the variable search would be performed at ten
percent of the cost of a search effort for the same quantity of material

above the alarm threshold. Thus C, = 0.167 and €y = 0.017.

Next, the utility of .ecovering the material was related to the disutility
of plant shutdown and inventory. In this model the maximum utility of
recovery is bZk and the plant shutdown costs are £. We chose b2 = 100
which gave a utility ratio bzk/P = 600 for plant 1. Again we take b1 at
ten percent of bZ‘ We decided that e, = e, = 50 by assuming that the

penalty for making an error in the estimate of the amount diverted has a

maximum value of one-half of the maximum utility of recovering the material.
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It should be clear from this discussion that it is difficult, if not
impossible, to make accurate estimates of all the parameters of this model.
The best we can do is put plausibie 1imits on the range of their values.

In performing a sensitivity analysis we therefore attempted to vary the
parameters by an order of magnitude in both directions from their nominal
values. The range of parameter values studied are shown in Figure 5 of the

main report.

2.0 RESULTS OF THE SENSITIVITY ANALYSIS

2.1 Nominal Values

Before presenting the results of the sensitivity analysis for plant 1, we
will first discuss the results for the nominal values of the plant para-
meters. Figure A-1 shows the value of the game and the defender's strategic
variables as a function of the alarm threshold. The penalty to the defender
is large when the alarm threshold is much higher or lower than its optimal
value a* = 1.911c and v* = 24.80. Note than even if u < a* the defender's
optimal strategy is to estimate that there has been a small amount of SNM
diverted and to make a search to recover any of this material. This is

in contrast to the classical statistical hypothesis testing approach under
which no diversion would be assumed if the alarm threshold has not been

exceeded.

2.2 Sensitivity to Safeguards Objective

The parameter k represents the amount of SNM at a plant that is vulnerable

to diversion measured in units of o.
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The results of varying k from 1 to 1000 are plotted in Figure A-2. These
plots show a linear behavior with plaat size except at the smallest values
of k. The functional dependence can be expressed as:

g 0.885 + 0.919 k

yf . -0.027 + 0.0445 &

y§ = 0.059 + 0.3249 k

yE o » 3.266 + 2.157 k
For large k, these quantities are proportional to the safeguards objective.
This analysis demonstrates that NRC must consider its safeguards objective
in setting the alarm threshold for a plant. It is not sufficient to con-
sider measurement errors only. A larger safeguards objective in physical
units of material requires a proportionally larger alarm threshold and

will result in larger losses to the defender.

2.3 Sensitivity to Cleancut Inventory and Recovery Search Costs

We now examine the sensitivity of our results to the costs for performing a
cleanout inventory &, and to the cost coefficients for the recovery search,
¢y and - These parameters can be fairly well evaluated using engineering
cost estimates. In performing the sensitivity analysis, we varied these

parameters from zero up to six times their nominal values. The results are

shown in Table A-].
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It is clear from these results that there is very little change in the four
variables over this range of variation of the parameters. Since there is
relatively little uncertainty in these parameters. we have not further

investigated their sensitivity.

2.4 Sensitivity to the Value of Material Recovered

The parameters b, and b2 measure the value to the defender of recovering
any SNM that has been diverted. We first examine the case where one of
these two parameters is held fixed at its nominal value while the other is

allowed to vary up or down by a factor of ten. These results are displayed

in Figures A-3 and A-4. (Uver the range shown both a* and y§ show slight linear

increases with b], whereas y{ shows a slight linear decrease. The value of
the game also decreases slowly with increasing b]; it changes by less than

a factor of two when b] changes by two orders of magnitude.

