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Abstract of the Dissertation
DEVELUPMENT OF A LASER DUPPLER ANEMOMETER
TECHNIQUE FOR THE MEASUREMLNT
OF TWO-PHASE DISPERSED FLOW
by
Jagannathan Srinivasan
Doctor of Philosophy
in
Mechanical Engineering
State University of New York at Stony Brook

May, 1978

A new optical technique using Laser-Doppler Anemometry is pre-
sented for the reasurement of the local number densities and two-
dimensional velocity probability densities of a turbulent dilute
two-phase dispersion which has a distribution of particle size and
8 predominant direction of flow. This technique establishes that
by a suitable scheme of discrimination on the signal amplitude,
residence time and frequency of the Doppler signals causcd by the
scattered light from individual particles in the probing volume, the
size distribution of moderately large particles in a dilute dis-
persed flow can be determined.

The newly developed Laser-Doppler Anemometer (LDA) technique

was applied to a solid particlc-water two-phase flow and a water
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droplet-air two-phase flow. Particular emphasis was placed on tur-
bulent two-phase water droplet-air flow inside a vertical rectangular
channel. At each of nine different measuring locations along the
transverse axis (starting at 250u from the channel wall), over

20,000 Doppler signals were individually examined.

The particle size and number denisty distributions, and the
axial and lateral velccity distributions of both phases are report-
ed. The analysis reveals some interesting features of two-phase
dispersed flw. A film of water on the channel wall was formed due
to the deposition of droplets from the flow. The water droplet en-
trainment from the wall film and the subsequent breakup of some of
these into the flow are discussed. A discussion of the relationship
between the particle distributions and turbulent flow characteristics

is presented.
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1. INTRODUCTION

Recently there has been a great deal of interest in the study
of two-phase flows involving solid particles or droplets. Although
there are a number of conventional techniques available for single-
phase flow measurements, most of them are inadequate for measurement
of two-phase flows., They fail to distinguish the motion and size of
individual particles or droplets and introduce a local disturbance
to the flow. Some photographic techniques have been used to obtain
the size of the droplets or particles., The majority of these methods
are seriously handicapped by the discontinuous nature of accumulation
of data. Also, the large number of samples and the size of particles
involved makes anything but an electronic counting method very ted-
ious. In addition to size measurement a simultaneous particle velo-
city measurement is of equal interest. Most of these methods cannot
make such a measurement,

The laser-Doppler Anemometer (LDA) with its unique properties
has developed into a powerful research tool for the study of single
phase flows. 1Its success has encouraged some researchers to extend
the laser-Doppler technique for measurement of two-phase dispersed
flows, The two-phase flow properties of primary interest to be
measured are the particle size, number density and the velocity
distribution of both phases. These properties can only be obtained |
by statistical analysis of the characteristics of many individual

particles. The LDA is still met with considerable problems which
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hinder its eflectiveness for such measurement. Only under particular
circumstances, some of these problems can be handled relatively eas-
ily.

One problem which creates an ambiguity in the Doppler signal
has been due to the possible presence in the measuring volume of
more than one scattering particle at the same time. However, if the
LDA measuring volume is extremely small and if the dispersed flow
is reasonably dilute, this ambiguity can be removed. Consequently
most measurements of two-phase dispersed flows have been restricted
to some rather over-simplified conditions [1-6].

Another problem causing signal ambiguity stems from the oscill-
atory behavior of signal amplitude as a combined function of scat-
tering angle and particle size in accerdance with the Mie scattering
theory. Strictly speaking, the Mie scattering theory is applicable
for observing the scattering from a fixed angle, Any variation in
the angle of observation will shift the scattering pattern. In a
LDA, since the incident beams are focused, the scattering from a
single particle will result in a range of observation angles. Also,
because of the combined effect of the finiteness of the size of the

particle and the finiteness of its displacement through the measur-

ing volume the observation angle will be continuously varying. These

are some of the mest pronounced contributions to an uncertainty in
the scattering angle.

A numerical analysis of the amplitude function from Mie scat-

R N R TR A =,
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tering theory reveals certain characteristics of the oscillations [21]
For particles of moderately large sizes, the frequency of these os-
cillations is found to increase with increase in size, displaying

a damped behavior about the mean. The mean of the amplitude function
also increases monotonically with size in a confined manner. Hence
for particles of moderately large sizes, the average amplitude can
be described as a function of particle size.

However, for a large class of problems of practical interest,
such as the interpretations of the zodiacal light and of the light
scattered from Venus'and Mars'atmospheres, the interest is concern-
ed with ranges of particle size rather than certain precise sizes.
This amounts to an integration. over these size ranges, of the scat-
tering light intensity from a cloud of particles with a given dis-
tribution of sizes. The numerous maxima and minima shift in position
with the size so that, to a large extent the effects of these par-
ticular maxima and minima are washed out with the integration [7].
For the present study, where only one particle at a time is consid-
ered in the measuring volume, a treatment similar to the above can
be made. Here the same washing out effect can be assumed to occur
because of the angular variations previously discussed,

In addition, deviation of the actual conditions from those
assumed to fi; the theory would further enhance this effect. More-

over, though the theoretical computations predict these oscillations,

there does not seem to be any experimental verifications, particular-

P p—
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ly for particles above 6y in diameter. Therefore, in dilute dis-
persed flows, if the selected width of the size window is narrow enough
the mean amplitude of the signals can be expected to vary monotonic-
ally with the mean size of particles.
One additional serious problem causing signal ambiguity stems
from the inherent non-uniformity of illumination in the optical

measuring volume [8]. Two examples of efforts which have been made

one for measuring the velocity and the other for particle sizing-
which are focused at the same probing peint [9] and b) by using
two laser beams, each directed toward one photo transistor [10].
Also, considerable effort has been made using large enough particles
to render u-eful the techniques of geometrical optics [€6] and by
making use of an additional property of the signzal [8,11]. It still
remains desirable to devise a scheme by which a central core region
of the measuring,volume where the illumination is nearly uniform,
can be isolated to serve as controlled measuring volume in the flow,
In order to isolate the central core an entirely new methodology
[12] and experimental hardware have been developed. This dissertation
describes the new methodology, the accompanying calibration scheme
and the experimental hardware. Finally, the results of some more
extensive experiments with two-phase dilute dispersed flows are

a

1

|

to by-pass this difficulty are: a) the use of two optical systems—
presented. i
|

|

1

l

1

|



I1. THEORY OF THE PROPOSED SCHEME

LASER DOPPLER ANEMOMETER
Historically LDA grew out of work by Cummins et al, on light

beating spectroscopy in the early ninteen sixties [13,14] and the
principle [15,16,17) has now been well established, In the follow-
ing paragraphs the fundamental concepts of LDA and some pertinent
definitions which relate to this investigation in particular are
outlined.

Laser-Doppler anemometry is a technique which utilizes scatter-
ed light from tracer particulates in a fluid to measure the velocity

of that fluid. In prinicple the laser anemometer is linear, needs

no calibration, and measures velocity independent of fluid properties.

A relatively small measuring volume and inherently fast response
give it the ability to follow rapidly changing velocities in the
fluid. Only light needs to enter the fluid at the measuring point
(causing no disturbance to the flow). Generally the two basic modes
of operation used are dual beam mode and reference beam mode,

Dual beam mode is the crossing of two laser beams of equal
intensity at a point in the fluid to be measured. Where these
beams cross, they interface with each other to form 'fringes'. A
particle moving through the crossing point in the plane of the two
beams then goes through a region of very low light intensity (light
cancelling) to a region of high intensity and back again. A photo

detector is used to pick up the scattered light from the particle.
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The frequency of the signal, so obtained, is proportional to the
velocity with which the particle is moving across fringes.

Reference beam operation is generally described in terms of
Doppler frequency shift of the scattered light and it requires only
one light beam at the measuring point. The scattered light from a
particle is mixed with a reference beam, to detect the shift in
frequency. The photo-detector responds to the difference in fre-
quency which is proportional to the velocity of the particle. In
this investigation the reference beam mode of operation has been
used.

In both operations the shape of the measuring volume is ap-
proximately ellipscidal as shewn in Figure 1. The light intensity
has a Caussian distribution with maximum occuring at the center cf
the measuring volume. The three measurable characteristic para-
meters of a Doppler signal (Figure 2) are the Doppler signal amp-
litude, Doppler frequency and path time. The particle velocity is
directly proportional to the Doppler signal frequency.

Another important concept in LDA-measurements is that of op-

tical frequency preshift. Frequency shift by means of Bragg ce.ls

was used early on in the study of diffusion broadened optical spectra

{1]. Since then a number of practical methods have been develcped
and the use of frequency shift has become a concept of great sign-
ificance [18]. An optical frequency shift not only allows the dir-
ection of the flow velocity to be determined, but also improves

the performance of electronic signal procezsors for measurement of

I i e o e
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highly fluctuating flow velocity [19].

THE METHODOLOGY

For a given optical arrangement, for the relatively simple case

of spherical scattering of a particular material the Doppler,signal
amplitude is mainly a function of the scattering particle size, the
number of scattering particles and their instantaneous location in
the measuring volume, The Gaussian intensity distribution of the
laser beams causes the signal amplitude variation for a single
scattering particle as shown in Figure 1.

Using a reasonably dilute dispersed flow (i.,e., with a low
number density) it can be assumed that there is only one particle
in the measuring volume at a time, However, because the measuring
volume of the laser-Doppler arrangement .s sc small the number den-
sity allowable actually can be quite large. The maximum number

density (particles per cubic centimeter) allowable is merely the

number of measuring volumes which would fit in one cubic centimeter.

In general, this can be as high as IOS/Lr. Thus, in a statistical
analysis, if the number density is less than lOS/cc,most probably
there will not be more than one droplet (of size less than measur-
ing volume) in the measuring volumec at one time. The other deter-
mining factor, the volumetric concentration, will vary with the
size of particles in the disperse phase, This concentration can
be caiculated by computing the ratio of one particle volume to the

measuring volume, However, the maximum diameter of the particle



is again restricted by the size of the measurirg volume, For the
present set up the maximum particle diameter is less than 120y and
a number density of up to 105/cc can be measured., Thus, the prob-
lem of ambiguity in the signal amplitude due to presence in the
measuring volume of more than one scattering particle at the same
time can be reduced by using sufficiently dilute dispersed flows,
With such a flow the Doppler signal cmplitude is mainly a fuaction
of the scattering particle size and the path length of the particle
in the measuring volume.

A second necessary assumption is that the predominant direct-
ion of flow coincides with one of the measuring directions of the
LDA-System. If the flow direction should deviate from the measur-

ing direction by an angle, a, it can be shown that the associated

. 4 h )
errors in the results are on the order of a (where a is in radians).

This is an extremely small quantity. (Appendix-1)

From Figure 1 it is seen that the path length of a particle
passing through the measuring velume and the incident light inten-
sity distribution along this path are essentially functions of the
location of the path in the measuring volume. The particle path
length, lv, can be obtained from the product of time duration of
the signal, 1, and velocity of the particle vj, which is determin-
ed by the Doppler frequency of the signal itself, lv = ij. In
order to suppress the ambiguity of the particle size determination

from a Doppler signal it is neccessary to consider only the central

core of the measuring volume. Here the peak incident light inten-

10
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sity along any particle path length falls within an arbitrarily
small, preselected range. In this new probing volume the signal
amplitude will be a function of particle size only. The effective
measuring volume, i,e., the central core, is electronically isolat-
ed by the following discrimination scheme,
SIGNAL AMPLITUDE DISCRIMINATION AND 1SOLATED CENTRAL CORE OF
MEASURING VOLUME.

