OCCUPATIONAL RADIATION EXPOSURE

Tenth Annual Report

1977

Barbara Brooks

Manuscript Completed: October 1978
 Date Published: October 1978

Page
ABSTRACT iii
INTRODUCTION 1
I. ANNUAL REPORTS
Exposure Distributions 3
Man-rems per Licensee Type 7
Commercial Nuclear Power Facilities 7
Industrial Radiography Operations. 18
Fuel Processors and Fabricators 18
Manufacturers and Distributors 22
II. TLRMINATION REPORTS
Terminations, 1969-1977. 24
Transient Workers, 1969-1977 24
Career Doses 26
III. PERSONNEL OVEREXPOSURES
Types of Overexposures 30
Summary of Overexposures, 1971-1977 31
TABLES

1. Distribution of Annual Whole Body Exposures by Licensee Category, 1977 4
2. Summary of Annual Whole Body Exposures for Covered Licensees, 1968-1977 6
3. Man-rems Accumulated by Category of Covered Licensees, 1973-1977 8
4. Summary of Annual Exposures Reported by Nuclear Power Facilities, 1973-1977 10
5. Pressurized Water Reactors Listed in Ascending Order of Man-rems per Reactor, 1973-1977 14
6. Boiling Water Reactors Listed in Ascending Order of Man-rems per Reactor, 1973-1977 15
7. Percentages of Personnel Dose by Work Function 17

TABLE OF CONTENTS (continued)

Page
8. Radiography Firms Listed in Ascending Order of Average Dose Per Worker 19
9. Fuel Fabricators and Processors Listed in Ascending Order of Average Dose Per Worker 21
10. Manufacturers and Distributors Listed in Ascending Order of Average Dose Per Worker 23
11. Transient Workers, 1969-1977 25
12. Summary of Overexposures to External Sources of Radiation 32
FIGURES

1. All Reactors, Values of Man-rems, Megawatt- years, Workers 11
2. PWRs and BWRs, Values of Man-rems, Megawatt- years, Workers 12
3. Average Career Doses 29
APPENDICES
Appendix A - Annual Whole Body Exposures at Licensed Nuclear Power Facilities, 1973-1977 35
Appendix B - Overexposure Summaries 40
Appendix C - Career Doses for Radiation Workers
Terminating During the Years 1969-1977 44

This is a report by the U. S. Nuclear Regulatory Commission on the operation of the Commission's centralized repository of information on the exposure of personnel to radiation. The report is published annually and is available at all NRC public document rooms or may we purchased from the Natione? Technical Infomation Service in Springfield, Virginia.

The bulk of the information summarized in the report was obtained from annual and temination reports (Sections I and II) submitted by four categories of NRC licensees: (1) operating nuclear power reactors; (2) industrial radiograptiers; (3) fuel fabricators and processors; and (4) commercial processors and distributors of specified quantities of byproduct materials, in accordance with the requirements set forth in Part 20.407 and Part 20.408 of Title 10, Chapter 1, Code of Federal Regulations. Annual reports were received from 457 covered licensees which indicated that 98,212 individuals, with an average annual exposure of 0.40 rems, were monitored during 1977. The number of termination reports submitted by these 1 icensees continues to increase. Personal identification and exposure information has been taken from about 245,000 reports and incorporated into the repository during the ten years that it has been operating.

Information on incidents involving personnel overexposures to radiation or radioactive materials (Section III) was obtained from reports submitted by all NRC licensees pursuant to Parts 20.403 and 20.405 of Title 10 , Chapter 1, Code of Federal Regulations. The total number of overexposures reported in 1977 decreased from the number reported in 1976, but is about the same as that reported in previous years. The number of incidents reported by radiography firms, however, is considerably less than last year's values. The more significant overexposures which occurred in 1977 are summarized in Appendix B.

TENTH ANNUAL

OCCUPATIONAL RADIATION EXPOSURE REPORT

INTRODUCTION

On November 4, 1968, the U.S. Atomic Energy Commission (AEC) approved a program for the reporting of certain occupational radiation exposure information to a central repository. This information was to be required of four categories ${ }^{1}$ of AEC 1icensees, as defined in 10 CFR 20.407, and of AEC facilities and contractors exempt from licensing. As of December 31, 1973, radiation exposure information on approximately 150,000 occupationally exposed persons had been incorporated into the repository. Annual reports for each of the years 1969 through 1973 summarized this information and were published as six separate documents (WASH-1350-R1 through WASH-1350R6).

In January 1975, with the division of the AEC into the Energy Research and Development Administration (ERDA) and the U.S. Nuclear Regulatory Commission (NRC), each agency assumed responsibility for collecting and maintaining occupational exposure information reported by facilities urder its own jurisdiction. Beginning with the annual report for

[^0]calendar year 1974, ${ }^{2}$ the $N R C$'s publication no longer contains information pertaining to ERDA facilities or contractors. Comparable information for ERDA, now Department of Energy (DOE), facilities and contractors is collected by DOE's Division of Operational and Environmental Compliance at Germantown, Maryland.

[^1]I. ANNUAL REPORTS - 10 CFR 20.407

Exposure Distributions

On February 4, 1974, 10 CFR 20.407 was amended to require the four categories of covered licensees to submit an annual statistical report indicating the distribution of the whole body exposures ${ }^{1}$ incurred by their employees. In prior years the annual report was formatted differentiy and was not very useful as a basis for estimating man-rems. Table 1 is a compilation of the statistical reports submitted for calendar year 1977. It shows the number of individuals that incurred a cumulative annual whole body dose that fell within one of the 18 dose ranges, and the percentages of the total number monitored in each range. It also shows the cumulative dose (man-rems) estimated to have been received by these individuals. This number was obtained by assuming that each individual received an annual dose equal to the mid-point of the dose range in which he appears, and by then summing these doses. The table shows that 39% of the 98,212 individuals monitored during 1977 received exposures that were too small to be detected by personnel radiation monitoring devices, that 99.7% of the exposures were less than 5 rems, and that 94.8% of the total number of man-rems were accumulated by individuals with annual doses of less than 5 rems.

[^2]TABLE 1
DISTRIBUTION OF ANNUAL WHOLE BODY EXPOSURES BY LICENSEE CATEGORY

1977

It should be pointed out that very few of the annual exposures that exceed five rems are classified as personnel overexposures. Although 1.25 rems is the quarterly limit set forth in paragraph (a) of 10 CFR 20.101, paragraph (b) pemmits 1icensees, under certain conditions, to allow a worker to receive a whole body dose of three rems per calendar quarter (up to 12 rems annually). The conditions are that (1) the licensee must have detemined and recorded the worker's prior accumulated occupational dose to the whole body, and that (2) the worker's whole body dose when added to his accumulated occupational dose does not exceed $5(\mathrm{~N}-18)$ rems where "N" equals the individual's age in years. Although there is no annual 1 imit, annual exposures that exceed 12 rems indicate that an overexposure has occurred. Any quarterly whole body exposure in excess of the applicable quarterly limits are considered overexposures and must be reported. A discussion of various types of overexposures that have occurred is given in section 111 .