The results show & much stronger dependence on b2‘ A1l four quantities
decrease rapidly with increasing b2 for values of b2 less than 100, the
nominal value. Above b2 = 100, y;, y§ and v* continue decreasing although
at a slower rate. The optimal alarm threshold, however, goes through a
minimum near tz = 400 and then increases very slowly. This behavior it¢ due
to the fact that the term with the b2 coefficient has a negative sign in
the payoff function. Therefore, as the value of the material recovered
increises, the diverter removes less on the average. The defender can then
decrecse his alarm threshold and his estimates of the amount diverted, thus

decreasing his penalties.
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Since b1 and b2 both measure the value of the material recovered, we

varied them simultaneously keeping the ratio b2/b1 = 10 fixed. These
results, which are displayed in Figure A-5, are very similar to those where
we varied only bz. This again shows that variations in b2 have larger
effects than variations in b]. For larger values of b2 neither variable

has much effect.

We have also varied b] and b2 independently over their full range. Contour
plots of the results are presented in Figures A-6 to A-9. For b2 less than
about 100, the results are nearly independent of b]. For larger values of

b2 neither variable has much effecu.

Qur overall conclusion is that the model is very insensitive to variations
in b] over the range studied. For larger b2 the optimal alarm threshold
is nearly independent of b2 and the defender's strategic variables and
penalties decrease slowly. Only for small values of b2 do the results
show much sensitivity. Because the value to society of recovering any
diverted material is 1ikely t. be high, we believe these recovery value
coefficients are well enough determined to allow NRC to set a meaningful

alarm threshold.

2.5 Sensitivity to Incorrect Estimates of the Amount Diverted

We examined the sensitivity to the error penalty coefficients e and e,

in a similar way to that for the b parameters. The results for varying
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€ while holding e, fixed at its nominal value are shown in Figure A-10;
the corresponding plots varying e, for fixed e, are shown in Figure A-11.
When € is increased both y; and y§ stay constant and then decrease
slightly. The alarm threshold decreases as € increases and becomes
negative for e larger than 400. Since this parameter increases the
penalty to the defender below the alarm threshold, the defender prefers
a low-alarm threshold when e is large. We see exactly the opposite
behavior when e, is increased; a*, y1 and y§ all become larger. In both

cases the value of the game increases as the parameters increase.

When we vary the two parameters simultaneously keeping e = ey, the

behavior is more complex as shown in Figure A-12. Both the alarm threshold
and yT stay nearly constant for e, = e, up to 50; then they increase

slowly. The value of y§ increases rapidly at first and then more slowly

for larger values of the parameters. The penalty to the defender also
increases and becomes nearly linear in e. The explanation for this behavior
is as follows. As e, and e, become larger, the diverter attempts to remove
a larger amount of material because the recovery value terms become relatively
less impartant. The defender counters by increasing his estimate of the
amount diverted, thus keeping el!y-x| small. The optimal alarm threshold
lies between y{ and y§ which balances the contributions to the payoff from

the e and e2 terms.
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These results indicate that the model is most sensitive to the error
penalty coefficients and that the variations are more sensitive above
threshold than below. In order to use this type of model to set the alarm
threshold, these parameters have to be well determined, especially if they
are large. Of all the parameters in this model, the largest effort must
be put into evaluating €. Refer to Figures A13 - A16 for an illustration

of this.

2.6 Other Two-Variable Correlations

We have looked at correlations when we vary the below-threshold parameters,
b] and € and also when we vary the above-threshold parameters, b2 and
€. Contour plots of the results for b] - e, are shown in Figures A-17 to

A-20 and for b2 - e in Figures A-21 to A-24.

The results for a*, y5 and v* show very little sensitivity to the b]
parameter as compared to the e, parameter. The below-thresholg estimate
 f diversion yf shows a more complex behavior. It is nearly independent
of b] when e is large. When e is small, the dependence on b] becomes

more important.

The results when we varied e, and b2 show a strong negative correlation.
A1l four quantities increase rapidly when bz decreases and e, increases.
There is almost no change in y;, y5 and v* when b2 and e, increase

simultaneously. The optimal alarm threshold does increase in this case
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because penalties are lower if the alarm threshold is exceeded less often.
These plots reinforce our conclusion that the e, parameter is the one
that must be most carefully evaluated. For safeguards purposes, the

best situation is where b2 is large and e, small.

