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SEISMIC CATEGORY I STRUCTURES PROGRAM
FINAL REPORT, FY 1983-84

by

Richard C. Dove, Joel G. Bennett, Charles Farrar, Charles A. Anderson

ABSTRACT

This report summarizes the results obtained from a series
of simulated seismic tests on scale models of a prototypical
Category I nuclear power plant auxilliary building, representing
a reinforced concrete, diesel generator building. Two sizes of
model structures were used: 1/10 scale and 1/30 scale. Mode)
construction, test methods, instrumentation, data reduction
techniques, experimental results, comparison of experimental
and computed results, and conclusions are presented in this
report. Values of structural stiffness obtained from both stat-
fc and dynamic tests are found to be significantly lower than
values of stiffness computed using the usual decign methods.
Values of modal frequency obtained from dynamic tests are com-
pared to computed values. Decreasing modal frequencies with
increasing seismic input are reported. The effective damping
of these test structures is determined from the test results.
The results obtained from the two different size (1/10- and
1/30-scale) models are compared.

I. INTRODUCTION

The Seismic Category I Structures Program currently being carried out at
the Los Alamos National Laboratory (LANL) is sponsored by the Engineering
Branch, Divisior of Engineering Safety.of the Nuclear Regulatory Commission
(NRC). This project is part of a program designed to increase confidence in



the assessment of Category I nuclear power plant structural behavior beyosd
the design 1imit. The project is focused on answering questions regard-

ing safety issues that may arise when existing nuclear facilities are subjected
to higher seismic loads than those considered in their original design. The
program involves the design, construction, and testing of reinforced concrete
models of auxiliary buildings, fuel-handling buildings, etc., but does not
include the reactor containment building. The overall goal of the program is
to supply to the Nuclear Regulatory Commission experimental information and a
validated procedure to establish the sensitivity of the dynamic response of
these structures to earthquakes of magnitude beyond the design basis earth-
quake. The main purposes of the experimental program are (1) to ob*ain general
information about the way in which these structures behave in the inelastic
range as compared with their behavior in the elastic range, (2) to provide
stiffness and damping values for more demanding loadings on the structures,

(3) to identify for use in design of systems and components changes in floor
response spectra as the structures are loaded into the inelastic range, and

(4) to provide experimenta) data for benchmarking fnelastic structural amal-
ysis codes.

More information on the background of this program is found in Ref. 1.
During FY 82, preliminary experiments were conducted on small, reinforced-
concrete isolated shear walls (see Fig. 1), identified as the most important
element in the Category I structures of interest in this program.

This preliminary experimental program was intended to serve the following
purposes:

1. Perfect the construction technigues necessary to fabricate the small

reinforced-concrete structures.

2. Design and evaluate the test equipment and instrumentation necessary
to conduct appropriate static and dynamic tests.

3. Conduct and analyze the results of a sufficient number of tests to
determine the relative merits of static tests, conventional vibration
tests, and simulated seismic tests.

These preliminary experiments, completed in FY 82, are reported in de-
tail in Ref. 2. The most significant results of these tests, conducted on
1/30-scale models (where the prototype wall thickness is assumed to be 30 in.),
are summarized below.
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Fig. 1. Isolated shear wall structures.

At high-load levels (7 g on the mode! wall or 0.6 g on a prototype
wall), reinforced-concrete shear walls behave in a highly nonlinear
and inelastic manner.

The load levels at which these walls crack and fail are in reasonable
agreement with the values computed using the standard design methods
as specified in ACI 349. However, the stiffness of these walls is
found to be considerably less than the value of stiffness calculated
by the usual design methods.

During Inad cycling, such as would occur during a seismic event,
reinfarced-concrete shear walls exhibit significant hysteretic energy
loss. The amount of energy loss per cycle, and hence the effective
damping, is dependent upon load level (about 7 g on the models, 0.6 g
on a prototype wall).

At higher lcad levels, the measured acceleration response is con-
siderably less than would be predicted by a linear response spectrum,
This latter finding is in agreement with the result predicted by the
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Fig. 2. Two-story structure: mode! and prototype.

dimensions of the assumed prototype structure are shown in Fig. 2, together
with the dimensions of the two scaled versions of this structure.

The model structures were constructed using a microconcrete having the
properties given in Table I.

In the 1/30-scale models, the reinforcement consisted of 1/2-in. welded,
(nonwoven), square mesh hardware cloth at each wall surface. This resulted in
0.28% reinforcement in each direction, on both wall surfaces. The 1/10-scale
models were reinforced using a deformed mode! reinforcing rod obtained from
the Portland Cement Association (PCA designation D-1-1). This rod was tied in
a 1.0-in. square mesh and placed at each wall surface to give the same per-
centage reinforcement as was used in the 1/30-scale mode!,



TABLE 1
CONCRETE PROPERTIES

1/30-Scale Models 1/10-Scale MoGels

Froperty (1-in. thick wall) (3-in. thick wall)
Ultimate compressive strength, f; 2040 - 3270 psi 3180 - 3330 psf
Tensile strength, ft 270 - 440 psi 375 - 430 psi
Modulus of elasticity, E 2.3-2.6 x 10° psi 2.8 x 10° psi

The nominal reinforcement material properties are shown in Table II.

A1l of the model structures that were constructed and tested during this
program are iisted in Table I-A in Appendix A. The material properties ob-
tained from compression and split cylinder tests conducted on test cylinders
cast during the construction of each model structure and concrete modulus and
reinforcement material properties are given in Table II-A in Appendix A,

Regardless of scale, the sequence of model construction was the same. The
base slab was cast with reinforcing wires or bars embedded in the slab at the
wall locations,* and the base slab concrete was roughened where the walls would
join the base. After the base slab had hardened, the reinforcing and forms
for the first-story walls and ceiling were put in place. Next the microcon-
crete was placed and tamped and/or tamped and vibrated. The second-story con-
struction was similar to the first story. After casting, the 1/30-scale models

TABLE 11
REINFORCING PROPERTIES

1/30-Scale Models 1/10-Scale Models
Property -in. thick wall) (3-in. thick wall)
Wire diameter 0.042 in. 0.113 in,
Yield stress 42,700 psi 42,400 psi
Ultimate tensile strength 53,100 psi 50,000 psi
Modulus of elasticity 25.6 x 10° psi 28.5 x 10° psi
Elongation 4 per cent 13.1 per cent

*In one series of tests the effect of embeddment depth was investigated.



were placed into a moist chamber for 2 weeks of curing. The 1/10-scale models
were wrapped in plastic during the curing period, because they were too large
for the moist chamber.

Figure 3 shows a single-story, 1/30-scale structure during construction;
the base mat has been cast, the reinforcement has been assembled, and the in-
side and outside forms (plexiglass) are in place. Figure 4 shows a 1/10-scale
structure during construction. The base and first story have been cast and
forms (marine plywood) stripped, and the second-story reinforcement and inside
forms are in place.

-
..
.

EXPERIMENTAL PROGRAM

A. Preliminary Static Tests: Single-Story, 1/30-Scale Str

uetures
Eleven, single-story, 1/30-scale models of the diese! generator building
were statically tested to failure under both monotonic and cyclic load condi-
tions. The purpose of these tests was to compare measured values of stiffness,
cracking load, and ultimate load with the values obtained by calculation using
material properties and geometry.
The tests we conducted used the same horizontal axis, 20,000-1b force,

te
servohydraulic testing machine that had been used in the isolated shear wall

e TV
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SPEC 3D-4 MONOTONIC
LONGITUDINAL LOAD RARDvEneE Capene
H - p—
U, + 0.0047 in

0 " 0010 0080 0030 004 Go%0
DEFLECTION (in.)

b »
DEFLECTION (in.)

Fig. 9. Load vs deflection: mono- Fig. 10. Load vs deflection: mono-
tonic, longftudinal test. tonic, transverse “est.

value of K (at P = P /2) = 0.76 x 10° 1b/in. This latter method (K evaluated
at PL - PU/Z) has been used to evaluate the stiffness of al) »f the 1/30-scale
single-story structures that were statically tested. The results from these
tests on 11 structures are given in Table J11II.

Notice that only two structures (30-4 and 30-9) were tested with loading
in the longitudinal direction. This was the result of the decisicn to conduct
all simulated sefsmic tests with loading in the transverse direction. Also
note that only two structures (30-8 and 30-9) were subjected to cyclic loading.
This was the result of the observation that load cycling had 1ittle effect on
the property value of greatest interest (K, evaluated at 50% of uitimate load).

Some of these stiructures (30-7, 10, 11, 12, 13, 19, and 20) were deliber-
ately aged for different times (from less than | hr, tested immeciately after
removal from the 100% humidity chamber, to 48 weeks) in an attempt to investi-
gate the effect of aging on the structural properties. Inspection of Table
IIT and Fig. 11 shows that there is no apparent correlation between age and
either stiffness (K) or ultimate load (Pu). These same structures also were
given different amounts of reinforcement embedment depth in the base slab (see
Fig. 11) to determine the effect of this variable on failure mode. No effect
was noted.
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(Number ) Age(Weeks)

Structure

|

: 0”.