A summary of the annual whole body exposures reported to the Commission by the four categories of NRC 1 icensees required to submit reports during the past ten years is presented in Table 2. One can see that ahout 95% of the exposures have consistently remained less that two rems, and that the number of individuals receiving an annual exposure in excess of five rems is about one half of one percent of the total number of individuals monitored each year.

TABLE 2
SUMMARY OF ANNUAL WHOLE BODY EXPOSURES FOR COVERED LICENSEES

1968-1977

Year 1968	Monitored	
1969	36,836	
1970	31,176	
1971	36,164	
1972	36,311	
1973	44,690	
1974	67,862	
1975	85,097	
1976	78,713	
1977	92,773	
		98,212

Percent of Exposures < Rems
97.2%
96.5%
96.1
95.3%
95.7%
95.0%
96.4%
94.8%
95.0%
94.5%

Percent of Exposures ≥ 5 Rems	Number of Annual Exposures ≥ 12 Rems
0.5%	3
0.5%	7
0.6%	0
0.7%	1
0.5%	8
0.5%	1
0.3%	1
0.5%	1
0.4%	3
0.3%	1

Man-Rems Per Licensee Type

As was previously explained, the statistical data contained in the annual reports required by 10 CFR 20.407 permit an estimate to be made of the man-rems accumulated by the individuals monitored by each 1 icensee. The information submitted by each one was collated to yield the information shown in Table 3. There are two values indicating the average annual exposure per individual. The lower values were obtained by dividing the total number of man-rems by the total number of individuals monitored, and the higher values were obtained by dividing the same total number of man-rems by the number of those individuals reported as having received a measurable exposure (referred to as radiation workers). The latter average is normally used for radiation workers because it deletes the minimal exposures of many individuals who are monitored for convenience or for identification purposes. In 1977 the average exposure for workers continued to decline in every category except power reactors, where it remained about the same. The averages consistently remain less than one rem per worker.

Commercial Nuclear Power Facilities

The percentage of the total number of man-rems incurred by workers at power reactors has, during the last five years, increased from 67% to 84%. Therefore, this section of the report has been expanded to illustrate and discuss some of the factors contributing to this increase.

TABLE 3
MAN-REMS ACCUMULATED BY CATEGORY OF COVERED LICENSEES

Covered Categories of NRC Licensees	Calendar Year	Number of Licensees Reporting	Total No. Individuals Monitored	No. Individuals With Measurable Exposure	Total No. Man-rems	Average Dose (Rems) Per Individual (Based on Total Monitored)	Average Dose (Rems) Per Worker (Based on Measurable Exposure)
*Commercial	1977	65	71,904	44,233	32,731	0.46	0.74
Power Reactors	1976	62	66,800	36,715	26,555	0.40	0.72
	1975	54	54.763	28,034	21,270	0.39	0.76
	1974	53	62,044	21,904	14,783	0.23	0.64
	1973	41	44,795	16,558	14.337	0.32	0.87
Industrial	1977	339	10,569	6.197	3,159	0.30	0.51
Radiography	1976	321	11,245	6,222	3,629	0.32	0.58
	1975	291	9,178	4,693	2,796	0.30	0.60
	1974	319	8,792	4,943	2,938	0.33	0.59
	1973	341	8,206	5,328	3,354	0.41	0.63
Fuel Processing	1977	23	11,496	7,004	1,725	0.15	0.25
and Fabrication	1976	24	11,227	5,285	1,830	0.16	0.35
and Fabrication	1975	23	11,405	5,495	3,125	0.27	0.56
	1974	25	10,921	4,617	2,739	0.25	0.59
	1973	27	10,610	5,056	2,400	0.23	0.47
Processing and	1977	30	4,243	2,459	1,329	0.31	0.54
Distribution of	1976	24	3,501	1,976	1,226	0.35	0.62
Byproduct	1975	19	3,367	1,859 1	1,188	0.35	0.63 0.57
Material	1974	24 34	3,340 4.251	1,827 1,925	1,050 1.177	0.28	0.61
	1973	34	4,251	1,925	1,17\%		
Totals and	1977	457	98,212	59,893	38,944	0.40	0.65
Overali	1976	428	92,773	50,198	33,240	0.36	0.66
Averages	1975	387	78,713	40,081	28,379	0.36	0.71
	1974	421	85,097	33,291	20,810 21,268	0.24 0.31	0.63 0.74
	1973	443	67,862	28,867	21,268	0.31	

[^3]Table 4 summarizes the information contained in Appendix A, which was reported by each reactor site during the past five years. The data are presented for the two types of light water reactors--pressurized water reactors (PWR) and boiling water reactors (BWR)--that had been in commercial operation for at least one year as of December 31 of each of the years indicated. ${ }^{2}$ Figures 1 and 2 serve to display some of this information graphically.

Figure 1 indicates that the total number of man-rems per year incurred by workers at nuclear power facilities continues to increase, while the number of reactors is leveling off. The average number of man-rems per reactor and the average number of workers per reactor also continues to increase each year. The average number of man-rems per megawatt-year, however, appears to have leveled off at about one, and the average dose to an individual worker remains a little less than one rem.

Figure 2 displays some of this same type of information for each of the two types of light water reactors. The cost, in terms of total man-rems and man-rems per megawatt-year of generated electricity continues to be greater for the operation of BWR's than for PWR's. The numbers of reactors, however, is still rather small, and the information reported by a few reactors where unusual conditions or problems may have occurred could

[^4]TABLE 4*
SUMMARY OF ANNUAL EXPOSURES REPORTED BY NUCLEAR POWER FACILITIES 1973-1977

Year	Reactor Type	Number of Reactors Operating Full Year	Total Number of Man-Rems	No. of Workers With Measurable Exposure	Total Megawatt Yrs . Generated	Average Annual Dose (Rems/Person)	Average No. of Man-Rems Per Reactor	Average No. of Workers Per Reactor	Man-Rems Per Megawatt Yr .
1973	PWR	12	9,399	9.440	4,065	1.00	783	787	2.3
	BWR	12	4,564	5.340	3,344	0.85	380	445	1.4
	Total	24	13,963	14,780	7.409	0.94	582	616	1.9
1974	PWH	20	6,627	9,697	6,821	0.68	331	485	1.0
	BWH	14	7.095	8,769	4.042	0.81	507	626	1.8
	Total	34	13,722	18,466	10,863	0.74	404	543	1.3
1975	PWR	26	8,268	10,884	11,983	0.76	318	419	0.7
	BWR	18	12,611	14,607	5,786	0.86	701	812	2.2
	Total	44	20,879	25.491	17.769	0.82	475	579	1.2
1976	PWR	30	13,807	17.588	13.251	0.79	460	586	1.0
	BWR	23	12,626	17.859	8,312	0.71	549	776	1.5
	Total	53	26.433	35,447	21,563	0.75	499	669	1.2
1977	PWR	34	13,469	20,878	16,481	0.65	396	614	0.8
	BWR	23	19,042	21,388	9,103	0.89	828	930	2.1
	Total	57	32,511	42,266	25,584	0.77	570	742	1.3

-The figures on this table are based on the number of nuelear power reactors that had been in commercial operation for at least cae year as of December 31 of each of the years indicated.