Comparing the results when we vary b2 - e with the results of varying

b] - €, we see that they are more dependent on the parameters that deter-
mine the payoff above alarm threshoid than those below alarm threshy'd.
This agrees with our intuitive feeling that we must be more careful when

we think that there may be a large diversion.

3. CONCLUSIONS

Plant 1 is characterized by having & relatively small measuring error
compared to the amount of material vulnerable to diversion. For this
plant the optimal alarm threshold and the expected losses are proportional

to k. The safeguards objective must be specified in order to set the

alarm threshold for the plant. This is in contrast to the current practice

of setting the alarm threshold based on measuring errors alone.

Since plant 1 is small, the special cleanout inventory costs are also
small compared to the value of recovering diverted material. (The utility
ratio bzk/e = 600 is large.) Consequently the alarm threshold and losses

are insensitive to cleanout inventory and recovery search costs The
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parameters £, ¢, and C, can be determined by considerations outside this
model, for example, by how much they contribute to the amyunt of material

recovered.

Because the value of recovering material t 2t has been diverted is high
relative to the inventory and recovery search costs, the value of the alarm
threshold is nearly independent of the b] and b2 parameters for this plant.
As long as the b2 parameter is known to be large, it does not have to be
well determined. The error penalty coefficients are the parameters in the
model for which the most effort must be expended to determine accurately.

This is especiaily true for the e, parameter when it is large.

in general it appears that the model shows greater sensitivity to the
parameters that determine the defender's losses when MUF is above the alarm
threshold than those when MUF is below threshold. This is in line with the
intuitive notion that we need more accurate knowledge when we think a

significant amount of material has been diverted.
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APPENDIX B
SOME ALARM THRESHOLD MODELS

1.  INTRODUCTION

In this appendix we extend the game model of NUREG-0290 by introducing the
alarm threshold as a strategic variable. We shall assume that one of the
moves of the defender is the choice of an alarm threshold whereas in
NUREG-0290 the alarm threshold was fixed. The particular alarm threshold
chosen is known by the defender, but not by the diverter. We shall
formulate some games in which the alarm threshold is the only strategic
variable of the defender. This simplification yields a one-dimensional
strategy space for the defender which can be analyzed for optimality in
closed form. This was not possible when the defender's strategy space

was three-dimensional.

2. THE GENERAL ALARM THRESHOLD GAME MODEL
The general strategic and competitive situation that exists in nuclear

material accounting and what we wish to model may be described as follows:

The nuclear material accounting system reports that u grams of SNM is
unaccounted for, or the imbalance of inventory, u, is due to measuring
errors and possible unauthorized removal of SNM. Based on this value of u,

a decision is to be made or some action is to be taken with respect to this



material unaccounted for. From the set of possible alternatives or actions
available, the problem is to choose the optimal action--optimal in the

sense that it satisfies some objective or criterion of the decision-maker.

This situation may be modeled by formulating a two-person came. We shall
first describe the game in extensive form--in terms of the moves of the
game. From this extensive form we shall derive the normalized form of the

game, which will be used for the analysis.

The game may be reduced to the following three-move game:
Move 1. Diverter removes x grams of SNM
Move 2. Defender observes that u grams of SNM are unaccounted for

Move 3. Defender takes some action «.

The first move of the game is a strategic decision by the Diverter. It
is @ choice x where 0 < x < k. Move 2 is a chance move, a choice u(x)

by Nature. Move 3 is a strategic decision a(u) by the Defender.

