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ABSTRACT

An analytical investigation is made of the dynamic response of
two special classes of nonlinear hysteretic oscillators that model
some of the basic phenomena involved in the response of complex
nuclear power plant systems which are subjected to dynamic environ-
ments.

Numerical studies as well as approximate analvtical solutions for
the response of the nonlinear oscillators under (a) harmonic and (b}
random excitation are presented. The effects of various = stem para-
meters are evaluated und the range of validity of the arproximate

solutions is determined,
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SUMMARY

One of the more serious design problems associated with the

coolant loop of a nuclear power plant is the postulated rupture of the

piping and the subsequent blowdown of the steam supply system. The

occurrence of this type of accident has received increasing attention
in the development of protective systems, such as those for emergency
% core cooling and redundant instrumentation, that effqit a safe shutdown
of the nuclear reactor. Concern for the functional integrity of these

safety systems during the faulted condition has led to the installation

of a variety of rupture supports that are intended to restrict gross

movements of the piping system and to preclude a chain of failures.

Since these restraints must not interfere with normal operation of the

steam supply system, they are constructed with initial gaps that allow

the piping to expand and contract in the operating condition. However,

when a pipe breaks, it rapidly moves across the gap and is restrained |

by the support. Under the high blowdown loads that develop, inelastic

behavior of the pipe material is also inevitable. Additionally, pumps
and valves that are part of the primary coolant loop will experience

nonlinearities because of gaps, friction, and nonproportional damping.

In order to analyze these complicated systems, it is necessary to

use relatively simple models that are readily amenable to mathematical

analysis or numerical solution techniques. A single-degree-of-freedom

model that exhibits characteristics of hysteretic force vs. displacement

would allow assessment of the displacement response of a nonlinear piping

system. Such a model would be valuable in determining



(a) Whether rupture supports are required.

(b) System displacement response without rupture supports.

(¢) Optimum gap distance for rupture support (i.e., yield value

for a "hardening type'" of nysteretic system).

In the first problem class studied, two solutions are presented.

One uses iterative techniques, and the other an exact evaluation of the
system equations of motion, to determine the displacement response of a
harmonically excited single-degiee-of-freedom (SDOF) hysteretic oscil-
lator. Both of thuse solutions represent a system model that has a
nonlinear hysteretic spring-restoring force with a "softening”-type
skeleton curve that is described by arbitrary node points. The
theoretical logic of both of these solutions is also incorporated in two
computer methodologies. These methodologies idealize the system model
as a piecewise linear SDOF oscillatory system whose parameters are a
function of absolute displacement.

In the second problem class studied, two analytic solutions are
presented for the determination of the displacement response of an SDOF-
damped bilinear hysteretic oscillator when subjected to stationary random
excitation. The first of these solutions generates experimental data by
numerically integrating a piecewise linear system model, and the second
solution is an hypothesized approximate analytical method. Data values
numerically obtained for these two solutions are compared to demonstrate
that, under certain conditions, the approximate method provides a satis-
factory estimate for displacement response.

For both classes of problems, numerically generated data values are

compared, whenever possible, with those existing in the literature in
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order to verify the analytic logic used for each selection method and

to demonstrate accuracy. The effects of various system parameters are

evaluated and the range of validity of the approximate solution is

determined.
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DYNAMIC EXCITATION OF A

SINGLE-DEGREE~OF~-FREEDOM HYSTERETIC SYSTEM

CHAPTER 1
HARMONIC EXCITATION OF A

SINGLE-DEGREE-OF -FREEDOM HYSTERETIC OSCILLATOR

1.1 BACKGROUND INFORMATION

The damping properties of solid materials and their ongineering
significance has been studied for almost 200 years. In 1784, Coulomb

in his Memoir on Torsion speculated on the microstructural mechanism of

damping and described experiments proving that the damping observed
under torsicnal oscillations was not caused by air friction but by in~
ternal losses in the material.(l)* Coulomb also observed that the
damping mechanism operative at low stresses may be different from those
at high stresses., Numerous physical systems, such as piping systems
under sudden rupture forces, exhibit damping properties (i.e., energy
absorption and dissipation) that are noalinear.

All systems that dissipate internal energy when uader cyclic load
display one phenomenon in common: the cyclic load-defornation curve is
not a single-valued functiom, but forms what is calied a "hysteresis
loop." Since energy is absorbed by the system under these cyclic load-
ing conditions, tle unloading branch of the loop must lie below the

loacing branch. The area between these two branches {1 8., ths grag

enclosed by the hysteresis loop) is proportional to the energy absorbed,

-
Numbers in parentheses designate references at the end of the chapter.
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Figure 1.1 displays several examples of commonly observed hysteresis

loops.

1.2 INTRODUCTION

The system model, which will be used to represent piping under
sudden rupture forces, is an SDOF oscillator, such as that shown in
Figure 1.2, with a "skeleton curve' of the softening type shown in
Figure 1.3(B). A "skeleton curve" is defined as the relationship of
the static spring-restoring force versus the deflection, and is assumed
to be approximated by a piecewise linear nodal construction. Figure
1.4(A) shows this curve for a general hysteretic system and Figure
1.4(B) for a bilinear hysteretic system. The model has additional flex-
ibility in that the critical damping ratio (%) can assume a different
value for each i-th segment during the system displacement response.