DOSE (REMS) PER WORKER AND MAN-REMS PER ME GAWATT-YEAR - USE SCALE X 1 MAN-REMS PER RE ACTOR AND WORKERS PER REACTOR - USE SCALE $\times 100$

FIGURE 2

drastically affect the figures. In an effort to identify these plants, Tables 5 and 6 1ist the PWR's and the BWR's in ascending order of manrems per reactor. For example, one can see that in 1973 the doses incurred by 3,000 workers at one of the oldest PWR's, Indian Point 1, contributed more to the total number of man-rems than did all the other PWR's combined. This was due primarily to extensive repairs of the superheating system, and the plugging and testing of steam generator tubes. Thus, a high dose year at one particular plant can impact the averages significantly.

In general, one can see from the listings that the plants having the lowest values of the three parameters each year are usually the newer plants. Some of the older, smaller plants also appear near the top of the listings since they report a small number of man-rems; nowever, the ratio of their man-rems to the number of megawatt-years generated will be nigher because of their 1 imited power generation capacity. When a plant reports a high number of man-rems, and a large man-rems to megawatt-year ratio as well, it usually indicates that the plant was shut down for extensive maintenance or modification work. For PWR's, this work usually includes repair and inspection of leaking steam generator tubes, replacement of reactor coolant pump seals, and work on the control rod drive mechanisms. For BWR's, it can indicate maintenance of the reactor water cleanup system, detection and repair of cracks in the core spray system

TABLE 5
PRESSURIZED WATER REACTORS
LISTED IN ASCENDING ORDER OF MAN-REMS PER REACTOR 1973 THROUGH 1977

	1973				1974				1975				1976				1977		
Sine Name	14.an Rems per Site	Dose per Worker (Rems)	Man Rems per MW Y	Site Name	${ }^{1}$ man. fiems per Site	Brose par Worker (Rems)	Man Rems per MW Yr	Site Name	${ }^{1}$ Man- Rems per Sire	Dose per Worker (Rems)	Man- Hems per MW Yr	Site Name	${ }^{1}$ Man- Rems per Site	Dose per Worker (Rems)	Man: Rems per MW Y.	Site Neme	'Man- Rems per Site	Dose Der Worker (Rems)	Man Rems per MWY
Turkey Paint 3	78	0.17	0.19	Praitie tsand !	18	0.12	010	Arkansas 1	21	014	0.04	Rancto Seco	58	0.19	0.22	Beaver Valley	87	0.26	0.27
Yankee Rowe	99	0.74	0.78	Zion 1	56	9.18	0.13	Kewaunee	28	0.27	0.01	Yankee Rowe	59	0.39	0.42	Palisades	100	030	6.17
Maine Yankee	117	0.14	0.29	Fort Calhoun	71	0.22	0.24	Prairie isiand 182	123	0.26	0.15	Caivert Cliffs 1	74	0.15	0.10	Keweunee	140	0.45	0.35
Surry 1	152	0.16	3.21	San 0notre	71	8.33	0.19	Zion 1\&2	127	0.29	0.11	Maine Yankee	85	0.35	0.12	Prairie istand 182	300	042	0.71
Ginna	224	8.70	0.55	Point Beach 182	295	0.74	0.39	Three Mile isiand 7	73	056	0.11	Cook 1	116	0.29	0.14	St. Lucie	152	034	9.25
Point Beach 182	588	117	0.85	Haddam Neck	201	037	0.39	Yankee Rowe	116	047	0.80	M.ilstone Peint 2	168	0.27	0.32	Troian	174	0.29	9.23
San Onotre	354	0. 62	129	Yankee Rowe	205	0.84	185	Oconae 1,283	437	0.60	0.27	Point Besch 182	370	1.18	0.43	Point Beach 18.2	430	1.03	1.02
Robinsen 2	695	0.83	1.51	Turkey Point 384	454	0.57	0.48	Point Beach 182	459	1.35	0.57	Pratie Island 182.	447	0.55	0.62	Milistone Point 2	243	0.36	0.49
Haddam Neck	697	0.73	2.38	Oconee 182	517	0.61	0.79	San Onotre	292	359	0.75	Kewaunse	270	0.71	0.67	Maine Yankee	245	0.48	0.42
Palisades	1133	1.16	3.95	Maine Yankee	420	0.68	0.97	Fort Calhoun	294	0.63	1.17	Zien 182	571	0.74	0.50	Arkanses 1	256	0.43	0.42
Indian Point I	5262	1.75	\square	Surry 182	884	0.52	1.23	Palisedes	306	0.62	1.01	Three Mile istand I	286	0.35	0.54	Fart Calhoun	297	0.56	089
Averages per Reactor				Indian Point 182	911	0.89	1.64	Maine Yankee	319	0.73	0.59	Arkansas	289	0.61	0.62	Cook 1	360	037	0.55
	783	1.00	2.31	Palisades	627	081	63.67	Indian Point 1-82	705	0.79	060	Fort Calhoun	313	0.61	1.18	Yankee Rowe	356	0.49	3.04
				Robanson 2	672	0.79	1.16	Turkey Point 384	876	0.74	088	Oconee 1,283	1026	0.84	0.65	Indian Point 1:283	1071	0.7	0.87
				5 inna	1225	1.39	4.82	Ginna	538	0.78	1.47	Haddam Neck	449	0.70	0.93	There Mile Isiand !	360	0.32	058
				Averages pet				Haddam Neck	703	0.88	142	Turkey Point 384	1184	0.72	122	Rancho Seco	391	0.75	0.58
				Reactor	331	Q. 68	0.97	Surry 182	1649	085	1.56	Ginna	636	084	256	Ginna	401	0.76	1.16
								Rebinsen 2	1142	1.34	2.27	Palisedes	696	093	2.01	Oconee 1,283	1329	0.83	0.89
								Averages per				Rotinson 2	115	120	122	Rubinsen 2	455	0.72	6.92
								frector	315	0.75	0.69	Son Onofre	880	0.66	296	Zion 182	1004	1.28	0.78
												Indian Point 1- 82	1950	1.23	7.14	Turkey Point 38,4	1036	0.79	1.12
												Surry 182	3165	115	3.41	Caivert Clifts 1	547	0.24	0.98
												Averages per				Haddam Neck	642	072	1.40
												Reactor	460	979	099	Sen Onotre	847	8.86	3.18
																Surry 182	2307	124	2.13
																Averages per Reactor	396	065	0.82
								*indian Point I was delueled in 1975.											