Having described the game in extensive form, one may now formulate the
game in normal form. This is necessaiy for analytic purposes. This is
accomplished by defining a strategy for each player. A strategy for the
Diverter is a number x, where 0 < x < k. A strategy for the Defender is
a function, since he has information about u. Thus a strategy for the

Defender is a function a where
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a (u) < a(u) < aq(u)
0

From the above it is clear that the Diverter has a one-dimensional
strategy space, namely the 1ine 0 to k. However, the strategy space of
the Defender may te any dimension. We shall analyze the game where a is
one-dimensional. This is the situation where the alarm threshold is the

only strategic variable.

3. PAYOFF

In order to complete the description of the game, we need to describe the
payoff to the Defender for each strategic choice of the Diverter and
Defender. Suppose the Defender wishes to minimize his losses; then we
need to describe how these losses depend on x and a(u)--7.e., we need to

give the function M(x,a(u)).

In general, it is also necessary to describe the payoff to the Diverter--
N(x, a(u)). However, if we assume that with respect to these payoffs, M
and N, the Diverter and Defender are non-cooperative, then this is equiva-
lent to a constant-sum game and we need to consider only one payoff, M.
This rules out the possibility of collusion and cooperation between the

Diverter and Defender.

An optimal strategy of the Defender in such a situation protects the Defender
against anything the Diverter may do and even against any payoff the Diverter

may set for himself. It also includes the case that no Diverter exists.
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4, ALARM THRESHOLD GAME WITH OPTIMAL PURE STRATEGIES
Let us analyze the one-dimensional alarm threshold game, when the alarm
threshold is the only strategic variable of the Defender. This game is

described as follows:

Diverter diverts x where 0 < x < k

Defender, knowing u, chooses alarm threshold «(u) where -= < a(u) 5jw.

Since a(u) is the alarm threshold, this implies that
i) Defender takes action 1 if u < a(u)
ii) Defender takes action 2 if u > a(u)
Further, since -= < a(u) < = this is equivalent to the Defender picking a
strategy z where -=» < z < = with the condition that
i) Defender takes action 1 if u < 2

i1) Defender takes action 2 if u > 2

Having formulated the strategy spaces, we now need to formulate the payoff
associated with these strategies. The payoff to the Defender is measured

by his losses or costs as follows:

1) 1f Defender takes action 1, a minimal effort, he loses the

diverted material, », or M] ® X,

T ———
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2) If Defender takes action 2, for instance by taking inventory at
a cost g, then with probability b he recovers the diverted
material. His losses and costs are
M) =8+ x -bx=g+ (1-b)x.

Now M] and M2 ar2 conditional payoffs, conditional upon MUF being below
or above, respectively, the alarm threshold. Lettiny P(u<z) = F(z,x) and
P(u>z) = G(z,x), then the expected payoff to the Defender or his expected
losses are given by

M(x,z) = xF(z,x) + [g+(1-b)x]G(z,x) (1)

In order to solve this game, we shall first obtain upper and lower bounds

to the game value. First, let us derive the lower game value, Max Min

R
M(x,z). Since
G(z,x) = 1 - F(z,x)
we can rewrite the payoff as
M(x,z) = g + (1-b)x + (bx-g)F(2z,x) (2)

For any x, we have

g+ (1-b)x + (bx-g)MinF(z,x), if x >
Min M(x,z) = z
z g + (1-b)x + (bx-g)MaxF(z,x), if x <
z

o O™

Now let us assume that F(z,x) is a normal distribution function with
mean %, then
Min F(z,x) = 0, Max F(z,x) = 1,

z z
and
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g + (1-b)x, if

>
v

(=g kel = g foo)

Min M(x,z) =
Z 8. if

>
A

Now maximizing with respect to x we have

Max[e+(1-b)x] ,
Max Min M(x,z) = Max bx> ¢
%

Suppose % < k, then from (3) we get

Max Min M(x,z) = Max [& + (1-b)k, £]
X Z

Further, we have that

a4 (1-b)k > 8+ (1-b)E = £

Hence we have
Max Min M(x,z) = g + (1-b)k

T
and the maximum is assumed at x=Kk.