2/(9)
LIRS
1/(48)
10/(24)
11/(8)
12/(12)
13(n
19/(0)
20/(0)
/(%)
8/(8)

TABLE I11

RESULTS FROM STATIC TESTS

(1/30-Scale, Single-Story Structures)

2 o™ Uitimate

toad c {oad

e 0w
LA 2700 8940
A 2300 6100
n 2359 5880
"1 3210 4900
LA 3080 7100
L} 2050 $330
LA 2040 4500
LA oA 5980
" NA SL0
LS 3320 12200
c.tL 2690 9100

ER L
Modu lus
E(pst x 10%)

2.1
2.7
%
n
2.58
2.5
NoA
LE B
328

2.9

M - monotonic; C - cyclic; T - tramsverse; | - longitudinal.
results from five, 1-in. diam. x 2-In_ -long cylinders.

Average of t
£ = 57,000

fe. See Ref &

Stiifuess K (1b/én. x 10%)

Koasured’
e
.80
0.9
1.74
0.92
1.23
0.88
0.8

1.02

1.87

Computed'’
—
2 03
2n
39
n
2.53
282
A
A
. 08
5.4

¥ evaluated as the secant modulus of the load ws deflection plot at a load level of Py/2, where

Py 1s the muxioum load
Computed using £ = 57,000

J!t', see text (Discussion of Results) for details of this computation.

Ratio
je
3.3
2.9%
2.80
3.3
2.08
2.86
NA
NA
i






Y (t) - the acceleration-time history of the input (base) motion.
X (t) - the acceleration-time history of the response motion at the roof
level.

The modal frequency was measured in the following manner. The structure
was subjected to a 0.25-g - 0.5-g base acceleration (Y).* Both the input sig-
nal Y(t) and the response signal X(t) were recorded, and the transfer function
T.F.(X(t)/Y(t)] was computed. The modal frequency was obtained from the trans-
fer function presented in the phase and amplitude plots as shown in Fig. 13.

To compute the effective stiffness (K) from this dynamic test data, it is
necessary to measure the modal frequency, as explained in the previous
paragraph, using the same structure, but with different amounts of masy added
to the structure. Structure 3D-5 was tested at low acceleration (02.5-0.5 g)
levels under three conditions: (1) no mass added to the structure, (2) ap-
proximately 130 ib added, and (3) approximately 230 1b added. Mass was added
by clamping steel plates to the top of the structure. Figure 12 shows the
structure with 231 1b of weight added. Structure 30-6 was tested with no mas:
added and with 230 1b added.

Using the measured modal frequencies from two tests in which different
amount of mass (HA) were added to the structure, it is possible to eliminate
the effective distributed mass of the structure (Ho) from the relationship
between modal frequency (w), total mass (MT). and effective stiffness (K),
thus

K = w M 2

o Mo = @1 (M + Mapppo?

or

2

*The excitation level is low to minimize damage due to testing, because the
low-load level stiffness is the property desired from this test. The signal
may be either broad-band random or a scaled version of the 1940 E1 Centro N-S
that was used in 'ater tests. The minimum input acceleration level for good
sign?l reproducibility was used and generally was about 0.25-0.5 g for these
models.

16
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Fig. 13. Sample transfer function plot.

in which
@y = the measured modal frequency with no added mass,
wr = the measured modal frequency with a given amount of mass

added, and
HADDED = the amount of mass added.

By substituting the second equation back into the first, we can compute
the structure's stiffness (K) from the data without the necessity of deciding
upon the lumped mass equivalent of the structure's distributed mass.* The
stiffnesses obtained using the above method on the two single-story, 1/30-
scale models are given in Table IV.

*It is also possible to determine the effective distributed mass (My) from
this data. For structure 3D-5, My is found tu be 19.2 1bs, which is in good
agreement with the values obtaineg by taking the top slab mass (10.7 1b) plus
the mass of wall for a height equal to twice the slab thickness (2 x 4.36 =
8.72 1b).

18






These results are compared to stiffness values obtained by calculation and
from the static tests in the section “itled "Discussion of Results.” These
measured modal frequencies were also useful in designing and interpreting the
results of the simulated seismic tests that were conducted on 1/30- and 1/10-
scale two-story structures. These simulated seismic tests, which were the
main thrust of this program, are described in the following section.

C. Simulated Seismic Tests: Two-Story, 1/30- and 1/10-Scale Structures
These tests were conducted to develop information about the following
parameters:

1.  values of effective stiffness (K) and damping (g), and the way in
which these values vary with earthquake magnitude, as measured by
peak acceleration (Vﬁk)'

2. peak acceleration input required to produce nonlinear/inelastic re-
sponse,

3. peak acceleration input required to produce failure of the structure,
and

4. the way in which flror re.ponse spectra are affected by the level of
input acceleration.

Furthermore, since results were obtained from two sizes of structures (1/30
scale and 1/10 scale), they can be compared, thus providing a partial check of
the scaling. Finally, the result; obtained can be projected to predict proto-
type behavior by utilizing the uppropriate scaling laws.

Three, two-story, 1/30-scale structures were fabricated and tested on the
LANL electrodynzmic shake table (Fig. 14). Twe 1/10-scale, two-story struc-
tures were built at Los Alamos and transported to the Construction Engineering
Research Laboratory (CERL) located at Champaign, Illinois. Figure 15 shows a
1/10-scale structure mounted on the servohydraulically driven table at CERL.
The specification of the two test facilities are given in Appendix B.

Except during some preliminary tests at 0.25 g levels, lumped masses (steel
plates) were added to these structures so that the 1/30-scale structure was a
true 1/3-scale model of the 1/10-scale structure. Also, except during these
low-acceleration-level preliminary tests, the excitation signal was a properly
scaled version of the 1940 E1 Centro N-S accelerogram. The scaling of the
models and the test signal are discussed in detail in Appendix C.

During these tests, numerous accelerometers and displacement transducers
were mounted on the structure. Figure 16 illustrates a typical instrumentation

20
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TRANSDUCER

Fig. 16. Typical instrumentation package: simulated seismic tests.

pattern. All of the transducer signals were recorded on FM tape recorders so
that they could be stored, digitized, and analyzed using ai! available data
processing and computational facilities. Figures 17 and 18 illustrate the
data taking and handling procedures.

Numerous still photographs were taken to document the post-test condition
of the structure. Figure 19 is an exampie. The two tests at CERL on 1/10-
scale structures were both recorded on video tape.

The test sequence was essentially the same for each structure, and that
sequence is summarized in the following numbered paragraphs.

22
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Fig. 17. Dynamic test data recording.
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Fig. 18. Uynamic test data reduction.

D. Summary of Test Sequence
The test table was loaded with steel plates to approximate the weight of
the structure to be tested. The seismic simulator was then driven with
the command signal that was used during the proposed test. The base line-
corrected accelerogram of the 1940 E1 Centro N-S, which was frequency
scaled and used in all of these simulated seismic tests,* is shown in

‘See Appendix C for a discussion of the scaling.
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Fig. 19. Crack pattern,

1/10-scale

structure.

20. A series of tests was conducted during which the amplitude (pea
le acceleration) was gradually increased. The purpose of tnis "dummy
d" test was to allow the facility operator to establish the necessary
tem (electrical, servo, mechanical) transfer functions.which were used
properly control the facility during the actual test of the model
ucture.

dummy load" was removed and the structure to be tested was bolted to

test table At this point, the steel plates that were added to the
el to fulfill the scaling laws were not attached

bare" model was instrumented (the number of accelerometers was fewer
n shown in Fig. 16, but the accelerometers designated No.1, No. 4, and

7 in Fig. 16 were always used) and subjected to one or more low-leve
amic tests. The peak accelerations for a bare model were as low as
Sqguptol.7g This dynamic signal can be any low-level random wa
m The purpose of this test was to obtain some information on the
ponse of the bare model for comparison to the response of the final
el, that is, one with masses added to fulfill the ccaling law Figur

hows a typical transfer function plot obtained from one of these bar¢
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Fig. 20. 1940 E1 Centro N-S accelerogram (normalized to 1.g peak).

model tests. In this example (from the test of the 1/30-scale model,
3D-10), the transfer function is computed as first-floor response (Y].
accelerometer No. 4 in Fig. 16) over base input (Yl accelerometer No. 1

in Fig. 16). Notice (hat, for this two-story structure, two modal fre-
guencies are identified--specifically 342 and 950 Hz.* The same modes can
also be identified from the transfer function T.F. (YZ/V). where YZ is

the second-fioor response (that is, accelerometer No. 7 in Fig. 16).
Following these bare modei test-, mass was added to each structure so that
each structure would be a Case III scale model** 5f the assumed proto-
type structure, that is, a typical Category I, diesel generator building
with a wall thickness of 30 in, It is important to note that this added
mass does not represent equipment attached to the prototype; rather, it
represents mass added to the model structures to fulfill the required sim-
ilitude conditionsor scaling laws. The way in which these added masses
were attached to the structures and the amount added at each story level
are shown in Fig. 22. The appearance of the structures with added mass
attached and ready for testing is shown in Figs. 14 and 15.

*Information beyond 1000 Hz is questionable because of frequency limitations
yone y

in the data analysis procedure.

*4See Appendix C.
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Fig. 22. Method of attaching "added" mass.



