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ABSTRACT

Existing methods for sensftivity analysis are described and new tech-
niques are proposed, These techniques are evaluated through consideration
relative to the QUASAR program, Merits and limitations of the various ap-
proaches are examined by a detailed application to the Suppression Pool Aero-
sol Removal Code (SPARC).
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EXECUTIVE SUMMARY

The complex physical processes governing the phenomena that determine
source terms are not completely understood, Thus, characterization of the
magnitudes of uncertainties associated with predictions of computer models is
necessary, The radiological releases following a severe nuclear reactor acci-
dent can be estimated using semi-mechanistic computer codes such as the Source
Term Code Package (STCP),

In order to better establish the estimates of source terms using these
computer codes, quantification of the uncertainties in the resulting source
term is essential,

The Quantification and Uncertainty Analysis of Source Terms for Severe
Accidents in Light Water Reactors (QUASAR) program is aimed at addressing un-
certainties associated with input parameters as well as phenomenological mod-
els, In order to achieve the former objective, it is nacessary to perform:
(1) uncertainty analysis which yields the Probability Density Functions (PDFs)
of the model outputs, and (2) sensitivity analysis which determine the sensi-
tivity of the output PDFs to the input PDFs,

The objectives of this report are:

1. to describe existing methods and to propose new approaches by which to as-
sess the sensitivity of the output probability distributions characteriz-
ing source term uncertainties to the input distribution assumptions,

2. to apply the existing and the proposed methods to a member code of the
Source Term Code Package in order to assess the feasibility of their im-
plementation, The Suppression Pool Aerosol Removal Code (SPARC) is
adopted for this purpose, and

3, to assess and to compare the success of the methods under consideration,

Existing methods for assessment of the sensitivity output distributions
to the form of the distributions attached to input parameters to computer mod-
els have been described, These are referred to as the classical regression
method, the weighting method and the rejection method, Further, modifications
to and variations upon these established methods have been proposed, These
are referred to as the modified regression method and the method of closest
distance, Through application to SPARC, the possibility of implementing these
technigues within the context of the QUASAR program has been assessed,

The study shows that:

a) The contrast amongst the results stemming from the five methods is not
marked, In general, the modified rank regression technique performed
better than the classical rank regression model while the method of
closest distance outperformed the weightinc method,



b)

-Xjye-

The performance of the two regression methods reviewed clearly would in
general be dependent upon the degree to which the regression mode) adopted
can provide a good fit to the underlying computer model, Hence, in cir-
cumstances where the regression model provides a poor surrogate for the
original computer model, then the weighting method and the rejection
method might be expected to produce better approximations for the output
distributions than would the regression methods, The method of closest
distance would also be anticipated to display some reliance upon the good-
ness of the regression fit since the distance measure utilized therein
incorporates regression-based information, However, one might expect the
method of closest distance to provide a better surrogate for the computer
model than the regression model in circunstances where the regression
model would provide a poor fit since the method of closest distance does
not explicitly resort to response surface techniques but instead relies
directly upon outputs obtained by the original computer model,

It is not possible to draw general conclusions about the relative perform-
ance of the methods assessed regarding application to a range of computer
models, Judicious application of each of the five approaches (1,e., the
classical and modified regression approachs, the weighting method, the
rejection method and the method of closest distance), weighed by a knowl-
edge of the goodness of fit of the regression models formulated will pro-
vide a basis for output distribution sensitivity analysis in the QUASAR
program,



1.  INTRODUCTION

1.1 Background

The complex physical processes governing the phenomena that determine
source terms are not completely understood. Thus, characterization of the
magnitudes of uncertainties associated with predictions of computer models is
necessary., The radiological releases following a severe nuclear reactor acci-
dent can be estimated using semi-mechanistic computer codes such as the Source
Tesm Code Package (STCP).!

In order to better establish the estimates of source terms using these
computer codes, quantification of the uncertainties in the resulting source
term is essential,

The sources of uncertainty include both the models themselves as well as
model input parameters required to characterize the physio-chemical processes.

The Quantification and Uncertainty Analysis of Source Terms for Severe
Accidents in Light Water Reactors (QUASAR)? program is a‘med at addressing un-
certainties associated with input parameters as well as phenomenological mod-
els., In order to achieve the former objective, it is necessary to perform:
(1) uncertainty analysis which yields the Probability Density Functions (PDFs)
of the model outputs, and (2) sensitivity analysis which determine the sensi-
tivity of the output PDFs to the input POFs. The current report is designed
largely to address the second goal., The first goal is discussed elsewhere,?

1.2 Review of Sensitivity Analysis Methods

A 1ist of current sensitivity analysis methods include:

1., Differential Ana];sis Methods“»5+8,
2. Expansion Methods’»®

3, Response Surface Methods?

4, Direct Methods,'0,11

Most of the differential and expansion methods are based on the calcula-
tion of the first order nartial derivative of output variable with respect to
each input variable about their reference values. The sensitivity measures
based on these methods depend generally, therefore, on the reference values.
Siace higher order derivatives are not included, this first order derivative
measure is valid only for the case of functional relationships that deviate
minimally from linearity. The complexities involved in source term uncertain-
ty analysis make it very difficult to use analytical sensitivity analysis
methods (i.e., both differential and expansion methods).

