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ABSTRACT

|

An analytical investigation is made of the dynamic response of

two special classes of nonlinear hysteretic oscillators that model

some of the basic phenomena involved in the response of complex

nuclear power plant systems which are subj ected to dynamic environ-

ments.

Numerical studies as well as approximate analytical solutions for

the response of the nonlinear oscillators under (a) harmonic and (b)

random excitation are presented. The effects of various - st em para-

meters are evaluated and the range of validity of the approximate

solutions is determined,

l
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SUMARY

One of the more serious design problems associated with the

coolant loop of a nuclear power plant is the postulated rupture of the
'

piping and the subsequent blowdown of the stean supply system. The

occurrence of this type of accident has received increasing attention

in the development of protective systems, such as those for emergency

core cooling and redundant instrumentation, that effeft a safe shutdown ,

I
of the nuclear reactor. Concern for the functional integrity of these

safety systems during the faulted condition has led to the installation

of a variety of rupture supports that are intended to restrict gross

movements of the piping system and to preclude a chain of failures.

i Since these restraints must not interfere with normal operation of the

steam supply system, they are constructed with initial gaps that allow

the piping to expand and contract in the operating condition. However,

when a pipe breaks, it rapidly moves across the gap and is restrained

by the support. Under the high blowdowm loads that develop, inelastic,

'
behavior of the pipe material is also inevitable. Additionally, pumps'

i and valves that are part of the primary coolant loop will experience ;

;

nonlinearities because of gaps, friction, and nonproportional damping.

In order to analy:e these complicated systems, it is necessary to
,

use relatively simple models that are readily amenable to mathematical

! analysis or numerical solution techniques. A single-degree-of-freedom

! model that exhibits characteristics of hysteretic force vs. displacement
1
t

would allow assessment of the displacement response of a nonlinear pipingI

system. Such a model would be valuable in determining

v
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,

(a) Whether rupture supports are required.'

;

(b) System displacement response without rupture supports.

(c) Optimum gap distance for rupture support (i.e., yield value
,

j for a " hardening type" of hysteretic system) .

In the first problem class studied, two solutions are presented.

One uses iterative techniques, and the other an exact evaluation of the |

system equations of motion, to determine the displacement response of a
,

harmonically excited single-degiee-of-freedom (SDOF) hysteretic oscil-
3

1

j lator. Both of these solutions represent a system model that has a j

nonlinear hysteretic spring-restoring force with a " softening"-type
i

skeleton curve that is described by arbitrary node points. The
~

theoretical logic of both of these solutions is also incorporated in two j
i

computer methodologies. These methodologies ideali:e the system model

as a piecewise linear SDOF oscillatory system whose parameters are a

function of absolute displacement. |

1

In the second problem class studied, two analytic solutions are

| presented for the determination of the displacement response of an SDOF-
.

;

a

damped bilinear hysteretic oscillator when subjected to stationary random

excitation. The first of these solutions generates experimental data by
i
'

numerically integrating a piecewise linear system model, and the second

solution is an hypothesized approximate analytical method. Data values

numerically obtained for these two solutions are compared to demonstrate

| that, under certain conditions, the approximate method provides a satis-

factory estimate for displacement response.
1

For both classes of problems, numerically generated data values are
.

1

compared, whenever possible, with those existing in the literature ina

4 i

4 |
_
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i

)

order to verify the analytic logic used for each selection method and |
|

to demonstrate accuracy. The effects of various system parameters are

evaluated and the range of validity of the approximate solution is

determined.
'
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DYNAMIC EXCITATION OF A

SINGLE-DEGREE-OF-FREEDOM HYSTERETIC SYSTEM

CHAPTER I
i

HARMONIC EXCITATION OF A

SINGLE-DEGREE-OF-FREEDOM HYSTERETIC OSCILLATOR

!

1.1 BACKGROUND INFOR.'tATION !,

l

The damping properties of solid materials and their engineering

significance has been studied for almost 200 years. In 17S4, Coulomb

in his Memoir on, Torsion speculated on the microstructural mechanism of

damping and described experiments proving that the damping observed

under torsional oscillations was not caused by air friction but by in-

ternal losses in the material.(I)* Coulomb also observed that the

damping mechanism operative at low stresses may be different from those

at high stresscs. Numerous physical systems, such as piping systems

under sudden rupture forces, exhibit damping properties (i.e., energy

absorption and dissipation) that are nonlinear.

All systems that dissipate internal energy when under cyclic load

display one phenomenon in common: the cyclic load-defornation curve is

not a single-valued function, but forms what is called a " hysteresis

loop." Since energy is absorbed by the system under these cyclic load-

ing conditions, tl.e unloading branch of the loop must lie below the

loading branch. The area between these two branches (i .e. , da area

enclosed by the hysteresis loop) is proportional to the energy absorbed.

.

Numbers in parentheses designate references at the end of the chapter

1
L----,

_.
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1

*

Figure 1.1 displays several examples of commonly observed hysteresis

loops. c
1

I

1.2 INTRODUCTION |
t

The system model, which will be used to represent piping under

sudden rupture forces, is an SDOF oscillator, such as that shown in
,

Figure 1.2, with a " skeleton curve" of tne softening type shown in
,

Figure 1.3(B). A " skeleton curve" is defined as the relationship of
'

the static spring-restoring force versus the deflection, and is assumed ;

to be approximated by a piecewise linear nodal construction. Figure
!

1.4(A) shows this curve for a general hysteretic system and Figure !
,

1.4(3) for a bilinear hysteretic system. The model has additional flex- |,
.

#

ibility in that the critical damping ratio (c) can assume a different ;

value for each 1-th segment during the system displacement response.
'

4

j An SDOF oscillator with a linear elastic " skeleton curve" (i.e.,
!

*
P(y) = constant ) has a displacement response that has been discussed

i
.

and analy ed in detail by numerous authors.(2-3) The typical nonlinear ;
l

^

i

1

!elastic system (i.e. , no hysteresis), with an equation of motion of the
!

i form
|

,

4

) y(T) + J(y,y) = F (T) (1.1) !
' :

,

where J(y,y) is a nonlinear elastic restoring force function, has no ,

1

general analytic closed form solutions except for a few special cases ;
i

I

such as Duffing's equation. However. several approximate analytical 1
1

l
.

The figures, which are grouped together at the end of the text, begin
on page 19.

.

See List of Symbols , page xiii.

2
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procedures such as the perturbation methods of Poincare or the asymp-
|

| totic theories of Krylov, Bogoliubov, and Mitropoloky, which approximate

the problem as a linear one that can be solved by standard techniques,

are available for the solution of the nonlinear cin+4e system.

For the nonlinear elastic problem it is necessary to verify the
|

stability of a particular displacement solution, since it has been

fN and others(D that such systems have frequencyshown by La:an

| response functions displaying an unstable region, as shown in Figure 1.5.

This instability is associated with what is commonly referred to as the

! " jump phenomenon," which occurs when the system is unable to maintain

steady state motion and, instead, " jumps" to various response values.
i Fortunately for the study of nonlinear hysteretic systems, Jennings

has shown that the " jump phenomenon" does not occur and the displace-
'

ment response is bounded in all instances except for the case of elasto- '

; plastic hysteresis. Figure 1.6 displays typical examples of hysteretic

frequency response functions.

Although steady-state harmonic excitation does not always resemble

the excitation encountered in nature, it can be used to gain considera-

| ble insight into the dynamic behavior of the system model in response
|

to arbitrary types of excitation. Harmonic analysis is advantageous |

| since it is the most easily analy:cd form of excitation; and for even i

nonlinear systems, periodic solutions can still be assumed. )

| 1.3 DESCRIPTION OF THE PROBLEM

The actual difficulty encountered in the solution of the general

hysteretic problem is an a priori knowledge of the hysteresis loop

3

- - . _ _ _ _ .
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|

:
:

geometry based upon defined " skeleton curve" parameters. Figure 1.7

I; displays the following examples of hysteretic system motion:
i

a. Figure 1.7(A) is the response to an alternating load of

increasing magnitude.

| b. Figure 1.7(B) is the response to a load that is increased
I

| then decreased to less than :ero and then increased beyond
u
1

|
its first maximum,

c. Figure 1.7(C) is the response to periodic (i.e., harmonic)

excitation.

d. Figure 1.7(D) is the response to general (i.e., random) i

excitation.

