ATTACHMENT 3

WCAP-11164, SUPPLEMENT 1, "ADDITIONAL INFORMATION IN SUPPORT OF THE TECHNICAL JUSTIFICATION FOR ELIMINATING LARGE PRIMARY LOOP PIPE RUPTURE AS THE STRUCTURAL DESIGN BASIS FOR NORTH ANNA UNITS 1 AND 2" (NON-PROPRIETARY)

8803160355 880308 PDR ADOCK 05000338 P PDR WCAP-11164 Supplement 1

ADDITIONAL INFORMATION IN SUPPORT OF THE TECHNICAL JUSTIFICATION FOR ELIMINATING LARGE PRIMARY LOOP PIPE RUPTURE AS THE STRUCTURAL DESIGN BASIS FOR NORTH ANNA UNITS 1 AND 2

January 1988

S. A. Swamy J. C. Schmertz C. B. Bond Y. S. Lee C. C. Kim

Verified by:

Witt J.

Approved by: S. S. Palusamy, Manager Structural Materials Engineering

Work Performed Under Shop Order VH0J950

WESTINGHOUSE ELECTRIC CORPORATION Generation Technology Systems Division P.O. Box 2728 Pittsburgh, Pennsylvania 15230-2728

28254-012288 10

TABLE OF CONTENTS

Section	Title	Page
1.0	SUMMARY AND INTRODUCTION 1.1 Summary	1-1 1-1
	1.2 Introduction	1-1
2.0	FABRICATION AND WELDING PROCESSES FOR THE PRIMARY LOOP	2-1
3.0	MATERIAL PROPERTIES	3-1
4.0	LEAKAGE FLAW DETERMINATIONS	4-1
5.0	STABILITY ANALYSES	5-1
6.0	DISCUSSION AND CONCLUSIONS	6-1
0.0	6.1 Discussion	6-1
	6.2 Conclusion	6-2
7.0	REFERENCES	7-1
APPENDI	A - THE NRC REQUEST FOR ADDITIONAL INFORMATION	A-1

.

۷

LIST OF TABLES

é

.

Table	Title	Page
S3-1	Mechanical Properties of the Primary Loop Materials for North Anna Units 1 and 2 at Room Temperature	3-2
S3-2	Mechanical Properties of the Primary Loop Materials for North Anna Units 1 and 2 at 650°F	3-5
S3-3	Lower-Bound and Average Materials Properties Used in the North Anna Units 1 and 2 Leak-Before-Break Analysis	3-7
S4-1	Leak Rate Results	4-2
S5-1	Results of Stability Analyses	5-2

LIST OF FIGURES

Figure		Title								
\$3-1	Lower	Bound	Stress-Strain	Curve	for	SA351	CF8A	at	620°F	3-8
\$3-2	Lower	Bound	Stress-Strain	Curve	for	SA351	CF8M	at	620°F	3-9
S3-3	Lower	Bound	Stress-Strain	Curve	for	SA351	CF'8M	at	556°F	3-10

SECTION 1.0 SUMMARY AND INTRODUCTION

1.1 Summary

Virginia Electric Power Company submitted a leak-before-break analysis for the reactor coolant loops, WCAP-11163, to NRC in support of their snubber reduction program for Worth Anna Units 1 and 2. After completing their review the NRC transmitted to Virginia Electric Power Company a request for additional information. Virginia Electric Power Company contracted with Westinghouse Electric Corporation to respond to the NRC request including the performance of analyses. This report represents the response.

Additional materials information is provided. Additional leak-before-break analyses were performed using average properties for leak-rate calculations and lower-bound properties for stability calculations. Elastic-plastic fracture mechanics procedures were applied. The margin criteria of 10 on leakage rate, 2 on crack size and 1.4 on load were met as detailed in the NRC request.

It is concluded that leak-before-break conditions are demonstrated for North Anna Units 1 and 2 primary loops using the criteria and recommendations provided by the NRC. The conclusions of WCAP-11163 are unchanged.

1.2 Introduction

Virginia Electric Power Company contracted with Westinghouse Electric Corporation to develop a leak-before-break analysis for the North Anna Units 1 and 2 nuclear power plant for licensing support in their snubber reduction program. The leak-before-break analysis is documented in Westinghouse Proprietary Class 2 Report WCAP-11163 (reference S1.1). WCAP-11164 is the associated Westinghouse Class 3 report. During the regulatory review process, the Nuclear Regulatory Commission (NRC) issued a Request for Additional Information on Elimination of Postulated Primary Loop Pipe Ruptures as a Design Basis. This report addresses the NRC request. The NRC request is given in Appendix A. Portions of the NRC request are answered as independent items; however, those directly involving the calculational methods are best addressed by presenting a reanalysis reflecting the NRC's request. Specifically, request items 1, 2, and 3 are addressed in separate sections while items 4, 6 and 7, are addressed in the same section. Item 5 is addressed in the concluding discussion. The details included in WCAP-11163 are referenced extensively and, in general, will not be reproduced in this report.