The response surface method (RSM) is a direct simplified simulation of
physical or logical models. The RSM method is based on building a replacement
for the computer model under consideration with the use of various sampling
techniques (Latin Hypercube Sampling,!2s13 Random Sampling, Experimental De-
sign, etc.) and regression analysis,!“s15,16 The resulting regression
model is then used as a replacement for the original model in the sensitivity
analyses, It should be noted that the sensitivity analysis is then performed
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with regard to the regressed models and not on the original models; thus, the
results obtained are only as valid as the approximations attendant in regres-
sed models themselves,

Direct methods utilize a limited number of calculations based upon the
original model, Iman et al,,'? have proposed a method which determines the
impact of the input PDFs on the output PDFs without the need for computer cal-
culations and response surface technique, In this method, the statistical
parameters for the output variable are calculated based upon a weighting fac-
tor which reflects the change of the input PDFs, Henceforth, this approach
will be referred to as the weighting method, Beckman and McKayll have pro-
posed the so-called rejection method which permits the effects of the new PDFs
to be ascertained through inspection of a subset of the original computer
model outputs,

In the QUASAR sensitivity analysis where the sensitivity of the output
POFs to the input PDFs is to be evaluated, both response surface methods and
direct methods seem to be applicable, As an example of response surface meth-
ods, the classical regression model is briefly described in Section 3,1,1 and
a modified regressicn model is proposed in Section 3,1,2., Regarding direct
methods, the weighting method and the rejection method are described in Sec-
tions 3.2.1 and 3,2.2, respectively, Further, a method related to the weight-
ing approach but based upon the modified regression model is proposed in Sec-
tion 3,2.3.

1.3 Objectives and Organization of the Report

The objectives of this report are:

1. to describe existing methods ana to propose new approaches by which to
assess the sensitivity of the output probability distributions character-
izing source term uncertainties to the input distribution assumptions,

2, to apply the existing and the proposed methods to a member code of the
Source Term Code Package in order to assess the feasibility of their im-
plementation, The Suppression Pool Aerosol Removal Code (SPARC)!” is
adopted for this purpose, and

3, to assess and to compare the success of the methods under consideration,

Chapter 2 briefly describes the QUASAR methodology, The existing and the
proposed sensitivity analysis methods are described in Chapter 3, Chapter 4
demonstrates the merits and limitations of the methods through application to
SPARC, The conclusions are summarized in Chapter 5,



2. QUASAR METHODOLOGY

In order to estimate the uncertainties associated with the severe acci-
dent source terms predicted by the STCP, the following steps are to be fol-
lowed as part of the QUASAR (Quantification and Uncertainty Analysis of Source
Terms for Severe Accidents in Reactors) program at Brookhaven National Labora-
tory (BNL):?

1. Screening Analysis: This stage is necessary to reduce the number of
input variables to a manageable size. This is accomplished by para-
metric sensitivity studies on the various codes in the STCP,

2. Uncertainty Analysis: This stage consists of (a) identification and
classification, (b) quantification, and (c) propagation., Identifica-
tion and classification of uncertainties entails a detailed examina-
tion of the various models and their associated computer codes in the
STCF.  The quantification process in QUASAR will entail using the
available experimental data base to establish reasonable upper and
lower bound estimates together with Probability Density Functions
(PDFs) for the sensitive input parameters/options to the STCP, The

ropagation of input uncertainties through the STCP will be accom-
plished through a stratified Monte Carlo simulation using the Latin
Hypercube Sampling approach,*2,13

3., Sensitivity Analysis: Folliowing the completion of the uncertainty
analysis stage, the sensitivity of the output PDFs will be estab-
lished.,

This report provides techniques for the last of these steps: sensitivity
analysis following a detailed uncertainty analysis. This sensitivity analysis
will address the impact of the assumptions regarding the subjective input
PDFs.

In the following discussion, we suppose that the results of screening
analysis and uncertainty analysis are available. That is, the number of input
variables included in the uncertainty analysis has been reduced to a managea-
ble size, and the values of the output statistical parameters such as mean,
standard deviation, cumulative distribution function have been obtained
through stratified Monte Carlo simulation using the Latin Hypercube Sampling
approach.

Sensitivity analysis techniques most suitable for the present application
will be discussed and developed in Chapter 3.
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3. METHODS FOR QUTPUT DISTRIBUTION SENSITIVITY ANALYSIS

In order to perform post-uncertainty sensitivity analyses, extensive
mathematical relationships between model/code inputs and outputs are required.
These relationships can be obtained through (a) regression and response sur-
face analysis in which the original computer model is replaced by a simplified
surrogate modei, or (b) direct utilization of a 1imited number of calculations
based upon the original model as proposed by Iman et al.,!? and Beckman and
McKay .

Examples of both regression and direct methods are reviewed and possible
alternatives are developed and outlined in the following sections.

3.1 Regression Methods

3.1.1 Classical Regression Approzch

In a linear regression approach, the output variable y is approximated by
a linear polynomial function of input variables x;., X,, +sey XK, that is:

K
y=a ¢ 121 a;x, (3.1)

where ap and aj are constants fitted to the comouter model results based
upon Latin Hypercube Sampling or experimental design of the inputs.

As measures of input importance, the coefficients a; become meaningful
only in the case that the parameter inputs are dimensionally comparable. The
problem of different units of measurement in the input variables can be elimi-
nated by standardizing all variables as:

Xg » xg* = (% - <x1>)/o(x1). (3.2)

y > y*=(y - <y>)/oly), (3.3)

where <xiy> and <y> are the means and o(xj) and o(y) the standard devia-
tions of the variables x4 and y, respectively. Eq. (3.1) can now be rewrit-
ten in the following standardized form,

K
y*= § a* x1*. (3.4)
L)

Here the a;* are called the Standardized Regression Coefficients (SRCs).