I
' oeveral authors'9-12) have studied the hysteresis phenomena in detail(

!

and have obtained disappointing results in the theoretical predeter- j

mination of hysteresis loops. However, ?!asing(I ) proposed a hysteresis-
I

loop hypothesis that has proved successful for sof tening types or sys- j
i

CIII
tems. This hypothesis is best described by Jhansale: "The

hysteresis curve is geometrically similar to the stress-strain curve

(originally meant to be 'monotonic') but magnified by a factor of two." {
t

'Using the " skeleton curve" segment AEBCD shown in Figure 1.7(C) as an

l example, the hysteresis loop defined by Masing's Hypothesis is construc-

ted as follows:

a. Motion starts along the skeleton-curve segment BCD until the

system velocity becomes zero (i . e. , point C) . If the dis-

placement point C is in the linear elastic range of the system

ur the skeleton curve is nonlinear elastic, the restoring

force function will next follow the curve segment CBEA in the

4

- -- ___ _ _ _ _ . _ ..__.. __ __ .. _ .,_ _
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:

I

i

direction of point A. However, when point C (i.e., -y ) isg

in the plastic range, the segment BEA is magnified by a factor

'

of two and this magnified curve segment is translated such

that point B corresponds with point C. Motion is now down the

segment CEA, which forms the lower portion of the hysteresis

; loop. Because of synnetry and the softening nature of the

skeleton curve, the constructed segment CEA will eventually

merge into the original skeleton curve. After this merging
,

'|

occurs, further deflections are defined by the original

skeleton curve.

b. When the zero velocity position point E (i.e., -y ) is reached,g

the segment BCD is magnified by a factor of two and translated
1

such that point B now corresponds to point E. Motion is now ,

along the segment ECD, which will now represent the upper

portion of the hysteresis loop.

It is important to note that the basic limitations to Masing's Hypothe-

sis are these:,

The skeleton curve must be softening (i.e. , each successivea.
i
I i-th segment in the plastic range must have a stiffness K.
I 1

|

1ess than the preceding value),

b. The skeleton curve must be symmetric.

Neither of these limitations causes severe restrictions by comparison

with those of previously published mathematical models. Caughey(14-15)

performed the inie.ial analysis of bilinear hysteretic systems with '

Iwan,( 6-17) extending his work to obtain a general solution for an

undamped bilinear hysteretic oscillator and an approximate solution for

|

5

|
t.
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|

U)the same problem with viscous damping in both segments. Masri later

refined Iwan's work and obtained an exact solution for the bilinear ,

hysteretic system with viscous damping allowed to vary for each segment |

/

; region. Jennings'S) presented the solution for hysteretic systems
.

i

having a softening skeleton curve defined by the relationship ,

4

"yy - P(y)
P(y)\#v (1.2) ,+a

P P
Y y)'

!
I

a isis equal to a positive odd integer ;reate* than one andwhere r
-

,

an arbitrary positive constant. The special case solutions are 2
|

equal to :ero, which is the linear elastic system, and r equal to =,

which is the elasto-plastic system.

The proposed system =cdel that will allow the damping to assume !
-

I

any specified value for each segment in a general prescribed skeleton
,

curve is, even with its aforementioned limitations, a substantial

improvement over those presently existing. Jennings fS) made the follow-*

J

ing observation:e

; To obtain agreement with test results, it may be neces-
| sary to extend the theory to include non-integer values
j of r. It may also be necessary to include a viscous
y damping coefficient in the steady state calculations
I in order to account for observed energy dissipation at

relatively low amplitudes.
4

Hanson( ') conducted laboratory experiments that he correlated with the
,

|
Jennings( ) data, and fcund that theoretically the resonant vibration

amplitude would be predicted within 20% and the resonant natural fre-
,

i

quency within To on the basis of the static virgin force-deflection

(" skeleton") curve. Thus, it is reasonable to assume that our improved

6

1
2
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model will yield even greater agreement between theoretical and experi-

mental data.

For the comparison of data, the Masri CIS) model is displayed in

Figure 1.4(B) and the Jennings('S) model is defined in Figure 1.8 and
.

Tables 1.1 through 1.3.

1.4 SCOPE OF RESEARCH

Two separate analytic solutions are derived for the displacement

response of a viscously damped, harmonically excited SDOF system with a

hysteretic spring stiffness of the softening type defined by Masing's

Hypothesis. To determine the accuracy as well as the inherent limita-
.

tions of these analytic solutions, two computer methodologies, obtained

by using algorithms derived for both methods, are evaluated by comparing,

their generated numerical data with data published by Iwan,(16)
,

i

Jennings,f8) Hanson,II ) and Masri.(IO) The analytic solutions and
i

their associated conputer methodologies are appraised to determine

future research applications,-

j This study was conducted under the following assumptions:
i

a. Analytical solutions for the model in the region of its funda-

mental elastic response were primary; thus, questions about
,

| subharmonic or ultraharmonic responses as discussed by
|

Caughey( 0) for the nonlinear elastic system were neglected.

b. Energy transfer devices such as dynamic absorbers were not
d

considered.

c. The effects of energy absorbed by internal structural changes .

that raise the energy level of the entire system were

.

Tables, grouped after figures at the end of the text, begin on page 42.

7
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I

neglected. Only systems that dissipate energy internally via

the hysteresis loop phenomena and viscous damping are

discussed.

r

1.5 SOLUTION OF THE PROBLEM
'

The equation of potion for the SDOF system shown in Figure 1.2

with a nonlinear hysteretic spring-restoring force relation, such as

that shown in Figure 1.4fA), can be written for motion in the i-th

segment as

I

My + C y + P (y) F(t) (1. 3)=
g g ,

where P (y) is the spring-restoring force function for the multinode !
I

system and is defined as

P.(y) (y - y . ) K . (1.4)P,= +
1 2 1 1

Let x be a normali:ed dimensionless parameter defined as follows:
'

I

!

y/y (1.5)x = g

i f/y3 (1.6)=

.. ..

y/y (1. 7 )x =, y 1
1

1

! where y3 is an arbitrary normalization parameter often chosen to be
I

j equal to the yield displacement (i.e., y ). Rewriting Definition 1.4,y

one obtains

P.(x) P. + (x - x.) y K. (1.S)=
1 1 1 N 1.

;

8
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Using Definitions 1.5 through 1.8, Equation 1.3 can be rewritten in
.i

dimensionless form as
|
i

C.h K. - - |

2 . (_ll i 1 1 F(t) - P. (1.9)
M) (x - x. ) M My 1

=+
1 g , ,

!

,

'
~ ~

1-

(1.10)x + 2;1.u.x + ui x F (t) - P. + x. K. v=
1 1 M, y , 1 1 1 ' N,

a .

:

!
'

If the generali:ed i-th node force is defined as

1
+ x. K . *v .) (1.11)

'.

= (-P.| Q.
1 My i 1 1 3g

|

'

then Equation 1.10 can be written in its final form as

2 F(t)'

+ Q. (1.12)x + 2;1.w.x + u. x =
1 1 M,y 1

'
,

The solution of Equation 1.12 consists of the sum of the homogenous
;

h[t]) and particular (that is, x [t]) solutions:(that is, x

>

x (t) * * (t) (1.13)x(t) =
h p

i

The homogenous solution of Equation 1.1.' for the case of subcriti:a1
i
'

damping is well defined:{S
4

~~" !

i

(A. B. cos u .t (1.14)h(t) exp (- c . u . t) sin w .t +=
1 di i dl1 1

,

I h

I l

9
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.

. For the particular solution of Equation 1.12, one uses the following

definition:

P (t) + x ,(t) (1.15)P(t)
= x ix l P- !

where |
!

' F (t)-

(1.16)2c.u.x + u! xx + =
p1 1 1 p1 1 p1 MyN

9.. .

x ., + 2q.u.x + u? x Q. (1.17)=
p. 1 1 p2 1 p2 1

The solution for x (t) is as follows:

|

2c.u.i cos(Ot + t ) (1.1S)x + +u x =
p1 1 1 p1 1 p1 My I

N

.|

where

.

F cos(OT + c ) (1.19)F (T) =

F cos(Ot + $ ) (1.20)F(t) =
1

|

t + t. (1.21) ;$. =
1 o 1

.

Assume the following solution for Equation 1.13:

M. sin Gt + N. cos Gt (1.22)p1(t)x =
1 1

|
1

! 10

|
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Substituting Equation 1.22 into Equation 1.18, one obtains

,

-C' (M . sin Ct + N. cos Ot) + 2c.u.0(M. cos 0t - N. sin Ot)1 1 1 1 1 1

I

F !