Now suppose that %-; k, then from (3) we get

Max Min M(x,z) = Max [¢, k] = k
TR

where & is the null function (over a null set).

at x=k,

We have thus shown that

&+ (1-b)k, if ?
Max Min M(x,z) = ;
X Z Ki if i-)—:_

In each case the maximum is assumed at x=k.

Max x
bx <& (3)

The maximum is assumed
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Now let us compute Min Max M(x,z)
gy
where

M(x,z) = xF(z,x) + [8 + (1-b)x]G(z,x)
We have for any fixed z

Max M(x,z)
X

kF(z,k) + [g + (1-b)k]G(z,k)
g+ (1-b)k + (bk-g)F(z,k).

Now minimizing with respect to z, we have

g+ (1-b)k, if £ <k
Min Max M(x,z) = (5)
2 X ks if 2k

where the minimum is assumed at z = -= and z = +«, respectively.

Comparing (4) and (5) we see they are the same. We have proven that this
game has a saddle~-point at (k,-=) or (k,«) depending on the parameters

R B K

The solution of this game can be summarized as follows:
i)  The Diverter should always divert the maximum amount k.

ii)  The Defender has an optimal pure strategy, -« or +=, depending
on the relative costs ¢ and bk. If g > bk then the Defender
sets the alarm threshold at -«=. If 8 < bk, then the Defender
sets the alarm threshold at +«,

iii)  The game value is
B+ (1-b)k, if g < kb

i if g > kb
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5. ALARM THRESHOLD GAME WITH OPTIMAL MIXED STRATEGIES

We now keep the strategy space the same as in the previous game but modify
the payoff as follows: If an inventory is taken at a cost &, then with
probability r the Defender will recover the diverted material. The payoff
in this game becomes

M(x,z) = xF(z,x) + (B-rx)G(z,x) (6)

This game model, as compared to the previous one, does not include a penalty

to the defender for loss of diverted material when an inventory is taken.

We shall show that this game does not have a saddle-point, and hence mixed
strategies will be required. We shall also obtain upper and lower bounds

of the game.

First, we rewrite the payoff as follows:
M(x,2) = (8-rx) + [(1+r)x-8]F(2,x) {7)

We have for any x
(c-rx) + [(14r)x-8IMinF(2,x), if x > 75

Min M(x,z) = ’
. (g=rx) + [(14r)x-g]MaxF(z,x), if x < 1§ﬁ
z
IR T X > T“-"‘Y:
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Now maximizing with respect to x we have

Max(g-rx), Max x
Max Min M(x,z) = Max g g
X 2 X2 Y& XS Tor

We have to consider two cases. Suppose

]fr < k, then Max Min M(x,z) = Max [T%F : T%F] B T%F

X Z

and the maximum is assumed at x = T%F i

Now suppose T%F > k, then

Max Min M(x,z) = Max[¢,k] = k
"

where ¢ is a null function (over a null set). The maximum is assumed at

X & k.

We have thus proven that

Max Min M(x,z) = min(n‘*-r- s (8)
X 2

and the maximum is assumed at x = min(T%F . ¥

Now let us compute the upper bound of the game or Min Max M(x,z). For any
z, we can show that, by computing dM(x,z)/dx, that ihe ;unction M(x,z) has
at most two critical values and hence at most one maximum point which is
also a critical point. Let this critical maximum be designated by xm(z),

then Max M(x,z) will be assumed at one of the following three values
X

x = 0, xm(z), k



depending on z. Further, small values of z are associated with x = 0,
large values yield x = k and intermediate values of z yield X where

0 < X < k and M'(xm,z) = 0,

We have from the preceding argument

Min Max M(x,z) = Min Min M(0.z),  Min M(x_,z), Min M(k,2) }9)
"o mecgen 2y<252, 2,<24

= Min H(Xm,l)
Z]LZf_ZZ

Clearly,
: . 8 "
Min M(Xm,Z) # Mm(m ’ n) .
y PG 234
1-5-52
We have shown that

Min Max M(x,z) % Max Min M(x,2) (10)
Ao "I

and hence this game requires mixed strategies for both players.