To better account for nonlinearity in the original model, it is often
more sensible to formulate rank reqression equations using the variable ranks
instead of the original variables.'“»!5 Specifically, the smallest value of
each variable is assigned the rank 1, the next smallest value is assigned the
rank 2, and so on up to the largest value which is assigned the rank N, where
N denotes the number of observations. Therefore, the rank regression form of



Eq. (3.1) is given by

-~ K -~
ry "3t 121 ary. (3.5)

Here ry and ry, are ranks of x; and y, respectively, The ry and ry
are standardizeJ according to the following relations:

ry r** = (r1 - <ri>)/a(r1), (3.6)

and

ry > ry* = (ry - <ry>)/o(ry) (3.7)

where <ry> is tne mean value of some sample set ry, <ry> is the mean
value of the resultant output set ry, o(ry) and c(ry) age the standard
deviations for the sample sets ry and r,, respectively. Therefore, using
Eqs. (3.6) and (3.7), the standardized form of Eq. (3.5) is as follows:

K. .
re= 5 4*rv (3.8)
y j=1 i i

A value of y is easily obtained from the rank ry by using an interpolation
method. It is known that the rank regression equa{ion can well approximate y,
even if it does not only include linear terms, when y is a monotonic functien
of the xi's.!"

5The goodness-of-fit of the regression model is measured by the quanti-

ty,!
N N N
2 a 2 - 2 - 2
RE = (y. = <y>)¢/ (y, = <y>)° + (y:. = y.)°}, (3.9)
jgl Y {ng ¥y - 9 321 Yy = ¥}

called the coefficient of determination, where 9. and y. are the raw values of
y given by the regression equation and the or1§1nal cbmputer model, respec=
tively.

With regard t. output distribution sensitivity analysis, the sensitivity
calculations are now performed with regard to the regression model rather than
with regard to the original computer code., That is, alternative distributions
on the inputs x4 are considered and their effects upon the output distribu-
tion as predicted by the regression model are ascertained.

3.1.2 Modified Regression Approach
In this section, a modified regression model based upon the classical ap-

proach is proposed, Given a functioni] relationship between the computer mod-
el inputs and outputs of the form:

y = F(x1s %24 0uey Xk ) s (3.10)
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a Taylor series expansion of F around a sample vector ;s = (xls. Xpgr wens
xKs) can be performed to obtain:

K aF e
y » F(x.) + (Xg = Xy() =— o4 3.11
o) * 1 4t R " e Bt |

Here, ;s is one of the original samples generated by LHS methods relative to
the original input distributions. Now, in the light of alternative input dis-
tributions, a new set of input vectors X, where x = (x,, X,, +v., XK) are
generated, Eq. (3.11) is implemented relative to a new vector x by effecting
the Taylor expansion about the original vector ;s (generated from the original
distributions) that is the closest to the new vector x, i.e., the original
vector ;s that minimizes the quantity:

K

2

121 ay (x§ = x4

2, (3.12)

*
The constant a, is a weight that reflects the importance of the i-th input
variable (e.q., a3 measured by the Partial Correlation Coefficients (PCCs)
and/or Standardized Regression Coefficients (SRCs) to be discussed in Chapter
4), and «x4* and x4y¢* are the standardized values of x4 and xyg, res-
pectively. Here, Eq. (3.12) may be viewed as a modified Euclidean distance
measure that accounts for the importance of the individual dimension (i.e.,
variables). It should be noted_that the analytic form of function F is not
known, however, the value of F(xg) which is the computer model output corre-
sponding to the sample input vector xg 1s known. This is the case since
the computer model utilized the orig?nal samples as input for the purpose of
formulating the regression fit, The gradient of F at x; is approximated as

ak
2 -~ a (3.13)
5x1 .x‘ Xig

that is, as the derivative given by the regression model of Eq. (3.1).
Substituting Eq. (3.13) into Eq. (3.11) yields,

K

y = Fxg) + 121 ay(xq = xy¢)e (3.14)

is

Equation (3.14) can be recasied into the rank form by replacing xy, y,

and 4, with r., oo and 51. respectively, Therefore,

LB 9

ry s B+ T 8y (ry = £y (3.15)

i=1
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Here, ?(Fs) indicates the rank of output y corresponding to the rank vector

FS of the origina! sample and the vector Fs is chosen to minimize the quantity

(3.16)

where r* is the standardized version of Fs. The constant a* is a weight that
reflect? the importance of the i-th input”rank as measured Ey the Partial Rank
Correlation Coefficients (PRCCs) and/or Standardized Rank Regression Coeffi-
cients (SRRCs) to be discussed in Chapter 4, Eqg. (3.15) is now used as a sur-
rogate for the original computer model in considering alternative input dis-
tributions and their effects upon the output distributions,

3.2 Direct Methods

Direct metnods refer to those approaches that utilize the input/output
relationships provided by the ariginal computer model calculations (with re-
spest %c 1 cample of inputs) wi‘hout relying upon regression fits to those re-
lationships.