[^5]TABLE 6
BOILING WATER REACTORS LISTED IN ASCENDING ORDER OF MAN-REMS PER REACTOR 1973 THROUGH 1977

A-ported by the Site by the Number of Reactors
and in the reactor vessel feedwater nozzles and spargers and, in older plants, extensive seismic and emergency core cooling system modifications. More details on the activities conducted by each nuclear power facility for each year since 1973 can be found in the reports titled Nuclear Power Plant Operating Experience, (OOE-ES-004, NUREG-0227, NUREG-0366 and NUREG-0483, to be published).

Table 7 presents the distribution of the cumulative doses (man-rems) among the major work functions of the personnel employed at power reactor facilities during the last four years. This table is based on information submitted by nuclear reactors pursuant to Regulatory Guide 1.16. Special and routine maintenance continue to contribute approximately 70% of the total man-rems. A breakdown of the information in Table 7 into the distributions for the PWR's and BWR's, separately, would show that, in 1977, 48% of the total man-rems at $B W R^{\prime} s$ was incurred during special maintenance activities, as compared to 33% at PWR's. This is another indication of the impact that the performance of an unusually large number of non-routine operations at $B W R^{\prime}$'s had on the number of man-rems that they reported. The document NUREG-0482, Occupational Radiation Exposures at Light Water Cooled Power Reactors, which is to be published at a later date, will contain more detailed information on nuclear power reactor facilities.

TABLE 7
PERCENTAGES OF PERSONNEL DOSE BY WORK FUNCTION

WORK FUNCTION	PERCENT OF DOSE			
	1974	1975	1976	1977
REACTOR OPERATIONS AND SURVEILLANCE	14.0\%	10.8\%	10.2\%	10.6\%
ROUTINE MAINTENANCE	45.4\%	5.2.6\%	31.0\%	28.9\%
IN-SERVICE INSPECTION	2.7\%	3.0\%	6.0\%	6.6\%
SPECIAL MAINTENANCE	20.4\%	19.0\%	40.0\%	41.4\%
WASTE PROCESSING	3.5\%	6.9\%	5.0\%	5.9\%
REFUELING	14.0\%	7.7\%	7.9\%	6.6\%

Industrial Radiography Operations

Annual occupational radiation exposure reports for CY 1977 were received from 339 companies using licensed radioactive sources for the purpose of conducting industrial radiography. The number of workers reported as having received some measurable exposure $(6,197)$ is nearly the same as that reported in 1976; however, the total number of man-rems decreased by about 450. This resulted in an average dose per worker of 0.51 rems, the lowest reported in the last five years: The 74 firms having an average dose per worker that exceeded 0.51 rems are 1 isted in Table 8 in ascending order of average dose per worker.

Fuel Processors and Fabricators
Annual occupational radiation exposure reports for CY 1977 were received from 20 facilities that had more than five kilograms of licensed special nuclear material (including plutonium, uranium-233, and uranfum enriched in the isotopes 233 or 235) for use in fuel processing, fabrication, or reprocessing. The total number of man-rems incurred by workers engaged in these activities also decreased from last year's values, with the average dose per worker at 0.25 rems, the lowest value reported in the last five years. Table 9 1ists these facilities in ascending order of average annual dose per worker, and shows the activity codes for each 1icense. These may be interpreted as follows:

TABLE 8
RADIOGRAPHY FIRMS LISTED IN
ASCENDING ORDER OF AVERAGE DOSE PER WORKER

Licensee Name \& Number (s)	No. of Workers With Measurable Exposure	Total Man-rems	Average Dose Per Worker (Rems)	Licensee Name \& Number (s)	No. of Workers With Measurable Exposure	Total Man-rems	Average Dose Per Worker (Rems)
Naval Electronics Systems Command 08-00038-16	10	5.31	0.53	Daniel International Corp. 39-01261-02	34	21.44	0.63
Froehling \& Robertson tnc. $45-08890-01$	11	6.06	0.55	H-imen Testing Laboratories Inc 34-00681-03	9	5.69	0.63
X -Ray Engineering Company 04-00616-04	257	141.47	0.55	Associated Piping \& Engineering Co. $04-02409-02$	8	5.14	0.64
Astrotech inc. $37.09928-01$	7	4.02	0.57	Dept. of Navy, Naval Weapons Ctr $04-01757-01$	9	5.90	6.66
Crane Company $24-00563-02$	16	9.14	057	Midwest Inspection Service, Ltd 48-16296-01	10	6.57	0.66
Et Paso Natural Gas Company 42-03201-02	4	2.29	0.57	Branch Radiographic Labs., Inc. 29-03405-02	16	10.69	0.67
Clark Inspection Service Co 35-11615-01	11	6.42	0.58	Universal Testing Company $43-11213-01$	14	9.49	0.68
General Dynamics Corporation $06-0178108$	306	179.49	0.59	Arnold Greene Testing Labs, Inc. 20-01074-02	26	17.86	0.69
Tulsa Gamma Ray, Inc. 35-17178-01	8	4.72	0.59	Bill Mitler X-Ray, Inc. $35-15112-01$	122	83.79	0.69
Superior industriai X-Ray Co. $12-02370-01$	21	12.68	0.60	Nuclear Energy Service, Inc. $42-16559-01$	172	121.73	0.71
Virginia Dept. of Highways \& Transportation 45-13380-02	3	1.80	060	Richmond Engineering Co., Ine. $45-02884-01$	15	10.59	0.71
$\begin{aligned} & \text { Metas tas Ine } \\ & 43-17142-01 \end{aligned}$	9	5.45	0.61	Pittsburgh Testing Laboratory $37-00276-25$	229	163.94	0.72
B \& M Welding \& Testing Co . Inc. 24.17183-01	1	0.62	0.62	H. P. and Associates, Inc. $35-16517-01$	18	13.13	0.73
Charles F. Guyon, inc. 29-06872-02	1	0.62	0.62	Navat Submarine Support Facility, New London 06-07150-01	15	11.22	0.75
P X. Engineering Company, Inc. 20-15102-01	2	1.24	0.62	Industrial Inspection Industries, Inc. $34-14071-01$	76	56.97	0.75
Stone \& Webster Engineering Carp. $20-05600-02$	644	101.39	0.62	Thayer Inspection Service $35-11239-01$	26	19.86	0.76
Texas Pipe Bending Co of Puerto Rico, Inc. 52-13632-01	3	186	0.62	Quatity Assurance Lab. Inc. $18-10634-01$	4	3.09	0.77
Venegas Industrial Testing Laboratories, Inc. $28-14847-02$	2	1.24	0.62	Heat Treating \& Metallurgical Co . $13-06147-04$	9	7.07	0.79
Columbia Gas Transmission Corp 47-16060-01	2	1.25	063	Sooner X-Ray \& Mag, Inc $35-17259-01$	3	237	0.79