2 (M . sin Gt + N. cos Ot)
1o . +Q) (1.23) |cos(Ct=+ o

i 1 1 3ly g-

g
4

f I)Using the double-angle formula

cos Ct cos c. - sin Gt sin $. (1.24)cos(Ot + $.) =
1 1 1

|

and equating the terms of Equation 1.23, the following relationships

are obtained:

F? , g
sin t. (1.25)(u! - G') M. - (2c .u. 0) N. = - MyN 11 1 1 1 1

F, ,

(u? - D') N.(2c.u.0) ?!. cos v. (1.26)+ =
1 1 1 1 1 My 1

N

If Cramer's rule is used to solve Equations 1.25 and 1.26 for M. and
1

N., one obtains
1

i

2 2, ,

u? - C' 2c u.O (1.27)D. +=
1 1 11

p ~
.

? 'o
i yy 9, g - D') sin @ + (2; u O) cos t (1.28)hI -(u=

j
N1 _

F - -

, ,g
N. ( u '' - D') cos $. (2C.u.3) sin S. (1. 29)= *

1 My,D 1 1 1 1 1gj
_ _

|

|

11
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Thus the solution for xp1(t) is given b'v Equation 1.2: with M. and-

i

N. defined respectively b;. Equrtions 1.2S and 1.29.
1

The solution for x ,(t) is obviously obtained by inspection to be
p

1

Q. l

1 '

x ,(t) = --- (1,30) |

P- ur 1

1 !
|

|

Canbining Equations 1.14, 1.22, and 1.30, the total solution of

Equation 1.3 is written as |
|

, ,

1
,

exp (- c . u. t) (A. sin u .:x(t) cos ;di ) + M. s i n '^.tB. . t= +

1 i i di i 1

,

+ N. cos Ct + Q /c7 fl.31)
i i 1

'

where A. and B. are dependent upon the initial conditions at the
1 1

start of motion in the i-th segment. Let the initial conditions be

defined as

= x. (1.32)x.(t o)=
1 10

. .

= x. (1.33)x. (t = o)
1 to

E

!

Using Equation 1.31 and Definitions 1.32 and 1.33, the constants A.
1 i

I

and B. are defined as 11
I

l

(x. - N. - Q./;') (1.34)7B. =
i lo 1 1 1

4

(s. - M. c + c , ;1. B . ) /. , L (1.35)A. =
to 1 1 1 L .1

where t is the time ithin a segment and T is total tine.
,

I

12
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In the same manner, the velocity within the 1-th segment can be

expressed as

gg g di i di ) + exp(-c a t)-G a exp (- ? g g t) (A sin u t* 3 cos u tx(t) w ii=

sin 2 tsin udi ) * i ~^iC 8 '(A u cos e ~ i"dig di di

(1.36)

Masri( ) derived a solution for a system equation similar to

Equation 1.12, which for motion in the i-th segment can be expressed in

the form

?.

Q. + F sin (Gt + $. ) (1.37)x + 2c u.x + u7 x =
i1 1 1 o 1

with the forcing function defined as

F sin (DT + ? ) (1.3S)F(T) =
g 9

The solution of Equation 1.37 can be written in terms of total time

(i.e., T), where T. is equal to the time that motion starts in the
1

i-th segment as follows:

_

- -

I (GT - $ ) a. sin gi (CT - S.)x(T) exp=
1 1

. - -
"ii

O

*

C sin (OT + i )+b cos g (OT - o ) +
g f g

>

+ Q /u (1. 39)
1 y

13
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"

-c.
~ ~

q.
l l

$(T) ex'p
R.- . ( UT - 9 ) - t' 1 n.b.) sin R.- - ( DT - 1)

.a. += u.
i 1 1 1

.

1
.

1
. .

1

n.
-

1

(n.a. - c.b.) cos R. (OT - S.) +GC. cos (DT - T.)+
1 1 3 1 1 1 1

1
,

(1.40)
I

!

The parameters used in Equations 1.39 and 1.40 are defined as:

D/2. (1.41)R. =
1 1

[2c.R.h-1 1 1
S. = tan (1.42).,

1

(1-R/

1-
1 (1.43)n =

G. c. + :. (1.44)=
1 1 1

? - S. (1.45)T. =
1 0 1

F/
1

C. (1.46)=
1

|(1-RT)~4 (2c.R.)'
, , ,

1 1 1

7
b. = x. - C. sin 9. - Q,/w! (1.47)1 10 1 1 14

- -

1 1 -

a. = - -x. - C.R. cos 3. c (b.) (1.48)+
1 n. w. 10 1 1 1 i 1 j

1 1
--

OT. (1.49)$. =
1 1

la

|

|
. .

._. .. _ _ _ _ _ _ _ _ . _________a
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1.6 COMPUTER SOLUTION
i

|

'This section briefly describes the two digital computer logics

(i.e., ID501 and ID1000) created to obtain numerical data for the
,

analytic solutions of the system model proposed in Section 1.5. |
r

1.6.1 Computer Logic ID501

This computer method used Equations 1.31 and 1.36, which are the '

exact solution of the equations of motion within an i-th segment, and

the defined system " skeleton curve" to determine the displacement (x)

and velocity ($) at a fixed delta time (it) step. The program logic is

designed to modify the at step when the system passes from the i to

the i+1 segment so that the crossover time can be determined exactly.

When the modified step is known, the initial numerical conditions can be

derived for the i+ 1 segment. This procedure ccntinues until a sys-

tem velocity ($) of zero is reached, thus defining the maximum displace-

(g = y /y ). Then using Masing's Hypothesis, the lower segment ofment g y

the hysteresis loop is constructed and the procedure is repeated until a
,

negative maximum displacement (~x ) is determined. The upper segment ofy

the hysteresis loop is now constructed, and the entire procedure is

repeated for as many cycles as necessary, until the absolute value of

the maximum displacement (|xg|) reaches a steady-state value.

1.6.2 Computer Logic ID1000

This computer method uses iteration techniques to determine *he

hysteresis loop parameters corresponding to a user-supplied forcing

function F(T) and system " skeleton curve." Basically, two fundamental

15
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i

I

facts are kno'.in about hysteresis loops corresponding to the steady )
|

1

state motion of an 500F system subjec:cd to harmonic excitation: ;
,

!

a. The starting and ending locp disp 12cemen: points that lie on |

the skeleton curve cust correspond to each c her, i
i,

b. The initial phase angle (b) a: the start of each loop must be ;
,

a 2 multiple of the previous starting-loop value.
,

i

An error function can thus be defined using facts (a) and (b) to deter-
f

mine the accuracy of a proposed hysteresis loop. For a specific forcing
.

function, there are two possible hysteresis icop parameters that can be ;

:

iterated: one is the start position (-x,,) on the skeleton curve and the !
0

.

L
1

other is the initial phase angle (v) at the start of motion. This pro- |
s

gram logic uses Masing's Hypothesis in ccnjunction with Equations 1.39 :

and 1.40 to generate hypothetical hysteresis 1 cops for these iteration (
,

parameters. The specific set of values (; and -x '; that yield a minimum |y

error function value correspond to the steady state croblem solution. ,
. ,

?

r
i

1.7 CONCLUSICSS :
, ,

Two analytic solutions and thei* di~ ital computer methodologies |$ .

1

(ID501 and ID1000) Lave been presented for determining the dynamic ;
-

,

response of a viscously damped, harmonically excited SDOF general hys-

teresis system Both computer logics approximate the general hysteresis '

skeleten curve as a multisegmented, piecewise linear curve. Computer ;

i,

'
method ID501 solves the problem in the time domain, ..hereas ID1000 uses j,

:

i
iterative techniques. The only 1:mitat2cn on these analytic solutions

; i

is that the skeleton curves must be of a softening type defined |
! 1

I by Masing's Hypornesis. However, if the hysteresis loop geome:ry is

15
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:!

'

|defined for systems other than softening types, both of these computer

programs could be modified to produce satisfactory results, since once
l

the hysteresis loop is defined, the numerical solution for the response

is trivial. In Figures 1.9 through 1.24, the computer-generated results

are shown to be in good agreement, both qualitatively and quantitatively,

with existing published data. Since both of these computer versions can

match an arbitrary skeleton curve and also allow for the variation of

damping in each i-th segment, they are a substantial improvement over

solution methodologies presently available for this class of problem.

1.S ILLUSTRATIONS

Included in this section are all the figures and tables associated

I

! with Chapter 1. They are numbered and displayed in the sequential order
i

in which they are referenced in the text. The following parameters are!

used only for the included figures and tables (all other parameters are

defined in the List of Symbols preceding Chapter 1.

|A| Displacement amplification factor

K1 Spring stiffness in elastic range of a bilinear hysteresis system

K2 Spring stiffness in plastic range of a bilinear hysteresis

system
,

(
K Normalization factor, which is equal to P /Y , used for the

Y y y

Jennings models presented in Tables 1.1 through 1.3

T2 Hysteresis loop time corresponding to x2, if loop time is

set equal to :ero at point A (see Figure 1.J [B])

r,a Parameters used for Jennings model, defined by Equation 1.2
.