SECTION 2.0

FABRICATION AND WELDING PROCESSES FOR THE PRIMARY LOOP

The primary loop piping of North Anna Units 1 and 2 are made of SA351 CF8A cast stainless steel. The elbows are made of SA351 CF8M cast stainless steel. The piping is centrifugally cast while the fittings are statically cast. The field welds feature a gas tungsten arc weld (GTAW or TIG) root pass followed by shielded metal arc welding (SMAW) to completion. The shop welds are either SMAW or submerged arc (SAW) with a GTAW root pass. Weld repairs on shop welds would be either SMAW or GTAW. The welds have TP 308 stainless steel chemistry. No solution annealing was performed.

SECTION 3.0 MATERIAL PROPERTIES

The material properties presented in tables S3-1 through S3-3 of WCAP-11163 are the ASME Boiler and Pressure Vessel Code Section III minimum properties at the operating temperatures. However, to perform the reanalyses given in the next section, elastic-plastic analyses are required. The material properties at operating temperatures were calculated as follows:

Plant specific material certifications were used to establish the tensile properties for the leak-before-break analyses. Table S3-1 shows the tensile properties at 70°F for SA351 CF8A and SA351 CF8M materials. Table S3-2 shows the tensile properties at 650°F as taken from the material certifications.

The lower bound properties were used for crack stability analysis and the average properties were used for leak rate calculations. These properties are summarized in table S3-3 for the critical locations discussed in reference S1.1. The lower bound stress-strain curves used in the stability evaluations are given in figures S3-1 through S3-3 obtained using the methodology of reference S3.1.

1ª, C, e

3-1

TABLE S3-1

. .

MECHANICAL PROPERTIES OF THE PRIMARY LOOP MATERIALS FOR NORTH ANNA UNITS 1 AND 2 AT ROOM TEMPERATURE

PRODUCT FORM	HEAT NR	MATERIAL	0.2% OFFSET YIELD STRESS (PSI)	ULTIMATE STRENGTH (PSI)	# ELONGATION	% REDUCTION IN AREA
27.5 in. ID Cold	B-2356	A351 CF8A	39,450	81,100	50.0	61.8
Leg Pipe	B-2548	A351 CF8A	35,000	78,300	52.0	65.9
eeg t pe	B-2620	A351 CF8A	40,950	79,900	52.0	71.0
	B-2647	A351 CF8A	42,300	83,400	55.0	73.2
	B-2659	A351 CF8A	39,800	77,611	59.0	73.4
	B-2608	A351 CF8A	43,950	84,700	43.0	62.8
	B-2632	A351 CF8A	38,950	80,100	56.0	74.3
	B-2715	A351 CF8A	43,000	83,283	53.0	64.8
	143325	A351 CF8A	50,100	84,250	52.0	N/A
29 in. ID Hot	B-2641	A351 CF8A	39,950	82,900	53.0	66.8
Leg Pipe	8-2764	A351 CF8A	41,958	82,215	50.0	69.0
Leg Tipe	B-2744	A351 CF8A	36,960	79,020	49.0	69.7
31 in. ID Cross- over Leg Piping	C-1037A, B,C	A315 CF8A	43,000	85,700	55.5	64.7
over Leg riping	C-1153A	A351 CF8A	39,460	83,310	56.0	70.6
	C-11538	A351 CF8A	39,460	83,310	56.0	70.6
	C-1632A	A351 CF8A	39,960	83,100	50.0	65.6
31 in. ID x 90D	K0169	A351 CF8M	48,800	80,300	39.4	63.2
W/Splitter	K0222	A351 CF8M	41,100	74,700	50.4	64.2
27.5 in. ID X	56818	A351 CF8M	41,600	74,700	46.1	65.1
35D Elbow	56824	A351 CF8M	50,500	76,300	43.1	66.9
	56844	A351 CF8M	46,100	76,300	40.1	64.2
31 x 29 in. ID	58071	A351 CF8M	50,500	79,700	40.1	63.2
Reducing Elbow	58090	A351 CF8M	52,800	83,100	37.8	66.0
	58118	A351 CF8M	47,200	76,900	46.8	71.3

2825+-020388-10

3-2

TABLE S3-1 (cont.)