An SDOF oscillator with a linear elastic "skeleton curve" (i.e,,
P(y) = constgﬁt+) has a displacement response that has been discussed

q-o
tér3) The typical nonlinear

and analyzed in detail by numerous authors.
elastic system (i.e., no hysteresis), with an equation of motion of the

form
V(T) * J(y.y) = F(T) (1.1)

. .
where J(y,y) is a nonlinear elastic restoring force function, has no
general analytic closed form solutions except for a few special cases

such as Duffing's equation. However. several approximate analytical

‘The figures, which are grouped together at the end of the text, begin
on page 19.

See List of Symbols, page xiii.
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procedures such as the perturbation metheds of Poincare or the asymp-
totic theories of Krylov, Bogoliubov, and Mitropoloky, which approximate
the problem as a linear one that can be solved by standard techniques,
are available for the solution of the nonlinea: ¢l2<tic system.

For the nonlinear elastic problem it is necessary to verify the
stability of a particular displacement soluticn, since it has been

(6) (7)

shown by Lazan and others that such systems have frequency
response functions displaying an unstable region, as shown in Figure 1.5.
This instability is associated with what is commonly referred to as the
"jump phenomenon,' which occurs when the system is unable to maintain
steady state motion and, instead, "jumps" to various response values.
Fortunetely for the study of nonlinear hysteretic systems, Jennings(S)
has shown that the "jump phenomenon" does not occur and the displace-
ment response is boundec in all instances except for the case of elasto-
plastic hysteresis. Figure 1.6 displays typical examples of hysteretic
frequency response functions.

Although steady-state harmonic excitation does not always resemble
the excitation encountered in nature, it can be used to gain considera-
ble insight into the dynamic behavior of the system model in response
to arbitrary types of excitation. Harmonic analysis is advantageous

since it is the most easily analyzed form of excitation; and for even

nonlinear systems, periodic solutions can still be assumed.

1.3 DESCRIPTION OF THE PROBLFM

The actual difficulty encountered in the solution of the general

hysteretic problem is an a priori knowledge of the hysteresis loop

{92 ]

R e e B L PR e L Sy VR s PO et A




geometry based upon defined "skeleton curve" parameters. Figure 1.7
displays the follrwing examples of hysteretic system motion:

a. Figure 1.7(A) is the response to an alternating load of
increasing magnitude.

b. Figure 1.7(B) is the response to a load that is increased
then decreased to less than zero and then increased beyond
its first maximum,

¢. Figure 1.7(C) is the response to periodic (i.e., harmonic)
excitation.

d. Figure 1.7(D) is the response to general (i.e., random)
excitation.

(9-12)

Several authors have studied the hysteresis phenomena in detail

and have obtained disappointing results in the theoretical predeter-
(13)

mination of hysteresis loops. However, Masing proposed a hysteresis-

loop hypothesis that has proved successful for softening types of sys-

(11} wrhe

tems, This hypothesis is best described by Jhansale:

hysteresis curve is geometrically similar to the stress-strain curve

(originally meant to be 'monotonic') but magnified by a factor of two."

Using the "skeleton curve" segment AEBCD shown in Figure 1,7(C) as an

example, the hysteresis loop defined by Masing's Hypothesis is construc-

ted as follows:

a. Motion starts along the skeleton-curve segment ECD until the

system velocity becomes zero (i.e., point C). If the dis-
placement point C is in the linear elastic range of the system

ur the skeleton curve is nonlinear elastic, the restoring

force function will next follow the curve segment CBEA in the




a.

b.

with those of previously published mathematical models. Caughey

direction of point A. However, when point C (i.e., ¢yw) is

in the plastic range, the segment BEA is magnified by a factor
of two and this magnified curve segment is translated such
that point B corresponds with point C. Motion is now down the
segment CEA, which forms the lower portion of the hysteresis
loop. Because of symmetry and the snftening nature of the
skeleton curve, the constructed segment CEA will eventually
merge into the original skeleton curve. After this merging
occurs, further deflections are defined by the original
skeleton curve.

when the zero velocity position point E (i.e., -yM) is reached,
the segment BCD is magnified by a factor of two and translated
such that point B now corresponds to point E. Motion is now
along the segment ECD, which will now represent the upper

portion of the hysteresis loop.

It is important to note that the basic limitations to Masing's Hypothe-

5is are these:

The skeleton curve must be softening (i.e., each successive
i-th segment in the plastic range must have a stiffness Ki
less than the preceding value).

The skeleton curve must be symmetric.

Neither of these limitations causes severe restrictions by comparison

(14-15)

performed the initial analysis of bilinear hysteretic systems with
(16-17)

extending his work to obtain a general solution for an

undamped bilinear hysteretic oscillator and an approximate solution for

S ST S VI S S SR
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the same problem with viscous damping in both segments. Masri‘ls) later

refined Iwan's work and obtained an exact solution for the bilinear

hysteretic system with viscous damping allowed to vary for each segment
: : (8 : J .

region. Jennings ) presented the sclution for hysteretic systems

having a softening skeleton curve defined by the relationship

a5
}zy.i’é.;_lu?.‘;_vi (1.2)

where r is equal to a positive odd integer greater than one and a is
an arbitrary positive constant., The special case solutions are a
squal to tero, which is the linear elastic system, and r equal to =,
which is the elasto-plastic system.