I

17
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x2 Position of y2/y, in the steady state, dynamic bilinear ;

hysteresis loop (S ee Figure 1.4 [B].)

;l Critical damping ratio in the elastic range of a bilinear

hysteresis system

c2 Critical damping ratio in the plastic range of bilinear

hysteresis system

ul Natural frequency in the primary elastic range

The following special notes apply to the included figures and

tables:

a. For all plots presented, y was set equal to y.
3 y

b. For Figures 1.20 through 1.24, a is equal to K /M.y

,

1

1

18
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i

SEGMENT K;/,

(i) h, K LHISTY
1 0. 0 8.4033610-02 0
2 0.0 1.4094510-01 C
3 0.0 2.12 7 6 5 C C-01 0
4 0.0 2.053435C-01 C
5 0.0 3.7122820-01 0
6 0.0 4.244050C-C1 0
7 0.0 4 6 6 2 E 6 70- 01 0
6 0.0 5.5753790-C1 C
9 0. C 6.374299C-C1 0

10 0.0 7.2400213-C1 C
11 0.0 9.5106390-01 1
12 0.0 9.756C9sC-01 1
13 00 8.5106390-01 1
14 0.0 7.2400810-01 0
15 0.0 6.2742490-01 0
16 0.0 5.575379C-01 C
17 0.0 4.8625670-01 0
18 0 .0 4.2440500-01 0
19 0.0 3.712283C-01 0
20 0.0 3.C534353-C1 0
21 0.0 2.127660C-01 0
22 0.0 1.4084510-01 0
23 00 8.4033610-02 0

NODE p
(i) gP y

y yy
1 -7.0000000 00 -4.1300000 01
2 -5.0000000 00 -1.750C000 01
3 -4. C CC C C CD OC -1.040CCC3 01
4 -3.0000000 00 -5.700000C 00
5 -2.5CCCCCD 0C -4.0625C00 CO
6 -2.25C0000 00 -3.38906CD 00
7 -2.0000000 00 -2.8000000 00
8 -1.7500CCD 00 -2 2559C00 CO
9 -1.5000000 CO ~1.8375000 00

10 -1.25000CD CC -1.4452000 CC
11 -1. 0 00 00 0 C 00 -1 1000000 00
12 -5.0000000-01 - 5.12 5 0 0 C C -C 1
13 5.000C000-01 5.125CC10-C1
14 1.0000000 00 1 1000000 00
15 1.250000D CC 1.4453C03 00
16 1.5000000 C0 1 8 37 5C 0 3 OC
17 1. 7 5C O C CD CO 2.2859003 00
18 2.0000000 00 2.800CCCO 00 !

'

19 2.2500000 00 3.3890600 00
20 2.5C00CCD CC 4.0625C00 CC
21 3.0C00000 00 5.700CC00 GO
22 4 CC00CCD OC 1 040000C 01
23 5.000C000 :C 1.750CCCD C1 ,

24 7.000C000 00 4.130000C 01 1

T AB L E 1.1 COMPUTER APPROXlMATION FOR JEi4NINGS MCDEL;
1

r = 3, c = .10

NOTE: LHIST IS A FLAG USED TO DEFINE THE DYNAMIC BEHAVIOR
THE i TH SEGMENT

0 = PLA'sTIC SEGMENT

1 = ELASTIC SEGMENT

42
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SEGMENT K;/,

(i) si K LHISTy

1 0.0 7.7892610-03 0
2 0.0 1.50 2 22 3 C-0 2 0
3 00 3.115847C-02 0
4 0.0 6.019054C-C2 0
5 0.0 9.298001C-02 0
6 0.0 1.3823150-C1 0
7 0.0 2.16491EC-01 C

8 0.0 3.344661C-01 0
9 0.0 4.9 38 7 5 90- C1 C

10 0.0 S.3430670-01 1

11 0. 0 9.9860200-01 1

12 0.0 8.3430670-01 1

13 0.0 4.9 3S 7 59 C-01 0
14 0.0 3.3446610-01 C

15 0 .0 2.1649150-01 0
16 00 1.382315C-01 0
17 0.0 9.298CC10-02 0
18 0.0 6 .018 0 5 4 C-0 2 0
19 0. 0 3.115 8 4 7 C-0 2 0
20 0.0 1.502222C-02 0
21 0.0 7.789861C-03 0

NODE Y/iP;/ YP Y(i) y

1 -2.50CCC00 00 -6.3 53 5C O C 01
2 -2.25000CD CC -2.1442000 01
3 -2.0000000 00 -1.4800000 01
4 -1.750CCCD OC -6.7765C00 CO
5 -1.600C000 OC -4.284CCCD CC
6 -1 50CC000 00 -3.2085C3C 00
7 -1 37500CD 00 -2.3042200 CC
B -1.250000D CO -1.72td3CD CO
9 -1.1250000 00 -1 35310CC 00

10 - 1 0 0 0 0 C CD OC -1 1CCCC00 C0
11 - 5. 0 0 0 0 0 C0-01 -5.007C000-01
12 5.0000000-01 5.0070CCD-01
13 1.00C00C0 3C 1 100000C 00
14 1.12500CD CC 1 2 5310 CC CC
15 1.2500000 00 1.7262300 OC
16 1 37500CD CO 2.3042200 00
17 1.50000CD CO 3.20Et0CD CO
18 1.600C000 00 4.284000C 00
19 1.75CCCCD CC 6.7165CCC CC
20 2.0000000 00 1 4aOCCCD C1
21 2. 25C 00 00 OC 3 .14 4 2 0 0 C 01
22 2.5C00CCD CC 6. 3 5 3 5 C CD C1

TABLE 1.2 COMPUTER APPROXIMATI:lN FOR JENNINGS MODEL:

r = 7, a = .10

NOTE: LHIST IS A FLAG USED TO DEFINE THE DYNAMIC
BEHAVIOR OF THE i TH SEGMENT

0 = PLASTIC SEGMENT
1 = ELASTIC SEGMENT

43
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)

i,

1
I

.

SEGMENT
K;/ ;-

,

(i) Si K LHISTy

1 0.0 6.452729C-03 0
2 0. 0 2.29219CC-C2 0 |

3 0.0 5. 4 7 7 0 51C-0 2 0
'

4 0.0 1.353053C-01 0
5 00 3.2 02 5 C 10- C1 0
6 0.0 S.333232C-01 1
7 0.0 1.000CCOC 00 1
8 0.0 e.323222C-C1 1
9 0.0 3.202501C-01 C

10 0.0 1.353Cd30-C1 0
11 00 5.4770510-02 0 1

12 0. 0 2.292190C-02 0
13 0.0 6 4527290-03 0

,

NODE p., Yi/
'

U
(i) Py Yy
1 -1.750C000 00 -4.8992000 01
2 -1.5000000 00 -1.014370C 01
3 - 1. 3 75 C C CD CC -4.69640C0 CC
4 -1.2500000 CO -2.4141500 00
5 -1.1250CCD CC -1 4903200 00
6 -1.000000D OC -1.100C0CC CO
7 -5.0000000-01 -5.000000C-01
S 5 0000000-01 5.0CCCCCC-C1
9 1.0000000 OC 1 100CC00 00

10 1.12500C0 CC 1.4903200 00
11 1 2500CCD CO 2.4141500 OC
12 1 375CC00 00 4.69c400C 00
13 1. 5 C 0 0 0 C0 OC 1.01457CO 01 ,

14 1.7500000 00 4.88930C0 C1

,

TABLE 1.3 COMPUTER APPROXIMATION FOR JENNINGS MODEL; I
I

r = 11, a = .10,

NOTE: LHIST IS A USED TO DEFINE THE DYNAMIC SEHAVIOR
OF THE i TH SEGMENT

0 = PLASTIC SEGMENT
1 = ELASTIC SEGMENT
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CHAPTER 2
P

RANDOM EXCITATION OF A SINGLE-DEGREE-OF-FREEDOM

BILINEAR HYSTERETIC OSCILLATOR
,

2.1 BACKGROUND INFORMATION

There have been in recent years numerous analytic investigations (1-II)*

of the dynamic response of nonlinear systems (i.e. , such as coolant-loop
,

; piping) that exhibit hysteretic characteristics to stationary random ex-

citation. The bilinear hysteretic oscillator, in particular, has been in-

| vestigated in detail because 01 its mathematical simplicity and because

it approximates the behavior often displayed by many engineering systems.