Figure 3 gives a sketch of the dependence on path length Rv
of the peak amplitude of signals from particles of a certain size
di’ as shown by curve (i), with the maximum peak amplitude Ai locat-
ed along the maximum path length, lm' passing through the center of
the measuring volmme. A narrow amplitude discrimination window can
be selected to operate on the signal peak amplitude, AAi = (1-6)Ai,
such that (1-8)<<1, where & is a constart close to unity., 1If all
the particles are of exactly the same size di’ the allowable signals
are those from particles passing through the central core of the
measuring volume, TV<RV<£m, where T& is the limiting path length of
the central core. However, when the flow contains particles hav-
ing a distributicn in size the situation needs some clarificatien,
In this case the observed signals in the central core region are i
determined by the signals from particles of size di and by the sign-
als from two adjacent particle size ranges, di,sdtdi and difﬁidi,,.
di' and di“ being represented by curves (i') and (i'') respectively
(Figure 3). The relationship between observed signals and the

contributions from di’ di' and di" actually varies randomly, How-
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ever, for an extremely narrow amplitude window, say, for instance,
AAi = O'OSAi’ the number density of particles within the affected
size range can be considered statistically stable, Then the signals,
so discriminated, should accurately represent those with a peak
amplitude within the amplitude window AAi around the mean peak
amplitude Ai'

The path lengih of a scattering particle through the measuring
volume, Rv, is as shown in Figure 4., By ignoring all signals whose
corresponding path length is smaller than a chosen lower limiting
value T;, the dependency of signal ampltiude on the particle posi-
tion in the measuring volume can essentially be eliminated, This
is because the intensity of the incident light in the measuring
volume is distributed approximately ir a Gaussian manner, so that
if only those particles passing through the central core region of
the measuring volume (T;skvslm) are considered, the maximum ampli-
tude of the Doppler signal envelope will then be dependent only on
the particle size. The maximum path length, im (the one going
through the geometrical center of the measuring volume) is obtain-
ed empirically by determining the path lengths of many particles
through calibratien. The lower limiting value of the path length
for the central core, 1;, is determined by the choice of a window
size for the amplitude discrimination. The window size is properly
determined from the amplitude range of untreated Doppler signals

from the particular flow under consideration,

13
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5 PATH LENGTH AND VELOCITY DISCRIMINATIONS

s After signal amplitude u'scrimination, a discrimination against

the path length lv’ is made using the limiting path length T;, of the

g measuring velume as the lower bound, Only signals within the selected
amplitude window, discriminated from particles passing through the
central core (Figure 4) will be allowed to go through., Then an
additional discrimination of velocity will produce the desired
statistics of particle size and velocity distributions in the dispersed
flow, Unfortunately it is the particle path time and velocity, rather

than the particle path length, which are readily obtainable from

signals. However, the product of the particle path time and velocity
can be used for the path length discrimination scheme, :
Since the amplitude of the envelope of a Doppler signal varies
approximately in a Gaussian fashion along a particle path through i
| the measuring volume, the path length determination depends entire-
i ly on the base amplitude level, say Av' at which the measurement
is made, It would first seem reasonable to set this base level

at zero amplitude. However, in dispersed flow containing particles

of sizes which are not negligible compared to the size of the measur- ’
ing volume, ambiguities on the Doppler signals associated with the

particles entering and leaving the measuring volume can no longer

' be ignored, Because of this point and the inheren® noise level of

| the measuring system the base amplitude level for path length or

the equivalent path time determination is to be set at a level

which is high enough to be saf¢ yet still low encugh for the mod-

|
!
|
:
|
|
i
|
|
|
;
|
|
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erately low amplitude signals to be analyzed, Mowever, the measur-
ed path length can be converted to equivalent path length at zero
amplitude (Appendix-2), As a matter of fact the very low amplitude
signals can be used as tracer signals for the fluid phase in the

dispersed flow,

PARTICLE S1ZE, NUMBER DENSITY DISTRIBUTIONS AND VFLOCITY DISTRIBUTIONS
Based upon the above methodology, the central core of the

measuring volume can be isolatecu and used as a new probing volume,

In this central core the signal amplitude will be a function of

particle size., This function can be exy imentally determined by

using particles of known diameter and velocity, Then by knowing

the size and the axial and lateral velocities associated with each

particle ,the number count, n, . o+ over a period of time, t, can
L

i,)
be obtained with an associated size and velocity range. The number
density, Ni (number per unit volume and unit size range, with di
being the average size) can then be determined if the value of the
projected cross-sectional area, E;, of the central core is known,
This value of EQ can again be obtained by using single sized particles
as explained in the following section,

It should be noted that each of the quantities di’ vj and W
strictly speaking should refer to a unit range of distribution,
For simplicity they will be used to refer to the mean values of
their respective unit ranges of distribution, Then for different

particle size ranges, di’ the number densities can be obtained.

The axial and lateral velocity distributions associated with

16




each size range can readily be obtained using the axial and lateral

velocity ranges associnted with each size range.

CALIBRATION

The calibration of the Doppler signal amplitude against part-
icle size has to be obtained experimentally using a precisely uni-
form stream of particles, all having the same size. The particles
are sent one after another through the center of the measuring
volume, The largest amplitude signals for di{ferent sizes can be
obtained and the size can be expressed as a function of the signal
amplitude.

The projected cross-sectional area, ﬁg, of the central core
can also be determined by sending the single size particles in a
single stream and traversing the measuring volume in two dimensions
so that the limiting path length determines the boundary of the
central core cross-sectional arca, Once these calibrations are
performed the distribution of the particle size, number density,
axial and lateral velocities can be obtained using the proposed

scheme,

HOMOGENEOUS PHASE VELOCITY

As discussed earlier the very low amplitude signuls from very
small particles serving as tracers can be used to determine the
homogeneous phase velocity. Since only the very low armplitude
signals are important here the base amplitude level can be set

very low. The high amplitude signal envelopes are used to elimin-



|
|
|
|
? ate the analog velocity outputs due to large droplets. Thus only
: the velocity outputs due to very small droplets will be obtained
3
: and are sampled for the determination of homogeneous phase velocity
1
distributions.
|
|
|
|
|
|
]
|
i
|
|
|
|
|
|
|
|
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111, MEASUREMENTS USING THE DEVELOPED METHODOLOGY :
TWO-PHASE DISPERSED FLOW, (Solid particles-water)

The developed methodology was first tested using a relatively
simple dispersed flow of neutrally buoyant hollow glaes spheres,
with a distributed size range, suspended in water in a closed-loop
water channel., Only the predominant velocity component was measur-

ed. Since the product of particle path time and velocity was not
readily obtained, a special scheme of combined time and velocity
discriminations was developed, instead of a path length discrimin-
ation, to isclate the central core of the measuring volume. Accord-
ing to the calibration scheme -mly particles of one single precise
size can be allowed in the flow. This is not easily attainable
because of the difficulty of cbtaining such particles, However,

a substitute way had been found in experimenting with dilute dis-
persed flow, The combined time and velocity discrimination scheme
and the alternate way of calibration are elaborated in the following

discussions,

COMBINED TIME AND VELOCITY DISCRIMINATIONS

By setting a lower limit on the time duration t, say T, using
a time o scrimination scheme, and a related lower limit on the
velocity Vi I;/?, using velocity discrimination one can retain
signals within the velocity range I;/??vj<lv/? which can be pro-
duced by particles going through the central core region of the
measuring volume, I¥<£v<lm’ as shown by the sketch in Figure 5,

However, this is not to say that these signals represent the signals

19
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produced by all the particles of the specified size di (correspond-
ing to signals of amplitude Ai) which pass through the central core
region, because the signals from those particles which have a veloc-
ity above the upper limit of the local admissable velocity range,

L
:ﬁ, that pass through the central core region, will not be register-

t

ed. In order to obtain the correct number count appropriate for
the determination of the velocity probability density distributions
and particle size number densities from the measured number count

so obtained, the following correction scheme is used.

The number count per unit time per unit cross-sectional area

of flow, per unit velocity range, and unit size range, ni i for
2' ’
the small velocity range considered (:¥-<v.< :;5 in the central
: 4 T

core region can be considered approximately constant for a statisti-
cally steady flow. Conceptually, the number count for cach elemen-
tary annular region withfn the central core region and for the
permissible local velocity range and size range,can be first deter-
mined from the product of the number count ﬁi,j‘ the cross-section-
al flow area of the elementary annulus, dBo’ and the size of the

local admissible velocity renge, (Rv/?'- I;/?)where Iv<lv<£m, and

size rang%, Adi. in which di is the mean particle size, n,

i,j
dBo(:;-- :;9541' By summing these number counts over all elemen-
T T
tary annular regions within the central core region,
(Bo 2 IV
n, .AdiQ:;- ;TJdBo.
J i,] - -~

o



where E; is the projected cross-secticnal area of central core and

!v = lv(Bo), a total number count for the entire central core region
including the effect of the local permissible velocity range can be
obtained. On the other hand, however, the appropriate correct number

count for this case would be obtained by considering the maximum

L L
velocity range (:! €y < :?5 to be operational over the entire central
T T

core region instead of the local permissible velocity range,

ﬁi,j'bdioﬁs(gg-- %;9. The ratic of the former to the latter computed

total number counts provides the needed correction factor K to ad- |
just each measured total number count to the corresponding appropri- 1

ate total number count:

E

(o]
Actual number count _ ( (tv°1;)dno |
Correct number count - 5
t-X 3 :
m v :

o

Once the correction factor K is determined, the actual number count
divided by K will give the corrected number count. This corrected
number count is then divided by the velocity range considered

(lm/' . T;/?j and the size range &di ard the cross-sectional area
of the central core region (§Q}. to give the probability density
ﬁi,j' which is the number count per unit time,per unit cross-sect- |

ional flow area, per unit velocity range and unit size range, for

particles of size di and velocity vj vhere Vj is now the mean velo-

city in the small velocity + 1ge considered (i.e, vj = |

(/T + T /1)/2).
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Let Ni . = No, of particles of size di per unit volume, per
unit velocity range and unit size range with the
center velocity vj'

Then

BEAT G e )
o ™ ey B 0 (1)

i
and Moo DN el 2ad (2)
i R

where Ni = number density of particles of size di'

Thus, the number cdensity Ni of each particle size can be obd-
tained if the probabiiity density ﬁi,j of each particle size and
velocity is known., Before the probability density ﬁi,j can be de-
termined the value of the cross-sectional area i; is required as
described above. This value of i; is determined from calibration
with a flow of known number density (Ni)o and a uniform particle
size di with the same velocity (vj)o as shown in Figure 6. The
value of (ﬁi,j)o' the probablility density for this case, can be
computed from the known number density (Ni)o and the measured velo-

gisy iy .l In Y. ® N2

S .) ¢ (v,) . 1t should be noted that for
i Nk Py i‘o j*e

.

this over-simplified case, (n., .)_ simply stands for the number

.19

count of particles of size di having velocity (vj)o per unit cross-

sectional area of flow., By comparing this to the total number count
for the whole central core region, obtained by a scheme of gradually
raising the lower limit on the duration time discrimination, T, the

value of E; can be obtained since 55 is simply the ratio of this

total number count to the number count per unit cross-sectional area
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of the central core, (ﬁi,j)o’ Here T is gradually raised to such a
¢ritical value, say ?;, that the number count n starts to decrease
from the previously stable value (n)c. This situation corresponds
to the condition T;/?; = (vj)o by which signals from all particles
passing through the central core region (£v<£v<zm) are registered,
and the bounding path length for the central core, T}, is simply
?§(Vj)o evaluated with the measured (Vj)o and the value of ?; S0
obtained. As T is finally raised to another critical value, say

?Q, the number count of signals becomes zero. This situation corre-
ponds to the condition Zm/?; = fvj)o, and the maximum path length

Rm (the one passing through the center of the measuring volume) is

simply ¥Q(vj)o evaluated with th: measured velocity (v and the

0
value of ?; so obtained. To facilitate the determination of ?}
and ?;. the number count n is plotted against (?)2 as suggested by
an analysis of the path length through an ellipsoid. For a measur-
ing volume approximately elliptical in shape the plot should be
made up of two approximately straight segments «s shown in Figure
6. (Appendix-3).

It is of interest to note that since the number count n and
the path length lv for this oversimplified case are proportional
respectively to Bo and T, the correction factor K, needed for con-

verting the actual number count to corrected number count, can be

readily obtained from (Appendix-3).

(2T . 1.7 <% )
2 1 m @V
K = : 1 e — Y (3)
(T -Tv)

[ ]
w
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INSTRUMENTATION AND EXPERIMENTAL APPARATUS

The operational arrangement of the reference-mode Laser-Dop-
pler Anemometer is shown in the sketch of Figure 7, The oncoming
laser beam from a 15mw He-Ne laser was split into two beams: the
scatter beam which formed an angle of 7.5° with the transverse axis
in a horizontal plane, and the reference beam. The measuring volume
was approximately ellipsoidal, 250u in diameter and 800u in length.
However, a variable aperture used in the receiving optics further
reduced the effective measuring volume length, The receiving lenses
were symmetrical with the sending lenses and the scattering angle
was fixed at 15 degrees, The scattered light received from a mov-
ing scattering body passing through the scattering volume was mix-
ed with an unshifted reference beam to generate a heterodyne on the
photomultiplier tube surface, producing the Doppler frequency shift
signal.