TABLE 8 (Continued)

Licensee Name \& Number (s)	No. of Workers With Measurable Exposure	Total Man-rems	Average Dose Per Worker (Rems)	Licensee Name \& Number (s)	No. of Workers With Measurable Exposure	Total Man-rems	Average Dose Per Worker (Hems)
Consumers Power Company $21-08606-03$	11	8.94	0.81	Cabismet Engineering Servicas $13-16347.01$	7	767	1.10
H.A. Inspection Service $15-0620901$	11	886	081	Advex Corporation 45-16452-01	7	779	1.11
Mannaflex Corparation $12.00622-08$	38	294 SB	0.82	Twin City Testint \& Engmeerng Lab Inc 22.0137602	22	25.37	1.15
Eastern Testing \& inspection, Inc $29.09814 .01$	17	14.3 ?	0.84	Atlantic Research Corporation $45-02808-04$	4	487	122
The H. C. Nutting Company $34.14924-91$	2	167	084	American X - Ray \& Impection, Ine. 21.1545501	6	7.42	1.24
Consolidated X-Ray Service Corp 420845602	288	25258	088	Inspection Servic Corp of Pa $37.11636 .91$	8	9.91	1.24
Industrial Laboratories ine. 41 -04226-02	7	6.27	0.90	Catalytic. Inc $37-12931-02$	6	7.52	1.25
MeCorkie Machone Shop 47-16182.01	4	362	0.91	Trans Eastern Inspection, Ine 37-14855-01	35	49.44	1.41
Yuba industries, Inc $35-13735-01$	7	6.49	0.93	Combustion Engineering. the $35 \quad 02325-02$	14	20.79	1.49
Briges Engineering \& Testin Co. Anc 20.16401-01	5	484	0.97	St. Louis Testina Lab. Ine 24.00188 .02	10	14.92	149
x-Ray, ine 46-03414-03	45	4375	097	Industrial Gamma Inspection 35-16760-01	1	1.50	1.50
Advanced Radtation Service $29.14171 .01$	5	5.10	102	Word Industims Pipe Fabrication 35-15468-01	6	9.22	1.54
Cleveland X-Ray Impection, Inc $35-15205-01$	33	34.59	105	Tetedyne Ohiocart $34.00412 .03$	5	787	1.57
Nonedestructive Inspection Service, the $47.11883 .01$	10	10.46	105	Newport News industrat Corporation 45. 11589.01	5	805	1.61
Giobe x Ray Services, Inc 35. 15194.01	45	47.75	106	Twin Ports Testing. Inc $22 \cdot 15932-01$	9	1639	1.82
M. Manms Enspection Service 48-13158-01	2	2.12	106	Colby \& Thietmeier Testing Co The 24.1373701	4	737	384
Capital X. Hay Service 35.1111401	31	33.68	1.09	JG. Syivester Associates 20-00302-02	21	41.15	196
Metits, Ine $42-16534.01$	11	12.02	1.09	IfI Girmell Industrial Piping. the 32-17346-01	7	15.72	2.25

TABLE 9
FUEL FABRICATORS AND PROCESSORS LISTED IN ASCENDING ORDER OF AVERAGE DOSE PER WORKER

Licensee Name \& Number (s)	Activity Code(s)	No. of Workers With Measurable Exposure	Total Man-rems	Average Dose Per Worker (Rems)
United Nuclear Corporation SNM-777	21220	57	3.10	0.05
United Nuclear Corporation SNM-368	21230	59	3.32	0.06
$\begin{aligned} & \text { Kert Mc Gee Corporation } 1 \\ & \text { SNM- } 928 \\ & \text { SNM- } 1174 \end{aligned}$	$\begin{aligned} & 21220 \\ & 21110 \end{aligned}$	11	0.92	0.08
Nuclear Fuel Services, Inc. SNM-124	21110821300	186	15.12	0.08
Babcock \& Wilcox Inc SNM-42	21230	1,989	176.79	0.09
Combustion Engineering, Inc. SNM-33	21210	34	2.95	0.09
Exxon Nuclear Company, Inc. SNM-1227	21210 \& 21120	1,386	1. 3.62	0.10
Texas Instruments, Inc SNM-23	21230 \& 22120	26	3.57	0.14
U.S Nuclear, tnc. SNM-1315	21230	82	12.32	0.15
Babcock \& Wifcox Co SNM-1168	$21230 \& 11300$	124	19.44	0.16
Nuclear Materials \& Equipment Corporation SNM-145	21220	39	7.55	0.19
Atomics International SNM-21	21230 \& 21300	436	91.03	0.21
General Atomic Company SNM-696	21230	244	50.21	0.21
General Electric Company SNM-1097	21210 \& 22110	690	155.77	0.23
Nuclear Fuet Services, Inc. ${ }^{2}$ CSF-1	43110	56	15.44	0.28
Combustion Engineering Co . SNM-1067	$21230 \& 22110$	128	45.99	0.36
Westinghouse Electric Corporation SNM-1120	21110 \& 21120	52	24.04	0.46
Westinghouse Electric Corporation SNM-1107	21210	542	347.45	0.64
Nuclear Materials \& Equipment Corporation $\begin{aligned} & \text { SNM-414 } \\ & 37-04456-03 \end{aligned}$	$\begin{aligned} & 21120 \\ & 03211 \end{aligned}$	164	111.34	0.68
General Electric Company SNM-960 TR-1 DR-10	$\begin{aligned} & 21120 \\ & 21300 \\ & 42140 \end{aligned}$	699	504.64	0.72