The proposed system model that will allow the damping to assume
any specified value for each segment in a general prescribed skeleton

curve is, even with its aforementioned limitations, a substantial

(8)

improvement over those presently existing. Jennings made the follow-

l , y
: ing observation:

To obtain agreement with test results, it may be neces-
sary to extend the theory to include non-integer values
of r. It may also be necessary to include a viscous
damping coefficient in the steady state calculations

in order to account for observed energy dissipation at
relatively low amplitudes. 5

Hanson(lg) conducted laboratory experiments that he correlated with the
Jennings(s) data, and found that theoretically the resonant vibration :
amplitude would be predicted within 20% and the resonant natural fre-

quency within 3% on the basis of the static virgin force-deflection

("skeleton”) curve. Thus, it is reasonable to assume that our improved

Ll A e s e ) e
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model will yield even greater agreement between theoretical and experi-

mental data.

(18)

For the comparison of data, the Masri model is displayed in

8)

Figure 1.4(B) and the Jennings( model is defined in Figure 1.8 and

Tables 1.1 through 1.3.

1.4 SCOPE OF RESEARCH

Two separate analytic solutions are derived for the displacement
response of a viscously damped, harmonically excited SDOF system with a
hysteretic spring stiffness of the softening type defined by Masing's
Hypothesis. To determine the accuracy as well as the inherent limita-
tions of these analytic solutions, two computer methodologies, obtained
by using algorithms derived for both methods, are evaluated by comparing

their generated numerical data with data published by Iwan,(lbw

(8) (1#) (18) The analytic solutions and

Jennings, Hanson, and Masri.
their associated computer methodologies are appraised to determine
future research applications.

This study was conducted under the following assumptions:

a. Analytical solutions for the model in the region of its funda-
mental elastic response were primary; thus, questions about
subharmonic or ultraharmonic responses as discussed by
Caughey(zo) for the nonlinear elastic system were neglected.

B, Energy transfer devices such as dynamic absorbers were not
considered.

Ce The effects of energy absorbed by internal structural changes

that raise the energy level of the entire system were

*
Tables, grouped after figures at the end of the text, begin on page 42.



neglected. Only systems that dissipate energy internally via
the hysteresis loop phenomena and viscous damping are

discussed.

1.5 SOLUTION OF THE PROBLEM

The equation of wotion for the SDOF system shown in Figure 1.2
with a nonlinear hysteretic spring-restoring force relation, such as
that shown in Figure 1.4(A), can be written for motion in the i-th

segment as

My + Gy e 2y o Flt) (1.3)

where Pi(y) is the spring-restoring force function for the multinode

system and is defined as
L7 R Y Yi) Ky (1.4)

Let x be a normalized dimensionless parameter defined as follows:

X = y/yN (1.5)
x = ¥lyy (1.6)
x = }/yN 1.7)

where YN is an arbitrary normalization parameter often chosen to be
it
equal to the yield displacement (i.e., yy). Rewriting Definition 1.4,

one obtains

Pi(x) = Pi % K = xi) Yy Ki {1:8)

e
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Using Definitions 1.3 through 1.8, Equation 1.3 can be rewritten in

dimensionless form as

| o b T Ay 1
] P 3 f g T e 4 = N g 4 \ o ; ]
X + v X e {% .(i) Y r‘")"N [r\t,, Pi} (1.9) %
:
. & 2 1 i : ;
X ¢ Z:iwix o T S B [F(t) “ Pi + X ki )N] (1.10) ;

If the generalized i-th node force is defined as

| 1
| Lk P ’
| Q * fyy ¢ Pyt % K (1.11)
! H
|
% then Equation 1.10 can be written in its final form as
| § o F(t)
2 , v,
| X+ 20wXx+w x = Wy + Qi (1.12)

The solution of Equation 1.12 consists of the sum of the homogenous

; (that is, xh{t]) and particular (that is, xp[t]) solutions:

SR

| x(t) = xh(t} + xP(t) {1.13)

The homogenous solution of Equation 1.12 for the case of subcriti:al |

. : i : (2-4)
damping is well defined:

; xh(t) = exp(-:idit) (Ai sin Y44 t * Bi cos ”dit) (1.14)

B e

|
|
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For the particular solution of Equation 1.12, one uses the following

definition:

xp(t) = xpl(t) * “pz(‘)

where

Xpl

sz

The solution for xpl(t)

+ ZCiwix

+ Zz.mixpz

b &

pl

;pl * zciwiipl
where

F(T) =

F(t) =

b L T

Assume the following solution for Equation 1.18:

2 - Eit)
i xpl MyN
2
* wg xpz Qi

+

F

o % 8 s pOS(OL + ¥;)

i pl MyN

Fo cos (AT + @o)

Fo cos (Ot + wi)

N 9 N,
xpl(t) = Ji sin 2t + Nl cos ot

10

is as follows:

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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Substituting Equation 1.22 into Equation 1.18, one obtains

e )
- i 3 N. 0 2t . w. (M, s Ot - N, sin &
Q (Mi sin Ot + Vl cos Qt) 4clw19(wl cos 0t i sin Qt)