The flow apparatus consisted of a precision close-loop water
channel which has a length of 6.10 m and inside dimensions of 457 mm
wide and 305 mm deep. The walls were made of optical grade plate
glass. The entire optical system was mounted on top of a heavy
traversing base which was aligned with the water channel. The de-
vice was capable of positioning the optical measuring volume inside
the water channel accurately to within 25y in all three directions.
The water channel received ifs water supply from a micronite filter

with a maximum pore size of 3u, Precision neutrally buoyvant hcilow
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glass spheres of sizes having a distributed size range of up to
354 were added to the channel flow loop to serve as the disperse
phase, The Doppler signals from the optical anemometry system were
first recorded on a magnetic tape and later played back at a slower
speea for data processing in the instrumentation system,

Instead of measuring the amplitude (Ai), time duration (1)
and velocity (vj) of each signal, the output of the LDA was filtered
as shown in Figure 8. With the amplitude discrimination set on
signal amplitude Ai and the time discrimination set on the lower
limit of the signal path duration time T, only the signals having
an amplitude within the pre-selected narrow amplitude window in the
neighborhood of Ai and a duration time T > T could reach the tracker,
The tracker then converted the Doppler frequency of the signals into
voltage signals proportional to the particle velocities, The out-
put of the tracker was passed to a velocity discriminator circuit
which passed only those signals with a voltage (correSpongjng to
the particle velocities) above a certain value (equal to :;5. This

T
resulted in signals for which the product Vj At & iv was a value

greater than Tv' and hence only for those particles passing through
the central core region. The number count of such signals was ex-
ecuted on an electronic counter to give the measured nurber count
of particles of a particular size and a particular velocity as pre-

viously described. By changing the time discriminator iower limit

- 4 : AR iy il S
T and the corresponding velocity discriminator lower limit —, the
T
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number counts at different velocities could be obtained for particles
in the same size range, Then, by systematically changing the set-
ting of the amplitude discriminator and repeating the aforementioned
time and velocity discrimination schemes, the statistics of the
complete particle size range could be determined, Furthermore, by
analyzing signals from particles of small enough size the velocity
probability distribution for the fluid phase could also be obtained,
using these small particles as tracers, An instrumentation block

diagram is shown in Figure 9.

CALIBRATICON

As was mentioned concerning the calibration scheme as shown
in Figure 6, a substitute way was found by experimenting with very
dilute suspension of particles of distributed sizes [Il].

The optical measuring volume was placed in that portion of the
water channel where a laiminar uniform free stream flow, fvj;o =
6.43 cm/sec, was establi hed as shown in Figure 10, In a preliminary
trial run the amplitude ciscrimination window was deliberztely made
very narrow to scan over the whole amplitude range and to obtain
a rough picture of the signal amplitude distribution pattern. Due
to the dilution of particles and the very narrow amplitude window
size used the signal amplitude displayed a discrete size distribu-
tion at a very few isolated amplitudes. Any of these amplitudes

could be tested for suitability as a substitute for the single sized

particles needed for calibration. One of them, A, = 7707810 nV
i

SV AP —
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was finally adopted and its suitability for this task was demonstrat-

o |
ed in the well behaved calibration curve T , shown in Figure 11.

The duration time ¥, based on a tape speed of 15 inches/sec., was
twice as large as T, based on the recording speed of 30 inches/sec.,

and the operational amplitude window size 4A, = 0.0SAi. The total

i
tape length was 605 ft. The two important quantities characteriz-
ing the central core of the measuring volume for this case were
found to be:

I; = 228u

Em = 267y,
And the correction factor needed to convert the actual number count
to the corrected number count, according to Eqn. (3), has the value:

K= 0,536,

The next step was to establish a calibration between the sign-
al amplitude and particle size from the signal number count and
particle number density by an independent measurement of the water
sample. The accumulative actual signal number count, 'n], for sign-
als in the amplitude range Ai to Amax' the maximum amplitude for the
various signal amplitudes is plotted in Figure 12. The curve gives
the limiting value:

] =1, at A = 1.08v.
Water samples taken immediately downstream of the measuring

velume with an isokinetic probe were analyvzed with a Coulter (Model

B) counter. The resulting accumulative particle number density
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count, [i]. for particles in the size range di to dmax’ the maximum

size for the various particle sizes is plotted in Figure 13, The
curve gives the limiting value:
' 33.4
[h]tl,atdmx'a u
By definition, for the uniform flow,

b f EfRN Y T RN
i : Dl b ThE - i

where n, = actual signal number count of signels of amplitude Ai

K = correction factor for signal number count
Ni = number density of particles of size di
(v.) = uniform mixture velocity
T = base cross-sectional area of central core of measur-
ing volume,
= tape recording time
k = K(vj)o Fg To’ a constant
Therefore we have the relationship
[r] = k[N]
between the two accumulative quantities., Furthermore, if we let
A* = Ai/Amax and d* = di/dmax

the following relations can be established:

ditn[N]} _ 1 d[N] _ k 1d[n] _ d{tn[n]}
_F;‘j‘d(.) T.'?TE?uA', TnT k (&%) TLTL(A-

Therefore,

36
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d{fn(N)} _ difn(n]} | d(A*)
d(d* d(A*) d(d*)
which, after integration, becomes

{2n[N]} ‘d"l . {tain]) A"
d* A*
Since, at d*=1: N=1 and Zn[N]=0
and at A*=1: n=1 and &n[n]=0
the relationship reduces to:

¢n(N] | = ¢n[n] |
at d* at A*

which establishes a unique correlation relationship between d* and
A* as shown by computational scheme of Figure 14. The resultant cal-
ibration curve between the normalized particle size d* and signal
amplitude is shown in Figure 15. Results from direct amplitude
measurement using particles of five precise size ranges are also
plotted for comparison. The dimensional calibration curve between
particle size and signal amplitude is plotted in Figure 16, Using
this calibration, the resultant particle size and number density
distribution in this laminar uniform free stream flow is plotted
in Figure 17,

Further, in the previous calibraticn run for the determination

of I&. g, and K as shown in Figure 11, we have

(“)o e (Ni)o (vj)o F; To

where (n)o = 18, the stabilized number count

(Ni)o = 26/"3, the number density of particles with sizes
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as tracers for fluid as shown in Figure 21.

A plot of the mean particle velocity as a function of mean
particle size in this turbulent two-phase dispersed flow is shown
in Figure 22,

This experiment with solid particles-in-water two-phase dis-
persed flow was performed tc develop and verify the methodology.
The alternate way of finding particle size and number density of
sampling and using a Coulter counter provided a check on the re-
sults, With this done the scheme can be applied to another, less

manageable (complicated) two-phase flow,
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IV, APPLICATION OF THE TECHNIQUC TO

DILUTE TWO-PHASE FLOW, (watcr droplets-air)

The deposition of a dispersion from a gas flowing turbulently
over a surface or through a channel is a very complex phenomenon,
It is important when dealing with technical problems such as the
calculation of the heat transfer rate in a falling film evaporator
or the prediction of a critical heat flux and burnout during the
reflood process of a hypothetical loss of coolant accident in a
pressurized water nuclear power reactor, There have been very few
experiments which are meaningful enouyh to provide an insight into
this complex phenomenon, Consequently, corresponding theoretical
efforts have been rather slow in coming, To gain a better under-
stnnding of deposition from turbulent flow some information about
the local properties of the dispersion is required. It is apparent
that a probeicss measuring device such as the developed optical
technique will best lend itself to this kind of sensitive measure-
ment., It is important to note here that the lateral velocity of the
particles in a predominantly axial flow is also required, Hence
experiments were planned to obtain the local flow properties in a
turbulent flow of a dilute water droplet-in-air, two-phase dispers-

ion upwards through a vertical rectangu.ar channel,

OPTICAL ARRANGEMENT

The operational arrangement of the laser-Doppler anemometer

51



used in this part of the investigation was a modified, improved T,S,I,
laser optical system capable of measuring two velocity components
simultancously at a single location in the flow field, The incoming
laser beam from a 15 mv He-Ne laser was split into thr ¢ beams, one
reference beam and two scattering beams as shown in Figure 23, These
beams were polarized so that the two scattering beams become ortho-
gonally polarized to each other and polarized to form a 45° angle
with respect to the polarity of the reference beam., The axial velo-
city was obtained from the reference beam heterodyning with the scat-
tered light of the axial scattering beam, Similarly, the lateral
valocity was obtained from the reference beam and the lateral scat-
tering beam, By separating the collected light by polarity the two
components of collected light are separated into two bcaws which
were focused onto two separate photo-detectors. The result is the
simultaneous measurement of two velocity components at a single
measuring point in the flow, This system had been tested and im-
proved to produce high quality signals, The polarization rotators
had been tested and improved by using linear polarizers, giving the
correct polarity of the three beams, The reference beam was also
optically shifted using a Bragg cell (T.S.1,). However two separate
downmix electronics systems were used to independently shift either
of the axial or lateral Doppler signals. 'Only one crystal controled
nscillator was used for both of the downmixing systems, ensuring

the r-;uisod synchronization, The entire optical system was mounted
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frequencies of up to 2.5 M,Hz was built,

The Doppler signals with lateral velocity information were pro-
cessed through a second tracker (T.5.1.) for obtaining analog voilt-
ages proportional to frequencies. Thus, there were three analog
signals; one for the axial velocity, one for the lateral velccity
and a third—the envelope of the axial velocity Doppler signals—for
the determination of size. These three signals were recorded simul-
taneously on three separate channels of an analog tape recorder
(Honey-well, Model 101) at a tape speed of 120 inches per second.
These signals were later played back at a tape speed of 15 inches
per second into the custom built computer interface electronic cir-
cuits. The Analog-to-Digital (A/D) convertor in the PDP-15 computer
needed at least 200 micro-seconds to digitalize four analog signals
and hence the recorded signals were played back at a slower speed,
avciding loss of any valid signals. The functional diagram of the
electronic circuits is as shown in Figure 25. The operatiocnal dia-
gram for electronic circuits is as shown in Figure 26,

The signal envelcpe was passed through a peak detector module
which gave an output proportional to maximum input voltage. This
maximum voltage was held constant by setting the peak detector in
the "hold" mode. The burst envelope was also sent into a voltage
comparator. The output of the comparatos was a rectangular pulse
and its duration was measured using the pulse to gate open a digit-

al counter. The number f{count) in the counter at the end of the

n
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pulse duration was proportional to burst width at the base level set
for the voltage comparator, Hysteresis was introduced using a feed
back circuit in the voltage comparator to avoid any instabilities
at the switching edges which may occur with slow rising signal en-
velope due to the presence of noise,

A control unit was designed using Transistor Transistor Logic
(TTL) integrated circuits (I.C.,) to generate the necessary signal

pulses for the other components of the unit and the interrupt pulse

to the A/D convertor. This interrupt pulse was generated in the ccn-

trol unit at the end of burst width.

The control unit also sent control signals to two sample-and-
hold modules connected to axial and lateral velocity analog voltage
signals., This was done to assure that these voltages correspond to
the same burst in question. This holding action occurred just as
the comparator level 'c' went low, The control unit generated the
control pulse 'w' with a duration equal to the time required by the
A/D converter to sample the four parameters. A control pulse 'y'
was also generated to reset the various modules (peak detector,

sample and holds and counter).

INTERRUPT HANDLER

The A/D convertor was a part of PDP-15 computer. The four
parameters were digitalized one after ancther when an interrupt
pulse triggered the convertor, The requirements of this pulse were;

it should have a rise time of 100 n.,s. or less, its pulse duration
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should be a minimum of 200 n,s, and it should go from < 3v to (v
to trigger the conversion, These requirements were met by H,P,
function generator Model 3312A and it was triggered by the control

pulse generated from the control unit,

DATA ANALYSIS

The PDP-15 computer sorted the raw digitalized data on a mag-
netic disc. A computer program (Appendix-4) discriminated the sign-
als which have path lengths smaller than the limiting path length,
The data was then processed to determine maximum peak amplitude,
maximum axial velocity, maximum lateral velocity, min: num axial and
lateral velocities by scanning through the discriminated data., The
diameter range was determined by chosing 95% of the maximum ampli-
tude ranges. In each range the lower limit was 95% of the upper
limit, The range between the maximum and minimum velocity was div-
ided into ten equal subranges. Then the entire data was sorted to
obtain the number of droplets within a particular diameter range
and axial and lateral velocity range. The mean axial and lateral
velocities and the standard deviation on these quantities were also

computed for all the diameter ranges considered,

AIR VELOCITY
The air velocity was determined from signals produced by very
small droplets as described earlier., The discriminated analog volt-

ages were digitalized at equal time intervals and the computer was




programmed to compute the mean axial and lateral air velocities and

the standard deviations.