[^6]```
21110 - Plutonium in fuel fabrication and scrap recovery
21120 - Plutonium in fuel fabrication
21210 - Uranium in UF }\mp@subsup{}{}{6}\mathrm{ conversion, fuel fabrication and scrap
 recovery
21220 - Uranium in fuel fabrication and scrap recovery
21230 - Uranium in fuel fabrication
21300 - Uranium-233 uses, other than those given above
2 2 1 1 0 ~ - ~ P l u t o n i u m , ~ u n e n c a p s u l a t e d ~ u s e s
22120 - Plutonium, neutron sources
23200-Special nuclear material, storage only
4 2 1 4 0 ~ - ~ T e s t ~ r e a c t o r s ~
43110 - Fuel reprocessing plants
```


## Manufacturers and Distributors

Annual occupational radiation exposure reports were received from 30
licensees that had quantities of radioactive material in excess of the values given in 10 CFR $20.407(\mathrm{a})(4)$ for purposes of processing or manufacturing them for distribution. The number of licensees and the number of workers receiving measurable exposures increased by about $24 \%$ over the number reported in 1976. The total number of man-rems, however, increased by only $8 \%$, resulting in the average dose per worker falling to 0.54 rems. The eight companies having an average dose per worker that exceeded the 0.54 rems average are 1 isted in Table 10 in ascending order of average dose per worker

TABLE 10

## MANUFACTURERS AND DISTRIBUTORS LISTED IN ASCENDING ORDER OF AVERAGE DOSE PER WORKER

| Licensee Name \& Number(s) | No. of Workers <br> With Measurable <br> Exposure | Total <br> Man-rems | Average Dose <br> Per Worker <br> (Rems) |
| :--- | :---: | :---: | :---: |
| New England Nuclear Corporation <br> 20-00320-09 | 16 | 12.43 | 0.78 |
| Minnesota Mining \& Manufacturing Co. <br> 22-00057-06 | 51 | 49.25 | 0.96 |
| New England Nuclear Corporation <br> 20-11868-01 | 195 | 195.62 | 1.00 |
| Mallinckrodt/Nuclear <br> $24-04206-01$ |  |  |  |
| Mailinckrodt, Inc. <br> 29-13564-01 | 341 | 385.15 | 1.13 |
| New England Nuclear Corporation <br> 20-00320-13 | 77 | 125.03 | 1.62 |
| Automation Industries, Inc. <br> 37-00611-09 | 52 | 274.60 | 1.81 |
| Picker Corporation <br> 34-07225-14 | 6 | 9.92 | 1.99 |

## II. TERMINATION REPORTS - 10 CFR 20.408

## Terminations - 1969-1977

During the years the repository has been in operation, approximately 245,000 reports of terminations have been received for employees of covered licensees. These reports provide information for about 135,000 individuals. The difference in the figures given for the number of reports and for the number of individuals indicates that several thousand of these individuals have terminated more than once over the years. For the last few years, more than $75 \%$ of the termination reports have been for individuals that worked at nuclear power facilities.

## Transient Workers

Since nearly $50 \%$ of the termination reports submitted have indicated jeriods of employment less than 90 days, it is possible that several thousand individuals could have been employed by two or more licensees during the same quarter. The exposures of these "transient workers" (i.e., individuals who began and terminated two or more employments with different employers within the same calendar quarter) are periodically examined to determine whether or not individual cumulative doses have been exceeding regulatory limits. Table 11 shows that the number of transient workers has been increasing during the last few years. This is due primarily to the requirement for shortterm workers in the nuclear power plants. The values of the average

## TARIE 11

TRANSIENT WORKERS

|  | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Workers Terminating Employment with Two or More Employers in One 0uarter | 8 | 29 | 11 | 69 | 157 | 354 | 714 | 1311 | 384 |
| Total Number of Man-rems | 5.4 | 14.6 | 2.8 | 61.3 | 135.5 | 175.9 | 507.1 | 909.9 | 201.0 |
| Average Individual Dose (Rems) | 0.67 | 0.50 | 0.25 | 0.89 | 0.86 | 0.50 | 0.71 | 0.69 | 0.52 |

*Data for 1977 is incomplete. Projections of this limited data to the end of the year indicate that these figures for 1977 will be about the same as for 1976.


#### Abstract

individual transient worker's exposure shown in Table 11 appear to be nearly the same as that given in Table 4. This is not necessarily the case, however, since the average exposure shown in Table 11 is an average quarterly exposure for $95 \%$ of the transient workers, while the values in Table 4 indicate average annual exposures. However, the average exposure of these workers continues to be less than $20 \%$ of the quarterly limit of three rems, and fewer than 10 of these individuals have ever incurred exposures that exceeded three rems in one quarter


## Career Doses

The termination data also parmit estimation of accumulateu whole body dose that workers have received during their total period of employment in the nuclear industry. This was done by summing each individual's periods of employment and each corresponding whole body dose to give the cumulative occupational dose that the individual has received during his career. The data, however, are limited in the folloring way5:
(1) Termination information is submitted to the repository only
for those individuals that are employed by the types of NRC
licensees previously described on page 1. (2) It is not always
known whether the dates given in the termination reports indicate
the individual's complete period of employment or just the period
that he was monitored while he was assigned to work in radiation areas. It is believed, however, that for the majority of the Individuals, the two periods are identical. (3) The exposure infomation is obtained from the readings of personnel monitoring devices used in routine monitoring programs. The results are sufficient to characterize the radiation environment of the worker, but they may not be directly suitable for use in the assessment of risk to individuals.

We have examined the termination information currently available for the four types of covered 1 icensees (power reactors, fuel fabricators and processors, industrial radiographers and manufacturers and distributors) for 98,846 individuals. The periods of employment and whole body doses were summed as described above, and were broken down into ten ranges of employment periods: 0-90 days; 90 days 1 year; 1-2 years; 3-4 years; 4-5 years; 5-10 years; 10-15 years; 15-20 years; and greater than 20 years. Appendix C lists the number of individuals whose total period of employment fell within these ranges, the total number of man-rems received, and the average career dose per individual. We have subtracted the number of these individuals who received no measurable exposure from the total number of individuals monitored to show the number of workers having measurable doses. Since these workers are more 1ikely to be routinely