5. The model, with the appropriate mass added, was then subjected to a series
of simulated seismic events. The excitation was a properly frequency-
scaled version of the 1940 E1 Centro N-S acceleration/time signal (see
Fig. 20). It is important to note that, during the test series, the intent
was to vary only one parameter, the peak input acceleration, Vpk‘ This
was the case since the object was to determine how modal frequency, damp-
ing, and floor response spectra vary with increasing seismic amplitude for
a given earthquake. Ideally, frequency scaling and, hence, the energy
content at each frequency remains constant during the test series on any
model.*

We recognize that damage occurs progressively as the level of input accel-
eration is increased. Therefore, the results obtained from these tests par-
ticularly at the higher acceleration levels are probably not the same as might
be obtained if a new or previously untested structure was used for each test.
Clearly, the approach used here is a trade off between desired results and
program cost.

The data from these simulated seismic tests were reduced in the following
manner:

1. All of the tape recorded signals (accelerations and displacements)

were digitized and stored in digital form. See Fig. 18.

2. All signals were inspected in the time domain, and peak displacements

and accelerations were measured and recorded.

3. Desired floor response spectra (FRS) were computed, using a suitable

program with the apprecpriate digitized acceleration vs time signal as
input. The method is outlined in Fig. 23.

*In practice there is some variation in the frequency, cor“ent, and energy dis-
tribution in the frequency domain, with variation in Ypx. This is true be-
cause neither of the shaker facilities used (Los Alamos or CERL) nor any other
facilities known to the authors are capable of exactly reproducing a transient
control signal independent of that signal's amplitude. The ideal can be closely
approached if we allow iteration between input signal and table response--that
is, repetitive testing and input signal correction. However, repetitive testing
further damages the structure, and, therefore, is not a suitable technique for
these tests. The way in which this small but undesirable variation in frequency
content is accounted for is discussed in more detail in Appendix B.
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Fig. 23. Computation of floor response spectra, FRS.

4. Modal frequencies and equivalent damping ratios were determined by
transforming the appropriate signals from the time domain into the
frequency domain and by computing transfer functions. The way in
which these functions are used to determine modal frequencies and
equivalent damping ratios is discussed in more detail in Appendix O.

IV. DISCUSSION OF RESULTS

A. Preliminary Static Tests: Single-Story, 1/30-Scale Structures

The basic purpose of the static tests conducted on the single-story, 1/30-
scale structures was to determine the eifective stiffness (K) of these struc-
tures. This is of utmost importance in seismic design and analysis, since the
effective stiffness is one of the fundamental properties required for com-
putation of a structure's modal frequency.

In seismic design or analysis of prototype structures, the usual practice
is to compute the structural stiffness using mechanics-of-materials methods
" with the structure's geometry and the concrete's measured material properties.
Typically, the initial uncracked stiffness (K) is computed using the

relationship
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where
Ks = A G/h3
Kb = 3EI/h7,
G = the concrete shear modulus = E/2(1 +u),
h = the story height,
Ae = the effective shear area,
E = the concrete elastic modulus,
I = the section moment of inertia, and
" = Poisson's ratio, assumed to be 0.2 for concrete.

The computed stiffness clearly depends on the value used for elastic modulus

of the concrete. Since concrete is not a linear elastic material, it is common
civil engineering practice to specify a minimum concrete cylinder compressive
strength, f and to measure the strength for each batch. An elastic modulus

is computed based on this value of f The formula used is Ec

57,000 \'f , (for normal weight corcrete. ACI 345-76, Sec. 8.3). In

genera!, this value of Ec will correspond to a secant modulus through a point

on the stress-strain curve that 15 about 45-50% of the value of the ultimate
strength of the concrete. All of the computed stiffness values given in Table III
for the single-story, 1/3C-scale structures were computed using this method.

With the load vs deformation data available from the static tests of these
structures, a measured value of stiffness is also available. However, as pointed
out in the previous secticn of thic report, thess load vs deformation plots are
not linear and, therefore, the way in which stiffness is measured is of
considerable importance. The values of measured Stiffness given in Table III were
determined as the secant modulus of the load vs deformation plot at a load leve)
equal to 50% of the ultimate load (Pu).

The important conclusion is that, for these structuressthe computed stiff-
nesses are between two and four times the measured stiffness (see the ratio column
in Table ITT). If the computed values of stiffness were used to predict the modal
frequency (f) of these structures, we would expect that the values would be too
large by factors of /2.06 to /3.82, since modal frequency is



proportional to /K; this error, in turn, would effect all seismic response
calculations.
B. Preliminary Dynamic Tests: Single-Story, 1/30-Scale Structures

The above conclusion was investigated with dynamic tests of single-story,
1/30-scale structures. Table 1V compares the values of stiffness obtained
from these dynamic tests wjgh the values obtained by calculation using material
properties E = 57,000 \ch . Note that structure 30-5 was tested sev-
eral times under a variety of conditions. If we consider only the transverse
tests on the two structures, we find that the effective transverse dynamic

stiffnesses are between 0.62 and 0.71 1b/in. «x 106. These values are some-

what lower than those determined by static tests (0.76 - 1.14 1b/in. x 10%,
see Table III) but they are in far better agreement with static test results
than they are with calculated values of stiffness (62.86 1b/in. x 106). We
again concluded that the effective stiffness of these structures is consider-
ably less than the vaiue calculated using the usual methods. The data from
the stutic and dynamic tests on the 1/30-scale structures are summarized in

Fig. 24.

TRANSVERSE |/30-SCALE TESTS
USING E_ = 570004/ 1,

x10f 1 T T T
K+0.98E
<
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. THEORETICAL)
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n
w
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Fig. 24, Stiffness: 1/30-scale structures.
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C. Simylated Seismic Tests: Two-Story, 1/30- and 1/10-Scale Structures

The simuiated seismic tests involved five, two-story structures: three
1/30 <cale and two !/10 scale. These structures, designed as scale models of
the assumed prototypical diesel generator building, are shown in Fig. 2. Tabl
V lists these structures together with material properties and measured virgin
modal frequencies.

These modal frequencies were determined from the transfer function plots,
as explained in the previous section of this report. However, in these tests
using a properly time- (or frequency-) scaled E1 Centro N-S accelerogram, the
structure is so stiff relative to the frequency content of the input that the
second mode response is very small. As a result, the second-mode frequency
cannot be determined with any precision. For the same reason, the second-mode
response is of little practical importance in this investigation of stiffness
differences; therefore, only first-mode frequencies are tabulated.

These measured first-mode frequencies can be used in two ways;

15 The results from the 1/30-scale structure can be used to predict the

behavior of the 1/10-scale structure.

2. The results from the tests on both structures can be used to predict
the behavior of the assumed prototype, and these two predictions of
prototype behavior can be compared.

Table VI compares the virgin first-mode frequency as measured on 1/10-
scale structures to the values predicted from the values measured on the 1/30-
scale structures; that is, the 1/30-scale structures are used as 1/3-scale
models of the 1/10-scale structures. The authors believe that the data shown

TABLE V
TWO-STORY STRUCTURES USED IN SIMULATED SEISMIC TESTS

e

o Structure Virgin First Mode Frequency (f))
T Test No Mass Added Mass Added
(No). Scale (p.,s_?l Location (HzZ) (Hz)
3D-10-2 1/30 2600 Los Alamos 342 104
30-11-2 1730 2890 Los Alamos 354 94
3D-12-2 1/30 N.A. Los Alamos 270 94
CERL No. 1 1710 3180 CERL 100 54
CERL No. 2 1710 3330 CERL 94 53
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in Table VI verify that these two structural sizes (1/30- and 1/10-scale)
serve as adequate models for each other. Whether they are adequate models of
the assumed prototype has, of course, not been proven in these tests.*

Table VII shows the predicted virgin first-mode frequency of the assumed
prototype using all of the data from the 5 model tests. The predicted values
for prototype first-mode frequency range from 7.5 - 11.8 Hz. This is a large
scatter on a percentage basis. However, in any design using response spectra
techniques, the difference between these values for the assumed first-mode
frequency would have little effect. Furthermore, as the variation in measured
modal frequencies of these 5 structures indicates, it would be impossible to
build a prototype structure to obtain a precisely defined first-mode frequency.

Following the low-1oad level dynamic tests, each of the 5 two-story struc-
tures was subjected to a series of simulated seismic tests in which the peak
acceleration input level (ka) was progressively increased. The data from
these tests make it possible to determine the following:

1. the way in which effective stiffness (K) and effective damping (T)

vary with acceleration input level (Vﬁk)'

*During FY 1985, a new configuration will be tested. Two sizes of this con-
figuration will be fabricated and seismicly tested. The smaller structure
will use microconcrete and wire reinforcement and the larger will use regular
aggregate concrete and standard reinforcement. These tests should address the
feasibility of scaling to prototype size.