3.2.1 MWeighting Methos

A smail sample sensitivity analysis technique which directly utilizes the
computer model results generated based upon Latin Hypercube Sampling of input
distributions has been proposed by '=an, et al,!? This method can be used to
determine the impact of the probabi . distribution functions characterizing
the input variables on the outputs .. .hout the need for additional computer
calculations and without relying on a response surface representation of the
physical model,

Iman, et al., show that if the probability density function of a single
input variable x4 1is changed from fj(x4) to qi(xy), then the mean
<y>, standard deviation o(y), and cumulative probability assignment of the
output variable y, c(y) may be approximated by

N
<y j\ﬁl W, ¥(3), (3.17)
oy (¥) = /TZ{I W (y(3) - <y>u)2. (3.18)
=1 -
N
Cy (¥) = '21 W, uly = ¥(3)), (3.19)
JS

where u s the unitary step function defined by
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y(j) is the computer model output corresponding to the LHS input vector in
which the rank of xj is j, N is the LH sample size, and the weighting fac-
tor, W; is given by the probability with respect to gj(xj) that the
referen%e variable x; takes a value in the j-th interval of the original
stratification of the parameter space with respect to fi(xj):

x; (J)
W, = | qi(x.) dn; (3.21)
bohgery UV
Here xi(j) is the upper bound of xi in the j-th interval and, for given j,
is determined by
x; (3)
i = | fo(xg) dxg, (3.22)
3
i

since in the LH sampling approach, the range of each variable is divided into
N nonoverlapping equiprobable intervals.

3.2.2 Rejection Method
In this method proposed by Beckman and McKay,!'! a subset of the original
computer model outputs associated with samples from the original input distri-

butions is selected to provide the appropriate statistical cutputs correspond-
ing to a new set of input distributions.

Consider the input variable vector X = (X;, Xy, ses, Xk) and the inde-
pendent sample vectars

xj = (xij’ ij’ bl XKJ) (3.23)

which are generated with respect to the probability density function f(x). |
Let the output of the computer model corresponding to the input ij be yj.

The rejection method relies on a random selection of the existing sets
of variables (IJ, yJ) to determine the sensitivity of the output distribution

to the input joint distribution., Let the new input POF be q(x).

It is necessary that there exists a uniform bound M such that,

)
)

N

(
(

Fal

<M (3.24)

)
>
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for all x, and that the domain of q(x) be contained within the domain of f(x).
Let the random variable V, given as sample vector ;j’ be uniform between

0 and M.f(X;j). The data set (x5 }j) are retained as a sample from

q(x) if a random realization of V is less than q(x;). The theoretical
basis for this approach is expounded in Reference li.

3.2.3 Method of Closest Distance

In this section, a method based upon the modified rank egression
approach developed in Section 3.1.2 is proposed. It is a method that utilizes
the input/output relationships provided by the original computer model calcu-
lations based upon the LH samples.

In order to require only the original computer model outputs, eliminating
the second term of Eqs. (3.14) and (3.15) yields,

y = F(;(s) (3.25)
and

ry - F(rs) . (3.26)

The currently proposed technique comprises the following steps:

l. A set of Latin Hypercube input sample vectors is generated:
;i . (111. XZ" "y XKi). 1'1. 2. oy N (3.27)

Here, the N samples correspond to N combinations of values for the K

parameter inputs. The input 21 yields the output yi from the compu=~
ter code where, for simplicity, just one output is considered.

2., In order to ascertain the effects of the input probability density func-
tions (PDFs) on the output dist~ibutions, another set of Latin Hypercube
input samples,

RJ " (xlj’ sz'l veay ij)l j'lD 2’ ceay M (3028)

is generated., These samples are obtained with respect to the different
input PDFs from those employed in step (1).

3, The output value Y5 corresponding to the randomly sampled input vector
Xj is approximated by the LHS output value ys whose corresponding LHS
input vector Xg or rank vector Fg is “closest" to the vector %j or

rank vector r; corresponding to X, respectively, where Eq. (3.12) or

Eq. (3.16) provides the definition of "closeness". Then the correspond-
ing original output yg 15 used as an approximate replacement for the
output YJ. Hence M random output values are approximated by the near-
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est of the N Latin Hypercube Sample output values obtained from the orig-
inal computer code calculations.

Hence, an approximation of the output distributions resulting from the
second set of input distributions is compiled in the 1ight of the origi-
nal computer model calculations. These new output distributions may be
compared to the original output distributions in order to ascertain their
sensitivity to the input PDFs, This approach is identical to the modi-
fied regression method described in Section 3.1.2 except that the
regression based terms are excluded from the surrogate model of the orig-
inal computer model.
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4, APPLICATION TO THE SUPPRESSION POOL AEROSOL REMOVAL CODE

The Suppression Pool Aerosol Removal Code (SPARC)!7 calculates the scrub-
bing of fission products released from the Reactor Coolant System (RCS) into
the pressure suppression pool of Boiling Water Reactors (BWRs) during postula-
ted severe reactor accidents., This code is part of the Source Term Code Pack-
age (STCP), and is particularly suited for the current purpose of demonstrat-
ing merits of the various sensitivity analysis methods for the following rea-
sons:

(1) Relatively small computational requirements (2 minutes per sequence on an
[BM- 3090 machine).

(2) Due to a limited number of input variables, a small number of LH samples
will suffice for the analysis.