For an analytic investigation, the displacement response of a bilinear

hysteretic system to nondeterministic (i.e., general nonstationary random) ;

'

excitation is usually desired. However, a substantial knowledge about the ,

! general behavior of the system can be obtained by consideration of the

stationary random excitation problem, even if it is extremely problematic

that the actual excitation of the system model in a given situation approx-

imates a stationary random signal . As mentioned in Chapter 1, the most

popular method of solution for this problem class would be approximate

methods, which have been investigated by several authors. (I - )
,

h

2.2 INTRODUCTION

The system model is an SDOF oscillator as shown in Figure 2.1 with

a " skeleton curve," which is defined as the static spring-restoring

|
'

*

Numbers in parentheses designate references ct the end of the chapter.
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!

force versus deflection relationship, displayed in Figure 2.2. This

model also has the flexibility that the critical damping ratio (;) can

assume a different value for the elastic or plastic segment, then sub-

jected to a random excitation forcing function, this system has a hys- |

teresis loop similar to that shown in Figure 2.3.
i

Iwan and Lutes,(2) Lutes and Shah,(3) and Caughey(1) have studied |
.

t

this system model in detail, using digital and analog computer simula- i

tions in conjunction with approximate analytical methods. These authors

have observed that this system model under the influence of randon |

excitation displays the following basic characteristics:

a. When a /Y is very large, the system displacement response
)

is quite similar to that of a linear system with natural -

1/ ~' (Figure 2.4), ifrequency a u
y

b. When c /Y is very small, the system displacement response
lis quite similar to that of a linear system with natural,

(Figure 2. 4) . ;frequency u
y

I The probability distribution function of the system response jc.

is strongly influenced by the level of the excitation and is, j

,

'

in general, noticeably non-Gaussian. Figure 2.5 shows that

when compared to an equivalent linear Gaussian system, 'arge
!

o /Y values have a greater probability, and small a /Y

values have a smaller probability, of being at large

displacement values. This phenomenon is called " amplitude

!,

J *

See List of Sp.bols. page xv

4S
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|

limiting" and is associated with the abrupt initiation of
!

hysteretic energy dissipation when the displacement response
'

exceed; Y. However, when viscous damping cr a sufficient

magnitude is introduced into the system, this effett becomes

less pronounced. .

d. Yielding may either increase or decrease the system RMS dis-
.

'

placement response. The softening spring effect of the non-

| linearity always tends to increase displacement response,

| whereas the energy dissipation due to yielding tends to
r

; decrease the response. However, for largi c /Y values they

softening effect dominates and the net result is an overall

increase in system displacement,

e. The Krylov and Bogoliubov approximate nethod yields acceptable '

results for estimating the RMS (root-mean squared ) response
'

of a system with a small to moderate nonlinearity (a > 1/2)

and small finite viscous damping.i
i

| f. For small critical damping ratios (;), the system displays an

RMS displacement that has definite minimum values for c /Y
y

'
between 1 and 2.

g The response of a severely nonlinear hysteretic oscillator is

not contained in a narrow frequency band.

h. The primary effect of yielding on * S system response PSD

(Figure 2.4) is to cause a shift in peak frequencies with

changing excitation level. In some cases, this shift is i

accompanied by a significant broadening of the response peak

or even elimination of the peak entirely.

i
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'

i

2.3 DESCD.IPTIO.'; 0F PROBLEMi
i

I The equation of totion for the system model displayed in Figure 2.1, !

L
A which has a skeleton curve and hysteresis 1;op as shown in Figures 2.2 j
1

-

1
i and 2.3 respectively, can be written fe" regions of constant restoring |
4 i

'
i

. force (K.) as 4

3

] 1

.
- ..

My + C.y + D.(y) F (t) (2-1) :=
i i

1 1
;
i

be a normali:ed dimensicaless parameter defined as follows: |j Let x
1
4

4
:
5

y(t)/Y (2 . 2 )x(t) =
' r
'

.

-i

i ;

y(t)/Y (2.3) |
. .

. x(t) =

| |
.I

y(t}/Y (2.4) j
r
~ x(t) =

i
i

As shown in Figure 2.3, the restoring-for:e functicn can be written for
>,

, segment region 1 as !
Il
r

i !
J

>

4

K |Y| + K (|y | - !Y!) - K (!y ! - y) (2 . 5){ P (y) =
y 7 g 7 g

1
i'

,
I

!

Ky-K, |yy! + K,!Y| + K,|y.q! - K,!Y! ( 2. 6) j
]

=
1 4 . . . .

!.
2

i

)
4 . .

and for segr.ent region a as>

,

i

)

KClyl+y)-K !Y! - K;(ly l-lY|) (2 . 7); P (y) =
1 y 1 y3

I

Ky+K !y ! - K lYl - K,lyy! + K,lY| (2.S)j =
1 .1 .y 1 . . .

,

,

!

.
Nottee that in segment regien '

1
i

(, ' n#I .

j sgn (y) -1=

!
.

| 50
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t

i

and that in segment region 3

sgn(y) +1 (2.10)=

Using Equations 2.9 and 2.10, Equations 2.S and 2.6 can be combined into
i

the following single relationship

Ky+K sgn (y) |yl-|Y|P (y) P (;-)= =
y 3 y

-K # S" (Y) lY - |Y| (2.11)2 M

Rewritten, this relationship becomes

1

-sgn(y-
yyf+

_ _
7

P (y) P (y) P ) -1 (1 - a) (2.12)= =
1 3 y

Likewise, the restoring-force function can be written for segment
'

region 4 as

P (y) K Y + K (y - Y) (2.13)
=

4 y 2

K.,y + (K - K.,)Y (2.14)
=

1t o

and for segmcnt region 2 as

,

P f7) ~ K Y + K (y + Y) (2.15)
*

2 1

|

K Y~ IK ~ K )Y (2.16)
=

2 1 2

:

Notice that in s 3 ment region 4

sgn (y) +1 (2.17)
=

51
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and that in segt.ent region 2

'

= -1 ( 2.18)s gn (>')

Using Equations 2.17 and 2.1S, Equations 2.14 and 2.16 can be combined

into the following single relationship:

KY* SSU(Y) K ~ K' Y (2'19)P (Y)P (y) "=
4 2 2 1

Rewritten, this relationship becomes

'

s g n (>') 1-2 (2 . 20)P (y) P.aP (y) +==
4 2 y

Additionally, for segment regions 1 and 3

C (2.21)C =
1 .>

'

(2.22)'

u = u
y 3

1
.i

! and for segment regions 2 and 4
I i

,

C, (2.23)C, =
j. ,

(2.24)u "

2 "4
|

Rewriting Equation 2.1 in dimensionless form using Equations 2.2
2

I

i through 2.4, one obtains

x + 2 c . w . x + w! f+ s gn (x. -Q }j* =
,

) f(t) (2.25)
. .

|x . .
i1 1 1

52



- - .--- - _ . - _ - .- _ _. ..- -. - . - - . -

where

D. | .g!| (1 - a) + E.(1 - a) ( 2. 26)Q. =
i 1 1. .

1 (2.27) !D-D ==-

I a '

0 ( 2. 25) iDD = =
2 4 '

:

E E. -1 (2.29) i= =
1 0

!

!

E ., E 1/a (2.30)= =
,

4-

r

F(t)/(NY) (2.31)f(t) =
,

The excitation F(t) is a normally distributed, random function

with a uniform PSD (power spectral density), which is discussed

in Appendix A. The typical hysteresis loop for the system

model when subjected to F(t) is as displayed in Figure 2.3. It is
:

important in the figure to notice the " trace-back" segment regions, IJ

and CD, which are common for random excitation. The ecuation of motion,,

Equation 2.25, is valid for a random excitation hysteresis loop if CD
i

is considered a segment region 1 with y defined by point C. Likewise,
'

y

'

IJ is considered a segment region 1 with y defined by point I. Fory
L

segment region 3, -y is defined by point G; and in general, -y doesg g ;

not equal + y, . |A
.

!

A special case solution for this problem class is for harmonic ,

| excitation (i.e., the " trace-back" regions are absent):

F

f(t) - sin (ut) (2.32)=
MY

!

:

53
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Masri( ) has shown that if during steady state harmonic motion the time

origin is shifted so that (at) is equal to zero at the maximum displace-
,

ment point +y, the excitation force is modified to the followingg

form:

F

[sintut+a) (2.33)f(t) =
g

l
'and the corresponding solution for Equations 2.25 and 2.33 for motion

in the i-th segment region is

.
- -

I5 [Uii
exp -'r. (ut - c) a. sin 1 (ut -c)x(t) =

I r. i

k1 (1
_ _ _

/hh
+ A. sin (ut - T.) + Q. (2 . 34)+ b. cos| - ' (ut -4) 1 1 1

'(r./
1

1

.
- .

/G h
(ut - 3. )

ICh i
Ii.