CALTBRATION
The relationship between Doppler signal amplitude and the drop-

let size was determined using a commercially available Berglund-Liu
monodisperse aerosol generator which generated uniform size aerosols
[20]. Since any instabilities in the flow would change the diameter
of droplets generated,the pumping system must supply liquid to the
generator uniformly. The syringe pump which came with the package
was a positive displacement gear pump. However, this was abandoned
and a steadier pneumatic system was fabricated to force water through
the orifice at a constant rate. The test area was isolated from
ambient air movements to insure that the droplets had the same tra-
jectory. By varving the water flow rate, the frequency at which
water droplets were generated and the orifice size,different uniform-
size droplets were generated. These droplets were sent in a single
stream, one after another through the center of the measuring volume,
giving the maximun signal amplitude for each droplet size. The re-
sultant calibration curve between the droplet diameter and Doppler
signal amplitude is shown in Figure 27. The calibration curve ob-
tained in the earlier experimental investigation using a solid part-
icle-water system is also shown by the dotted lines for comparison.

The base area, E;, of the central core of the measuring volume
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and the limiting path length, I;, were also obtained using the pre-
cise size water droplet generator. The measuring volume was placed
systematically at different locations in two dimensions with respect
to the uniform stream of droplets and the Doppler signal amplitude
was obtained for each location. The limiting path length was deter-
mined by noting the signal path length when the signal amplitude was
95% of the maximum. The boundary of the base area, E;, was similar-
ly obtained by joining the locus of points having this limiting path
length,

The limiting path length and maximum path length were obtained
using the above procedure and they were found to be 190y and 215y
at the base level selected. The base area, 5;, was computed to be

’
equal to 1.837 x 104u“ for this particular optical arrangement.

MEASUREMENTS IN TURBULENT FREE STREAM AIR FLOW AND ADJACENT TO A
SOLID SURFACE

Experiments were planned using a simple air flow system to gain
confidence in the data analysis and instrumentation, The flow sys-
tem consisted of an atomizer genmerating water droplets varying from
sub-microns to about 90u in diameter. The water droplets were car-
ried through a vertical plexiglass pipe 25 mm. in diameter and 1000 mm.
in length. A flatplate of dimensions 35 mm. x 600 mm. with a sharp
leading edge was set parallel to the axis of the pipe with its lead-
ing edge placed 25 mm. above the exit of the pipe. This plate was

50 aligned with the laser beams that measurements adjacent to the wall
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to the atomizer was pre-saturated with water to suppress any possible
evaporation of the droplets. Also, to control the number of droplets
and to limit the size range entering the test section, a thin per-
forated plate was placed hetween the atomizing device and the en-
trance to the channel. A plate with 18-1.5 mm. diameter holes was
selected as it provided the necessary control. Finally, to prevent
the droplets from falling back into the channel, a jet of air was
aimed at the exiting flow so that it blew the droplets away, and vet
did not disturb the flow inside the channel. The test section was
equiped with two-100 mm. long plate glass observation windows mount-
ed on opposite sides of the rectangular channel near the exit end.
An adjustable mounting brace was used so that the test section
could be aligned. The glass plates were aligned to be parallel to
each other and the entire test section was aligned so that measure-
ments could be made at locations near the wall. The flow arrange-
ment is shown in Figure 33,

The center point of the optical measuring volume was placed at
a level of 582 mm. from the channel entrance and measurements were
taken successively at nine different lateral positions across the
channel. The three analog signals were recorded at each measuring
location on over 4000 feet of magnetic tape at a taping speed of
120 inches per second. The tape recorder had a higher frequency
response and hence measurements could be made at higher velocities.

The recorded signals were plaved back at 15 inches per second
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through the electronic circuits into PDP-15 digital computer for
data analysis. Typical data o'tput samples are shown in Tables 1
anc 2 and the entire summary of the data analysis is presented in
Appendia-€. The measured number densities of the different size
droplets at various distances from the wall are shown in Figures 34
to 40, The mean axial and lateral velocity distributions and the
standard deviations for droplets at different distances are shown
in Figures 41 to 47. Axial and lateral velocities of the air were
determined using submicren size droplets. Their distribution is
shown in Figure 48,
It was noted in this particular flow that the droplets formed

& continuous water film on the wall upstream of the observation
section. An analysis of the experimental data revealed that very
near the wall (0.25 mm.) there were large droplets (80u to 95u).
At 0.5 mm. the number of large droplets was less and at 1 mm. the
number of smaller droplets increased by at least one order of mag-
nitude. When this was aralyzed, taking lateral velocity data into
consideration, the following observationc were made: There was ac-
tive generatio) of large droplets from the wall! film. These drop-
ler: p into a large number of smaller droplets due to the
v .¢ flow of air. These smell droplets were found to move

sgher lateral velocities in the away-from-the-wall direction,
and coulesce, forming large droplets at 2 mm. from the wall, and

then breckup again into medium-size droplets at 3 mm. from the wall,
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This is shown in Figure 49.
It was observed that the flow in the channel was unsteady due
to the droplet entrainment from the wall film. Hence attempts were

made to study the droplet distribution without any wall film,

MEASUREMENTS IN A DILUTE DISPERSED FLOW THROUGH A VERTICAL RECTANGULAR
CHANNEL WITHOUT LIQUID FILM ON THE WALL

The flow system was modified to generate a two-phase turbulent
flow of water droplets without any visible water film present on the
wall, In order to achieve this the following changes were made:

The water flow was reduced and the air flow going into the atomiz-
ing device was increased. The perforated plate was replaced by a
small rectangular orifice. This flow arrangement is shown in Figure
S0. The flow conditions for both experiments are listed for com-
parision in Table 3.

The measuring volume was placed at a level of 541 mm. from the
channel entrance and, as before, it was moved along the lateral
axis through nine successive measuring locations. The data accum-
ulation and analysis were done using the same procedure outlined for
the previous experiment,

The measured number densities of various size droplets at dif-
ferent distances from the wall are shown in Figures 51-59; the
droplet velocity distribution and the corresponding standard devi-
ations are shown in Figures 60 to 68; and the air velocity distrib-

utions at different distances from the wall are shown in Figure 69.
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TARLE. 3,
£LOW _CONDITIONS

@ WiTH LIGUID FILK ON THE CHANNEL WALL

AVERAGL AIR VELOCITY = 5,21 M/SEC

FLOW REYNOLDS NO. = 3,600

AXTAL PRESSURE GRADIENT = 1,32 mm GF H,0/M
TEMPERATURE = 20°C

DROPLET SIZE RANGE : UP T0 100 w»
DISTANCE FROM THE ENTRANCE TO THE

MEASURING LEVEL : 582mm
@ WITHOUT LiQUID FILM ON THE CHANNEL WALL

AVERAGE AIR VELOCITY = 9.52 M/SEC

FLOW REYNOLDS NO. = 6,600

AXIAL PRESSURE GRADIENT = 1.54 mm OF H,0/M
TEMPERATURE = 20°C

DROPLET SIZE RANGE : UP T0 100 w
DISTANCE FROM THE ENTRANCE T0 THE
MEASURING LEVEL : Stlmm
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DROPLET NUMBER DENSITY, NO./CC/MICRON
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DROPLET NUMBER DENSITY, NO,/CC/MICRON
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The data summary for these niane locations is presented in Appendix-
7. An analysis of the experimental data revealed some interesting
features of the two-phase dispersed flow, The droplets were gener-
ally found to lag behind the air flow in the axial direction. The
amount of this lagging was found to increase with droplet size.

However, in the lateral direction the medium and small sized drop-

lets near the wall were generally found to migrate towards the wall,

The response of various size droplets for the same turbulent field
was different and hence the number dencities of the various size
droplets had different distributions and they had a peak at differ-
ent distances from the wall as shown in Figure 70, Furthermore,
the large size droplets above 551 were not present at the center of

the channel,
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V. CONCLUSION

A new LDA technique has been developed to study two-phase dilute
dispersed flow. This has been successfully applied to two different
types of two-phase dispersed flows (solid particles-water, water
droplets-air). It is shown that for a reasonably dilute dispersed
flow (having a maximum particle number density of 105/cc) and part-
icle sizes less than one third of the measuring volume diameter, the
size of the particles can be uniquely determined by analysis of the
Doppler signal. With this development the size-number density for
the dispersed phase can be obtained. Both dispersed phase and homo-
geneous phase velocity distributions have been obtained. The results
of particle size-number density distributions obtained using LDA-
measurement technique has been verified by making another indepen-
dent measurement,

The analysis of experimental data on the flows studied reveals
some interesting features of two-phase dispersed flow. It is ap-
parent that this technique can be used to generate experimental data
for the development of a model for predicting the deposition of dis-
persion during turbulent flow of gas through channels or pipes.

Such a model is currently being developed [21] and, indeed, some
agreement with the results has been observed.

This technique can also be used to provide more information
about local! flow properties, giving scme new insight in the study

of turbulent flow of dispersions. Simple two-phase turbulent flow
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problems where the flow conditions can be simulated and controlled
more systematically should be studied to gain a better understanding
of the turbulence, migration of the particles, and the particle size

responses to the turbulent eddies.
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Appendix-1

ERROPR. ANALYS1S FOR THE DEVIATION OF THE FLOW DIRECTION FROM THE

MEASUR I.,r [':»’AW'A\

f=q
i alin L=

[ W_—

The following is an analysis of the error introduced if the flow
direction deviates from the megsuring direction by a2 small angle a,

vhere a is in radians.

~

IN THE PLAKE

i
it
...<

FIGURE 71. SKETCH OF THE FEASURING VOLUME WITH THE

CO-ORDINATE AYES.

The measuring volume is considercd to be ellipsoidal. Let the

-y -

co-ordinate axis be defined as shown in the sketch (Figure 71)., The

equation of the ellipscid is

x? v2 z2
T.F‘?.I (1)
2
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The z-axis is along the measuring direction. The co-ordinates
of the geometric center of the measuring volume are (0,0,0), Let
the particle path be inclined to the z axis by an angle o and con-
tained in the plane yay, “x,, y,, 2, are the co-ordinates of the point
where the particle exits from the measuring volume, (xo,yo) are
the co-ordinates of the point of intersection of the particle tra-

jectory and the plane of z = 0 . (Figure 72).

% Z
' &
Y
IN THE PLANE OF N
Y=YO o‘? (xl'yl’zl)
#[/””755:::‘*§
, X
b |
Y
X9

FIGURE 72, CROSS-SECTIOH IN THE PLANE OF Y=Y,.
xy= (x, * zy%an a) = x ¢ a2 (for small a) (2)

ARA (3)

substituting equations (2) and (3) in equation (1):

(x ¢ 2% Q2,4 c2 2) S
2 ‘o"l zl oyo#lsl
) ;7 be




5 2
-~

1 az 2 zxocl ; yo
(-24» T) z2° ¢ (——:—-—) zl+ (—-2- i e 1) =0
b =& . a a b
This reduces to
1 a2 2 Zxoa z;
( - ) 2. 4 (=) 2z =~ = 0
;7 ;T 1 a 1 ;Z
Hence
2
2xoa Zxoa 2 1 QZ zo §
-(—-E"J : 1(-7-9 + 4(=5 + =) —}
z a a N i
61- 2 (4)
o
2(= + =)
kY oy

Let '2' be the actual path length of the particle. The particle
velocity measured is actually the component of particle velocity
component (v') in z - direction and the path time measured corres-
ponds to the total time (t) taken by the particle to pass through
the measuring volume. Hence tv' = 2 cos a (Figure 72). 1If the
particle path was in the measuring direction the path length would
be 2:0. Hence the error introduced is (L cos a - 2z ),

0
From equation (4),

xa 2 2 22 12
(=5 s aly+ 2305
2 cos a = a b2 2 b
3 a
S =)
a
x2‘12 1/2
z° (“T’o ) 5
257 a b”
e gy g (Pl 3 (5)
o | ( 2
(“"* '7) k’:" —?) L] {
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" i
Let ¢ --—-——9-3- a.ndd--;
e
b a

Equation (5) reduces to

2.8 172
2:0 (1 +a'c)

1/2

£ cos o
v
d+ad)

v i
320 {1 ¢« ¢ /D)

(1 + a2d2/2)

2.4
X ad
:ZO (1« -—.g-——)
z.
o]

o

”

1

=2z {1 +a (=2 '} (6)
Q

: A

Hence the error introduced is of the order of azd4(59§
0
Since only the central core of the measuring volume is consid-
ered, (xo/zo) will be a very small quantity, of the same order as
a. So the error introduced is of the order a4.
In another extreme case when the particle path is inclined to

the z-axis but contained in the plane xsxo, equation (6) is reduced

to

i
- yO‘}

9 o "

i cos a = 2z {1+a (;;0 )
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since d = 2 1,
a
Still the error introduced will be of the order ad. Any other

deviation in particle path direction will result in an error value

between these two limits,

PO T
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Appendix-2

SIGNAL BURST WIDTH CORRECTION [21]

The amplitude of the envelope of a Doppler Signal varies in a
near Caussian fashion along a particle path length,
were made at a base amplitud2 A, as discussed in Chapter II for the
reasons discussed earlier. The path length or the equivalent path
time can be corrected using the relationship between path length

measured and the path length at zero amplitude level.