.

.

MECHANICAL PROPERTIES OF THE PRIMARY LOOP MATERIALS FOR NORTH ANNA UNITS 1 AND 2 AT ROOM TEMPERATURE

.

*

	PRODUCT FORM	HEAT NR	MATERIAL	0.2% OFFSET YIELD STRESS (PSI)	ULTIMATE STRENGTH (PSI)	% ELONGATION	% REDUCTION IN AREA
	31 in. ID x 40D Elbow	57528A 57604	A351 CF8M A351 CF8M	42,100 39,900	74,100 72,400	50.9 56.9	66.0 61.3
	31 in. ID x 90D Elbow	57412 57452 57604	A351 CF8M A351 CF8M A351 CF8M	41,000 42,780 39,900	76,300 75,200 72,400	49.5 50.5 56.9	66.9 72.2 61.3
	31 in. ID x 900 w/splitter	K0160	A351 CF8M	47,200	80,300	48.4	67.8
,	27.5 in. ID Cold Leg Pipe	C-2291A &B	A351 CF8A	37,460	80,920	47.0	63.0
	Leg i ipe	C2152 C-2230 C-2246	A351 CF8A A351 CF8A A351 CF8A	35,090 46,200 39,960	79,200 82,500 83,920	50.0 54.0 53.0	68.5 68.6 68.8
		C-2205A &B	A351 CF8A	44,955	79,320	51.0	64.2
		147377, PCS1-3	A351 CF8A	51,380	83,400	52.0	N/A
	29 in. ID Hot Leg Pipe	C-1638 C-1804 C-1751	A351 CF8A A351 CF8A A351 CF8A	44,455 41,960 42,600	84,815 80,920 83,750	47.0 50.0 50.0	64.7 69.0 72.5
	3/in. ID Crossover Leg Pipe	C-2103	A351 CF8A A351 CF8A	40,960 43,800	82,320 83,750	41.0 55.5	71.9 68.8
		C-16328 C-1153C	A351 CF8A A351 CF8A	39,960 39,460	83,100 83,310	50.0 56.0	65.6 70.6

3-3

TABLE S3-1 (cont.)

. .

MECHANICAL PROPERTIES OF THE PRIMARY LOOP MATERIALS FOR NORTH ANNA UNITS 1 AND 2 AT ROOM TEMPERATURE

*

1.16

	PRODUCT FORM	HEAT NR	MATERIAL	0.2% OFFSET YIELD STRESS (PSI)	ULTIMATE STRENGTH (PSI)	Z . ELONGATION	* REDUCTION IN AREA
	27.5 in. ID x 350	57663	A351 CF8M	54,500	84,800	34.9	57.3
	Elbow	57731	A351 CF8M	51,600	81,400	45.0	62.3
		57801	A351 CF8M	48,300	79,700	44.0	71.3
	31 x 29 in. ID	58148	A351 CF8M	51,600	85,300	40.7	66.9
	Reducing Elbow	58159	A351 CF8M	46,100	83,600	46.2	63.2
	31 in. 1D x 40D	58090	A351 CF8M	52,800	83,100	37.8	66.0
فع)	Elbow	58118	A351 CF8M	47,200	76,900	46.8	71.3
4	31 in. ID x 90D	58009	A351 CF8M	47,200	78,000	38.4	67.8
	Elbow	58037	A351 CF8M	44,900	76,900	51.0	71.3
		58071	A351 CF8M	50,500	79,700	40.1	63.2
	31 in. ID x 90D	K0399	A351 CF8M	40,400	72,400	42.1	69.6
	W/Splitter	K0134	A351 CF8M	50,000	80,300	45.5	65.1
		K0876	A351 CF8M	41,000	74,700	47.9	67.8

3-0

TABLE S3-2

. . . .