' (c.a. + n.b. ) sini
r. /

= u. exp - -- | (et -$)::(c) -

11 1 1 1r./1 k11
;

-
- -

7

(q.a. - G.b. ) cos i i\ (ut
[D

+ uA cos(ut + T.)-?) i+
i i 1\r./1 1 1 1,

1 ;

-

(2 . 35)
l

where the constants are all defined in Reference 5. Masri(5) has also 1

,

,

f shown that for steady-state harmonic motion, t E O and $ 2 : and
y 3

I *

i the single transcendental equation
' I
i

+ S.,/21 (* )S + "S; y 3 4
1

I *
8,8'0, and S are functions of $

1 2 3 4 2'

54
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t

1 can be solved by iteration for the unknown ?,, which leads to thei

i ,

l

complete determination of the unknowns of the system motion.

2.4 SCOPE OF RESEARC11

This chapter derives two separate analytic solutions for the

displacement response of an SDOF damped bilinear hysteretic oscillator

subj ected to a stationary, normally distributed, random forcing function.

The first of these solution methods generates response data by ideali:- |
'

|

ing the system model as being piecewise linear, and uses standard numeri- i

f

cal integration techniques (i.e. , Runge-Kutta method) of the system [

!

equations of motion, while the other solution method is a hypothesized
I 1

approximate analytical technique.
'

,

The bilinear hysteretic spring stiffness studied in this chapter

is of the sof tening type defined by Masing's Hypothesis, which is
,

i

detailed in Chapter 1. The random excitation function is generated
'

,

by computer software and calibrated by the methods presented in Appendix
1

A. To determine the accuracy as well as the inherent limitations of

these analytic solutions, two computer .Lethodologies obtained by
I |

j using algorithms derived for both solution methods are evaluated by

comparing their generated numerical data with data published by Iwan

| (2) Lutes and Shah,(3) and Caughey.(1) |

-

and Lutes,
,

|

| This study was conducted under the following assumptions:

c The random forcing function, which has a fixed spectral
l

L

i density, will yield a unique displacement response value

(i.e., c ). This assumption has been verified by several

authors ( ' ) for similar system models. |

;
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;

I

,

?

b. The natural frecuency of the 3DOF system in its linear rance '

(i . e. 23) is substantially smaller than the cutoff frequency
,

of the generated randem excitation to ensure the validity of '

the approximation of random " white noise" excitation. This
1

'
a assumption is discussed in detail in Appendix A.

t,

I'

c. Experimental RMS data results presented in this chapter are ,

.l

the statistical ensemble average (N = 24) of generated data,

per the discussion in Appendix B.
,

t

2.5 SOLUTION OF THE PROBLEM

The response of the bilinear hysteretic system to randem excitation- '

has been shown in Section 2.4 to be represented by Equation 2.25.
,

; Basically, there are three classical methods for obtaining the solution
s <

l of this system equation.
I

l I
I,

! 2.5.1 Digital or Analog Computer Simulations
,

Analog computer simulations have been presented by several !

II' '#)
| authors for obtaining the system response to harmonic excitation.
:

I ) have used a digital computer for the) Additionally, Lutes and Shah
,

|

| simulation of the system model to random excitation. However, little
I

published information is generally available about computer

simulation techniques and applications.
]

.
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25.2 Equivalent Lineari:ation Techniones

Equivalent lir.carization techniques have been studied in detail by

several authors.(1~'-1ST The most common method is the Krylov-Bogoliubov

u nd c are chosentechnique. In this method, two parameters, ,

eq

to establish an equivalent linear system that minimi:es the mean square

difference between the following equations:

1

4 ,
'

.. .

f(t) (2.37)x + 2cux + u~i(x) =

,
.

f(t) (2.38)~

x + 2c u x+u x =
! eq eq eq

Equation 2.37 is a normalized extension of Equation 2.1, with the darp-

ing coefficient C. equal to a constant C and O(x) representing
1

the hysteresis spring stiffness restoring-force function. Caughey(I)

has shown under the assumption of a narrow-band displacement response

with a Rayleigh distribution that the following relationships apply:

i

2

("eo i
- - />

5 S(1 - al -3 .-1 -1 (; - 1)1/2 e xp (-:2,A)1- : +4 :1 - = ,

t "\"/ -
a r

1
-

(2.39)

I [uh2 (1 - a)(m A) 1/, erfc( A- 1 */ ,u _

~) (2.40)c = c |+1 |

eg) (ueg)eq u

| where
i

I

,

2c' (2.41)A =
x

1
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i 1

Evaluating Equations 2.39 through 2.41 numerically, one is able to j
l

determine u and
eq ;eq and thus define the " equivalent" R'lS response

of the system. The basic difficulties encountered using this method

are that the displacement response norna11y is not narrow banded nor

IIdoes it have a Rayleigh distribution. Lutes has proposed a modifi-

cation to this method that takes into account the experimentally |
|

observed statistics of the system response. However, a detailed evalua-
|

tion and error analysis of the hypothetical Lutes (14) modification has j

not been presented in published literature.

2.5.3 Power Balance Method,

i

Karnopp(
~ ) originally proposed this technique, which is an

attempt to equate the average power, P, supplied to the system by '

7,

'

the environment,

- US

E f(t) .k(t)
'

(2.42)P = . =
y g

?

with the power dissipated, P, y e system hys m etk e & cts. W
D

basic underlying assumption of this method is that the system viscous
|
|

damping (;) must be small (: 1*6) so that the effect of hysteresis energy|

dissipation is dominant. Karnopp( ) has also shown that this method |

|
has a great deal of promise for extension to multidegree-of-freedom i

hysteretic systems. The analytic procedure for this method consists of

selecting a statistical characteri:ation for x(t), computing the

average power dissipated P, an using Equation 2.42 to relate x(t)
D

to the input forcing level S. This is basically a theoretical
9

;
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approxima+ ion, and there are few published data to verify its accuracy.

However, Takemiya and Lutes ( ) recently showed that for the two basic

| equations of the Krylov and Bogoliubov equivalent lineari:ation tech-

nique, Equations 2.37 and 2.33, one is identical to this power-balance +

,

|
|

method and the other can be expressed as a simple energy identity.
I

| Takemiya and Lutes (31) also showed that the accuracy of the power-
;

Ibalance method is dependent on how well one can equate input versus

dissipated power and the validity of the approximation for the assumed

j response statistics.

2.6 COMPUTER SOLUTION

Included in this section is a brief description of the two digital

computer logics (ID117E and ID91E) created to obtain numerical data for

the analytic solutions of the system mode'l proposed in this chapter and'

shown in Figures 2.1 through 2. 3.
1

.

2.6.1 Computer Logic (ID91E)

The basic underlying concept of this approximate (i .e., theoretical) ,

I

|

solttion, is that it is reasonable to assume to a first order
,

approximation that the displacement spectral density S (u) of the

system can be approximated by

,
.

IH ("){~ S (*) (2'43)S (u) =
d f

where S (u) is the excitation PSD and |H (u)| is the amplitude of
f d

the frequency response function of the system when subjected to a

59
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i

1
|

|
1

This approximation isharmonic excitation functica of frequenc- 2.
,

I

particularly valid for narrow-band processes; and, as shown in

Figure 2. 4, the PSD response of a bilinear hysteretic system displays i
|

|

a narrow-band response when (a = 1/2), but an extremely wide-band
4

j response when (2 = 1/21).

1 '

|H (W)| isThe amplification factor (i.e. , transfer function) d
i

given by
.1

1
'

x
max

. . .
(,.44)H (.u)| =

(F. /s )o 1
,

where x is the maximum displacement frca Equation 3.34 correspond-
mar -

, '
; .

j ing to an acceptable 0 ., solution of Equation 2. 36. If bc:h ?,

1

. 1

]
solutions (i.e. , SOL {1] and SOL {2]) are acceptable, then ;

'

c

! ;
,

30L(11 + SCL(2) (2.45) -

1 tx =
,max _,

i

| Additionally, the cceputer logic equates
>

:

0 (2.46)x =

if both o solutions are unacceptable; but prior to integration, all
g

cero values of the transfer function are interpolated to correspond with
.

adjacent neighboring values and thus to create a smecth transfer
,

i

!

f

i *
^ It should be noted that an acceptable soluticn of ;; must be between

the limits, O: t, <-

4 60
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function without discontinuities. The magnitude of the harmonic force
|

| F used to determine t.e transfer function is obtained from the random
o

|
| excitation level by the relation

|
|
| 7
; F~

= - ('.47)S
o .