F
1 2 : y » o -~ o
| + wy (Mi sin Qt + Ni cos At) “YV cos(Qt + wi) (1.23)
; (21)
Using the double-angle formula
| cos (Ot + wi) = cos {it cos wi - 3in Qt sin wi (1.24)
|

and equating the terms of Equation 1.23, the following relationships

are obtained:

F

1 2 2 (o]

» - - 2r 91 ' - — 1 ]

| (wi a°) Mi (ssiuiu) Ni B MYN sin vy (1.28)
| R fa

(Zciwiﬁ) ”i + (wl « 5" Ni = ﬁ;’-h-‘ cos :,'i (1.26)

If Cramer’'s rule is used to solve Equations 1.25 and 1.26 for Mi and

Ni’ one obtains

- 4 -
2 LeAY i
Di = (ui - ) + (Zt,iui..‘) (4.27)
g. = —lll— —fuz - r"2) sin ¥, + (2% ) cos 1{ \ (1.28)
i Mrgbe 774 0 i e by e g
\ Fo 2 2 1
0 = - W, = ? C W, s { . & .:2 i B
i Myvbi L( i ) cos ul Lchal ) sin Li 11.29)

11
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Thus the solution for xpl(:) is given by Equation 1.22 with Mi and

Ni defined respectively by Equations 1.28 and 1.29.

The solution for xpz(t) is obviously obtained by inspection to be

R
LS ¢ 3 I (1.30)
p2 i
i
Combining Equations 1.14, 1,22, and 1.30, the total solution of
Equation 1.3 is written as
= - i 7' % o *%\ & 3 3
x(t) exp( ciuit)(Ai sin “dit - Bl cos 443t Mi sin Ot
o N, cos Bt + Q. /w0 (1.31)
i il ¢

where Ai and Bi are dependant upon the initial conditions at the

start of motion in the i-th segment. Let the initial conditions be

defined as
PSS I B T £1.32)
AR R IV (1.33)
Using Equation 1.31 and Definitions 1.32 and 1.33, the constants Ai
and Bi are defined as
B, = (x. + N - Q/ug) (1.34)
Ay s (X, - MO B fug (1.35)

where t is the time within a segment and T is total time.

12










1.6 COMPUTER SCLUTION

This section briefly describes the two digital computer logics
(i.e., ID501 and ID1000) created to obtain numerical data for the

analytic solutions of the system model proposed in Section 1.5.

1.6.1 Computer Logic IDS01

This computer method used Equations 1.31 and 1.56, which are the
exact sclution of the equations of motion within an i-th segment, and
the defined system "skeleton curve'" to determine the displacement (x)
and velocity (i) at a fixed delta time (At) step. The program logic is
designed to modify the 4t step when the system passes from the i to
the i + 1 segment so that the crossover time can be determined exactly.
When the modified step is known, the initial numerical conditions can be
derived for the i + 1 segment. This procedure ccntinues until a sys-
tem velocity (i) of zero is reached, thus defining the maximum displace-
ment (xM = yM/yN). Then using Masing's Hypothesis, the lower segment of
the hysteresis loop is constructed and the procedure is repeated until a
negative maximum displacement (-xM) is determined. The upper segment of
the hysteresis loop is now constructed, and the entire procedure is
repeated for as many cycles as necessary, until the absolute value of

the maximum displacement (}le) reaches a steady-state value.

1.6.2 Computer Logic ID1000

This computer method uses iteration techniques to determine *he
hysteresis loop parameters corresponding to a user-supplied forcing

function F(T) and system "skeleton curve.'" Basically, twe fundamental
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facts are known about hysteresis loops corresponding to the steady

state motion of an SDOF system subjected to harmonic excitation:
2. The starting and ending locp displacement points that lie on
the skeleton curve must correspond to each cther.
b. The initial phase angle {¢) at the start of each loop must be
a 2v multiple of the previous starting-loop value.
An error function can thus be defined using facts (a) and (b) to deter-
mine the accuracy of a proposed hysteresis loop. For a specific forcing
function, there are two possible hysteresis loop parameters that can be
iterated: one is the start position (-xM) on the skeleton curve and the
other is the initial phase angle (%) at the start of motion. This pro-
gram logic uses Masing's Hypothesis in conjunction with Equations 1.59
and 1.40 to generate hypothetical hysteresis lcops for these iteration

parumeters. The specific set of values (¢ and -x,) that vield a minimum

error function value correspond to the steady state problem solution.

1.7 CONCLUSIONS

Two analytic solutions and their digital computer methodologies
(10501 and ID1000) fLave been presented for determining the dvnanmic
response of a viscously damped, harmonically excited SDOF general hys-
teresis system. Both computer logics approximate the general hysteresis
skeleton curve as a multisegmented, piecewise linear curve. Computer
method iDS01 sclves the problem in the time domain, whereas ID10J00 uses
iterative techniques. The only limitation on these analytic solutions
is that the skeleton curves must be of a softening type defined

by Masing's Hypothesis. However, if the hysteresis loop geometry is

16




defined for systems other than softening types, both of these computer
programs could be modified to produce satisfactory results, since once
the hysteresis loop is Jefined, the numerical solution for the response
is trivial. In Figures 1.9 through 1.24, the computer-generated results
are shown to be in good agreement, both qualitatively and quantitatively,
with existing published data. Since both of these computer versions can
match an arbitrary skeleton curve and also allow for the variation of

damping in each i-th segment, they are a substantial improvement over

solution methodologies presently available fur this class of problem.