TABLE VI
COMPARISON OF 1/30- and 1/10-SCALE RESULTS
(Virgin, First-Mode Frequencies)

Test Predicted from*
Condition Structure Measured 30-10-2  30-11-2  3D-12-2
No Mass Added CERL No. ) 100 342 /3 354 /3 270 /3
CERL No. 2 94 = 114 = 118 = 50
Mass Added CERL No. 1 54 104 /3 94 /3 94 /3
CERL No. 2 53 = 60 = 54 = 54

*With no mass added, the frequency scale rnlating the 1/30- and the 1/10-scale
structures 1s 3; with added mass, the scale is /3. See Appendix C.
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Model No.
Predicted
From

30-10-2
No Mass Added
Mass Added

30-11-2
No Mass Added
Mass Added

30-12-2
No Mass Added
Mass Added

CERL No. 1
No Mass Added
Mass Added

CERL No. 2
No Mass Added
Mass Added

TABLE VII
PREDICTION OF PROTOTYPE VIRGIN FIRST-MODE FREQUENCY

Scaling Method*
Fip = fiy x Net

1P
1P

1P
1P

1P
1P

1P
1P

1P
1p

342
104

354
94

270
94

100
54

94
53

>

1/30
1/11.8

1/30
1/11.8

1/30
1/12.2

1710
1/6.8

1710
1/7.04

*See Appendix C for a discussion of scaling.
+ flP - first-mode frequency of the prototype.
le - first-mode frequency of the model.

Nf - the frequency scale factor, defined as fp/fM.

Predicted
Prototype
First-Mode

f]E(Hz) 2

11.4
8.8

11.8
8.0

9.0
7.7

10.0
7.9

9.4
7.5
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2. the level of (Vpk) beyond which the stiffness and damping begin to
undergo significant change,

3. the level of (ka) required to produce failure of the structure, and
the way in which floor response spectra vary with the level of input
acceleration.

Table VIII shows the test sequence used for each of the 5 structures.

The data presented in Table VIII have been plotted in Figs. 25 and 26 to
show the variation in first-mode frequency (f]) with input acceleration level
(ka).‘

Figure 25 shows the data taken during FY 83 from tests on two 1/30-scale
models (30-10-2 and 3D-11-2) and one 1/10-scale model (CERL No. 1). Figure 26
shows the data taken during FY 84 from tests on an additional 1/30-scale model
(30-12-2) and on a second 1/10-scale model (CERL No. 2). These FY 84 tests
differed from the FY 83 tests in two respects: (1) the attached masses were
adjusted slightly (mass added to the second-story was decreased) to better
represent the equivalent distributed mass, and (2) the drive signal (Y vs t)
used in the 1/30-scale test was refined to better match the drive signal used
in the 1/10-scale test. As can be seen by comparing Figs. 25 and 26, these
two modifications had only minor effect and all of the data could have been
plotted on a single sheet.

The solid 1ines shown in Figs. 25 and 26 are not "best fit" curves for the
data points shown. Rather, they were added to suggest the follewing design
application of these data:

1. A1l mene's suggest that the assumed prototype diesel generator build-

‘ng «»11 have a virgin first-mode frequency of 7.5 - 8.8 Hz,

2. When subjected to the El Centro -S earthquake of peak magnitude up
to 0.2 g, the prototype will respond with this virgin first-mode fre-
quency.

*Al1 of the data aresented in Table VIII from the several tests can ge plotted
on the same sheet by multiplying fy by the frequency scale (N¢) and Ypi

by the acceleration scale (NY). This is true since, under these test condi-
tions (appropriate masses added to each mode! and the base motion properly
frequency and acceleration scaled), the 1/30-scale structure is a 1/3-scale
mode! of the 1/10-scale structure, and both structures are models of the as-
sumed prototype. In addition, when plotted in this manner, prototype behavior,
predicted by each model, is shown directly.
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TABLE VIII
TEST SEQUENCE

(Two-Story Structures, Simulated Seismic, with Added Mass)

Measured First
Mode Frequency
fi(H2)

Remarks

104
80

94
93
92
90
63
n

94
93
91
91
90
87
85
69
64

54
54
51
50
45
43
44
4)
8
24
83
83
50
48
a6
39
33
25

test.

-

1.3

Broo
'

Structure did not fai).

Input
Test evel
Structure (No.) 25(9)
30-10-2
1/30-Scale 1 1.5
Los Alamos 2 5.3
3D-11-2 1 <0.%
1/30-Scale 2 0.7%
Los Alamos 3 1.0
4 1.5
5 8.2
6 <0.5
30-12-2 1 0.4
1/30-Scale 2 0.75
Los Alamos 3 1.35
4 .17
5 4.09
[ 6.26
7 6.4)
8 11.86
9 11.23
10 20.0
CERL &) 1 0.7
1/10-Scale 2 1.2
CERL 3 2.0
4 e
5 3.5
6 4.7
7 7.0
8 9.0
9 10.0
10 12.0
n 16.0
CERL #2 1 0.83
1/10-Scale ¢ 0.74
CERL 3 i.8%
¢ 3.94
$ 5.43
6 6.86
: | 8.28
8 11.3
—Eeoem S 17.0
Remarks:
1. Low-level tests with no mass added preceded this
2. Eng of test--shaker displacement 1imit reached.
3. A wide-band test (rather than simulated seismic).
4. A wide-band, low-leve! test to establish irreversible change; note that f,
only partially “recovers.”
5. Structure failed by shear at junction of base to first-story wall.
6. Structure failed by shear of first-story wall; see Fig. 19.
7. Same as #5 above and walls completely separated from base.
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Fig. 25. Variation in first-mode freguency, FY 1983 tests.

[f subjected to a peak intensity of greater than 0.2 g, the proto-
types will respond with a reduced effective first-mode frequency.

The greater the amplitude, the lower the effective modal freguency.
This implies that the floor response spectra for a given acceleration-
vs-time excitation (in this case the El Centro, N-S) will vary with
peak amplitude of input. This is contrary to the usual linear design
assumption.

Inspection of the various models indicate that these reductions in
modal frequency will occur without visible signs of cracking;
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Fig. 26. Variation in first-mocde frequency, FY 1984 tests.

. A Low-level, wido-frequency-band diagnostic tests, which were performed
between the seismic tests, indicate that any reduction in the effec-
tive modal frequency will be permanent.

6. The assumed prototype diesel generator building would not fail (sig-
nificant visual cracking and breaking loose from the foundation at
the lower walls) until the amplitude exceeded 2.5 g.

Figure 19 illustrates the crack pattern on one of the lower-story end walls

of a 1/10-scale model after the test. The orientation of the cracks is con-
sistent with the predominant development of shear stress in the end wall,
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This diagonal crack pattern was not visible in the 1/30-scale models, probably
because of the lower ultimate elongation of the reinforcement used in the 1/30-
scale models, (4% for 1/30 scale, 13.1% for 1/10 scale).

The quantification of damping associated with the response of structures
subject to transient loads that produces nonlinear and/or inelastic responses
has proved to be a very difficult problem. This is especially true for rein-
forced concrete structures for which the exact damping mechanism is unknown
(that is, is damping viscous, structural, Coulomb, or perhaps a combination of
all three?)

Because one of the objectives of this program is to improve our ability to
analyze structures loaded into their inelastic region, we have attempted “o
characterize and quantify damping in a way that will be most useful in the
analysis process. Therefore, because most analysis methods utilize response
spectra and computations that involve equivalent viscous damping ratios, these
tools and concepts are used in our evaluation and quantification of damping
L .*

Two methods of quantifying damping have been used. The first method will
be referred to as the "Floor Response Spectra (FRS) Matching Technique" and
the second method as the "Transfer Function Analysis Technigue (TFAT)."

The “FRS Matching Technique" involves the use of a computer mode! and
iteration with different values of damping ratio (g) until the computer-
generated FRS "match” the FRS geneiated from response data measured during a
test at a given input acceleration level (Vpk).

The TFAT involves plotting the transfer function (TF) of the response ac-
celeration, ¥ (t) or Yz(t). to the input, Y(t), at a given input accelera-
tion level (ka). The real part of this transfer function is then examined
to determine the damping ratio (§).**

In Fig. 27 the computed values of damping ratio, (§) from tests of these
models, are plotted vs the peak acceleration level (Vpk) of the test for which
that value of damping ratio applies. All of the values, except the 2 points

*The use of and assigning values for “equivalent viscous damping ratios (§)"
should not be taken to imply that the damping mechanism is viscous. Rather
this value use is only an attempt to assign an appropriate value to a term
that is neceded in response spectra and other methods of analysis.

*#These methods are discussed in more detail in Appendices D and E.
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indicated as FRS Matching Technique, were determined using the TFAT. There i¢
considerable scatter in the data, but the autnors believe that the following
observations are justified:

1. These 3 models respond to inputs with magi itude of less than 4 g s as

if they had equivalent viscous damping ratios of 5.5% - BX%.

2. For input magnitudes of 4 - 9 g, the effective viscous damping tends
to increase.

At input magnitudes greater than 9 g (where all of the models are
known to be close to failure), the damping is uncertain.

The next important issue concerning damping is whether or not the damping
effects are distorted in the models as compared within prototype. If so, how
are the effective damping ratios measured in these models related to the effec-
tive damping in the prototype? As demonstrated in Ref. 7, we would expect
that damping forces are distorted between the 1/30- and the 1/10-scale modeis,
but only if the damping mechanism is viscous. Analysis of the data plotted in
Fig. 27 confirms that the damping mechanism is not viscous and, therefore, the
values of equivalent damping ratios determined from these model tests are ex-
pected to apply to the prototype structure.*

In cunnection with these observations, it is important to note that, since
in both models (1/30- and 1/10-scale), acceleration is scaled by a factor of
approximately 5, the reaion of noticeably increasing damping (region A - B in
Fig. 27) corresponds to input ampiitude (Vpk) to the prototype in excess of
1.9 peak acceleration.