170 - av,-:|“': ‘,F' (-r-:—.:-:l.!/;:- AR
FL .UF.E /:v 5.\..«?‘1_ Al ad Ve il el -

4 o



The signal amplitude will asymtotically approach the zero amp~
litude line if a truly Caussian distribution is present, But with
fixed receiving optics the signal amplitude reaches zero amplitude
in a finite time, Hence a Gaussian distribution can be assumed to
be true at an artifical amplitu.. level, say -AB (as shown in Fig-
ure 73), The signal amplitude envelope can be expressed as

2
A+A) = (A *+A) exp (- fyrz)

where €, the forcing variable is less than 1.

The boundary conditions are

T, A=20 (1)
geE . As Av (2)
therefore
1
= (A_ + A) from (1)
y v~ LA
2
A, = A/ L (3)

Also from boundary condition (2)

2
b o
A\
Ay *A) = (A + A) exp (- —53)
er
b
Thus: 51.* : "
(”i) A+ A e1/e:2 i
» o i In ( ) = 1n
[ rb Ay * Ab 1+ -——-%—-—-—
Ly
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But ¢ =T 2%
v v

" Tb Xy
Therefore
el/c2
rz .1/52 1
ry) = In |5 "
€ Tb ¢ v) e 1 :
An 1/:2
M susEE

Hence if € is determined from experimental values, the time measur-
ed at the base amplitude level can be corrected to get the time at

zero amplitude.

In general . >
'S idipes
12 . in (91/‘ -1)
p) A 1
(eTy) G & g
m 1/€
L (e 1) |
,
Let o = (etb)‘
b o —p—
(el/e s 1%
therefore
2 b |
1+8
-y = In
G+ #
L ®
oA (1+8) ]

" z{;—)-l}»uoe)J
m
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Let P = 12

Qe G- 1)

P "
therefore =*=-1a {-G-%-ET +« 1}

Differentiating w. r. t, P

1, = do/ep L
S {igdm e} *°F

ie. -afReQenen

Qr-aP-0ed

There is a linear relationship between Q and (dQ/dP). The Q-

intercept will be equal to (1 + 8), where £ = -——-#—-—- .

el/s’ o
By observing the time at different amplitude levels data can
be collected and the value of € can be determined statistically.
This linear relationship was tested (Figure 74) for different
amplitude signals and the value of ¢ was found to be 0,573,
Therefore
Ty 1,08 1

r -ns .- ‘Inf;\’AT‘O.uS-
(0.573) Tb 'y m
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o w " 1n 108
| 3

KA,

- o.oos]

Thus the time (tv) measured at a base level can be corrected

to a time at the zero amplitude level.
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Appendix-3

DETERMINATION OF CORRECTION FACTOR, K,
(ratio of actual number count to correct number count)

AND LIMITING PATH TIME FOR SOLID-PARTICLE-WATER SYSTEM.

The flow used for calibration had a known number density (Ni)o’
a uniform particle size, di‘ and all the particles had the same
velocity (vj). When the lower limit of the duration time discrim-
ination, T, was gradually raised the number count, n, started to
decrease from a stable value, (n)o, as discussed in Chapter I1II, In
order to find the relationship between number count and the dura-
tion time, ¥, during this gradual decrease the following analysis
of the path length through an ellipsoid was done.

The equation of the ellopsoid is

b
D
o



z2

Area, B , = mab (1 - - )
v b‘

Differentiating with respect to 23

3(B)

Y. ¢ veb e 1 L el Ta
a(zv!) ;T b
2(8,) T

ra v
= . v as 2 '——{V\
a(;i) 45[ j)o " IaE S L
k. s
Since N Bv(vj)o(Ni‘o

3N "
=y e - B0,
cIGw J

Hence there is a linear relationship between the square of
lower limit of the duration time discrimination and signal number
count (Figure 75) and this was used to determine the limiting path

time, (?;J, for the solid-particle system. (Chapter 3).

!
=] FIGURE 75, SIGNAL
- " NUMBER COUNT V8.
| g SQUARE OF LOWER-
v ! v LIMIT ON DURATION
i : TIME DISCRIMINATION,
pe |
: { !
o | =2 |2z
| v il

SQUARE OF LOWER LIMIT ON ;
DURATION TIME DISCRIMINATION, <
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CORRECTION FACTOR, K. (To convert the actual number count to the

corrected number count)

For this calibration run the correction factor

B
. o T
K = (——-——-:—) e
it lm . 2v Bo

was further simplified as follows: The path length of any traject-
ory of the particle is given by the product of burst time duration,

T, and velocity, v.

Hence lv = (vj)o %
I; s (vj)o Tv
lm = (vj)o Tm
S T-T
v g ( v
TS f -7
m v m v
Bo -
b
Hence K = { x _Y ) %E
2. R o
" m v

But B = B(T)

Number count/sec, B » (Base area)(vj)o(Ni)o

f: =B x ¥k
i

Since (v],)0 and (N‘)o were constants, thus

-

B--E
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Also, when the lower limit on time discrimination was gradually

raised,

-
o

(See Figure

nt
0

For a time, t, secs N = nt and NO =

.-
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This correction factor was computed using the experimentally
determined values of ?; and ?;. Also, as expected, the correction

factor was dependent only on the geometry of the measuring volume.




APPENDIX - 4
COMPUTER PROGRAM
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THIS ROUTINE IS USED TO TRIGGER THE ANALOG TO DIGITAL

<«

CONVERSION ON FOUR CHANNELS AND STORE THE DATA

ADSF=T72132!
MPSK=T21 721
ADRB=721312
ADSC=721324
/

/
.DEC
NDATA=1222
SOUNT=4% [IDATA=I
.OCT
/
/
/
/
AUTO12:12 ZAUTO INCREMENT REGS
AJToll=sls
AaUTOl2z212
AUTO13z213
/
LGLOBL SAMPLE,HVI,VVI,TIME]l,AMP]
/
/
DEFLN 3TDATA,CHAN, 2L
Law -~C HAN /LOAD TWO'S COMPL OF VISUAL CHAN#
/C2ACTUAL CHAN# + |)
ADSC /START CONV
b JMP L /WAIT FOR CONVERSION
AREGzCHANL=1/2+13
DAC= AREG
JENuM
7§

~

LEFIW INITA,AUTO,ADCR

cLC ZINIT GIVEN AUTO INCREMENT
TAD ADDR /REG WITH GIVEN ADDRESS
DACE (AUTO
ENDM
DETIu NORML,ADDR /USED FOR NORMALIZING DATA
LAC ADPDR /AFTER aALL SAMPLING
LRSS 3
Dac= S0DR
13: ACDR
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CAL 77 /.SETUP FOR PULSE INTERUPTS

1§

MPSK /AN UNLIXKELY SKIP,(PULSE INT
/HARDWARE ONLY USES API

ADINIT

CAL 37 /.SETUP FOR A~D INTS

16

ADSF

READY

INITIALIZATION

INITA AUTOL13, HVI /INIT AUTO REGS

INITA AUTOLL, VW

INITA AUTOI2,TIME!

INITA AUTCI3,AMP!

LAC (=NDATA

DAC CT

LAC APIFL

15A /TURN ON API

WAIT FOR PULSE INTERUPTS

JMP

2
ADRB
D3R
182
JIMP=

3

GTDATA
GTDATA
GTDATA
GTDATA
I1SZ
JMP
DBK
CLA
124
733224

JAlIT

/COME HERE ON A<D INTS
/READ A-D BUFFER

READY /RETURN TO THE ADDR AFTER THE WAIT LOOP
READY

/COME HERE ON PULSZ INTS AND INITIATE
/CONVERSION CN THE 4 CHANNELS

-~ s

CT
NEWDAT /GO GET MORE DATA
/CLEAR LEVEL 3
/FINISHED SAMPLING, TURN OFF API



4ORM

LOOP=,

NOW NORMALIZE ALL THE DATA

LAC
DAC
Lac
DAC
LAC
0ac
LAC
JAC
LAC
DAC

NORML
NORML
NORML
NORML
1sZ
JMP

J MP=

LBK
JMP=

GLh e N

423222
+JEND

LosPlIP VSsA

»

(=NDATA)
CT

HVI
ADDRI
A2
ADDR2
TIME]
ADDR3
AMP L
ADDR4

ADDR!
ADDR2
ADDR3
ADDR4
CT
LOOP

SAMPLE /DONE! RETURN,

/CLEAR PRIORITY LEVEL
(WAlT

137
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THIS ROUTINE PROCESSES THE RAW DATA

HV,ETC., ARE DECLARED INTEGERS TO CONSERVE MEMORY SPACE

SUBROUTINE PRDATACHKV, VV, TIME,AMP)

INTEGER KV(2222),VV(2222),TIMEC2022),AMP(222d)

INTEGER COUNT(2232), HVC(32), VUC(32),AMPC(32)

INTEGER HVMAX,VVUMAX, AMPMAX,HUMIN, VVMIN AMPMIN, HVSIZE, VUSIZE
INTEGER AMSIZE

INTEGER DIVI,DIVR,DIVS

REAL VVSHFT,HVSHFT

COMMON /COMCT/COUNT

COMMON / /NDATA,DIVI,DIV2,DIV3, NGDATA,VUSHFT, HVSKFT, WCON, TIMA!
COMMON /GN/GALN

FORMAT(8X,'MAX MORIZ VEL =',F6.3,' M/SEC’,/

| 8X,°'MAX VERT VEL =',76,3,°' M/SEC', /)

FORMAT(E8X,'MIN HORIZ VEL =',F6.3, °*M/SEC',/

| 8X,'MIN VERT VEL =',F6,3,' M/SEC’,/

2 8X,'MIN AMPLITUDE="',1S5,1x//)

FORMAT(3Y, "MAX AMPLITUDE =°,15,/15X

| "CORRESPONDING TIME AND VELOCITIE.. /2@¥,' HORIZ =°,

2 76.,3,' M/SEC'/23X,°'VERTICAL =',F6.3,' M/SEC'/

S 89X, 110K 2 * 19/

FORMAT (2%, "HORIZ VEL CLASS SIZE:',F6.3,1¥/,2X%, VERT VEL CLASS
| SI1Z2E=*, F6.3,1X/,8%,15,' DATA REJECTED BY PATH LEN DISCR'//:

NUMBER OF 4-TUPLES OF DATA PER DATA SET
NDATA:z1222

DIVI IS # OF AMPL CLASSES

DIR IS # VV CLASSES

PIV3 IS # MV CLASSES

DIViz30

oIR=19

DIV3:=z12

INPUT # OF DATA SETS

JRITEC4,11)

READC(4,) NSETS
FORMAT(® INPUT # OF DATA SETS («z123):")
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GFCRMATC

JRITEC4,13)
READ(4,) ISKIP

ORMAT(® # TO BE SKP:*)
CALL SKPCISKIP)
VVSHFT=2,.22
HYSHFT=z-2.,22
INPUT CONVERSICN TIME

YRITE(4,12)
READ(4,)CNTIME

SCALE FACTORS AND GAIN
JRITE(4,2186)

FORMATC® GAIN: ')
READC4,) GAIN

FORMATC(' VVSCALE: ")
FORMAT("' MHVSCALE: ")
dRITEC4,2!T)

READ(4,) VVSCAL
¢1I5~\4,21?)
READ(CA,)KVSCAL

“RITE(4,212)

FORMAT(® FULL ANALYSIS?®)

READC4,) IFULL

JRITE(4,43221)

FORMAT(® PLMIN,PLMAX:®

READC4,)PLMIN, PLMAX
.;H-\'ﬂ?"(‘..

VELOCITY CONVERSION FACT

VWO Nz /(369 .5 WSCAL)
HVCONz! /(365 ., VSCAL)

PRCON=122820./C1 ,B3T=CNTIM
DRC122:D8CON/122.