I

Using |H (w)| determined from Equation 2.44, the RMS displacement
d

response o is given by
x

.

t

y
< , , ,

5 |H (")l d' (2'48)' o' s E[x'] =
9 d,

y=o

,

i

where S is the uniform spectral density of F (t ) / (MY) . The finalg

theoretical response value is obtained by the numerical integration of

; Equation 2.4S by Simpson's rule.

2.6.2 Computer Logic ID117E
,

The " experimental" displacement response of the system model to
j
' random excitation was determined through the use of a digital computer

methodology using Runge-Kutta techniques for the numerical integration

of the governing equation of motion, Equation 2.25. !

i

I

2.7 CONCLUSIONS
|

Tsa digital computer methodologies (i.e., ID117E and ID91E) have
;

been presented for determining tne dynamic response of a viscously
I

| damped bilinear hysteretic oscillator subjected to stationary, Gaussian
|
|

|
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1

random excitation. The basic limitationc observed for these proposed "

1

computer logics are:

a. The system hysteresis Icop must be a softening type defined

by Masing's Hypothesis. However, similar to the program

versions discussed in Chapter 1, these computer logics can

be modified to predict the displacement response of a system

with a hardening type of spring stiffness if the hysteresis I

loop geometry is defined,

b. The accuracy of computer method ID91E is comparable to the

presently popular Krylov and Bogoliubov approximate method.

The approximate analytical solution (ID91E), which obtains thco-

retical response values by using a transfer function derived from a

discrete harmonic excitation function, is shown in Figures 2.6 and 2.7

to be in good agreement with published data for (a = 1/2). However,

Figures 2.3 through 2.10 show that for (a = 1/21), this method is no

more accurate than the Krylov and Bogoliuboy approximate method in

estimating the response values published by Iwan and Lutes.( ) Since

accurate overall estimates of displacement response are obtained only

for (a = 1/2), it appears by inspection that the inability to obtain

a values is duereasonable displacement response estimates for small
|

primarily to observed wide-band PSD responses (Figure 2.4) rather than
1

the effect of non-Caussian (i.e. , " amplitude limiting") displacement

characteristics (Figure 2.5). For example, Figures 2.S through 2.10

clearly show that for midrange values of c /Y (0.5 5 c /Y $ 30), which
y y

correspond in Figure 2.4(A) to wide-band PSD responses, the appro.ximate

method tends to yield less accurate response estimates.
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This inaccuracy of the approximate method (ID91E) is not totally
|

| unexpected, since it is impossible for a discrete harmonic excitation
,

function to generate a transfer function that approximates the actual
|

frequency response relationships of a system with wide-band character-
|

istics. It was originally anticipated that the IDD1E approximate method
:'

would be more accurate than the Krylov and Bogoliubov approximate

I method, but this investigation clearly shews that there is no appre-
i

: ciable difference in the accuracy of either method.

The " experimental" solution (ID117E), which obtains displacement

response by numerical integration of the system model equation of '

motion, is shown in Figures 2.11 through 2.15 to be in good agreement
,

d

both qualitatively and quantitatively with published data for the
|

j parameter ranges displayed. It is important to remember that (2 1/2)=

t
'

represents a moderate bilinear hysteretic system ard (a = 1/21) closely
i

| approximates the elastoplastic problem. Figures 2.11 through 2.16

| validate the accuracy of this proposed digital methodology. They also

| demonstrate that as the system damping ratio (:) is increased,

the effect of hysteresis is decreased.

2. 8 ILLUSTRATIC.NS
t

Included in this section are all the figures associated with

Chapter 2, They appear in the order in which they are referenced in
3

the text. The following special notes apply to Chater 2 figures and

tables:
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1

f

i

l

i

All parameters used in the figures are defined in the List ofa.
:
' Symbols, page

i b. The Iwan and Lutes ( data presented in Figures 2.6 through

| 2.15 are identical to the system displacement response data

! published by Lutes and Shaa l'3) and Caughey (1)4

I The Krylov and Bogoliubov data obtained from Iwan and Lutes (2)
! c.
1
4

and displayed in Figures 2.6 through 2.15 are representative

i of displacement response estimates obtained with this

i approximate method.
3

| d. The ID117E (" experimental") data displayed in Figures 2.11 ,

i

1

; through 2.16 are, per the discussion in Appendix B, the
i

}'
~ statistical ensemble average of (N = 24) data samples.
;

.

]
>

: ,

|
4 1

1

1 i

| !
,

!

l i

!
'

!

i

!

l
!

1
* |
!

|
i

q ,

'

1

!

!

i
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I

APPENDIX A

PSD CALIBRATION OF PANDOM FORCING FUNCTION EXCITATION

The random input forciag function used for system excitation

in program ID117E is generated with computer software routines

GAUSS and RANDU, which are part of the IBM 360 Scientific
,

Subroutine Package. These routines use a uniformly distributed

random number generator in conjunction with the Central Limit

Theorem to generate a normally distributed random variable (F) with a

specified mean (F) and standard deviation (c ) . Since the time spacing
p

between these generated random variables (DT) is also specified, it is

important to be able to calibrate the PSD (i.e. , power spectral density)

magnitude (S ) of the input excitation as a function of DT, F, and c *Fg

The standard analytic procedures used in time series analysis

require at least two data samples per cycle to identify a frequency

component within real-time-based data. Hence, the highest frequency

component that can be observed by sampling or generating data values at

a rate of J/DT samples per second is 1/(2DT) her::. Therefore, the PSD

of the normally distributed random excitation force will be band limited

e d#fi" d #5as shown in Figure A 1, with a cutoff frequency 2

hradians (A.1)hertz =w =
y T

A review of the basic definitions of statistics yields the following:

mean or expected value (F) (A.2)F p(F)dFE[F) ==
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, , ,

E[F'] F~ p(F)dF nean square value (F-) (A.3)= =

_=

E[F ] root nean square (R.'ts) value (A.4)=

, ,

:E[(F - F)'] variance (c~) (A.5)=

Using Definitions A.2 anc A.3, Definition A.5 can be written as

1

**
, _,

c' (F - F)~ p(F)dF (A.6)=

_=

Expanding Definition A.6, one obtains

+m (+m
2F p(F)dF - 2E[F] Fp(F)dF + E[F]' (A.7)o' =

p J_._.

, ~T ,

c' F~ - F~ (A.8)=
i

|

| For the special case of the mean equal to :ero (i.e., T = 0),

2 ' T
E[F~) F- (A.9)o = =

p

| The autocorrelation function is defined as

E[F(t) F(t + T)] (A.10)R (T) =
p

is equal to :ero, Definition A.10 is written asWhen T

3 T
E[F(t) F(t)] E [F~ (t) ] F" (A.11)R (0) = = =p

i

|
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Thus the autocorrelation function evaluated at zero is equal to the mean

square value. Using Definitions A.8 and A.11, the following relation-

ship is obtained:

I
w ,

(A.12)o j + (if)F~R (0) ==
p

For the special case of the mean equal to zero (i.e. , F = 0),

2 '(A.13)R (0) = cp p
1

Definition A.13 establishes the important preperty that a random ,

i

variable with zero mean has an autocorrelation function that, when

evaluated at zero, is equal to its variance.

A normally distributed, band-limited excitation forcing function

with a PSD as displayed in Figure A2 will have an autocorrelation

function as displayed in Figure A3; the following relationship is

established if the forcing excitation has a zero mean:
i

2 (A.14)2 S (u, - w ) = cR (0) =
p g y p

However, because of the nature of the excitation forcing function

is equal to zero. Using Defini-generated by GAUSS and RANDU, y
w

tions A.1 and A.14, one obtains

2nS
(A.15)25 u,R. (0) ==

e o DT.
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Combining Definitions A.13 and A.15, one obtains

2nS
2 o

(A.16)e. =
r D ,i

Therefore, when the mean is :ero (i.e. , F = 0), the following relation-

ship will calibrate the excitation PSD:

2
o DT

F
S (A.17)=

o 2n

The variable G/BIGDTI) is an arbitrary normali:ation factor that is defined

as the number of data points generated in the natural period of the

primary system (i.e., 2n/a). Therefore, DT can be written as

'

n- BIGDT1 (A.13)DT =
w l

1

Thus, Definitions A.1 and A.17 can be rewritten in normali:ed form as I

n
o' BIGDT1

F
S (A.19)=

o w

w
u =

---2.0 (BIGDTI) (A~70)2 l
~

It should be noted that although our computer-generated excitation

is band limited, it can for theoretical purposes be considered " white

noise" excitation, since u, is much greater than any fundamental fre-

quencies present in the system. Both of the following examples, which
i
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represent the parameters used in all instances for the data values

generated in this report, show that

10.0 u (A.21)u =
2

is the natural frequency of the primary system. In general,where u

the system models studied in this report have response functions

that display peak values between zero and 2u. Thus the " white ncise"

excitation assumption is valid.