The way in which & structure meaifies the input base moticn is of great
interest, and this information is usually expressed in terms of FRS. The way
in which FRS i< defined is shown in Fig. 23. The usual practice is to assume
that the structure is a Tinear system. With this assumption, for a given
structure subjected to an acceleration signal of a given frequency content,
the FRS is a constant, that is, FRS is independert of amplitude of the input
signal. As pninted out in the preceding paragraphs, the structures being dis-
cussed in this report have been lozded into their nonlinear/inelastic range.
Therefore, it is important to determine how this nonlinear/inelastic response
affects the FRS.

o

*The details of this analysis are included in Ref. 7.
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This has been done using the data obtained from the tests of a 1/10-scale
structure (CERL No. 1); however, frequencies and accelerations have been scaled

to prototype values, as was done in Figs. 25 and 26.

Figure 28 shows the first-

and second-floor-response spectra (FRS] and FRSZ) computed from the meas-
ured response (Y] and YZ) of the 1/10-scale structure during a low g level

test (1.3 g on the model, 0.26 g on the prototype).

As would be expected, the

maximum amplification occurs in the region of the structure's first-mode fre-
quency (f] = 54 Hz; f]/Nf = 7.9 Hz). Because this is a stiff structure
(relative to the frequency content of the input, that is, the 1940 El Centro
N-S) the second and higher modes produce relatively insignificant amplifica-

tions.

Now if this structure remained unaltered at higher input leve! tests,
we would expect that the FRS would remain as shown in Fig. 28.

We know, of

course, from our previous analysis of shifts in modal fraquency at higher input
levels, that the structure undergoes progressive decrease in stiffness at the

higher input levels.
will vary with input level.
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Fig. 27. Measured damping ratios.

Therefore, we anticipate that the floor response spectra
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V. CONCLUSIONS AND RECOMMENDATIONS

Based on the data presented in this paner. on the data from the isolated
shear wall tests (see Ref. 2), and upon recent studies made by other investi-
gators,a‘9 the authors be'ieve that the actual stiffnessec of prototypical,
Category 1 structures may be considerably less than the values computed using
the usual design procauures. MWe recognize that, because all of these *tests
involve small structures (models), the observed smaller values of stiffness
could be structure-size related.

The Technical Review Group (TRG) for this program has recommended that tie
effect of using "model" or microconcrete material be evaluated. A program to
resolve this issue is veing planned for FY 1985.

We believe that the prototype structures could experience considerable
nonlinear anu inelastic response without showing visible signs of cracking.
When cracking appears, the structure may have experienced large nonlinezir and
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fnelastic response, and the effective structural stiffness may already be sig-
nificantly reduced. The input acceleration level required to produze this
condition is, however, very large. For the prototypical diesel generator
building subjected to the 1940 E1 Centro N-S earthquake investigated in this
study, the cracking and the very large reduction in first-mode frequency would
be expected at an input acceleration level of 0.2 g or higher.

The measured values for effective viscous damping ratios (from 5.5 - 8%)
are in reasonable agreement with values currently recommended for reinforced
concrete des1gn.‘° Although our studies indicate that .at higher load leve'ls:
the damping increases, the load level at which this increase occurs in the
structure investigated (>1 g) is so large that it is doubtful if this in-
crease in damping is of any value in design for realistic loading.

The reduction of first-mode frequency, which is associated with the reduc-
tion in effective stiffness, retunes the structure relative to the input and,
as a result, the floor-response spectra are different at differeat levels of
input acceleration. The way in which this affects equipment mounted at a given
level depends upon its mounted frequency relative to the original structural
first-mode frequency. In general, we can say that,if equipment is mounted
such that its resonance value is less than the original structural first-mode
frequency, it could be tuned to the structure's resonance during high-sefsmic-
load response.

We believe that the results presented in this report demonstrate tne poten-
tial value of 1/30- or 1/10-scale-model tests. The 1/30-scale models appear
to be appropriate to investigate a number of design and test parameters of
interest, that is, they are useful in sensitivity studies. The relative low
cost and convenience of the smaller models allows a larger number of parameters |
to be investigated. However, for very important parameters or for those that

may be judged to be very sensitive to size effects, larger scales are approp-
riate.

1. E. G. Endebrock, R. C. Dove, and C. A. Ancerson, "Margins to Failure -
Category-I Structures Program: Background and Experimental Program Plan,"

Los Alamos National Laboratory report LA-9030-MS, NUREG 2347 (September
1981).

43






APPENDIX A

STRUCTURES CONSTRUCTED - MATERIAL PROPERTIES
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TABLE A-I

STRUCTURES CONSTRUCTED AND TESTED DURING FY 1983 AND 1984

Structure
No. of Type of Location Purpose
___No. Scale Stories Test* of Test of Test**
302 1/30 1 Static, M, T Los Alamos A
3D-4 1/30 1 Static, M,L Los Alamos A
3D0-8 1/30 ! Static, C,T Los Alamos A
30-9 1/30 ] Static, C,L Los Alamos A
30-5 1/30 ] Seismic, L&T Los Alamos B
3D0-6 1/30 ] Seismic, T Los Alamos B
30-7 1/30 | Static, M,T Los Alamos ARC
30-10 1/30 ] Static, M,T Los Alamos ARC
30-11 1/30 ] Static, M, T Los Alamos ARC
30-12 1/30 1 Static, M, T Los Alamos A&C
3D-13 1/30 1 Static, M,T Los Alamos A&C
30-19 1/30 1 Static, M,T Los Alamos A&D
30-20 1730 1 Static, M,T Los Alamos ARD
30-10-2 1/30 2 Seismic, T Los Alamos E
30-11-2 1/30 2 Seismic, T Los Alamos £
30-12-2 1/30 2 Seismic, T Los Alamos E
CERL-1 110 2 Seismic, T CERL E&F
CERL-2 110 2 Seismic, T CERL E&F

*M - Monotonic Test.
C - Cyclic Test.

T - Transverse: load parallel to short dimensions.

L - Longitudinal; load parallel to long dimension.

Seismic - Scaled version of E1 Centro (1940) N-S accelerogram.

wap
B -

C
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Comparison of measured stiffness to computed value.

Measure single-story resonant frequency, check effective stiffness

and effective mass.

Model structures that have different reinforcement embedment depths in
the base slab; tested at 3, 6, 12, and 24 weeks after casting to deter-
mine the effect of steel embedment on the failure modes and aging ef-
fects on the initial stiffness.

Mode)! structures tested immediately after removal from moist chamber to
determine initial stiffness before any drying occurs.

Test to progressively larger inputs, track changes in modal frequency,
damping, and shifts in floor response spectra.

Check scalability of results, i.e., from 1/30- to 1/10-scale structures.






APPENDIX 3
LOS ALAMOS AND CERL SHAKER CHARACTERISTICS

The preliminary dynamic and the simulated seismic tests of the 1/30-
scale structures were conducted on the electrodynamic vibration test facility
located at K-site, Los Alamos National Laboratory, Los Alamos, New Mexico.
The electrodynamic vibrator used was an 18,000-1b force machine manufacture
by the M. B. Electronic Corporation. The shaker drives a unfaxial (horizcn-
tal), 4 ft x 4 ft, magnesium alloy, slip table mounted on Team hydrostatic
bearings.

The system is capable of:

26 g peak acceleration (no load on table),

100 in./s peak velocity, and

+ 0.5 in, displacement
over a frequency band of 5 - 5,000 Hz. For the FY 1983 tests, the system
was programmed and controlled by a Hewlett Packard 5427A digital vibration
control system. For the FY 1984 tests, a Gen Rad vibration control system
was used. Both of these systems provide for transient vibration (i.e., sim-
ulated seismic) control.

Since the tests discussed in this report were completed, the Los Alamos
facility has been upgraded by replacing the 18,000-1b force shaker with a
36,000-1b force, Unholtz-Dickie shaker.

The 1/10-scale structures discussed in this report were tested on the
servohydraulic vibration test facility operated by the Construction Engineer-
ing Research Laboratory (CERL) at Champaign, Illinois. This is a biaxial
machine (one horizontal axis plus vertical), but only single axis motion
(horizontal) was used in these tests. Test items are mounted on 12 ft x 12
ft welded aluminum table that can support a dead weight of 810,000 1b.

The system is capable of:

A. Vertical Motion

810,000 1b force,

Approximately 50-g peak acceleratior (nc load on table),

27 in./s peak velocity, and

+ 1.375 in. displacement.
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APPENDIX C
SCALING OF THE 1/30- AND 1/10-SCALE STRUCTURE

The 1/30-scale structures (1-in. wall thickness) and the 1/10-¢cale
structures (3-in. wall thickness) were designed, constructed, and tested so
that each size of structure was a Case III scale model of the assumed proto-
type diesel generator building (30-in. wall thickness). In addition, the
smaller (1/30-scale) structures were i1/3-scale, Case II models of the larger
(1/10- scale) structures. The various types of modeling (Case I, Case II,
and Case I11) are discussed in detail in Ref. 7, with the scaling laws that
must be fulfilled for each case. In this appendix, the design of the struc-
tures and test conditions, so that the scaling laws are fulfilled, is out-
1ined.