6. SOLUTIOM™ OF ALARM THRESHOLD GAME--OPTIMAL MIXED STRATEGIES

In Section 5 we showed that the one-dimensional game of alarm threshold as
a strategic variable requires mixed strategies for both players. Since the
payoff function is continuous in the strategic variables, there exists a
solution which requires mixing over a finite number of strategies for each
player, rather than a density function. Thus the game is fundamentally a
finite game in the sense that only a f'nite number of strategies are
selected from the continuum of strategies. Thus the solution problem is

reduced to finding a finite set of x's and a finite set of 2's such that
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+x k

Ma x M(x,z)dG*(z) = Min M(x,z)dF*(x)
z

where F*(x) and G*(z) are the optimal mixed strategies of the diverter
and defender, respectively. Both F*(x) and G*(z) are step-functions with

jumps at the critical points of the integral functions.

Analyzing these integral functions, we can prove that for any z,
fM(x,2)dG*(z)

can assume a critical maximum, at most twice. Similarly for any x,
[M(x,2)dF*(x)

can assume a minimum for at most three different values of z. This implies

that
F*(x) = qu {x) # (1-a)lx (x)
1 2
and
G*(z) = alz](z) + 8122(2) - YIZ3(Z)
where

In order to obtain a solution of the game, it is necessary to solve the

following equations in closed form

o

Max M(x,2)dG*(z) = v
x -0
k

M;" M(x,z)dF*(x) = v



where v is the value of the game. Because of the form of the payoff
function, M(x,z), which involves exponential functions as well as algebraic
functions, this is impossible. Hence only solutions for particular values

of the parameters can be obtained.

We shall do this for three sets of o, g, k parameters and five values of
the recovery parameters. In order to reduce the computing time to a
minimum, we shall use the method of "fictitious play" to solve the game,
rather than the classical methods of optimizing a function. Both methods
are iteration processes requiring many iterations. However, the technique
of "fictitious play" can perform high numbers of iterations at negligible

costs.

Table 1 presents game values for each of the three plants and for five
probabilities of recovery. We also present, for comparison, game values
when the alarm threshold is not a strategic variable but strictly determined

at LEMUF,

The table shows the improvement in game value--i.e., the defender's losses

are reduced--by using a mixed strategy of three alarm thresholds.

Table 2 chows the optimal mixed strategy for the defender for each of the

three plants and for each of the five recovery races.



Table 1

Game Values--Losses of Defender
One-Dimensional Alarm Threshold Game

Plant #1 Plant #2 Plant #3

0=0.3 o=1.62 0=15.9

Probability of g=1.61 8=6.17 8=3.14

Recovery k=10 k=10 k=10
Alarm Threshold Alarm Threshold Alarm Threshold

r LEMUF Strateqgic LEMUF Strategic LEMUF Strategic

0.1 1.83 1.5 5.78 5.60 2.92 2.84
0.3 1.61 1.26 5.15 4.72 2.50 2.40
0.5 1.44 1.09 4.59 4.08 2.22 2.07
0.7 1.28 0.97 4.16 3.60 1.99 1.81
0.9 1.21 0.84 3.73 3.20 1.82 1.61

El-d
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Table 2

Optimal Strategy for Defender
G*(z) = of, ¢ i, *¥l

] 2 o |

g Plant #1 Plant #2 “Plant #3
z P(z) z P(z) b P.z)
0.2 0.16 4,2 0.27 1.0 0.38
0.1 0.6 0,68 4.6 0.71 1.4 0.59
1.8 0.16 5.0 0.02 1.8 0.03
0.2 0.39 3.4 0.02 1.0 0.24
0.3 0.6 0.59 3.8 0.53 1.4 0.72
1.0 0.02 4.2 .48 " 1.8 0.04
0.6 0.18 3.4 0.02 1.4 0.02
0.5 1.0 0.78 3.8 0.62 1.8 0.58
1.4 0.04 4,2 0.36 2.¢ 0.40
-0.2 0.1 3.4 0.40 1.0 0.06
0.7 0.2 0.58 3.8 0.58 : 0.83
0.6 0.31 4,2 0.02 1.8 D%
0.2 0.16 3.0 0.53 1.4 0.1
0.9 0.6 0.79 3.4 0.46 1.8 0.83
1.0 0.05 3.8 0.01 32 0.06