CERO JUT THE COUNT ARRAY
DO 402 L=21,32

00 422 J=1,15

Ul 488 X=1,1%
COUNRTCIELT L, J,K) )23

INPUT CONVERSION TIME: ")

ORS

E)

138
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LOOK AT ALL DAT SETS FOR MAX AND MIN

DO 412 1:1,NSETS

caLL DEVRDC(D)

CALL PLDISCCHV,VV,TIME,AMP,PLMIN,PLMAY)

CALL ZMAXCHV, VV,AMP, HUMAX, VUMAY AMPMAY, 1 AMAY)
CALL ZMINCHV, VV,AMP, HUMIN, VUMIN,AMPMIN)
CONTINUE

X

JRITE(4,4222)

FORMATC' INPUT AMPMAX: ')
READ(4,) AMPMAX

AMPMAX UVERRIDDEN

CALL DIVIDEC HUMAY, HUMIN, VUMAX, VUMIN,AMPMAY AMPMIN, HVSIZE,
| VVSIZE,AMSIZE)

NGDT:=2

REJIND 5

CALL SKP(ISKIP)

N3DT=2

DO 423 1=!,NSETS

CALL DEVRD(I)

CALL PLDISCCHV, VV, TIME,AMP,PLMIN,PLMAX)

CALL MRCNTCHV, VV,AMP,KVSIZE, VVSIZE, NBAD, HVC, VVC ,AMPC,
LHVMIN, VUMIN, AMPMIN,AMPMAX)

NGDT = NGDT+ NGDATA

NBDT = N3D T+ NBAD

CONTINUE

JRITE OUT MAX AND MINS

RIzHVMAY=HVCON

RZ:‘JVMAX* 'U'VCON

RS zHVMINEHVCON

R4zVVMIte VUCON

JRITE(6,21%)31] ,R2

JRITE(6.222) RI,RA,AMPMIN

Rl zHV(IAMAX)=HVCON

R2:VV(IAMAX)® VVCON

JRITE(6,221) AMPMAX,R1,R2, TIMEC [AMAX)

[I=NSETS= 'DATA-NGDT
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JRITE(6,323) NBDT

FORMATC4Yx ,I6, DATA FALL BELOW THE MIN AMPLITUDE CLASS®)
RIzHVSIZExHVWCON

R2=VVSIZE* VWCON

JRITE(S,225) RI,R2,11

FORMAT( 77(.15, '-" Is.zax,ls. .-.' 15,157(,[5, "',15,157’.,15)

CHECK IF A FULL ANALYSIS IS DESIRED
17 (IFULL .EQ, 2)GOTO 3222

WRITE(S,532)
JRITE(6,531)

UNIT INFORMATION
FORMAT(/////7///768 %, "DATA ANALYSIS'///7/7/7,

| aS¥,'DIAMETER IN MICRONS'//48Y,°'VELCITY IN METERS®
1, PER SECOND*//45Y, 'DROPLET RATE IN NUMBER/SEC/SQ CM/(Mm/S
2, ' (M/SEC) /MICRON'* /7745y, 'NUMBER DENSITY IN NUMBER/CC/MICRON

20
el
'

)

JRITE(6,522)
LINECT=4l

JRITE(S,313)
JRITE(S,331)
JRITE(S,322)

PAGE THROW TO MAINTAIN MARGINS
FORMATCLHL, 2//777277)

FORMAT(45X, 'DROPLET SIZE - VELOCITY DISTRIBUTION'ZZ/)
FORMAT(LIH ,77,' DIAMETER 21X, 'AXIAL VEL.®,!12Y,

| "LATERAL VEL.',13¥, 'NUMBER®)

FORMATC(12 X, "RANGE® ,25X, "RANGE*,23, "RANGE", 1 9X, "COUNT’,
| 13%,'DROPLET RATE'//7//)

DO 152 L=2,D1IVI

D0 152 J=2,D1WR

DO 152 K=2,DIV3

Ilslwi

IR 3. »!

132K =1

I = COUNTCIELT(11,12,13))

IF ¢! .EQ, @¥.0T0 159
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CONVERT INTEGER DATA TO ACTUAL UNITS

SIZEl =DIAMCAMPCC(L~1))

SIZE2:DIAMCAMPCC(L))

RI=VVC(J=1)= VWWCOM+ VVSHFT

RAzVVCC(J) = WCON+ VUSHFT

RS=HVC(K=1)sHVCON+HVSHKFT

RE=HVCC(K)®HVCOt+F VSHFT

CTCON=DRCON/CHKVSIZE®*HWOMN® VWS IZE* WCON(SIZEI-SIZE2))
R7=IsCTCON

JRITEC(S,211) :I"El S1Z2E2 ,R3,R4,R5, Rs 2. R7

rJQMA"(?",rS 2,1, 3.8, 22Y F3.2,"1 .r5 218X, FS 8,1, 75,2,1:
LINECT:=LINECT-!

IF CLINECT .GT.2) GOTO 153

LI!L«A-’(

JRITE(S,322)

JRITE (S5,212)AMPCCL=1),AMPCLL), VWCC(J=1), VWC(J) , HVS(K=] ), HVO(K
i3

CONTINUE

G3TQO 3222

PRINT AVERAGE RESULTS

JRITE(E,2111)

DO 15@2 L=2,01Vi

DO 1522 J=2,01V%

DC 1502 K=2,01IV3
I-ACU%T:IELT:L';.J‘K’K'I))
If (1 .EQ. 2)30TQ 1523
SI1ZEl :DIaM(AMPC(L~1))
SIZE2 z0DIAMCAMPC(L))

= v

Es(SIZEI+SIZE2) /72

R3IzVVCOm CVVCC J=1 )+ VVC(J) ) 72 + VVEHFT

RSzHVCOME (HVCCK=1)+HVEC(K)) /2 + HVSHFT
CTCON=DRCON/C(HVSIZEsHVCOte VWSIZE= VVCOM (SIZEI-SI
R7=I=CTCON

?ZT:(S.;.XZJ SIQE \3.R5.?7

FORMATC(7Y,73.2,13X ,r5.2.lSY,?E.Z’..lSY,El.‘B.JZ
FJ?"’?.-‘("H)

aa‘q-v e

W - ’VUL

€
.
o r
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CALCULATE MUMBER DENSITIES

JRITEC6,511)
DO 918 122,01Vi
PMLV=3.
PMLE =2,
PMAVz22,
PMAVR =22,
DO 522 Jz2,01'R
ICUM=2
ZVUVzUVCO I VVUCCJ)+ VWC(J=1))/2 + VVSHFT
DO 532 K=2,DIV3
ZHVSHVCO MR (CHVCCK)+HVC(K=1))/2)+HVSHFT
PMLV=PML'WCOUNTCIELTC(L=l ,J=1,K=1))*ZHV/ZVY
PMLVR =PMLWR+COUNTCIELT(L=1,Jd=l ,K=1))%ZHZHKV/ZVV
ICUMzICUMFCOUNTCIELT (L=l ,Jd=1,K=1))
DCOUNT=DCOUNT + ¢ ICUM/ZVV)
PMAR =PMAR+ICUM
®xZVV

PMAV2PMAMICUNM
CONTINUE
SIZE=(DIAMCAMPCC(L=1))+DIAMCAMPC(L))) 2
SIZERA:=zDIAMCAMPC(L=-1))=DIAMCAMPC(L))
ZNUMD=DCOUNT

«DRC12Q/SIZERA
IF (ZNUMD .EQ, 2.)GOTO 512
ZMLV=DRC!122*=PMLV/(SIZERA=ZNUMD)
ZML\2 =DRC122xPMLV2 /(SIZERA

*ZNUMD)
ZMAV=PMAUR DRCIDJ/(SIZERA
=ZNUMD)

ZMA\2 zDRC122=PMAV2 /(S IZERA=ZNUMD)
SDOMAV=SQRRT(ZMAZ =ZMAURZMAV)
SOML V=S QAT (ZMLR =Z ML A ZMLV)
JRITE(6,513) SIZE,ZNUMD,ZMAV,SDMAV,ZMLV,SDMLV
FORMATCISY ,FS.2,32Y,E12.3,8%,F5,2,13X%,F3 b LOX,FS .2, 18%,7%,2)
CONTINUE

JRITE(6,933)

ENDFILE 6
FORMATCIHL, 27777777753 %, "DROPLET SIZE DISTRIBUTICN'/////

J18Y,"MEAN®, 12X, "NUMBER', 11X, "MEAN', 9%, STD DEV',idX,
*MEAN',9X,'STD DEV'/13¥, 'DIAMETER", 7X, 'DENSITY', 2X,

*AXIAL VEL',6X,'AXIAL VEL',6X, 'LATERAL VEL',3X, LATERAL VEL
/13X, ' CMICRONS) ',4X, ' (#/CC/MICRON)",5X, " (M/SEC) ", 2X,
‘CM/SEC) " ,9X, "CM/SECY ", TXy "KM/SEC) " 7//)
ORMAT(22X,F8 .2, ="y F5.2,12X%,E12.3,40X%,753.2)

WD

1 B Py

VEA
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THIS ROUTINE DISCRIMINATES ON THE BASIS OF PATH LENGTH
SUBROUTINE PLDISCCHV, VV, TIME,AMP, PLMIN,PLMAY)

INTEGER HV(2233),VV(2320), TIME(22322),ANP(2222)

REAL RT!,RVI,PL,PLMIN

INTEGER DIVI,DIWV,DIV3

COMMON / /NDAT2,DIVI,DIV2,DIV3, NGDATA,VUSHFT, HUSHFT, VUCON, TIM
RT1,RVI,ARE DUMMY VARIABLES TO EASE COMPUTATION-MULTIPLICATIO
OF LARGE HNUMBERS

THROW OUT BAD DATA BY FORCING A ZERO PATH LENGTH

DO 22 I=1,NDATA

IF CHV(D) .LT. @) VW(I)z=|
IF (UW(CI) LT. @) VW(])z-]
IF CTIMECIY LT, @) VV(])z-
I7 CAMPCI) LT, 3) VVW(]):z-
CONTINUE
58
NLARz=2
DO 1@ I=l,NDATA
IF £1 47T, 1903)8STQP §
IF (VWD) LT. O»GOTO 12
IF CAMPCI) .LT. 1475 GOTO 7
TIMECI)=16384-TIMEC D)
RVI=VVCI)* WWCO M VUSHF]
RTI=TIMECI) /TIMANMP
RTI=RT!1/¢(SQRTCALOGC] .235/C1475 ,JAMPC )+ ,235)))=%],.148)
PL=RVI=RT!
IF (PL ,LE. PLMAX) GOTO €
NLAR=NLAR+!

VV(I)=z=|
GOTO 12

IFCPL.GT.PLMINIGO TO $
V(1) z-]
GO TO 12
NENL S
CONTINUE

GIVE# COF DATA REJECTED FOR PL TOO LARGE

JRITEC4,11) NLAR
SCRMAT(IH ,IS,' DATA HAD PL TOQOO LARGE®)

REMEMBER NUM OF GOOD DATA ({EET
NGDATA: J = |

:\‘D

163

PATM REQUIREMENT

6A
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THIS ROUTINE DETERMINES THE MAXIMUM VALUES OF KV, W,AND AMP
SUBROUTINE ZMAXCHV, VV,AMP, HUMAX, VUMAX ,AMPMA X, IAMA?)

INTEGER HV(23),VV(20) AMP(202)

INTEGER HVMAX,VVMAX,AMPMAX

INTEGER DIV1,DIWR,DIV3

COmMMON / /NDATA,DIVI,DIWV,DIV3, NGDATA

L ]

L

DO 12 I:=1,NDATA
IF ¢VWKID) ,LT. 8)GOTO 10
IFCHW D) .GT. HVMAX) HVMAX=HVC D)
IFCVVWCI) .GT.VUMAYX) VUMAX=VV(])
IF CamMPCI) .LE. AMPMAX) 30TO 12
AMPMAX=zAMPCI)
IAMAX=]

id CONTINUE
END

OOSPIP VEA

>
- THIS ROUTINE DETERMINES THE MINIMUM VALUES OF HV, W,aAMP
SUBROUTINE ZMINCHV, VV,AMP, HVMIN, VUMIN,AMPMIN)
INTEGER HV(23), VV(22) ,AMP(232)
INTEGER HVMIN, VUMIN,AMPMIN
INTEGER HVMINI, VVMINI,AMMINI
INTEGER DIVI,DIVR,DIV3
COMMON / /NDATA,DIVI,DIVR,DIVI, NGDATA
DATA HVMINI ,VVMINI,AMMINI /1322923,122002,1230223/
DO 12 I=1,NDATA
IF ¢vW(I) LT, 2)GOTO 12
IFCHVCD) LT . HUMINI) HUMINIzHVC D)
IFCVVCI) JLT.VVUMINI) WWMINIZVUCD)
IFCAMPCL) JLT.AMMINI)AMMINIzAMPC D)
d CONTINUE

MAINTAIN LOCAL COPIES OF THE MINIMA

 TET RV R o

HVMINZHVMINI
VUMINZVUMINI
AMPMINZAMMINI
END

J0SPIR VEA
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SUBROUTINE NRCNTC(HV, VV,AMP, HVSIZE, VVSIZE, NBAD, HVC, VVC ,AMPC,

| HVH!N,VVHIN.AMPHIh AHPMAX)

xr‘rssza AVC(22), VVC(22) ,AMPC(2@), HVC12), VV(13),AMP(12),
CUNT(B222)

INTE"ER HVMIN, VUMIN,AMPMIN,HVSIZ2E, VWSIZE , AMSIZE, AMPMAY

INTEGER DIVI,DIVR, D‘VS

comMMON /::ncr/csunr

COMMON / /NDATA,DIVI,DIVR,DIV3, NGDATA, VVUSKHFT, HVSHFT

HVC ,ETC .,ARE THE LIMITS OF EACH INTERVAL OR CLASS

HW(1)=2HVMIN

YWCCl)sVVMIN

AMPCC(l)=aMPMAX

D0 4 ns2.01V1

THE JPPER LIMITE FOR EACH INTERVAL ARE GENERATED B8Y ADDINS

SUITABLE MUMBER OF 'SIZES®

AVCL W) 2HWCC L)+ (=1 )mKVUSIZE

VICE N sVl )+ (N=]1 ) VVSIZE

AMPCC N) =2 ,.35%aMPC( N=])

CONTINUE

THE FOLLOJING DO LOCPS ASSIGN EACH SET OF VALUES 1IN
APPROPRIATE SIZE RANGE AND INCAREMENT COUNT BY 1.