1.8 ILLUSTRATICNS

Included in this section are all the figures and tables associated
with Chapter 1. They are numbered and displayed in the sequential order
in which they are referenced in the text. The following parameters are
used only for the included figures and tables (all other parameters are

defined in the List of Symbols preceding Chapter 1.

|A] Displacement amplification factor

Kl Spring stiffness in elastic range of a bilinear hysteresis system

K2 Spring stiffness in plastic range of a bilinear hysteresis
system

Ky Normalization factor, which is equal to Py/Yy, used for the

Jennings models presented in Tables 1.1 through 1.3
T2 Hysteresis loop time corresponding to x2, if loop time is
set equal to zerc at point A (see Figure 1.4(B])

-

T,8 Parameters used for Jennings model, defined Sy Equation 1.2
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] X2 Position of y:/yV in the steady state, dvnamic bilinear
hysteresis loop (See Figure 1.4[B].)

gl Critical damping ratio in the elastic range of a bilinear

hysteresis system
g2 Critical damping ratio in the plastic range of Silinear
hysteresis system

wl Natural frequency in the primary elastic range

The following special notes apply to the included figures and
tables:

a. For all plots presented, Yy was set equal to I

1 .

b. For Figures 1.20 through 1.24, Wy is equal to KV/M.
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CHAPTER 2

RANDOM EXCITATION OF A SINGLE-DEGREE-OF -FREEDOM

BILINEAR HYSTERETIC OSCILLATOR

2.1 BACKGROUND INFORMATION

There have been in recent years numerous analytic investigations
of the dynamic response of nonlinear systems (i.e., such as coolant-loop
piping) that exhilit hysteretic characteristics to stationary random ex-
citation. The bilinear hysteretic oscillator, in particular, has been in-
vestigated in detail because ot its mathematical simplicity and because
it approximates the behavior often displayed by many engineering systems.
For an analytic investigation, the displacement response of a bilinear
hysteretic system to nondeterministic (i.e., general nonstationary random)
excitation is usually desired. However, a substantial knowledge about the
general behavior of the system can be obtained by consideration of the
stationary random excitation problem, even if it is extremely problematic
that the actual excitation of the system model in a given situation approx-
imates a stationary random signal. As mentioned in Chapter 1, the most
popular method of solution for this problem class would be approximate

4,
methods, which have been investigated by several authors.(l' ‘)

2.2 INTRODUCTION

The system model is an SDOF oscillator as shown in Figure 2.1 with

a "skeleton curve," which is defined as the static spring-restoring

*
Numbers in parentheses designate references .t the end of the chapter.

(1-11)*




force versus deflection relationship, displayed in Figure 2.2. This

®
model also has the flexibility that the critical damping ratio (%) cau

assume a different value for the elastic or plastic segment. Ihen sub-
jected to a random excitation forcing function, this system has a hys-

teresis loop similar to that shown in Figure I.3.

(1)

2 -
Iwan and Lutes.(') Lutes and Shah,(o) and Caughey have studied

this system model in detail, using digital and analog computer simula-

tions in conjunction with approximate analytical methods. These authors

have observed that this system model under tne influence of random
excitation displays the following basic characteristics:
a. When cy/Y is very large, the system displacement response

is quite similar to that of a linear system with natural

2
-

frequency al/ 9 (Figure 2.4).

b. When cy/Y is very small, the system displacement response
is quite similar to that of a linear system with natural
frequency @y (Figure 2.4).

" The probability distribution function of the system response
is strongly influenced by the level of the excitation and is,
in general, noticeahly non-Gaussian, Figure2.5 shows that
when compared to an equivalent linear Caussian system, targe
cy/Y values have a greater probability, and small JV/Y
values have a smaller probabilit%, of being at large

displacement values. This phenomenon 1s called "amplitude

-
See List of Symbols, page Xxv.
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limiting" and is associated with the abrupt initiation of
hysteretic energy dissipation when the displacement response
exceed, Y. However, when viscous damping ¢l a sufficient
magnitude is introduced into the system, this effect becomes
less pronounced.

Yielding may either increase or decrease the system RMS dis-
placement response. The softening spring effect of the non-
linearity always tends to increase displacement response,
whereas the energy dissipation due to yielding tends to
decrease the response. However, for larg: :y/Y values the
softening effect dominates and the net result is an overall
increase in system displacement.

The Krylov and Bogoliubov approximate sethod yields acceptable
results for estimating the RMS (root-mean squared ) response
of a system with a small to moderate nonlinearity (a > 1/2)
and small finite viscous damping.

For small critical damping ratios (Z), the system displays an
RMS displacement that has definite minimum values for cy/Y
between 1 and 2.

The response of a severely nonlinear hysteretic oscillator is
not contained in a narrow frequency band.

The primary effect of yielding on *'¢ system response PSD
(Figure 2.4) is to cause a shift in peak frequencies with
changing excitation level. In some cases, this shift is
accompanied by a significant broadening of the response peak

or even eliminaticn of the peak entirely.