z represents alarm threshold value

P(z) represents probability of Dofender selecting that
value of z.
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It should be pointed out that playing G*(z) by the defender is not the
same as playing z* = E(z) because the defender must use a mixed strategy

and E(z) is a pure strategy.
Also note that for Plant #1, at r = 0.7, a negative 2(0.2) is optimal.
Table 3 shows the diverter's optimal strategy which is a mixture of two

strategies for each plant and each recovery rate. \e also show the

expected diversion, E(x).



Table 3

Optimal Strateay for Diverter

g B ulx] + slxz

» Plant #] -‘Plant #2 Plant #3
X P{x; E(x) X P(x) E(x) X P(x) E(x)
1.5 0.93 5.5 0.65 2.5 0.16

0.1 2.0 0.07 1% s 098 M 3.0 0.84 c.92
1.0 0.33 4.5 0.42 2.0 0.12

0.3 1.5 0.67 1.3 D SN =™ 2.5 0.88 Lo
1.0 0.73 2.0 0.75 2.0 0.80

0.5 1.5 0.27 s e T S 2.5 0.20 &=
0.5 0.02 3.5 0.73 1.5 0.25

0.7 1.0 0.98 0.99 80 oy W 2.0 0.75 ead
0.5 0.2) 3.0 0.50 1.5 0.69

0.3 1.0 0.79 B 35 am 2O 2.0 0.31 1.65

x represents amount diverted.

p{x) represents probability of diverter selecting that value of x.

E(x) represents expected value of x.

91-8



APPENDIX C
MATHEMATICAL PROOF FOR FORM OF DIVERTER OPTIMAL STRATEGY

We will present a semi-constructive proof that the diverter optimal
strategy, F*(x), is a step function with a finite number of jumps. Define
as follows the generalized moments associated with each distribution

function F(x) of the diverter. First let us set:

z
2
1 - (U=x
—— du = f
- [me XTl u (x)

Now define the following hypercurve, parametrically in x, where 0 < x < k:
ry* f(x)

= xf(x)

ry = min(y‘.x) f(x)

g * 1yy-x|f(x)

= 1-f(x)

= x[1-f(x)]

ry = min(yz,x)ll-f(x)]

!YZ'XQI]‘f(X)]-

These functions are obtained from the payoff M(x,y).

"

As x varies between 0 and k, the above curve is truced out in B-dimensional
space (at most). Now form the convex hull of this curve. This convex

hull, H, will be at most an 8-dimensional convex volume.
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Let F(x) be any distribution function (density or step function). We
can compute the following 8 moments:

K
Ps = 'i(x) dF(x) 1 < i <8

0
for that F, or we can associate a g (o1, 02, ...p8), & point in
8-dimensional space., Letting F vary over all possible distribution
functions, we obtain an 8-dimensional volume R which is closed, bounded,
and convex. Further R = H, the convex hvll of the previously defined

curve.

Thus selecting a distribution function F(x) is equivalent to selecting

a point p in H = R, an 8-dimensional convex set. In this convex set
each vertex corresponds to a distribution function with a single step at
x where 0 < x < k, or F(x) = Ix(x). Now from Fenchel's Theorerm on E
convex sets--every point of an n-dimensional convex set can be represented ;
by a convex linear combination of (n+1) vertices of the convex set--it
follows that there exists an F*(x) such that it consists of at most 9

steps.
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