(3) Owing to the above, the SPARC code can be readily exercised for several
different LHS inputs, This enables comparison of the sensitivity analy-
sis techniques with direct SPARC sensitivity calculations,

For the purpose of the present sensitivity analysis with the SPARC model,
the following calculat .onal outputs will be tracked,

(a) The integral D:contamination Factor (DF) for Csl defined by:

t
f
,rt My, dt
s =1
OF = oo . (4.1)

f
jt Mout 9t
i

(b) The total leakage amount of all radionuclides into the wetwell airspace
defined by:

L

2 'j el
4.4 § Mout <t - (4.2)
t1 J

where Mj, is the mass of Csl aerosols entering the pool from tha RCS, My;¢
is the mass of Csl aerosols leaving the pool and entering the s.,.. ~2c<sion
pool's wetwell airspace region, t; is the initial time, tg is the final
time (t¢ - t; is the scrubbing duration), and the superscript j corree
sponds to the j-th radionuclide species entering the wetwell airspace region,

4,1 Reference Analysis

The selected SPARC input variables together with their assigned ranges
and probability distributions as used for the present reference analysis are
given in Table 4,1,
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Table 4,1 Input Variables, Initial Ranges and Distributions

Range
Variable Distribution
Lower Bound | Upper Bound
x;: RATIO 1 B Uniform
x;: DIAM (mm) 3 20 Uniform
Xx3: VSWARM (cm/sec) 20 120 Uniform
x,: VIMPT (cm/sec) 0 30,000 Uniform
xg: NRISE 100 1,000 Uniform
xg: CDIF 1 4 Uniform
RATIO: Bubble aspect ratic
DIAM: Mean bubble diameter

VSWARM:  Bubble swarm rise velocity
VIMPT: Inlet impact velocity

NRISE: Number of time steps for the calculation of decontamination factors
during bubble rise

COIF: A constant imbedded in the diffusional rer.aval model
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These six input variables will be sampled using the Latin Hypercube Samp-
ling techniques in accordance with their distributions and variable ranges. A
sample size of fifty has been considered corresponding to fifty combinations
of values for the six input variables.

4,1.1 Partial Correlation and Standardized Regression Coefficients!®

The partial correletion coefficient (PCC) is a measure of the unique 1in-
ear relationship between two variables that cannot be explained in terms of
the relationships of these two variables with any other variables. Thus, it
provides an importance measure with which to identify the variables which
should be accounted for in a regression model.

As an example, consider a linear model having only one input variable:

-

y = a5 *+a; x. (4.3)

The residuals frum Lh's m~del -re denoted by yj - yj where yj = i-th observa-
tion value by original computer model, y,= i-th prediction using Eq. (4.3).
The partial correlation for any remainifng variable not in the model is found
by computing the sample correlation coefficient between the residuals and that
variabla, Thus, a measure of linearity between any remaining variable and y
is obtained, given that an adjustment has been made for the variable(s)
already in the model.

When nonlinear relationships are involved, it is often more appropriate
to calculate standardized regression coefficients and partial correlation
coefficients on variable ranks rather than on the actual values for the varia-
bles: such coefficients are known as standardized rank regression coeffi-
cients (SRRCs) and partial rank correlation coefficients (PRCCs). Specifical-
ly, the smallest value of each variable is assigned the rank 1, the next
smallest value is assigned the rank 2, and so on up to the largest value which
is assigned the rank N, where N denotes the number of observations., The
standardized regression coefficients and/or partial correlation coefficients
are then calculated on these ranks rather than upon the underlying raw varia-
bles. The rank transformation permits a better fit of the regression model to
the actual model since then the weaker assumption of montonicity between raw
outputs and inputs replaces the linearity requirement.,

Based on the SPARC-run results for fifty initial LHS input vectors (LHS-
1), the evaluation of partial rank correlation coefficients (PRCCs) and stan-
dardized rank regression coefficients (SRRCs) was performed using the computer
program in Ref, 16, Tables 4.2 and 4,3 show the PRCCs, SRRCs and coefficient
or determination, R?, for the integral Uf for Csl and the total leakage of 4ll
radionuclides into the wetwell atmosphere, respectively, These results also
indicate that the fit of the regression model to SPARC for the reference oute
put variables is satisfactory (R? > 0.9), It is found that two input varia-
bles, x; (RATIO) and x; (VSWARM), as revealed by their high correlation coef-
ficients, predominantly govern the magnitude of the outputs OF and L.









4,1,2 Statistical Parameters for Output Variables

Tables 4.4 and 4.5 show some properties of the output distributions,
resuiting from propagation of the 50 input LH vectors through SPARC, These
include the mean, standard deviation, 5th, 50th and 95th percentile values for
DOF and L, respectively. It is found that the quantity, characterizing distri-
bution width, defined by

oDF/<DF> or oL/<L> (4.4)

is the same order of magnitude as the distribution width of the input varia-
bles.

The calculated cumulative distribution functions for the outputs DF and L
are shown in Figs. 4.1 and 4,2, respectively.

Of course, numerical simulation techniques such as LH sampling provide
only an estimate of the output distributions that would in principle be geaer-
ated by the exact anaiytic propagation of the input distributions. In order
to provide an appreciation for the impact of the Latin Hypercube Sampling
approach on the calculated results, additional SPARC calculations were per-
formed using a different set of fifty LHS input vectors (LHS-2), although same
pled from the same input distributions. These comparisons are given in Tables
4.2 through 4,5, Even though relatively large differences in the calculated
PRCCs and SRRCs exist for the unimportant input variables x,, xg and xg, the
impact of LHS on the important input variables is shown to be insignificant,

4,2 Sensitivity Analysis

The reference analysis of the previous section has shown that the two
SPARC variables x, (RATIO) and x5 (VSWARM) are the most significant contribu-
tors to both the }ntegra1 OF for Csl (OF), and the total leakage of all radio-
nuclides into the wetwell atmosphere (L). This sensitivity analysis, there-
fore, focuses attention on the effect of varying the POFs of the most impor-
tant input variables, x, and x;, on the PDFs of the output variadbles DF and L.