S it L



2.3 DESCRIPTION OF PROBLEM

The equation of motion for the system model displayed in Figure 2.1,
b

whichk has a skeleton curve and hvsteresis lcop as shown in Figures 2.3

and 2.3 respectively, can be written for regions of constant restoring

force (Ki) as

My Ci§ ¢ Polvy = ¥(E) (2-1)

Let x be a normalized dimensicnless parameter defined as follows:

RIt) e iR (2.2)
x(t) = yo)nN (2.9
x(t) = y(t)/¥ (2.4)

As shown in Figure 2.3, the restoring-force functicn can be written for

segment region 1 as

P ly) = RY] e Ktlnl - 1Y) - X (il =0 2.5)
= Ky - K !yMi - K1§Y! - lefm' - KZ*Y% (2.6)

and for segment region 3 as

¢ ) BRPSE  § 4 e T ": 2
|
Notice that in segment region ! |
5‘1\(;') TS 3 2.9 :
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and that in segment region 3
sgn(y) = + 1 (2.10)

Using Equations 2.9 and 2.10, Equations 2.8 and 2.6 can be combined into

Yl !Yl)

S ;
-KZLsxn(yﬂ (!ymi » |Yl) (2.11)

the following single relationship

Fi) = PL) s Ky ek sgn(&)(

Rewritten, this relationship becomes

{ﬂ
Y

- 1)(1 - cx){ (2.12)

PO = Pily) = PY:({—)+ [sgn<93]<

Likewise, the restoring-force function can be written for segment

region 4 as

i

P4(Y) KIY + Kz(y - Y) {2.13)

Ky + (K| = K,)Y (2.14)
and for segmint region 2 as

PZ(Y) = -KlY - Kz(y +Y) (2.18)
= sz - (K1 - KZ)Y (2.16)

Notice that in s yment region 4

sgn(y) = +1 (2.17)
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Y

and that in segnent region 2

sgn(y) = -1

Using Equations 2.17 and 2.18, Equations 2.14 and 2.16 can be combined

into the following single relationship:

P4(y) = PZ(Y) = sz . {sgn(y)}(Kl - K,)Y

Rewritten, this relationship becomes

‘.v .']
e ATl R s et PY"(Y) * {?Zn(y)j(l - 3)’

Additionally, for segment regions 1 and 5

Rewriting Equation 2.1 in dimensionless form using Equations 2.2

through 2.4, one obtains

; + 2Ciui§ + mi =x * [sgn(%)] Qi} = Flt)

{218) 3

MEESSE RIS

(2.19)

) (2.20)

M el e P

(2.21)

(2.22)

S |

(2.25)
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Q = Ditletl - a) + E (1 - a) (2.26)
D1 = U:s . X (2.2M
92 = 94 2 (2.28)
By P oRg Nl (2.29)
£, +% » i , (2.30)
£(t) = F(t)/(MY) (2.31)

The excitation F(t) is a normally distributed, random function
with a uniform PSD (power spectral density), which is discussed
in Appendix A. The typical hysteresis loop for the system
model when subjected to F(t) is as displayed in Figure 2.3. It is
important in the figure to notice the ''trace-back'" segment regions, IJ
and CD, which are common for random excitation. The equation of motion,
Equation 2.25, is valid for a random excitation hysteresis loop if CD

is considered a segment region 1 with ¥, defined by point C. Likewise,

M

IJ is considered a segment region 1 with Yy defined by point I. For

segment region 3, ¥y is defined by point G; and in general, -¥yg does

not equal Yy

A special case solution for this problem class is for harmonic

excitation (i.e., the "trace-back' regions are absent):

F

f(t) = ﬁ% sin(wt) (2.32)
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Masri(s) has shown that if during steady state harmonic motion the time
| origin is shifted so that (ut) is equal to :zero at the maximum displace-

ment point *Yy? the excitation force is modified to the following

form:

F

£(t) = ﬁ$ sin(ut + o) (2.33)

and the corresponding solution for Equations 2.25 and 2.33 for motion

in the i-th segment region is

5, n,
i d b A
x(t) = exp|- (;;) (wt - ¢i) a, sin (r.) (wt oi)
i i
n;
| — oy - i L = 2
| + bi cos T (wt oi) - Ai sin(wt .i) + Qi (2.34)
. 5 4
x! = xp |- [—- - 9. -(%.a, n.b, inf—] (wt - %,
4 4 w, exp ri) (wt ¢1) (glal + 1b1) sin T, ) ¢ t zl)
g
™
+ \rzi:Ll - cibi) cos (;I> (wt - ¢i) + »Ai cos(wt + ri)

2.38%)
where the constants are all defined in Reference 5. Masri(s) has also
| shown that for steady-state harmonic motion, ¢1 Z 0 and :3 : r and
| *
| the single transcendental equation
|
|

B, sé/z B+ 8, = 0 (2.36)

33, and 84 are functions of #,.

-
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can be solved by iteraticn for the unknown ¢.,, which leads to the

complete determination of the unknowns of the system motion.

2.4 SCOPE OF RESEARCH

This chapter derives two separate analytic solutions for the
displacement response of an SDOF damped bilinear hysteretic oscillator
subjected to a stationary, normally distributed, random forcing function.
The first of these solution methods generates response data by idealiz-
ing the system model as being piecewise linear, and uses standard numeri-
cal integration techniques (i.e., Runge-Kutta method) of the system
equations of motion, while the other solution method is a hypothesized
approximate analytical technique.