```
employed in radiation areas, the average doses shown in Appendix C
were calculated by dividing the total number of man-rems by the
number of workers with measurable doses.
Figure }3\mathrm{ shows the average career doses for workers employed by the
four categories of covered licensees. The average career doses for
workers in the nuclear power industry continue to be higher than for
workers in the other three fields. In every instance, however, the
average dose is less tnan the career dose limit specified for
radiation workers, 5(N-18) rems, where "N" is the individual's age
in years.
```

FIGURE 3
CAREER DOSES


## 111. PERSONNEL OVEREXPOSURES - 10 CFR 20.403 and 10 CFR 20.405

## Types of Overexposures

One requirement of the above-referenced sections of Part 20 , Title 10 , Chapter 1, Code of Federal Regulations, is that all persons 1 icensed by the NRC must submit reports of all incidents involving personnel radiation exposures that exceed certain levels. Based on the magnitude of the expo* sure, the reports may be placed into one of three categories
A. 10 CFR 20.403(a) - Exposure of the whole body of any individual to 25 rems or more; exposure to the skin of the whole body of any individual to 150 rems or more; or exposure of the extremities (feet, ankles, hands or forearms) of any individual to 375 rems or more The Commission must be notified immediately of these events.
B. 10 CFR 20.403(b) - Exposure of the whole body of any individual to 5 rems or more; exposure of the skin of the whole body of any individual to 30 rems or more; or exposure of the extremities to 75 rems or more. The Commission must be notified within 24 hours of these events.
C. 10 CFR 20.405 - Exposure of an individual to radiation or concentrations of radioactive material in excess of any applicable quarterly limit in Part 20 or in the licensee's license. This includes reports of whole body exposures that exceed 1.25 rems, or that exceed 3
rems, as previously discussed on page 5. It also includes reports of skin exposures that exceed 7.5 rems, extremities exposures that exceed 18.75 rems. Reports of exposures of individuals to concentrations in excess of the levels given in 10 CFR 20, Appendix B , usually fall into this category. These reports must be submitted to the Commission within 30 days of the occurrence.

A short description of the four incidents occurring in 1977 that resuited in exposures of the magnitude described for category $A$ or $B$ is included in Appendix B of this repurt.

## Summary of Overexposures

Table 12 summarizes all of the personnel overexposures to external sources of radiation as reported by Commission licensees pursuant to 10 CFR 20.403 and 20.405 during each of the years 1971 through 1977. It shows the number of individuals that incurred various types of overexposures while employed by one of several types of 1 icensees. Most of the overexposures included in the "All Others" category come from test reactors, universities and facilities with large irradiator sources. The total of these figures for each of the last seven years indicates that the total number of individuals reported as having incurred overexposures to some part of the body has ranged between 46 and 66 , with the exception of 1974 when 40 workers at one power reactor slightly exceeded the quarterly limit. The

TABLE 12 (Continued)
SUMMARY OF OVEREXPOSURES TO EXTERNAL SOURCES OF RADIATION

sum of the whole body doses incurred by these individuals has ranged from 133.5 man-rems to 1018.5 man-rems during these years. In 1977 the number of individuals overexposed during industrial radiography operations, as well as the number of man-rems, decreased sharply from previous years. The incidents involving the largest doses, however, are consistently reported by industrial radiographers and large irradiator facilities.

The number of reported personnel exposures to airborne concentrations of radioactive materials in excess of limits was considerably less in 1977 than in previous years. This was partly due to a change in the reporting requirements. There were only four cases in which the estimated intake of radioactive material exceeded the quarterly intake limit, equivalent to exposure for 520 hours at the maximum permissible concentrations (MPC-hours). None of these cases exceeded the annual intake limit, equivalent to 2000 MPC -hours.



## APPENDIX B

OVEREXPOSURE SUMMARIES
1977

## Industrial Radiography - License Number 20-00302-02

On June 16, 1977, a radiographer and his assistant were conducting radiography operations utilizing 36 curies of cobalt-60 and 95 curies of iridium-192. After completion of the cobalt exposures, the source was properly retracted into the prujector, but the source plug was not replaced and the guide tube was left attached. The iridium projector was then set up and, after the exposure time elapsed, the assistant radiographer mistakenly cranked out the cobalt source instead of cranking in the iridium source. Upon entering the vault, he claimed his survey meter did not indicate any radiation levels. Believing the area to be safe, he proceeded to remove the exposed film. The radiographer then entered the vault to set up the next shot, and he claimed his survey meter was reading zero. It was only after completion of this set up and leaving the vault to crank out the iridium source, that the mistake was discovered. The radiographers immediately cranked in both sources and called their supervisor who sent their badges for emergency processing. From film badges worn by the two individuals and re-enactments of the incident, it is estimated that the radiographer received a dose of 4 rems to the trunk of the body, up to 11 rems to the gonads, up to 18 rems to
the eyes, and from 100 to 400 rems to two small areas on the left side of the head where he bumped it on the iridium guide tube. It is estimated that the assistant radiographer received a whole body exposure of 4 rems. Corrective actions included a refresher course for all radiographic personnel in the operation of survey meters and proper methods of conducting radiographic surveys. See also NUREG-0090-08, "Report to Congress on Abnormal Occurrences, April - June 1977."

Industrial Radiography - License Number 06-01781-08
On September 7, 1977, while conducting industrial radiography on a submarine under construction in the Shipyard, a reel operator (a qualified radiographer) was exposed to radiation from 80 curies of iridium- 192 for approximately $2-1 / 2$ minutes. After completion of the radiograph, the reel operator cranked in the source and proceeded to set up for the next exposure while the head radiographer was gone. Evidently the operator failed to fully retract and lock the source. He also failed to follow proper procedures by not waiting for the responsible radiographer to return, and by neglecting to determine the radiation levels in his work area. The dose estimate for the reel operator was determined to be 5.2 rems to the whole body and 18 rems to the right foot. All radiographers have been re-instructed in the importance of compliance with written procedures, especially in the use of survey meters. The present training programs are being reviewed to determine if more stringent standards are necessary to prevent a recurrence of this type of