Table 4.6 lists the assumed distributions for x; and x; in the current
sensitivity cases as compared with the reference anaIysis of gect*on 4,1. The
mean and the range of each input variable in the sensitivity analysis are
assumed to be the same as those given in Table 4,1 for the reference analysis.

The sensitivity of the output variables will be determined by changing
the distributions for x, (case S-1) and x; (case S-2) from uniform to normal
using the sensitivity methods described in Chapter 3., Hence, the approach to
be adopted is one in which the original LHS-1 results provide the basis for
applying the regression and direct sensitivity analysis methods described in
Chapter 3, By comparing the results thereof with the output distributions
based upon LH sampling of the new input distributions (LHS-3 and LHS-4 of
Table 4.6) and runs of the actual computer model SPARC, the success of the
methods may be assessed.
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Tabie 4.5 Summary of Results for the Total Leakage (L) of
A1l Radionuclides Into the Wetwell Atmosphere

Statistical Parameter LHS=1 LHS-2
Mean, <L> 2503 2506 (0.1%)
Standard Deviation, o 904,9 | 907.1 (0.2%)
oL/<L> 0.36 0.36 (0%)
5th 879.7 | 923.2 (4.9%)
50th 24877 | 2535 (1.9%)
95th 3766 3481 (2.0%)

Percentage departure from LHS-1 results is given in parentheses,
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Figure 4,1 Cumulative Distribution Function for the Csl Integral DF (LHS-1)
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Figure 4.2 Cumulative Distribution Function for the Totai Leakage
of All Radionuclides into the Wetwell At  shere (LHS-1)
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Table 4.6 Assumed Probability Density Functions

Sensitivity Analysis
Input Reference
Variable Analysis S-1 $-2
Xy Uniform Normal Uniform
Xy Uniform | Uniform Normal
A1l Others Uniform Uniform Uniform
Sample Set LHS-1 LHS-3 LHS-4
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The normal distribution is of the form (Fig. 4.3):
alx) » s exp [+ L2200 (4.5)
VZn o 20

where the distribution parameters, u and o are determined as follows.
Requirement of the same mean and range between the normal distribution q(x)
and uniform distribution

f(x) = 1/(b-a), (4.6)

provides the following relationships'?:

f: x f(x) dx = f:.. x q(x) dx, (4.7)
and

a w

j..q(x) dx = Ib g(x) dx = 0,001 (4.8)

That is, a negligible prebabiiity is «ttached to those parts of the parameter
space that fsll outside the original range. Equations (4.7) and (4.8) can be
vsed to determine the values of y and o as:
u = (a+h)/2 (4.9)
o= (b")/60182 (‘.lﬁ)
4.2,1 Regression Methods
4.2.1.1 Classical Regression Model

The adopted standardized rank regression equation is:

8; 1. (4.11)

Table 4,7 lists the standardized rank regression coefficients, a*, and
coefficient of determination, R?, for the integral DF and the totaf leakage
(L) as calculated by the “Stepwise Regression with PRESS and Rank Regression®
Program.!® These results indicate that the fit of £q. (4.11) to SPARC for the
reference output variables is satisfactory (R?>0.,9).
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Figure 4,3 Illustration of Uniform and Normal Distributions



024.

Table 4.7 Standardized Rank Rearession Coefficients and R? Values
Input Variable lntegral‘oF for Csl Total Leakage lnto Wetwell Atmosphere

| 3

X3 0.776 -0.775

X5 -0, 304 0,294

s -0,502 0.512

X, .- -0.079

Xs 0,091 -0,092

Xg - -

R? 0.92 0.95
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Eq. (4.11) can be used to obtain the output values (DF and L) for the
LHS=3 or LHS-4 input vectors in the following manner:

(1) For an LHS-3 or LHS-4 input vector,

XJ. = (le" xzj, xxj). (4,12)

the rank of each variable Xqs rij' corresponding to its value :(,J is
assigned using the relation

x‘(rU - 1) < x1J < xy (rij)' (4.13)

where ‘1(' ) is the upper bound of the ri.-th stratum of the original
(LHS-1) " inddt distributions given by J

“(rfj) = x1(0) + P1J . (xi(N) - 11(0))/N. (4,14)

This expression relies upon the uniformity of the original input distri-
butions in LHS-1,

(2) Tnose sets of rank data denoted

rj » (rlj' r2j' ey PKJ)' J= 1,2, «ess N (4.15)

are substitutec into Eq. (4.11) in a standardized form, We thus obtain
the corresponding rank data ry(j) for the output variable y,

(3) The raw value corresponding to the rank value, ry(j). is obtained by an
interpolation method using the relationships bétween the raw data yy
and the corresponding rank data ry, which were det:rmined relative to
the LHS-1 data,

4.2.1,2 Modified Regression Model

Based on the rank regression analysis, the adopted mcdified rank regress-
fon equation is

K

Fy ® F(Fg) ¢ 121 ay (ry = ryg) o (4.16)

Here the coefficient a, is identical to the SRRC, a*, in Table 4.7, Tnis is
ensured since both the ranks of Xy and y cover the same range, 1 to 50, The

nearest LHS-1 input rank vector, ;s‘ to & given LHS-3 or LMS-4 vector was

determined using Eq. (3.16) with the values of 5; given in Table 4.7,



The calculational procedure using Eq. (4.16) to obtain the output value y
for the LHS=3 or LHS-4 input vectors is that described in subsection 4.2.1.1,
Note that since simple regression models are being utilized to propagate the
sample sets LHS=3 and LHS-4, we could equally well have used larger sample
sets acquired from the same distributions with respect to which LHS-3 and LHS-
4 were generated. However, for more direct comparison with the original com-
puter code predictions, we use the regression models to propagate the actual
LHS-3 and LHS-4 sample sets.