The bilinear hysteretic spring stiffness studied in this chapter
is of the softening type defined by Masing's Hypothesis, which is
detailed in Chapter 1. The random excitation function is generated
by computer software and calibrated by the methods presented in Appendix
A. To determine the accuracy as well as the inherent limitations of
these analytic solutions, two computer .ethodologies obtained by
using algorithms derived for both solution methods are evaluated by
comparing their generated numerical data with data published by Iwan
and Lutes, (2) Lutes and Shah.(s) and Caughey.(l)

This study was conducted under the following assumptions:
o . The random forcing function, which has a fixed spectral
density, will yield a unique displacement response value

L0, cx). This assumption has been verified by several

(2

authors 4 for similar system models.
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b. The natural frequency of the SDOF system in its linear ranre

(1.8, al) is substantially smaller than the cutoff frequency
of the generated random excitation to ensure the validity of
the approximation of random "white noise'" excitation. This
assumption is discussed in detail in Appendix A,

¢. Experimental RMS data results presented in this chapter are
the statistical ensemble average (N = 24) of generated data,

per the discussion in Appendix B.

2.5 SOLUTION OF THE PROBLEM

The response of the bilinear hysteretic system to random excitation
has been shown in Section 2.4 to be represented by Eguation 2.23.
Basically, there are three classical methods for obtaining the soluticn

of this system equation.

2.5.1 Digital or Analog Computer Simulations

Analog computer simulutions have been presented by several

X
authors(l"'

4 2 i 3 ’ :

) for obtaining the system response to harmonic excitation.
Additionally, Lutes and Shahfs) have used a digital computer for the
simulation of the system model to random excitation. However, little

published information is generally available about computer

simulation techniques and applications.




2.5.2 Equivalent Lineari:zation Techniagues

Equivalent lirearization techniques have been studied in detail by

fadl) . ; g
several authors.(l' 18 The most common method is the Krylov-Bogoliubov
technique. In this method, two parameters, Yoq and Ceq' are chosen
to establish an equivalent linear system that mininmizes the mean square

difference between the following equations:

e TP PR T (2.37)

A " )
X + ZCeqweqx - u;qx o Py (2.38)

Equation 2.37 is a normalized extension of Equation 2.1, with the damp-
ing coefficient Ci equal to a constant C and +(x) representing
the hysteresis spring stiffness restoring-force function. Caughey(l]

has shown under the assumption of a narrow-band displacement response

with a Rayleigh distribution that the following relationships apply:

W 2 ] .
(_33) s 1 - [§11_L_il .[ (;" . a’lz'l)(z - 1)1/2 exp(=2"/4)

(2.39)
) ¢ : ” 9 ™ A
R ;(“’ )+ ( ") 0« a) (s HF gpge(r=1/%) (2.40)
eq W w
eq eq
where
= 2 :
X .ax (2.41)




Evaluating Equations 2.39 through 2.41 numerically, one is able to
determine Yeq and :eq and thus define the "equivalent' RMS response
of the system. The basic difficulties encountered using this method
are that the displacement response normally is not narrow-banded nor

does it have a Rayleigh distribution. Lutes(lé) has proposed a modifi-

cation to this method that takes into account the experimentally

observed statistics of the system response. However, a detailed evalua- ]

(14)

tion and error analysis of the hypothetical Lutes modification has

not been presented in published literature.

2.5.3 Power Balance Method
(19-22)

Karnopp originally proposed this technique, which is an

attempt to equate the average power, PI’ supplied to the system by

the environment

: ﬂSo
Pl = E[f(t) . x(t)] A (2.42)

with the power dissipated, PD’ by the system hysteretic effects. The
basic underlying assumption of this method is that the system viscous
damping (z) must be small (* 1%) so that the effect of hysteresis energy
dissipation is dominant. Karnopp(zz) has also shown that this method
has a great deal of promise for extension to multidegree-of-freedom
hysteretic systems. The analytic procedure for this method consists of
selecting a statistical characterization for «x(t), computing the

average power dissipated PD, and using Equation 2.42 to relate x(t)

to the input forcing level So. This is basically a theoretical




approximation, and there are few published data to verify its accuracy.
However, Takemiya and Lutes(sl) recently showed that for the two basic
equations of the Krylov and Bogoliubov equivalent linearization tech-
nique, Equations 2.37 and 2,358, one is identical to this power-balance
method and the other can be expressed as a simple energzy identity.

(3 also showed that the accuracy of the power-

Takemiya and Lutes
balance method is dependent on how well one can equate input versus
dissipated power and the validity of the approximation for the assumed

response statistics.

2.6 COMPUTER SOLUTION

Included in this section is a brief description of the two digital
computer logics (ID117E and ID91E) created to obtain numerical data for
the analytic solutions of the system model proposec in this chapter and

shown in Figures 2.1 through 2.3.