N 923
ONLY THE GO0 DATA (PATH TEST CRITERICN) ARE CONSIDERED,
IF A DATA FALLS BELOW THE SMALLEST amrl

LITUD
THEN NBAD IS INCREMENTED AND ITS CONTRIBUTI
I1F CIFIR JNE, 2)GOTO 3%9

JNCRED

DI :DIR+2
oIV3:D1'83+2
:A.AR.a

THE A30VE NCW POINT TO0 THE LAST CLASS ELEMENTS



147

DO 99 I=1,NDATA

CHECK FOR REJECTED DATA

IF CVVC(D) LLT,., 2)GOTO 99

DO 51 N=2,DIVI

IFCAMP(I) ,GE.AMPCC(N))GO TO 23

IF (AMPCI) ,L,GT., AMPMAX) GOTO 99

l CONTINUE

FALLING THRU HERE MEANS DATA IS BAD

LR Tl Y
-
e

Ll an

NS8AD = N3AD + |
GOTO 9%

oL

d L=N=1
DO 52 N=2,DIWVR
IFCVWICD) JLE.VVCC W )IGO TO 21
52 CONTINUE
21 dzN=1
20 S3 W=2,DIV3
IFCHVCI) .LE.HVCCN)) GO TO 22

53 CONTINUE
22 KzN=1
COUNTCIELT(L,J,K) )2 COUNTCIELTC(L,J,K)) + |
39 CONTINUE
END
DOSPIP VéA

>

FUNCTION DIAMCIAMP)

COMMON /GN/GAIN
ClAM=2.,i187%]AMP "7 * (N 26,2
IF (DIAm ,GE 13,.83)RETURN
Dziﬂzaall.‘AHP/GAIN *® 'l.ll



APPENDIX - 5

Results of the measurements in turbulent free stream
air flow and adjacent to a solid surface.
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DATRA ANALYSIS

Free stream air flow

DIGAME (ER IN MICRONS
VELIWLTY IN MEIERS PER SECOND

DEOPLET RATL IH MNBER/SEC "SO CM/(M/SEC) #(M/SEC) ZMICRON
HNICER BENSTTY IH NULIBER ZCC/MICRON

6r1
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DROPLET SIZE DISTRIBUTION
MEASURING LOCATION: 0.25mm FROM WALL

IEAN HUABER fEAN STD bEV IEAN S5TDP DEV
DI TER DENSITY AXIAL VEL AXIAL VEL LATERAL VEL LATERAL VEL
(MICRONS) (e CC/MICRON) (MV/SED) (M/SEC) (M/SEC) (MSEC)

9% 52 »_IS3E 4.5 8.80 a.14 8.6

T3.1? A 195F- '} 4.65 8.00 a.14 0.0v

62.2 € .S62E-% 5.18 a.890 4.46 8.8y

4 .04 A, 199€ +938 4.78 8.6to 8.22 8.2z

59.5% A _28B6F +0Q 4.81 0.51 8.2> 8.24

€5 % 8.3965 '8 5.87 8.54 8.3?7 d. 30

S1.12 ” 3799 5.99 8.73 8.15 4.28

A47.30 S Ea ey 4.9 8.57 8.25 4.20

13 63 J.Y9J1E+O 4.98 8.51 8.26 d.2u

49.15 €. 968 109 5.18 8.55 8.22 B.24d

15 .87% 6. 129+ | 4.93 8.58 8.19 d. 34

33 68 B.136E4¢ 11 5.81 8.53 6.2 4.25

nN.69 6. 186F +611 3.92 B.49 0.27 d. ot

.05 P 20T ) 3.7 8.54 0.21 U, «

2518 H.258cE+81 5.82 8.58 8.24 b..7

22 .58 f. AS0L 9} 4.96 J.54 8.2 0.3

0no1s 9. 355E ¢! - T .36 8.:6 8.73%

1 .8% B.314 ++) - M 7 8.54 a.21 3.9

15.63 0. 331+ 5.8 0.51 a.27 8.27

12.5 1 .39k 11 5.26 6.57 8.27 L.:9

11.5¢ B.268 4 | 5.26 0. % 8.25 8.:.5

11.06 (LR TP B S | 5.38 8. a.25 g.:?

SN0 &.*05F+ 1} 5.28 B8.53 8.25 vk

.99 B.513 w1} .12 B, 49 u.2¢ g, 2

7.9 0.0 vy S.22 6.79 0. 34 0.1

5.1 01850 vl 5.36 B.70 v, le Ui

MEAN AXIAL AIR ELOCITY = 4,96

STANDARD DEVIATION OF AXIAL AIR WELOCITY = 1.3l
MEAN LATERAL AIR VELOCITY = -8.11
STANDARD DEVIATION OF LATERAL AIR VELOCITY 9,92

891



PROPLEY SIZE DISTRIBUTION
Measuring location: 0.50mm from wall

TEAN HUMBER rEAN STP DEV MEAN STP DEV
DIAME TER DENSITY AXIAL VEL Aaxial VeL LATERAL VEL LATERAL VEL
MICRONS) (e TUC MICRON) (IVSEC) UVSEC) (M/SEC) (MSEC)

73.83% B.207E-81 5.84 8.15 8.23 8.12

73.7 8.364E-01 $.25 8.3} 8.20 8.1l

6878 0.679€-01 4.94 8.2%6 8.16 8.2¢

€1.84 A_117F+A0 4.63 8.52 8.11 8.17

$9.5 8.'33c+04 4.98 n.75 8.84 8.21

55. 24 2.224E+00 4.87 8.60 8.04 8.16

€117 9. 256E +79 4.82 8.59 0.02 8.17

37.30 3. 38SE +00 4.94 0.52 0.18 8.19

15 63 A _AS7E +08 4.95 2.59 8.15 8.27

~1s 8. 66 1E+08 4.93 .62 8.22 0.23

4 82 @.704E +08 473 8.41 8.11 8.31

33 o8 0.99 1E+08 4.93 8.57 0.1l 0.21

0. 6¢ 8.916E+90 4.88 8.52 8.21 8.2v

27 .85 8.118E+81 4.98 8.54 8.13 0.24

55 1§ A 10 48 4.76 8.46 a.23 0.2%

23 .80 B AE9E W 4.89 8.55 0.18 8.24

N 14 0. 129 4] 4.88 8.53 8.10 8.21

1" A3 .1 T6F i 5. 11 8.59 0.17 0.27

15,63 LTASE 4A 5.03 8.59 0.16 8.32

12 51 0. 154000 5.88 8.45 0.17 0.27¢

11.57 8. 193E+01 4.94 8.61 8.24 8.31

10 e t)._lH'oFN)l S.01 8.5 .12 8.2i

4.0 ').:'_'I!Eﬂal 4.75 8.56 DT 8.e7
7. a9 9. 207E 401 4.91 8.77 f.24 8.3?7
7.83 0.2k v 4.50 0.42 8.19 8.1?7
6.2 0. 47 1E+A) 4.9 0.33 a.21 8..8
MEAN AXIAL AIR ELOCITY = A.79
STANDARD DEVIATION OF AXIAL AIR VELOCITY = 1.34
MEAN LATERAL AIR VELOCITY =  -8.11

STANDARD DEVIATION OF LATERAL AIR VELOCITY = 8.91

691
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DROPLEY SIZE DISTRIBUTION
MEASURING LOCATION: 2,00mm FROM WALIL

FEQH NUIBER FEAN STD bEV MEAN ! STD BEV
DIMETER DENSITY Aaxial veL axiaL Ve LATERAL VEL LATERAL VEL
(MCRONS) (& TC - MICRON) (M/SEC) (MVSED) (M/SEC) {(M/SEC)

36.52 B.665E 81 4.60 B.16 8.89 8.26

79.6% 8.104=429 4.56 2.38 8.37 8.35

73.77 B. 189 +nn 4.64 0.59 8.41 8.27

58.713 8. 182E+00 3. 17 8.35 8.39 8.58

€£4.04 B_2S1E+00 4.97 €.41 8.37 a.37

- F% ] 8. 256€ +90 4.66 8.18 8.25 8.38

55.24 8.201E+00 4.59 8,27 a.41 8.25

.5 8.211E+90 4.68 B8.16 8.36 8.58

7.2 0. BLBE +60 4.75 8.4} .44 8.38

43.63 8.845+00 4.67 2.36 8.36 8.47

W}, 15 8. 1116401 4.76 8.38 8.31 8.33

36.£3 2.965€ 108 4,71 8.43 8.43 8.38

33.:3 0.112€401 4.85 8. .47 .26 a.38

30.1.7 8. 133e+01 4.60 8.35 }.34 8. 38

L 6. A . 136E+01 4.75 8.a3 8.39 8.41

3. 15 8. 170E481 4.86 8.56 8.42 8.33

22.58 0.211E 2] 4.89 8.52 0.38 8.49

-9, 14 B.210E+81) 4.87 2.49 8.32 8.33

17.83 A_I7SE0| 4.87 B8.45 9.33 8.46

15.63 9. IS53F+0) 4.89 0.5?7 8.41 0,31

i11.54 8. 186E+2 1 5.08 8.59 8. 46 8.3%7

15.5¢ @ .222F w0} 4.84 8.38 8.32 8.4a8

i € a_332E+01 4.62 8.36 8. .42 8.3

3.00 A A2HE 401 4.80 a.as 0.44 0.49
s 0. IS53F+81 4.79 n.4) 2. 46 8.40
¢ a_A441E401 4.68 8. 48 8.46 a.48
6.12 B.€46E+81 a4.47 8.22 a.49 8.39

MEAN AXIAL AIR ELOCITY = 4.38
STANDARD DEVIATION OF AXIAL AIR VELOCITY = 8.27
MEAN LATERAL AIR WLOCITY = 8.28

STANDARD DEVIATION OF LATERAL AIR VELOCITY

"

8.33
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DROPLEY SIZE PISTRIBUTION
MEASURING LOCATION: 3.00mm FROM WALL

rEAN HUIMBER MEwl STD DEV FEAN STD DEV
DIAETER DENSITY AXIAL VEL AXIAL VEL LATERAL VEL  LATERAL VEL
(MIERMNS) (o CC/HMICRON) (M/SEC)H (MVSED) (MSEC) (MV/SEC)
84 .57 A. 160E-31 S5.22 8.09 8.25 a.00
79.03 8.387C-01 4.5 a.6¢ 8.12 8. 1t
¢3.77 @.165E-01 5.62 8.80 8.25 2.8
8., G 8. 181E+98 4.83 8.53 8.22 .18
64 04 2.824E-01 4.57 08.45 8.39 8.39
53.5 8.285E +00 5.15 8.733 8.16 8.11
55.24 0.314C+08 5.41 8.32 8.28 8.2e
Si. v 2. 349E+80 4.79 8.52 8.89 8.19
47 .30 8 .539€+08 3.13 8.50 8.31 8.34
43.63 8.7 12E+88 5.82 8.4’ 3.21 8.24
4015 B8.6A7E 100 5.01 8.42 8.20 3.26
36.63 8.925E+00 S5.a7 8.32 8.16 8.24
33.60 8.123E+81 S. 17 8.46 8.26 8.34
38.€9 3. 160E+81 5.87 2.48 8.24 3.38
305 A. 109E+al 5.36 8.57 8.24 8.24
23: 15 8. 146E+81 4.94 8.51 0.24 8.31
22.38 a.216E+81 9.27 8.39 8.17 8.23
v 0. 176E+01 .22 6.52 a.28 8.33
I A 1S6E +A L 5. 23 8.43 8.17 8.2¢6
15.¢ A_162E+A1 5.34 8.c8 .19 8.22
15..1 f.134E401 ».24 a.47 6.20 a.z2u
11.5° 8. _161E+01 - e.45 8.24 8.38
in.ne 9. 258E+81 5.38 0.46 8.22 8.20
3.66 A, 104E+0! 3.71 8.73 8.20 8.16
7.99 A.871E+00 5.51 a.60 8.10 8.18
.63 0. 263E+08 3.7 1.20 08.23 8.29
t. b2 8.522E+08 5.11 6.33 6.1?7 8.23
MEAN AXIAL AIR VELOCITY = 4.75
STANDARD DEVIATION OF AXIAL AIR VELOCITY = 2.6l
MEAN LATERAL AIR WLOCITY = -9.28