٠

MECHANICAL PROPERTIES OF THE PRIMARY LOOP MATERIALS FOR NORTH ANNA UNITS 1 AND 2 AT 650°F

	PRODUCT FORM	HEAT NR	MATERIAL	0.2% OFFSET YIELD STRESS (PSI)	ULTIMATE STRENGTH (PSI)	2 . ELONGATION	% REDUCTION IN AREA
	27.5 in. ID Cold	B-2356	A351 CF8A	23,400	60,000 63,000	31.0 39.0	53.0 57.3
		B-2548	A351 CF8A	21,500 24,800	67,000	36.0	54.7
		B-2620 B-2647	A351 CF8A A351 CF8A	22,400	64,250	46.0	59.4
		8-2659	A351 CF8A	20,000	58,500	43.5	59.8
		B-2608	A351 CF8A	23,700	64,500	37.0	58.6
		B-2632	A351 CF8A	20,900	63,750	46.0	68.6
		B-2715	A351 CF8A	21,000	65,000	43.0	65.4
		143325	A351 CF8A	24,450	N/A	N/A	N/A
1	29 in. ID Hot	B-2641	A351 CF8A	20,300	62,500	47.5	64.7
	Leg Pipe	B-2764	A351 CF8A	22,200	64,500	42.0	66.7
	ceg i ipe	B-2744	A351 CF8A	23,300	64,000	41.5	63.5
	31 in. ID Cross- over Leg Piping	C-1037A, B,C	A351 CF8A	27,400	66,000	38.0	58.6
	over Leg riping	C-1153A	A351 CF8A	23,700	65,750	38.0	53.8
		C-1153B	A351 CF8A	23,700	66,000	38.0	58.6
		C-1632A	A351 CF8A	24,200	60.000	39.0	51.1
	31 in. ID x 90D	K0169	A351 CF8M	30,300	64,000	39.4	62.3
	W/Splitter	K0222	A351 CF8M	24,700	57,300	41.0	65.1
	27.5 in. ID x	56818	A351 CF8M	24,700	53,900	54.0	64.2
	35D Elbow	56824	A351 CF8M	31,400	66,200	44.7	42.8
		56844	A351 CF8M	25,200	56,100	32.4	47.5
	31 in. ID x 40D	57528A	A351 CF8M	24,730	56,100	44.7	59.3
	Flbow	57604	A351 CF8M	23,600	56,100	49.8	59.3

2825s-020388 10

ω-5

TABLE S3-2 (cont.)

.

.

*

.

MECHANICAL PROPERTIES OF THE PRIMARY LOOP MATERIALS FOR NORTH ANNA UNITS 1 AND 2 AT 650°F

	PRODUCT FORM	HEAT NR	MATER	IAL	0.2% OFFSET YIELD STRESS (PSI)	ULTIMATE STRENGTH (PSI)	% . ELONGATION	% REDUCTION IN AREA
	31 in. ID x 90D Elbow	57412 57452 57604	A351 C A351 C A351 C	F8M	25,800 24,700 23,600	59,500 58,400 56,100	49.8 46.0 49.8	59.3 59.3 59.3
	31 in. ID x 90D w/splitter	K0160	A351 C		33,700	64,000	36.0	60.3
3-6	27.5 in. ID Cold Leg Pipe	C-2291A& C-2152 C-2230 C-2246 C-2205A& B 147377, PCS 1-3	A351 C A351 C A351 C A351 C A351 C	2F8A 2F8A 2F8A 2F8A	23,100 19,950 23,700 26,400 22,700 25,650	65,000 62,250 66,250 66,250 64,000 N/A	35.0 42.5 46.0 37.5 43.5 N/A	32.0 34.7 60.1 51.9 57.3 N/A
	29 in. ID Hot Leg Pipe 31 in. ID Crossover Leg Pipe	C-1638 C-1804 C-1751	A351 C A351 C A351 C A351 C A351 C A351 C A351 C	2F8A 2F8A 2F8A 2F8A 2F8A	22,300 25,500 25,000 23,400 23,100 24,200 23,700	64,000 64,500 67,000 65,000 63,750 66,000 65,750	39.0 42.0 37.0 37.5 41.0 39.6 38.0	64.7 61.8 50.6 60.3 59.8 51.1 53.8
	31 in. ID x 90D w/Sp:itter	K0399 K0134 K0876	A351 C A351 C A351 C	F8M	25,800 31,400 21,600	55,600 65,900 55,000	28.9 36.6 35.6	63.2 63.2 59.3

N/A " not available

3-6

TABLE S3-3 LOWER-BOUND AND AVERAGE MATERIAL PROPERTIES USED IN THE NORTH ANNA UNITS 1 AND 2 LEAK-BEFORE-BREAX ANALYSIS*

LOCATIONS	MATERIAL	PROPERTY TYPE	TEMPERATURE (°F)	YIELD STRESS (psi)	ULTIMATE STRESS (psi)	MODULUS OF ELASTICITY (psi)
1	SA351 CF8A	Lower Bound Average	620 620	ſ		a,c,e
2	SA351 CF8M	Lower Bound Average	620 620			
3,4,5	SA351 CF8M	Lower Bound Average	556 556			
				L		-

.....

3-7

*Poisson's ratio used is 0.3

Figure S3-1: Lower Bound Stress-Strain Curve for SA351 CFBA at 620°F

a,c,e