2.6.1 Computer Logic (ID91E)

The basic underlying concept of this approximate (i.e., theoretical)
solution, is that it is reasonable to assume to a first order

approximation that the displacement spectral density Sx(u) of the

system can be approximated by

| 2
S, (w) = |[H (w) | Sgla) (2.43)

d

where Sf(u) is the excitation PSD and in(wJ§ is the amplitude of

w

the frequency response function of the system when subjected to a
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harmonic excitation function of frequency w. This approximaticn is

particularly valid for narrow-band processes; and, as shown in
Figure 2.4, the PSD response of a bilinear hysteretic system displays
a narrow-band response when (a = 1/2), but an extremely wide-band

response when (a = 1/21).

The amplification factor (i.e., transfer function) |Hg(w)| is

given by
; *max
iﬂd(w): . Tﬁr'Tf;T (=.43)
where Ris is the maximum displacement from Equation 3.34 correspond-

-
ing to an acceptable 4., solution of Equation 2.36. If both ¢,

- -

solutions (i.e., SOL[1] and SOL[2]) are acceptable, then

B SOL(1) : SCL(2) (2.45)

max 3
Additionally, the computer logic equates

b |
xmax = 0 2.46)

if both ‘s solutions are unacceptable; but prior to integration, all

zero values of the transfer function are interpolated to correspond with

adjacent neighboring values and thus to create a smooth transfer

-
It should b noted that an acceptable soluticn of ¥, must be between
the limits, 0 < 9, < =,
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function without discontinuities. The magnitude of the harmonic force
Fo used to determine t.e¢ transfer function is obtained from the random

excitation level by the relation

Using in(m)i determined from Equation 2.44, the RMS displacement

response o is given by

+ X

Q
(1

2 s
Bin"] = &

w=0

where S° is the uniform spectral density of F(t)/(MY). The final
theoretical response value is obtained by the numerical integration of

Equation 2.48 by Simpson's rule.

2.6.2 Computer Logic IDI17E

The "experimental' displacement response of the system model to
random excitation was determined through the use of a digital computer
methodology using Runge-Kutta techniques for the numerical integration

of the governing equation of motion, Equation 2.25.

2.7 CONCLUSIONS
Tvo digital computer methodologies (i.e., ID117E and ID91E) have
been presented for determining tne dynmamic response of a viscously

damped bilinear hysteretic oscillator subjected to stationary, Gaussian
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random excitation. The basic limitation:c observed for these proposed
computer logics are:

a. The system hysteresis lcop must be a softening type defined
by Masing's Hypothesis. However, similar to the program
versions discussed in Chapter 1, these computer logics can
be modified to predict the displacement response of a system
with a hardening type of spring stiffness if the hysteresis
loop geometry is defined.

The accuracy of computer method ID91E is comparable to the
presently popular Krylov and Bogoliubov approximate method.

The approximate analytical solution (ID91E), which obtains theo-

retical response values by using a transfer function derived from a
discrete harmonic excitation function, is shown in Figures 2.6 and 2.7
to be in good agreement with published data for (a = 1/2). However,
Figures 2.8 through 2.10 show that for (« = 1/21), this method is no
more accurate than the Krylov and Bogoliubov approximate method in

(2)

estimating the response values published by Iwan and Lutes.’ Since
accurate overall estimates of displacement response are obtained only
for (a = 1/2), it appears by inspection that the inability to obtain
reasonable displacement response estimates for small a values is due
primarily to observed wide-band PSD res 3 Figure 2.4) rather than
the effect of non-Gaussian (i.e., "amplitude limiting") displacement

characteristizcs (Figure 2.5). For example, Figures

clearly show that for midrange values of /Y (0.5

correspond in Figure 2.4(A) to wide-band PSD responses, the approximate

method tends to yield less accurate response estimates.
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This inaccuracy of the approximate method (ID91E) is not totally

unexpected, since it is impossible for a discrete harmonic excitation
function to generate a transfer function tha* approximates the actual
frequency response relationships of a system with wide-band character-
istics. It was originally anticipated that the IDO1E approximate method
would be more accurate than the Krylov and Bogoliubov approximate
method, but this investigation clearly shows that there is no appre-
ciable difference in the accuracy of either method.

The "experimental" solution (ID117E), which obtains displacement
response by numerical integration of the system model equation of
motion, is shown in Figures 2.11 through 2.15 to be in good agreement
both qualitatively and quantitatively with published data for the
parameter ranges displayed. It is important to remember that (a = 1/2)
represents a moderate bilinear hysteretic system ard (a2 = 1/21) closely
approximates the elastoplastic problem. Figures 2.1] through2.16
validate the accuracy of this proposed digital methodology. They also
demonstrate that as the system damping ratio (2) is increased,

the effect of hysteresis is decreased.

2.8 TILLUSTRATIONS

Included in this section are all the figures associated with

-

Chapter 2. They appear in the order in which they are referenced in
the text. The following special notes apply to Chater 2 figures and

tables:
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All parameters used in the figures are defined in the List of

Symbols, page

The Iwan and Lutes(

2.15 are identical to the system displacement response data

published by Lutes and ShanS) and Caughey.(ll

i

:

2) . . i

data presented in Figures 2.6 through I
M

The Krylov and Bogoliubov data obtained from Iwan and Lutes(') |

and displayed in Figures 2.6 through 2.15 are representative i

;

of displacement response estimates obtained with this

approximate method.

The ID117E (“experimental') data displayed in Figures 2.11

through 2.16 are, per the discussion in Appendix B, the

statistical ensemble average of (N = 24) data samples.
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