STANDARD DEVIATIGN OF LATERAL AIR VELOCITY = 8.98

Lt



DROPLET SIZE DISTRIBUTION
MEASURING LOCATION: 4.00mn FROM WALL

reay NUrBER reEan STD DEV
DIGIE TER DENS 1 TY AXIAL VEL axXIfL VEL nga" - Lﬂ?iml_
MICrRGHS) (& CC/NICPON) (FVSEC) (M/SEC) (M/SEC) (MWSEC)
;;-9; A. 182 -A) 4.97 0.08 -8.43 8.09
23.93 0.429¢-81 4.65 8.08 8.81 8.98
;;-]3 f.7915-81 5.30 f.00 8.19 8.12
%4 8. 122460 .81 f.58 8.42 8.4
¢.30 A.265F 198 5.2 8.42 8.42 8.45
13.65 B.297F +08 4.97 B.19 f.44q 8.49
30.13 A.506E +08 4.68 a.28 8.58 8.42
o Ay 8.61°C +08 5.08 0,49 8.26 8.41
S 8.759¢ +08 4.90 0.55 8.29 8.32
el 8. 6ETE 490 4.96 0.58 8.39 8.38
£F &3 A 11IE+0Y 5.2 8.47 f.45 8.51
€3. 15 8. 1196 +81 5.34 0.56 A.22 3.30
£e.58 8. 157F vd§ 5.32 8.42 8.35 8.36
.14 8. 117E401) S.2€ 8.46 8.26 0.33
17.83 8.917€ +08 4.93 8.47 8.34 8.34
15.613 A. 117691 5.49 8.52 0.29 6.33
83,54 0. 792E 400 5.45 8.48 0.21 8.38
1.5 @. 139 4031 5.€0 0.5? a.20 8.29
19. o . 1315401 5.52 .75 0.36 0.30
Ao 0. 1I8E +00 5.65 8.65 8.24 8.32
) 0.5426478 5.2 8.67 0.37 8.54
6. K 0. 344F 400 S.74 6.4 8.28 8.12
MEAN AXIAL AIR VELOCITY = 5.00

STANDARD DEVIATION OF AXIAL AIRGVE:OCITY = 8.69
MEAN LATERAL AIR VELOCITY = .
STANDARD DEVIATION OF LATERAL AIR VELOCITY = .73

£L1
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APPENDIX - 7

Results of the measurements in a rectangular
channel without liquid film on wall.
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DROPLET SIZE DISTRIBUTION
MEASURING LOCATION: 0.50mm FROM WALL

g 1T HirBeRr renn STD DEV FERN STD DEv

D
DIGFE ER DENSITY AXIAL VEL AXIAL WL LATERAL VEL  LATERAL VEL
(MICRONS) (& CC/MICRON) (MSEC) (IVSEC) (MSEC) (MVSEC)
96.76 8.842€- 82 8.89 8.65 -8.22 6.18
98.62 8. 365E-a2 6.56 2.00 -8.81 8.89
84.73 8. 686E-82 7.5 2.00 “8. 52 8.1}
79.24 8. 368E -p2 7.38 8.080 -8.23 2.08
73.96 8.3436-02 8.15 8.00 -8.81 8.80
55.40 8.173€-01 7.98 8.64 -0.18 8.89
51.32 8. 142E-91 7.68 8.37 -8.88 8.18
.45 d. 147E-01 T3 1.8 -8.81 8.17
43.72 8.313E-01 7.67 8.76 -8.84 B.15
40.28 B.415€-9 B.11 8.56 -8.83 8.28
36.96 8.3276-81 8.89 8.65 0.82 8.15
33.350 8.579E-9) 7.23 2.18 -8.88 8.17
38.73 B8.757E-01 8.43 6.48 -8.83 8.13
27.95 8. 108E +08 8.21 8.56 -8.85 8.11
25.24 8. 17 1E+00 8.52 8.64 -8.87 8.12
22.66 8. 141E+080 8.49 B.54 -8.05 8.12
28.22 8.221E+88 8.42 8.78 -8.086 8.88
17.83 b.281E480 8.83 8.43 -8.87 8.1
5.68 8. 247E+20 8.62 B.€S -0.05 8.14
13.59 8. 356E +80 7.13 2.48 8.03 8.25
1l.60 8. 29 1E +68 7 .66 1.92 0.60 8.21
16.09 0.5S87E +08 7.65 .93 8.01 8.21
5.083 8.337E+08 7.38 2.31 -8.03 8.12
6.02 0. 1226401 7.29 2.22 0.63 8.18
7.86 8. 190E 101 7.13 2.29 .11 8.30
614 A.318E+61 7.87 1.79 6.85 8.22
MEAN AXIAL AIR VELOCITY = 8.82
STANDARD DEVIATION OF AXIAL AIR ELOCITY = 2.59
MEAN LATERAL AIR VELOCITY - -8.85
STANDARD DEVIATION OF LATERAL AIR VELOCITY = B.19

Lt
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DROPLET SIZE DISTRIBUTION
MEASURING LOCATION: 1.00mm FROM WALL

{ NINBER rEQN STD DEV rEAN STD DEV
Dlgl‘i“fER DENSITY AXIAL Vel AXIAL VEL LATERAL VEL LATERAL VEL
(MICRONS) (®. CC.MICRON) (M/SEC) (VSED) (M/SEC) (M/SEC)

96. 76 8. 149€-01 .48 8.83 ~-£.84 8.12
98.¢€2 B8.2¢BE-A2 8.78 a.08 -8.28 2.008
79.24 B ESAE-N2 7.90 8.0 8.82 8.08
73.9¢6 8. 135E-081 9.08 0.34 -8.86 8.13
€8.96 8. 116E-0} ‘86 8.57 -8.84 8.26
€4.21 8.177e-01 8.53 8.33 ‘0.18 .15
$9.69 8.242€-81 7.87 f8.46 -8.82 8.11
55. 40 0.278E-01 8.39 6.83 8.11 8.21
51.32 8.382¢ -9} 8.29 8.67 ~“9. 15 8.15
47.45 8.735€-01 8.08 .87 -8.83 8.1}
13.7 8. 101F +80 8.53 8.78 -8.84 8.16
43 .28 8.8456-8) 8.25 8.77 -8.18 8.15
25.96 0. 134E+09 6.a3 1.12 -8.85 8.13
32.€0 8. 1946400 B8.64 0.58 -0.83 2.14
38.79 B8.263E+00 8.55 8.73 -8.04 8.16
27.95 B.317E+09 8.71 8.62 -8.83 8.14
25.24 0. Z89E +08 8.78 8.55% -8.87 8.15
22 .66 0. I58E +80 8.61 1.81 -8.82 8.14
26,22 @ _549F +00 8.63 B.61 0.08 B.38
17.69 8.736E +00 8.66 8.59 -0.82 8.12
15.68 0934 +09 8.94 8.55 -8.81 8.14
13.59 U.llif'!ﬂ 8.79 U.B! 8.00 0-"
H.cn 0. BBEE +08 8.99 8.78 .00 8.22
13,08 0. 192E+81 8.74 119 -8.01 8.14
9.03 0. laTE 81 8.71 .41 -0.82 8.16
02 0. 186F +0} 8.75 1.18 0.81 8.13

O 0.226E 401} 8.436 1.492 2.8} 8.13
6.13 8.S0CE+0 | 8.45 1.58 8.01 B.18

MEAN AXIAL AIR VELOCITY - 9.0

>TANDARD DEVIATION OF AXIAL AIR VELOCITY = 8.59

MEAN LATERAL AIR VELCITY = a.0i

STANDARD DEVIATION OF LATERAL AIR WLOCITY = a.16
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PRUPLLT SIZE DISTRIBUTION
MEASYRING LOCATION: 4,00mm FROM WALL

Nl BER tERN STD DEV MEAN STD DEV
PENSITY AXIAL VEL AXIAL VEL LATERAL VEL  LATERAL VEL
(o /CC MICPON) (SEC) (MV/SEC) (MVSED) (M/SEC)

a.187€-01 8.52 8.4 -8.081 8.25
#.388E-082 7.18 .14 8.86 8.83
8. 189€-82 7.67 2.08 8.78 8.88
8.511E-82 8.94 8.37 -9.01 2.14
8.371E-82 8.68 1.15 -0.09 8.89
8.228E-82 7.67 8.0 8.16 0.00
8. 196E-01 B.52 0.49 8.22 8.25
8.255€-01 8.83 8.74 8.17 9.29
f.I17E-I 8.9%8 0.58 8.19 8.41
8. 310E-81 8.72 8.37 8.23 8.28
8.745€-01 8.79 8.71 8.18 8.36
8.865E-01 5.@5 8.98 8.87 8.33
8.111E+08 9.21 3.59 8.03 8.26
8. 172£+00 9.33 8.83 8.87 8.31
8.173E+80 9.27 8.67 ¥.18 8.28
0. 246E +08 9.30 8.65 8.11 8.32
8. 305€ +00 9.44 0.58 0.96 8.27
a.351€+08 9.45 8.6l 0.08 8.32
B.391E+00 9.32 8.52 8.13 8.27
8. 479E +00 9.46 8.68 0.89 8.38
8.554E 490 9.48 0.44 a.18 8.28
8. 422E+08 9.78 8.57 8.17 8.0
0. 47E 460 9.85 0.64 8.17 8.29
8. 126E +08 19.2¢ 8.72 0.06 8.23
8. 123E+00 10.44 6.92 Bt 0.42
8.892E-01 18.7 8.63 8.16 8.27
0.4106-081 19.03 1.84 a.2 8.7
8. 199€-01 8.1 f.28 0.26 8.83
8.635€-01 16.23 0.98 -8.03 8.13

MEAN AXIAL AIR VELOCITY = 9.87

STANDARD DEVIATION OF AXIAL AIR VELOCITY = 8.52

MEAN LATERAL AIR VELOGITY = e.21

STANDARD DEVIATION OF LATERAL AIR VELOCITY = .31

81l



PROPLET SIZE BISTRIBUTION
MEASURING LOCATION; 5,00mm FROM WALL

: HULBE R ME AN STD DEV TERH STD DEV
bl::tm;ER DENSITY aXIaL VEL AXIAL VEL LATERAL VEL I.RTERRLCVEL
(MICRONS) (% CC/MICRONY (MSEC) (N/SEC) (riSEC) (M/SEC)

.48 0. 280 -82 18.33 8.80 -8.13 a8.e9

6. 6 8. 320€-82 11.66 0.08 -8.38 8.06
38.79 0. 1156-81 18.77 8.00 6.83 8.11
27.95 0. 134€-81 .73 a.21 -8.85 8.11
25.24 8. 425E-81 18.88 8.42 -8.08 a.21
22.€6 8. 174400 11,16 8.35 0.8 8.38
20.22 B.267F +n@ .28 8.52 0.62 8.1y
17,69 0. 49 1E +00 11.18 8.48 -0.83 a.21
i5.64 A, B26E +00 11.28 8.59 8.98 8.2¢
13.53 A.113E+01 11.24 8.53 8.06 8.2¢
1160 0. 17SE+B1 11.29 8.53 0.10 0.32
10.69 6.367E+D] 11.29 0.56 a.11 a.38

9.03 a.372€+01 i1.31 8.56 8.12 8.3}

8.82 0.43CE+81 11.27 8.59 8.18 8.35

CLE 8. 4S1E+8) 11,12 8.67 0.24 8.36

€.:4 f.816E 401 i1.26 0.63 8.20 8.36

MEAN AXIAL AIR VFLOCITY = 11.36
STANDARD DEVIATION OF AXIAL AIR VELOCITY = 8,64

MEAN LATERAL AIR VELOCITY = 8.36
STANDARD DEVIATION OF LATERAL AIR VELOCITY - 2,39

£8T
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