The structures being considered are shown in Fig. C-1. All mocel struc-
tures were constructed using microconcrete and steel reinforcement. It was
intended that the concrete and stee) material properties would be the same
as those of the prototype materials. For the 1/30-scale structure, the
length scale is N, = 30; and for the 1/10-scale structure, N, = 10. The
length scales were selected (i.e. the sizes selected) as the smallest size
{1/30 scale) that we believed we could fabricate with gcod modeling of the
reinforcement detail and as the largect size (1/10-scale) that could be
tested to failure on an existing seismic simulator.

It was decided that each structure was to serve as a Case III model of
the assumed prototype. This decision was made because it was necessary to
have control of the acceleration scale, Ny. the mass scale, Nm. and the
time scale, Nt' if these models were to be tested to failure on the avail-
able seismic simulators. For both structures (1/30-scale and 1/10-scale),
the acceleration scale was selected as approximately 1/5, that is 5 g on
the mode! equals 1 g on the prototype. This selection was made so that the
1/30-scale model could be tested on the electrodynamic seismic simulator at
the Los Alamos National Laboratory and the 1/10-scale model cn the servo-
hydraulic seismic simulator at the Construction Engineering Research
Laboratory (CERL).
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Fig. C-1. Model structure.

For a Case III model, the scaling laws were:

where N
scale.

h

Ny = Q.

N = ﬂﬁlo, and

Ny = \/E/o .

is the selected length scale and Q is the selected acceleration
For a Q value of 1/5, this results in:
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for the 1/30-scale structure,
Nh « 30,
N.e. = 1/5,

N = 4500, and

1¢.25.

For the 1/10-scale structure,
10,

Ny « 1/5,

N_ = 500, and

N, = 7.07.

With the mass scale established, it was possible to design the masses
that must be added to the mode! structures to properly simulate the distri-
buted mass of the prototype. The procedure was as follows:

1. The dynamic lumped mass equivalent of the prototype distributed
mass at each level, (DLME)D. was estabiished. (This may involve
an energy method calculation, but in many cases, the (DLME)p is
taken as the mass of the structure concentrated at a given level
plus a fraction of the distributed mass (walls) on both sides of
that level.)

2. The required dynamic lumped mass equivalent of the model dis-
tributed mass at each level, (DLME)M. was then computed as

(DLME)M . (DLHE)n
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3. The amount of mass that must be added to the model to obtain the required
(DLME)m was then computed as

Required Added Mass = (DLME) - (DLM§)Q

Nn
The results of these computations are shown in Table C-I. Note that the

fabricated masses were slightly different than the required values. At this

point, we had the following two choices:

1. We could have reworked the masses to obtain the desired values.

2. Since these computed values were the result of the selection of Q = 1/5,
and since Q need not be exactly this value, we could have used the value
of the added masses as fabricated and work backwards to determine the
actual scale values that apply. Thus:

.oN e (OLME)p ,
actua! (OLMEdp . actual added mass
= 3
Np
. 2 ¥ "
yactual actual Nm
actual
fong « M
actual \J Qactual

The second course was taken, and the actual scales to be used in testing
the model and interpreting the results are shown in Table C-I. Note that two
different assumptions for the dynamic Jumped-mass equivalent of the prototype
distributed mass were investigated. As indicated in the body of this report,
these two cases gave nearly identical results. The method of attaching the
added mass is shown in Fig. C-2.
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Fig. C-2. Method of attaching added mass.

With the model construction complete (including the attached masses) and
the scales firmly established, the test conditions could be specified. All of
the models were to be subjected to a properly scaled version of the 1940 El
Centro N-S accelerogram. The base line corrected version of the signal that
was selected as the desired prototype base motion input is shown, together
with its integrals, in Fig. C-3 (a). At each test facility (Los Alamos and
CERL), this signal was entered into the seismic simulator control system in
digital form. It was then time-s-aled, as appropriate, by changing the as-
signed time-step value between points. For the tests conducted on structures
30-10-2 and 3D-11-2 (1/30-scale, Nt = 11.8, tested at Los Alamos), the signal
was scaled so that the total test duration was 16/11.8 « 1.36 s, and all fre-
quency components were ‘ncreased by a factor of 11.8. Likewise, the input
signal for the test of 3D-12-2 was time- and frequency-scaled by 12.2; for the
test of CERL #1, by 6.8; and for the test of CERL #2, by 7.04.

A1) of the mode! structures were subjected to properly time-scaled seismic

inputs having a progressively larger peak value, vpk‘ For structures 30-10-2
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Fig. C-3 (a). 1940 E1 Centro N-S accelerogram (normalized to 1-g peak).

and 3D-11-2, a peak value of 4.6 g per 1 g of prototype acceleration was used;
for 30-12-2, the ratio was 4.95 g/1 g; for CERL #1, the ratio was 4.6 g/1 g;
and for CERL #2, the ratio was 4.95 g/1 g. Measured response accelerations
are, of course, interpreted in the same way; i.e. for structures 30-10-2 and
30-11-2, a 4.6-g response represented 1| g response in the prototype, etc.

Notf that velocities (y) are scaled as Ny = NyNt and displacements
(y) as Nh' These scales can be used to check the velocity and displacement
limits required of the seismic simulator. As an example, to test structure
CERL #1, for which Ny « 1/4.6 and Nt = 6.8,

N
N

. = 1,48, and
y
= I(:) 2

J
Then (referring to Fig. C-3 (b) and C-3 (c) the peak velocity required per
4.6-g peak acceleration (which simulate 1 g on the prototype) is 37.94/1.48 =
25.66 in./s. The peak displacement required per 4.6-g peak acceleration is
9.82/10 = 0.98 in.

Because the CERL facility has a 30-in./s velocity limit and a + 3 in.-
displacement 1imit, we estimate that this model can be tested to the smaller
of (30/25.66) x 4.6 = 5.37 g or (3/0.58) x 4.6 = 14,1 g's.
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Because this was a short transient signal, the velocity 1imit was somewhat
larger than the value of 30 in./s that was established for steady-state vibra-
tion: as a result, the CERL #) structure was tested to a peak acceleration
of over 12 g (with some distortion of the signal frequency content, however).

1 ! | ! 1 1 1

37 94 ol

VELOCITY (in./sec)

TIME (s)

Fig. C-3 (b). 1940 E1 Centro N-S velocity history (accelerogram normalized
to 1-g peak).

<
@
~

DISPLACEMENTS (in.)

TIME (s)

Fig. C-3 (c). 1940 E) Centro N-S displacement history (accelerogram normalized
to 1-g peak).
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TABLE C-I
COMPUTATION OF ADDED MASSES AND SCALES

Age: g Required Actual Final Scales
Mode (Dimi )y Added Mass* Added Mass** L™ LY Ny
Structure L) 1) - 5 — s A -
Y. 30-10-2 1,125,000 208 228-Leve) £ an 1/4.% 11.8
and at Levels at Levels
30-11-2 # and B2 & and 92 20 ~Leve) #2
1/30-Scale
2. CERL & Same as 1125 1285-Leve) £ 462 /4.6 6.8
above at Levels
1/10-5cale & and #2 1330-Leve) #2
3. 30-12-2 1,260,000 233 at 236 ot 4460 1/4.95 2.2
at Level §) Level £) Level #)
1/30-Scale 888,000 164 at 166 at
at Level #2 Leve) #2 Leve) #2
4. CERL #2 Same as 1260 at 1285 at 495 1/4.95  1.04
above Level £ Level )
1/10-5cale 888 at 906 at
Level #2 Leve) #2

* For Q = 1/5.
** Includes attachment bolts.
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APPENDIX D
FREQUENCY DOMAIN ANALYSIS

I. INTRODUCTION

One of the fundamental relationships calculated in experimental structural
dynamics is the transfer function. From this function an analyst may determine
experimental values for natural frequencies of a structure and associated damp-
ing ratios. In the Seismic Category I Structures Program, all experimental
values of natural frequencies and damping ratios are determined from analysis
of transfer functions. For the reader who is unfamiliar with transfer func-
tions and the dynamic characteristics of a structure that may be determined
from them, this appendix will provide an explanation of these concepts with a
minimum of mathematica) rigor. In instances where detailed mathematical justi-
fications are left out, either for the sake of brevity or coherence, the reader
will be directed to appropriate references for more material.

Since the transfer functions measured in the Seismic Category I Structures
Program are all a function of frequency, the discussion will begin by distin-
guishing between time domain and frequency domain dynamic analysis, with justi-
fications for using frequency domain analysis in experimental applications.
Next, the transfer function will be defined and this will be followed by an
explanation of how natural frequencies and damping ratios are calculated from
a transfer functior. Finally, assumptions made in conjunction with the use of
transfer functions in dynamic structural analysis along with limitations and
sources of error will be discussed.