4,2,2 Direct Methods
4.2.2,1 Weighting Method

In the weighting method, statistical parameters such as mean, the stand-
ard deviation and the CDF for the reference output variable y are calculated
by Egs. (3.17) through (3.19). The weighting factors W5 corresponding to
the change in distributions given 1n Table 4,6 were caltulated using Eqs.
(3,21) and (3.22) and the results are shown in Table 4.8,

It is noted that the weighting method requires neither the LHS-3 nor the
LHS-4 inputs. This is the case since this method requires only a knowledge of
the new input distributions, but does not require a sampling of these distri-
butions to be effected.
4,2.2,2 Rejection Method

This method requires the uniform bound M given by Eq. (3.24) as:

M= MAX {q(X)/f(X)}

b - a
VZr o

6.182
V2

= 2.47, (4.17)

where Egs. (4.5) through (4.10) have been used. Again this method requires a
knowledge only of the new input distributions and does not require the samples
LHS-3 and LHS-4,

4,2.2.3 Method of Closest Distance

In this method, Eq. (3.26) based upon the rank data has been used. The
nearest LHS-1 input rank vector, Fs. to a vector of LHS-3 or LHS-4 is deter-

mined using Eq. (3.16) with the values of af given in Table 4.7,



Table 4.8 Weighting Factor in the Weighting Method

2l

j 1 2 3 P 5
v, § (-4)* 7.3 (-4) 1,04 (-3) 1.45 (=3) 1,99 (=3)
j 6 7 8 9 10

¥, 2,71 (=3) 3,60 (-3) 4.77 (=3) 6.19 (-3) 7,84 (=3)
j 11 12 13 14 15

W 9,93 (-3) 1,23 (=2) 1,49 (-2) 1.80 (=2) 2.13 (=2)
i 16 17 18 19 20

W, 2,14 (=2) 3,16 (-2) 3,21 (-2) 3,57 (=2) 3,91 (=2)
j 21 22 23 24 25

" 4,22 (=2) 4,49 (-2) 4,70 (=2) 4,85 (=2) 4,92 (-2)
*5 (-4) = 5x 10°

NOTE: Owing to the symmetric property of the normal distribution,

254

" Neg-j

(J=1, 2, +euy 25)
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4,2.3 Results and Discussions

Tables 4,9 through 4,12 summarize the calculated statistical parameters
for the output variables DF and L based directly upon the SPARC results as
well as upon the five sensitivity analysis methods. A comparison of the cal-
culated cumulative distribution functions (CDFs) based on the five approaches
is given in Figures 4.4 through 4,7,

Comparison of the SPARC results with the reference analysis results of
Tables 4,4 and 4.5 as well as Figures 4,1 and 4,2 indicate that the standard
deviation for both output variables (DF and L) are reduced due to a reduction
in the standard deviation for x, or x3 when a normal distribution is used.

Comparison of the sensitivity methods against the SPARC results show
that:

(1) Generally good agreement is achieved between the direct SPARC
results and the results of the classical rank regression method,
the modified rank regression method, the rejection method and the
method of closest distance,

(2) The weighting method shows a good agreement for the calculated mean
and median, however, the calculated standard deviation, 5th and
95th percentiles show larg: differences as compared with other
methods,

(3) Of the original 50 LHS samples, application of the rejection method
dictated the retention of 22 samples for both sensftivity cases S-1
and S-2. These retained samples then provided a basis for making
inferences relative to the new input PDFs, Note that this number
22 i? broadly consistent with the theoretical frequency of reten-
tion'! of 1/M, where M (= 2,47 in this application) is the uniform
bound defined in Subsection 3,2.2. Whiie the rejection method has
performed well in the current investigation, it should be borne in
mind that this performance would be expected to degrade in circum-
stances where tne initial (pre-rejected) number of samples is small
or where the bound M is large, In either case. the numher n¢
retained samples vwould be small



Table 4.9 Statistical Parameters for the Csl Integral DF
When the PDF for x, (RATIO) is Changed from
Uniform to Normal Distribution

Classical Modified Method
Statistical Rank Rank Weighting Rejection of Closest
Parameter SPARC| Regression Regression Method Method Distance
Mean, <DF> 22:.71218.0 (-4.32)]221.3 (-2.82)]246.2 (8.1%)|210.4 (-7.6%)]242.1 (6.3%)
Standard
Deviation, 9DF 91.31 85.9 (-5.9%)] 91.5 (0.2%) [143.1 (57%) 65.6 (-28%)]|130.0 (42%)
ong/ <DF> 0.401{1.394 (-1.7%)(0.413 (3.0%) |0.581 (45%) [0.312 (-22%) |0.537 (34%)
DF
5th 138.3{111.0 (2.0%) |135.3 (-2.2%)|116.5 (-16%)[126.2 (-8.7%)[131.7 (-4.8%)
50th 186,111 9.5 (7.2%) |201.9 (8.5%) |206.2 (9.7%){199.8 (7.4%) |199.9 (7.4%)
95th 434.21353.0 (-19%) }402.2 (-7.4%)[571.4 (32%) |349.6 (-19%) [574.6 (32%)
NOTE: Percentage departure from SPARC results is in parentheses.
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Table 4,10 Statistical Parameters for the Csl Integral DF
When the PDF for x, (VSWARM) is Changed from
Uniform to Normal Distribution