Em==cle No. 2

Input Parameters:

E mean value of excitation function = 0.0=

1 radian / unit timeu =

2:/u = 2:Period =

0.05BIGDT1 =

Calculated Parameters:

50'- BIGDT1 0.314DT ==
e

*u 10 radians / unit time0.a:14
=a - =

2 2.0 BIGDT1
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t

>

7, o,; and S.Relationsitip between 0

2
c. c-
' '

S S
Standard Deviation Variance of o o

of Excitation Excitation PSD: One-sided PSD: Two-sided

0.153113 0.024999 ! 0.0025 0.00125

0.316227 0.09999 0.01 0.005

0.9486S3 0.89999 0.09 0.045

1.581 2.499 0.25 0.125

3.16227 9.99 1.0 0.50

6.3245 39.999 4.0 2.0

15.8113 249.997 25.0 12.5

31.6227 999.995 100.0 50.0

E==~o!.e Uo. 2

Input Parameters:

mean value of excitation function = 0.07 =

2n radians / uni: timew =

Period 1=

0.05BIGDT1 =

Calculated Parameters

M, BICDT1 0.05DT ==
W

. radians radiansw 10 ('2:)e2.So. =
w = =

2 2.0 BIGDTl uni: time unit time
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p,ofand 5:Relationship between o
9

,

# #
F F

S S
Standard Deviation Variance of o o

of Excitation Excitation PSD: One-sided PSD: Two-sided

0.158113 0.024999 0.000397 0.000198

0.316227 0.09999 0.00159 0.000795 ;

0.948683 0.89999 0.01432 0.007161 ;
!

1.581 2.499 0.0397 0.019386

3.16227 9.99 0.1589 0.07949

6.3245 39.999 0.63646 0.31323

15.8113 249.997 3.9788 1.989

31.6227 999.995 15.915 7.957

Let the vector A as shown in Figure A4 represent the forcing

function, which is a sequence of discrete incependent random variables

with a normal distribution, specified standard deviation, and :ero T.ean.

The time history of this forcing function (i.e. , F {t]) is written as

A for (K) DT 5 t < (K + 1) DT (A.22)F(t) =
g

The autocorrelation function of this process is written as

E[A'] (A.23)E[F(t ) F (t2)]
=

y

if t and t are in the same time increment (i.e.,
1 2

(K)DT < ty, t2 < (K + 1)DT) ,

89
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or as

0 (A.24)E[F(t ) F(t )] =
y 2

if t and t are n t in the same time increment. This generating
y 2

forcing function can be considered as an approximation to true band-

limited " white noise" excitation, which has an autocorrelation function

defined as

3
-

.

E [A'] DT 6(t - t,)E[F(t ) F (t2)]
=

1 _
1 . .

if the response of the system being studied has a characteristic time

(i.e., a fundamental period equal to 2n/u) that is large compared to

DT. In this report the fundamental period of the system model

was set equal to 20 DT, which was verified by experimental investigation

to be sufficiently large to assure that the input forcing function did

| in fact approximate true band-limited " white noise" excitation.
|

|

.

3) is the Dirac delta function.6(t -t

1
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{ S(u)
!

h . \ v

-w2 0 "2

FIGURE A1
PSD OF THE FORCING EXCITATION GENERATED USING
SUBROUTINES GAUSS AND RANDU

S(u)

*h
-w2 -u l 0 "1 "2

FIGURE A2
PSD OF BAND LIMITED FORCING EXCITATION

R(r)
n

I d

i

'

2S0(w2*"1)

. _ -. A I II A _1
. . .s _ _ .e

3

FIGURE A3
AUTOCORRELATION FUNCTION FOR SAND LIMITED
FORCING EXCITATION
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F(t) {
DISCRETE RANDOM VARIABLE

AK
o

A K+2
e

AK+1
AK+3e e

|
|

K K+1 K+2 K+3
wt

(TIM E)
DT DT _ DT

_ _

|| |

FIGURE A4
TIME HISTORY OF COMPUTER GENERATED

FORCING FUNCTION

|
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APPENDIX 3

STATISTICAL DISCUSSION OF EXPERIMENTAL RESULTS

The data values presented in this report represent an

empirical " Monte Carlo" investigation, are ensemble averages of N

generated time-history responses. Eacn of the time-history responses,

which represent the numerical integration of the system model equations

of motion, were obtained by using the appropriate computer program logic

with an arbitrary sample of F (t) (i.e. , normally distributed random

forcing function with a specified mean and va'riance) as excitation.

Initial conditions (i.e. , displacement and velocity) were set equal to

zero for all data samples.

Let (x]>denoteasimpleensembleaverageoveranensemblesi:e N

for a randoc variable x. It is statistically known that the variance

of (x) is given by

2

e*,

o'<x) =3-- (B.1)

2
where c is the variance of the randen variable x. From fundamental

x

statistics the following definitions are presented:

.

_ F**
E(x] x p(x)dx (B.2)mean value (x)= =

J..

**
, , ,

E[(x - T)~} (x - x) ~ p (x)dx (3.3)variance (c")= =

-
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r e+= ,,

x' p(x)dx (B.4)mean square value (x')E[x ] ==

.+=

1 (B.5)p(x)dx =

s.=

, T --2v' - x' - x (B.6)
x

The variance of the mean square is written as

~ ,'
- - E[x-] ' p(x)dx (B.7)

** , , ,, , ,

E x' - E [x'] ~c'2
= x=

-=x
--

From Definition 3.6 with the cean (i.e. , x) set equal to zero one

obtains the following relationship

2 ~T 7
c' (B.8)x'E[x ] ==

x

Using Definition B.S, Definition B.7 can be rewritten as

+= '**
., 4 , g+= 2 4

x p(x)dx - 2c' x p(x)dx + o p(x)dx (B.9)c'3 =
* J= *J=x' -=

2 4 4
E[x ] - o (B.10)o =

2
x !

4 2
Studies of E[x ] or a were n t performed for the response data

2
x

obtained in this report. However, one can obtain some useful

thevarianceof(x)byassumingtheresponse x isinformation about
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Gaussian even though it has been shcun by Lutes that this assumption

is not always valid, especially for hysteretic or nonlinear systems.

If x is a norna11y distributed random variable (i.e. , Gaussian) with zero

mean, the following relationship is useful

D
1 3 ... (D - 1) a for D = even

D x (B.11)E[x ] =

odd0 for D =

Evaluating Definition B.11 for D equal to 4,

4 4
E[x ] .ic (B.12)=

x

Combining Definitions B.12 and B.10 one obtains

' 4c ' ., = 2c (B.13)
xj

Using Definition B. I as an example, the ensemble variance of the mean

square value is expressed as

>c',
? x' (B.14)c' = "
4)

Substituting Definition B.13 into Definition B.14 yields
c

/2
4

1/2\c ., 2* c' - (B.15)=a =
N x N

2)

* Lutes, L.D. , "An Approximate Technique for Treating Random Vibration of
Hysteretic Systems," Report No. 4, Department of Civil Engineering,
Rice University, Houston, 1969.
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l

Definition 3.15 expresses the relationship between the standard devia-

tion of the mean square ensemble average x of a Gaussian process

with variance e and the number of averages N in the ensemble. This
x

equation applies equally well to displacement or velocity. Table B.1

presents some typical numerical examples.

TABLE B.1. STATISTICAL RELATIONSHIP AS ENSEMBLE
LENGTH N VARIES

(2/N)1/'
~

N c h,)
,

10 0.4472 0.4472 <>-x

,

20 0.3162 0.3162 c'x

7
24 0.2887 0.2887 c'x

?

JO 0.2236 0.2236 c-
x

,

43 0.2041 0.241 c'x
,

60 0.1826 0.1326c;

,

80 0.1581 0.1581c;

0.1118of160 0.1118 '

For this study, N was set equal to 24. It should be noted

that doubling the ensemble si:e, which would consequently double the

computer costs, would have reduced the standard deviation of (x )by

9 t>
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only 29%. The numerical " scatter" observed in the data values presented

in this report can be associated directly with the limited number of

ensemble 'verages generated. The primary constraint on the number ofa

ensemble averages used in this investigation was a financial one dic-

tated by computer costs. The number of ensemble averages chosen (i.e.,
.

N = 24) was not an unreasonably small number. However, Lutes and Shah

used as many as 80 ensemble averages in their study of the transient

response of hysteretic systems.

c

.

Lutes, L.D. and Shah, V.S., " Transient Randon Response of Bilinear
Oscillators," Report No. 17, Department of Civil Engineering, Rice
University, Houston, 1970,

i
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