11, TIME DOMAIN vs FREQUENCY DOMAIN DYNAMIC ANALYSIS

A prerequisite to determining the response of a structure to dynamic loads
is the definition of the structure's dynamic properties. The dynamic proper-
ties that completely characterize the linear response of a structure are nat-
ural frequencies, mode shapes and a measure of Jamping cr equivalent mass dis-
tribution, stiffness distribution, and dampin, iy these properties have
been determined, the governing differential equation of motion for the struc-
ture can be solved with response being specified either as a function of time
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from the decay of the peak response. With natural frequency and damping known,
the single-degree-of-freedom system's dynamic properties are defined and the
equations of motion can be solved for a general forcing function ylelding re-
sults equivelent to those obtained in the time domain analysis above. This
concept can be extended to a multi-degree-of-freedom system, if it is notea
that, for each degree of freedom, there will be a corresponding peak in the
response spectra and associated damping value. Also, aithough beyond the scope
of this appendix, it should be noted that, with a measured input, the predomi -
nent mode shapes corresponding to the measured natural frequencies can be de-
termined without the need for additional experimental measurements.

This section has discussed why we use frequency domain dynamic analysie 4.
experimental structural dynamics. The remainder of the appendix focuses on
how frequency domain data are analyzed to determine the dynamic properties of
a structure.

I11. DEFINING A TRANSFER FUNCTION

"he basic relationship that is necessary for experimental determination of
a structure's natural frequencies and damping ratios in the frequency domain
is the transfer function. If a structure (see Fig. D-1) is excited by a known
forcing function, y(t), at some Point A (a base acceleration in the case of
Sefsmic Category I Structures), and if the response, x(t), is measured at some
Point B, it is found, in general, that the structure has transformed the input
signal to yield the response.

Fig. D-1. Schematic of an instrumented structure.
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This transformation is denoted h(t) and the following relationship can be
established

yA(t)‘hAB(t) - xB(t) .
where * indicates convolution. This relationship can be transformed into the

frequency domain by the Laplace transform as follows:
The Laplace transform of a general time-dependent function, f(t), is

@
F(s) = ffm ot (M
0

where s is the complex variable of transformation and, in generii,
s =0+ i, (2)
and

{ &« -1 , with

Q
L]

a measure of damping, and

c¢ircular frequency.

€
"

Applying this to the convolved signals, and noting that convolution in
the time domain is equivalent to multiplication in the frequency domain,
yields

YA(S) HAB(S) = XB(S) ' (3)

where

L3
-5t
XA(s) -_[xA(t) e “dt (3a)



-5t
Ya(s) -! ys(t) e "'dt , and

w
-5t

By definition, the Laplace transform of the structure's filtering function is
the transfer function relating input at Point A to output at Point B. The
transfer function is defined in terms of the Laplace transforms of the input
and output signal as follows:

X(s)
Hag(s) = y(s) - (4)

Since the transfer function HAa(s). fs a function of the complex vari-
able, s, and s is made up of a real and imaginary part, "Aa(’) can be thought
of as a function of two variables describing a surface over the complex plane.
Figure D-2 15 a plut of the real ond imaginary pait of a transfer function for
a single degree-of-freedom system,

It should be emphasized that the transfer function, Hag(s), only relates
input and response at two specific peints. If the input were moved to another
point, say A' in Fig. D-1, an entirely different transfer function would re-
sult, and, in general, HA'S(S) HAB(S) for any A' not coincident with A.

The Laplace transform does not lend itself to efficient numerical
computation, Therefore, in actual experimental work, a special case of the
Laplace transform, the Fourier transform, is used. The Fourier transform of a
general time signal, f(t), is:

@
Flu) » f TR e (5)
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The relationship with the Laplace transform can be easily seen if f(t) is zero
for al) times t less than zero. The Fourier transform then becomes

Flw) -[ fer) ooty | (6)

and, if the real portion of the Laplace transform is zero (o = 0), £qs. 1

and 6 are equivalent. The Fourier transform, then, is just the imaginary por-
tion of the Laplace transform and can be visualized by passing a plane normal
to the complex plane through the o =« o axis, as shown in Fig. D-3. Reference
2 discusses in detail the Laplace transform, the Fourier transform, and the
relationship between the two.

The Fourier transform, which is computationally efficient due to the Fast
Fourier Transform (FFT) computer algorithm.3 is employed to calculate a func-
tion analogous to the transfer function known as the Frequency Response
Function (FRF). The FRF is defined as

Xolw)
Hpglw) = Yy (@

where

ACE yp(t) et and

"~

Xg(w) = f g(t) LTS

A clarification must be made at this point, because the engineering com-
munity often uses the term transfer function to mean frequency response func-
tion. 1In a strict sense "transfer function" is the Laplace transform of the
function relating input to output and the “frequency response function" is the
analogous Fourier transform. However, because the Laplace transform is seldom
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FOURIER TRANSFORM, IMAGINARY PART
(FREQUENCY RESPONSE FUNCTION)

FOURIER TRANSFORM, REAL PART
(FREQUENCY RESPONSE FUNCTION)

Fig. D-3.

65



used in actual experimental work, the term "transfer function" has been applied
to the frequency response function. The main body of this report is no excep-
tion, and, to be consistent with the main body of this report, from this point
on “transfer function" will imply Fourier transform and be synonymous with
“frequency response function." The term “frequency response function" will

not be used any further in this appendix.

In experimental work, the following steps are typical of those required
to measure an actua) transfer function. First, with current modal analysis
hardware, the input and response signals are measured through analog trans-
ducers in the time domain. These analog signals are digitized to discrete
time domain signals by an analog to digital converter (A to D converter) and
then transformed into the frequency domain by means of the FFT algorithm.
8oth the A to D conversion and the FFT may be accomplished in a single device
called a spectrum analyzer, The spectrum analyzer then performs the required
calculation relating response to input to determine the transfer function. It
should be noted that this process does not produce a continuous function in
the frequency domain and, in actuality, the transfer function is a discrete
function. Plots of the transfer function look continuous because the discrete
points are connected with straight lines.

Response and input may be measured in many ways. Typically, in structural
dynamics applications, response is measured as displacement, velocity, or ac-
celeration and input 1s measured as force, displacement, velocity, or accelera-
tion. Hence, the transfer function can take on many forms depending upon the
combination of input and response measurements made. Transfer functions with
certain combinations of input and response parameters have been given specific
names, The transmissibility function is the transfer function, which relates
a displacement response to a displacement input, and mechanical impedance is
the transfer function, which relates velocity response to force input. 1In all
testing of the Seismic Category I structural models, the input has been meas-
yred as an absolute base acceleration and the output as an absolute accelera-
tion at any point of interest.

The follcwing example will illustrate a closed form calculation of the
transfer function for a single-degree-of-freedom base excited structure.

The single-story models tested in this program can be idealized as a
single-degree-of-freedom lumped mass system with a base excitation as shown
below (Fig. D-4).
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SEISMIC BASE EXCITATION
STIFFNESS OF THE STRUCTURE'S SHEAR WALL

EQUIVALENT VISCOUS CLAMPING OF THE STRUCTURE

LUMPED MASS, MASS OF THE TOP-FLOOR SLAB PLUS
A PERCENTAGE OF THE WALLS MASS AS DETERMINED
BY THE RAYLEIGH METHOD

OMSE OF THE TOP-FLOOR




In F(t) = K [x(t) - y(tv)y] (7b)

k is the spring stiffness,
Fo(t) = ¢ [Ret) - $t)] , where

K « S S . ol (7¢)
¢ is the damping constant.

Substituting Eqs. 7a-7¢ into Eq. 7, and separating terms involving base motion,
yields the following time domain equation-of-motion for the structure:

M) + CX(t) « kx(t) = ky(t) « cy(t) . (8)

Equation 8 will be solved for the transfer function relating the absolute
acceleration of the mass to a general time dependent base acceleration excita-
tion. Yo begin, Eq. 8 is transformed into the frequency domain bv means of
the Fourier transform as follows:

Let X(w) be the Fourier transform of the absolute acceleration response
and let Y(w) be the Fourier transform of the absolute acceleration base ex-
citation input. Then the Fourier transforms of the displacements and veloc-
ities are5

J vt et v (92)
W






where

= E’ , 15 the damping ratio,

c

Co = 2 Jkm , is the critical damping value, and
1, /k
f, = 2'*\/ , 1s the cyclic natural frequency.

It should be notea that the transfer function was developed for a general
base acceleration input and that the transfer function is independent of input.

The transfer function is a complex quantity and can be plotted as either
its rea) and imaginary part vs frequency or its magnitude (also known as gain
faztor) and phase vs frequency. Figure D-5 is a plot of the closed form anal-
ytical solution for the transfer function of a structure with similar mass and
stiffness as the single-story 1/30-scale models.

The transfer function may be separated into its real and imaginary narts
by rationalizing the denominator in Eq. (13) to obtain

real,

2 2
|- ()¢« 2gtif )

k. (142)
a - <mn)2>z v (2t ?

imaginary,

3
2wty

(1 - (rrt D% e’

(14b)

These expressions may be used to determine the magnitude and
phase as follows:
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(a) S.D.0O.F. analytical transfer function calculated with 1/30-scale
model pruperties (real part).

(b) S.D.0.F. analytical transfer func-

(¢) S.D.0.F. analytical transfer function calculated with 1/30-scale

model properties (phase).

calculated with 1/30-scale model properties (magnitudea).