Classical Modified Method
Statistical Rank Rank Weighting Rejection of Closest
Parameter SPARC| Regression Regression Met hod Method Distance
Mean, <DF> 219.01228.6 (4.4%) 1221.3 (1.1%) |205.4 (-6.2%)]|222.2 (1.5%) |227.0 (3.7%)
Standard
Deviation, %f 91.11120.2 (371) 91,5 (0.4%) | 45.8 (-50%) [125.1 (37%) |113.6 (25%)
°0F/<°F’ 0.41610.526 (26%) (0.413 (-0.7%)[0.223 (-26%) [0.563 (35%) FO.SOO (20%)
5th 128.81135.8 (5.42) [135.3 (5.0%) {147.4 (14%) |118.0 (-8.4%)|131.7 (2.3%)
50th 202.3{201.1 (-0.5%)[201.9 (-0.2%)[199.7 (-1.3%){190.7 (-5.7%)[199.7 (-1.3%)
95th 396.7|552.5 (391) |402.2 (1.4%) |287.2 (-28%) |577.7 (46%) |[379.6 (-4.3%)
NOTE: Percentage departure from SPARC results is in parentheses.




Table 4,11 Statistical Parameters for the Total Leakage
of All Radionuclides Into the Wetwell Atmosphere
when the PDF for x, (RATIO) is Changed From
Uniform to Normal Distribution
Classical Modified Method
Statistical Rank Rank Wiighting Rejection of Closest
Parameter SPARC| Regression Regression Method Method Distance
Mean, <1> 2470 2507 (1.5%) 2533 (2.6%) 2532 (2.5%) 2579 (4.4%) 2497 (1.1%)
Standard
Deviation, o 749.31663.2 (-11%) |790.5 (5.4%) |927.6 (24%) |731.5 (-2.4%)|906.7 (21%)
°L/<L) 0.303]0.265 (-13%) (0.312 (3.0%) {0.366 (21%) |0.284 (-6.3%)]0.363 (20%)
5th 1163 |1553 (3412) 1304 (12%) 693.1 (-40%) |1451 (25%) 880.0 (-241)
50th 2641 |1493 (-5.6%) |2521 (-4.5%) |2499 (-5.4%) (2492 (-5.6%) |2487 (-5.8%)
95th 3564 3552 (0.3%) |3567 (0.1%) |3764 (5.6%) |3945 (11%) 3766 (5.7%)
NOTE: Percentage departure from SPARC results is in parentheses,

-tg.
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Figure 4,6 Comparison of Cumulative Distribution Functions (CDFs)
for the Total Leakage of A1l Radionuclides Into Wetweil
Atmosphere When the PDF for x, (RATIO) is Changed from
Uniform to Normal Distribution
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Figure 4,7 Comparison of Cumulative Distribution Functions (COFs)
for the Total leakage of All Radionuclides Into Wetwell
Atmosphere When the PDF for x, (VSWARM) 1s Changed from
Uniform to Normal Distribution
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5.  SUMMARY AND CONCLUSIONS

Methods for assessment of the sensitivity of output probability distribu-
tions generated by computer models to the distributions assigned to the input
parameters have been reviewed and modifications have been proposed, Through
application to SPARC, a member code of the Source Term Code Package, the poss=
ibility of implementing these techniques within the context of the OUASAR pro-
gram has been assessed, The methods considered include: (1) classical
regression method, (2) modified regression method, (3) weighting method, (4)
rejection method and (5) method of closest distance,

The conclusions can be summarized as follows:

a) The contrast amongst the results stemming from the five methods is
not marked, In general, the modified rank regression technigue per-
formed better than the classical rank regression model while the
method of closest distance outperformed the weighting method,

b) The performance of the two regression methods reviewed clearly would
in general be dependent upon the degree to which the regression model
adopted provides a good fit to the underlying computer model, Hence,
fn crrcumstances where the regression model provides a poor surrogate
for the original computer model, then the weighting method and the
rejection method might be expected to produce better approximations
for the output distributions than would the regression methods, The
method of closest distance would also be anticipated to display some
reliance upon the goodness of the regression fit since the distance
measure utilized therein incorporates regression-based information,
However, one might expect the method of closest distance to srovide a
better surrogate for the computer model than the regression model in
circumstances where the regression model would provide a poor fit
since the method of closest distance does not explicitly resort to
response surface techniques but instead relies upon outputs obtained
by the original computer model,

¢) It is not possible to draw general conclusions about the relative
performance of the methods assessed regarding application to a range
of computer models, Judicious application of each of the five
approaches (i,e,, the classical and modified regression approaches,
the weighting method, the rejection method and the method of closest
distance), weighed by a knowledge of the goodness of fit of the
regression models formulated, will provide a basis for output distri-
bution sensitivity analysis in the QUASAR program,
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