incident. The reel operator was disciplined for failure to comply with operating instructions.

Industrial Radiography - License Number 37-02607-02
On November 12, 1977, a radiographer was conducting radiography operations using a 75 curie iridium- 192 source. After making several exposures, the radiographer attempted to return the source to its shielded position when he noticed that his survey meter was still reading 125 millirems per hour. This reading was the same as when the meter was sitting on top of the storage container. Realizing the source was still in the collimator, he proceeded to adjust the collimator with his hand in order to retract the source back into the container. He then called his supervisor to report the incident. After several re-enactments of the incident, using dosimeters in critical areas, it was determined that the radiographer recefved a whole body dose of approximately 1 rem and from 300 to 600 rems to the first two fingers of the left hand. The radiographer's hand was calculated to have been in close proximity to the source for approximately 3 to 5 seconds. As a result of this incident, the licensee has initiated a new formal management audit system to augment their present program of internal audits. The 1 icensee also plans to retrain each radiographer and to confirm his level of comprehension with written tests and observation of on-the-job activities. See also NUREG-0090-10, "Report to Congress on Abnormal Occurrences, October - December 1977."

Irradiator Facility - License Number 29-13613-02
On September 23, 1977, a worker entered an irradiator facility while an array of sealed sources containing 500,000 curies of cobalt- 60 was exposed. The normally electrically interlocked access door was disconnected, and the worker had not been told that the source array was in the exposed position. The individual stood about 10 feet from the source for a period of 10 seconds, which resulted in a dose to the whole body of approximately 220 rems. He was hospitalized for medical observation and treatment. The incident was directly caused by the decision of management to allow the source to be raised with the interlock and safety devices inoperative. Operation of the in-air irradiator when interlocks are inoperative is not only a violation of internal operating procedures, but also a violation of 1 icense requirements. Contributing factors included failure to conduct surveys and failure to follow procedures to control access to high radiation areas. See also NUREG-0090-10, "Report to Congress on Abnormal Occurrences, October December 1977."

APPENDIX $G$
CAREER DOSES FOR RADIATION WORKERS TERMINATING DURING THE YEARS 1969.1977

## NUCLEAR POWER REACTORS

| Total Length of Employment | Number of Monitored Individuals | Number of Individuals with Measurable Doses | Total Number of Man-rems | Average Dose (rems) for the Period of Employment |
| :---: | :---: | :---: | :---: | :---: |
| 0-90 Days | 43,668 | 26,04 | 16,653 | 0.64 |
| 90 Days - 1 yr . | 18,663 | 13,363 | 14,209 | 1.06 |
| 1.2 yrs . | 4,217 | 3,270 | 5,388 | 1.65 |
| 2.3 yrs . | 1,510 | 1,197 | 2,862 | 2.39 |
| 3.4 yrs | 692 | 600 | 1,678 | 2.80 |
| 45 yrs . | 269 | 221 | 900 | 4.07 |
| $5 \cdot 10 \mathrm{yrs}$. | 431 | 386 | 1,898 | 4.92 |
| 10.15 yrs . | 131 | 113 | 669 | 5.92 |
| $15-20 \mathrm{yrs}$. | 36 | 33 | 265 | 8.03 |
| $>20 \mathrm{yrs}$. | 54 | 45 | 237 | 6.41 |

INDUSTRIAL. RADIOGRAPHERS

| $0-90$ Days | 2,408 |
| :--- | ---: |
| 90 Days 1 yr. | 3,597 |
| 1.2 yrs. | 2,546 |
| 2.3 yrs. | 1,660 |
| $3-4 \mathrm{yrs}$. | 1,158 |
| 4.5 yrs. | 910 |
| $5-10 \mathrm{yrs}$. | 2,968 |
| $10-15 \mathrm{yrs}$. | 2,105 |
| $15-20 \mathrm{yrs}$. | 787 |
| $>20 \mathrm{yrs}$. | 3,281 |


| 1,680 | 743 |
| ---: | ---: |
| 2,760 | 2,310 |
| 1,935 | 2,802 |
| 1,309 | 2,424 |
| 927 | 2,039 |
| 760 | 2,133 |
| 2,587 | 9,285 |
| 1,891 | 8,831 |
| 720 | 3,442 |
| 2,662 | 7,992 |

0.44

2,310
0.84
1.45
1.85
2.20
2.81
$9,285 \quad 3.59$
8,831
4.67
4.78
3.00

FUEL FABRICATORS AND PROCESSORS

| 0.90 Days | 2,111 | 1,30 |
| :--- | ---: | ---: |
| 90 Days.1 yr. | 1,614 | 1, |
| 1.2 yrs. | 1,020 |  |
| 2.3 yrs. | 566 |  |
| 3.4 yrs. | 408 |  |
| 45 yrs. | 235 |  |
| 5.10 yrs. | 310 |  |
| 10.15 yrs. | 135 |  |
| 15.20 yrs. | 72 |  |
| $>20 \mathrm{yrs}$. |  |  |
| MANUFACTURERS AND DISTRIBUTORS |  |  |


| 1,307 | 554 | 0.42 |
| ---: | ---: | ---: |
| 1,313 | 690 | 0.53 |
| 944 | 974 | 1.03 |
| 536 | 787 | 1.47 |
| 390 | 535 | 1.37 |
| 225 | 341 | 1.52 |
| 677 | 1,891 | 2.79 |
| 296 | 1,231 | 4.16 |
| 126 | 496 | 3.94 |
| 69 | 411 | 5.96 |

MANUFACTURERS AND DISTRIBUTORS

| O.90 Days | 103 | 77 | 21 | 0.27 |
| :---: | :---: | :---: | :---: | :---: |
| 90 Days - 1 yr . | 161 | 132 | 86 | 0.65 |
| 1.2 yrs . | 113 | 97 | 107 | 1.10 |
| 2.3 yrs . | 70 | 59 | 74 | 1.25 |
| 3.4 yrs . | 28 | 17 | 37 | 2.18 |
| 45 yrs . | 13 | 12 | 42 | 3.50 |
| 5-10 yrs. | 55 | 55 | 230 | 4. 18 |
| $10-15 \mathrm{yrs}$. | 19 | 19 | 73 | 3.84 |
| 15.20 yrs . | 8 | 8 | 38 | 4.75 |
| $>20 \mathrm{yrs}$. | 0 | 0 | 0 | 0 |




[^0]:    Operating nuclear power reactors; industrial radiographers; fuel processors, fabricators and reprocessors; commercial processors and distributors of specified quantities of byproduct material.

[^1]:    ${ }^{2}$ The annual occupational radiation exposure reports for NRC licensees for 1974, 1975 and 1976 are available from NTIS as NUREG 75/108, NUREG-0119, and NUREG-0322. The annual radiation exposure reports for $D O E / E R D A$ contractors for 1974, 1975, and 1976 are available from NTIS as ERDA-76/119, ERDA-77-29, and DOE/EV-0011/9.

[^2]:    All of the figures compiled in this report relating to exposures and/or doses are based on the results and interpretations of the readings of various types of personnel monitoring devices employed by each licensee. This information obtained from routine personnel monitoring programs is sufficient to characterize the radiation environment in which individuals work and is used in evaluating the radiation protection program. However it may not be directly suitable for use in the assessment of risk to the individuals involved.

[^3]:    *Includes alf reactors that reported, although all of them may not have been in commercial operation for a full year

[^4]:    ${ }^{2}$ Some of the figures shown for 1974 are different from those shown in the previous annual reports. The new values reflect corrections made in the dates that some of the reactors began commercial operation.

[^5]:    ${ }^{1}$ Far Thuse Sites With More Than One Operating Reactor, the N umbers of Man-rems per Reactor is Obtained by Dividing the Number of Man-rems
    Reparted by the Site by the Number of Reactors.

[^6]:    1 Fuel Fabrication Operations Have Ceased. Present Licensed Activity is for Storage Only.
    2 Fuel Reprocessing Operations Have Ceased. Present Licensed Activity is for Possession of Irradiated Material.