(d) S.D.0.F. analytical transfer function
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2

magnitude = [H(f)| = \/(real)z + (imag)

2 1/2
1+ (ZCf/fn)

, and (15a)

a - (f/fn)z)z v 12077512

phase = ¢(f) = tan'] (1959)

real

-zc(f/fn>3
24 agdrie)

-1

tan (15b)

2
1= (F/f)

To summarize this example, the time domain differential equation-of-motion
for the base excited single degree-of-freedom structure was Jerived based on
equilibrium considerations. A general time dependent base acceleration input
was specified and the differential equation-of-motion was transformed into a
frequency domain algebraic equation. The transfer function was determined
from the frequency domain equation and then separated into its real and imagi-
nary parts as well as its magnitude and phase (EOE).

To conclude this section, the concept of a transfer function will be ex-
tended to a multi degree-of-freedom base excited structure. The governing set
of n differential equations of motion for an n degree of freedom system5 may
be written as follows:

(MK} + [e]{X())} + [KI{x} = -[M){R} ¥(t) . (16)
where o » N X § mass matrix,
(c] = n x n damping matrix,
(k] = n xn stiffness matrix,
{(X(1)) = n x 1 vector of ausolute accelerations,
{(x(t)) = n x 1 vector of absolute velocities,
{x(t)) = n x 1 vector of absolute displacements,
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Fig. D-6. (a) Measure transfer function calculated from 1/30-scale model
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culated from 1/30-scale model response data (imaginary part).
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response data (phase). (d) Measure transfer function calcu-
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From the parameters used to generate these plots, that natural frequency is
known to be

ER

| I
fn = o \/"' = 715 Hz,

and the natural frequency of the system as determined from the plots is 717 Hz.
This small deviation from the actual natural frequency of the HE system is due
to the damping in the system.

Although the algebra is tedious, the mathematical development of the RIM
is simply based on finding the roots of Eq. 14a and on finding the points at
which Eq. 14b has a zero first derivative ard a positive second derivative.

It should be noted that the experimentally determined transfer funcion
for the 1/30-scale mode! has several frequencies at which the real! part is
zero and the imaginary part has a negative peak. This is due to the fact that
this single story model, that has been idealized as a SDOF, shurt, deep canti-
lever beam with a concentrated end mass, is, in reality, a continuous structure
with many degrees of freedom. The natural frequency with the largest peak
corresponds to the shear-bending mode of the SDOF idealization and the other
natural frequencies correspond to local modes, such as wall modes.

The RIM may be extended to multi degree-of-freedom (MDOF) systems such as
the two- and three-story scale models. These models can be accurately ideal-
fzed as two- and three-degree-of-freedom systems, respectively. The transfer
functions for the two-degree-of-freedom system will have two distinct peaks in
the imaginary part, corresponding to two zeroes in the real part; and, simi-
larly, the three-degree-of-freedom system will have three distinct peaks cor-
responding to zeroes in the real part. In general, if a wide enough fregquency
range is examined, there will be a natural frequency for each degree-of-freedom
in the structure, and, if these natural frequencies are well-separated, they
can be accurately determined by examination of the real and imaginary parts of
the transfer function. As with the single-story models, the multi-story models
will have additional points in their experimental transfer functions that can
be identifed as natural frequencies, but these points again pertain to local
modes.
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Fig. D-7. Equivalent viscous damping from transfer function.

This method may be extended to MDOF systems with well-separated natura)
frequencies by applying the method successively to the peak before and the
peak after each natural frequency. This will give the damping ratio associated
with that particular natural frequency.

V. ASSUMPTIONS, LIMITATIONS, AND SOURCES OF ERROR

As a final note, the assumptions and limitations of the transfer function
techniques for identifying natural frequencies and damping ratios will be dis-
cussed and, in some cases, reiterated.

The fundamental assumption for obtaining a transfer function is that the
structure's response to a time-dependent-forcing function can be described by
a linear second-order differential equation with constant coefficients. All
the relationships involving the Fourier and Laplace transforms are based on
this assumption, and for low-level excitations, the reinforced-concrete models
may be accurately idealized by this type of differential equation. As stated
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earlier, the structure is assumed to be lightly damped, that is, to have a
damping ratio of less than 10%. This assumption is necessary in establishing
the techniques for determining natural frequencies from transfer functions.
Damping ratios for the scale models have consistently fallen between 5-8%.

It is also assumed that multi-degree-of-freedom systems have well-separated
modes. When the modes are well-separated, the transfer function data can be
analyzed as a single degree-of-freedom system in the vicinity of each natural
frequency. If the modes are not well-separated, the extension of the single-
degree-of-freedom techniques for identifying natural frequencies and damping
ratios to multi-degree-of-freedom systems will yield parameter estimates with
large error.

The primary sources of error occur in the digitization, the filtering,
and on other operations that are performed by the spectrum analyzer. A
detailed discussion of these errors is beyond the scope of this appendix and
the reader is referred to Ref. 3 for a summary of this topic.
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structure in its original condition (54 Hz for the CERL No. 1, 1/10-
scale structure). A limited amount of trial and error may be in-
volved.

4. A value for C‘ and Cz fs assigned on a best-guess basis.

Using these values, the analytical model is driven with the actual
acceleration/time signal to which the structure was subjected during
a test. This requires that, for the test chosen, the actual input
acceleration/time signal (Y vs t) must be digitized for use in the
analytical solution.

6. Response acceleration/time signals (Y] vs t, and ?2 vs t) are
computed and these signals, in turn, are transformed to FRS, that is,
to the procedure outlined in Fig. E-2, (except that the structure "S"
is replaced by its analytical model and Y| and Yz are computed
rather than measured).

r The resulting computed FRS plots are compared with the FRS plots pre-
viously generated from measured responses and the K and { are adjusted
until the curves “"match."

This procedure has been carried out using the input acceleration/time sig-

nal for Test No. 2 on the CERL No. 1, 1/10-scale structure and the mass, stiff-
ness, and damping ratio values are shown on Fig. E-3. The resulting computed

; 3 2. 3. 4.
’ 0 - TRANSFORMED
i sy g FRS FL.
TO0 &
TIME EQ
i - => FRS, 181 FL,
e :
wt — 7 RESPONSE “
L SPECTRA

1.y - The input acceleration signal applied to the base of the structure, §.
2. S A physical structure or an analytical model of the structure.

3. x, and X, The measured (for a physical structure) or computed
{for an andytical model) accaleration response at the level indicated

4. F RS . Floor Response Spectra - The response spectra of the response
signal ¥, and H,

Fig. E-2. Computation of floor response spectra, FRS.
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FRS are shown on the figure. Comparisons of these computed FRS (Fig. E-3) and
the FRS from the measured response during Test No. 2 (Fig. 28) indicate that
the analytical model, with the parameter values (M, K, {) assigned, is ade-
quate representation of the actual structure at this input level. This "match"
was accomplished in five iterations; three trials varying K to adjust f] to

54 Hz, and two trials varying § to adjust the amplitude of the FRS. Note

that the amplitude of the computed second-story FRS does not match the experi-
mentally determined value. Further computation demonstrated that matching

both first and second FRS simultaneously could not be achieved using the simple
model with K] - KZ and & = CZ‘

This procedure was repeated using the input acceleration/time signals from
several additional tests of progressively higher input amplitudes (CERL No. 1,
1/10-scale structure Tests No. 8 and No. 10). In each case, the first-stor)
stiffness (K]) was adjusted so that the first-mode frequency (f]) of the
analytical model was the same as the measured first mode frequency for that
particular test. The value of first damping ((]) was then adjusted as
necessary in an attempt to match computed and measured FRS. Values for H].

M2, Kz. and Cz were not adjusted; the assumption being that, as the

T T T T TUTWT']

CERL TEST 2,
Yo, *l.29s

I

" ~-~ SECOND FLOOR
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AMPLIFICATION RATIO
@

o
T

R
i

fx NiH2)

Fig. E-3. Computed FRS, CERL No. 1, '\Fpk « 1.2 g.



input level increases (at least to some moderate level), only the first-story
is undergoing progressive degradation. Figures E-4 and E-5 show the results

of these computations. The FRS computed using Test No. 8 input and the analy-
tical model can be compared with those computed from experimental data (Fig.
30.) Cilearly the 10% damping €, = 0.10) used in the theoretical com-

putation is not large enough to reduce the FRS peak in Fig. E-4 to the peak
value determined from experimental data (Fig. 30). This can easily be adjusted
by increasing C]: however, we note that the FRS computed from the analyti-

cal model do not "match" over the entire frequency range as well as they did
for the computation made at lower input level (Test No. 2, Figs. E-3 and 28).

The FRS computed using the analytical model and the input from Test No. 10
(during which failure occurred) are shown in Fig. E-5, and these can be com-
pared with the FRS computed from the measured response, Fig. 31. Here again
the first-story FRS peak could be matched by increasing (‘; hewever, the
deficiency in the theoretical FRS would still be evident. Specifically, we
see that, when only first-story stiffness (K]) is reduced, at high input
levels the model predicts that the first and second stories move together as a
rigid body on the first-story walls that are acting as a low-stiffness
spring. The experimental data (Fig. 31) shows that this is not the case;
hence at high inputs, the assumption that only the first story is damaged is
invalid.

Numerous attempts have been made to match thse FRS for the high input level
tests by adjusting K]. and KZ' and g and cz. The limited success of these
efforts strongly suggests that the linear model (Fig. E-1) is inadequate, even
when the parameters have been "tuned." As the required analytical model
becomes more complicated, this method for determining damping becomes less
appealing.
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