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ABSTRACT

This report summarizes the results obtained from a series
of simulated seismic tests on scale models of a prototypical
Category I nuclear power plant auxilliary building, representing
a reinforced concrete, diesel generator building. Two sizes of
model structures were used: 1/10 scale and 1/30 scale. Model
construction, test methods, instrumentation, data reduction
techniques, experimental results, comparison of experimental |

and computed results, and conclusions are presented in this
report. Values of structural stiffness obtained from both stat-
ic and dynamic tests are found to be significantly lower than
values of stiffness computed using the usual design methods, i

Values of modal frequency obtained from dynamic tests are com- |pared to computed values. Decreasing modal frequencies with |
increasing seismic input are reported. The effective damping
of these test structures is determined from the test results. j

The results obtained from the two different size (1/10- and i

1/30-scale) models are compared.

1

I. INTRODUCTION
.

!

The Seismic Category I Structures Program currently being carried out at
the Los Alamos National Laboratory (LANL) is sponsored by the Engineering
Branch, Division of Engineering Safety.of the Nuclear Regulatory Commission
(NRC). This project is part of a program designed to increase confidence in j

,
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the assessment of Category I nuclear power plant structural behavior beyo,d
the design limit. The project is focused on answering questions regard-
ing safety issues that may arise when existing nuclear facilities are subjected
to higher seismic loads than those considered in their original design. The

program involves the design, construction, and testing of reinforced concrete
models of auxiliary buildings, fuel-handling buildings, etc., but does not ,

include the reactor containment building. The overall goal of the program is

to supply to the Nuclear Regulatory Commission experimental information and a
validated procedure to establish the sensitivity of the dynamic response of
these structures to earthquakes of magnitude beyond the design basis earth-
quake. The main purposes of the experimental program are (1) to obtain general

'

information about the way in which these structures behave in the inelastic
range as compared with their behavior in the elastic range, (2) to provide
stiffness and damping values for more demanding loadings on the structures,
(3) to identify for use in design of systems and components changes in floor
response spectra as the structures are loaded into the inelastic range, and
(4) to provide experimental data for benchmarking inelastic structural anal-
ysis codes.

More information on the background of this program is found in Ref. 1. -

During FY 82, preliminary experiments were conducted on small, reinforced- -

I concrete isolated shear walls (see Fig. 1), identified as the most important
element in the Category I structures of interest in this program.

This preliminary experimental program was intended to serve the following
purposes:

1. Perfect the construction techniques necessary to fabricate the small

reinforced-concrete structures.
2. Design and evaluate the test equipment and instrumentation necessary

to conduct appropriate static and dynamic tests.

3. Conduct and analyze the results of a sufficient number of tests to
determine the relative merits of static tests, conventional vibration
tests, and simulated seismic tests. ,

These preliminary experiments, completed in FY 82, are reported in de-

tail in Ref. 2. The most significant results of these tests, conducted on
1/30-scale models (where the prototype wall thickness is assumed to be 30 in.),

are summarized below.
t

2
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Fig. 1. Isolated shear wall structures,

k

1. At high-load levels (7 g on the model wall or 0.6 g on a prototype i

: wall), reinforced-concrete shear walls behave in a highly nonlinear
1 and inelastic manner.

2 The load levels at which these walls crack and fail are in reasonable

| agreement with the values computed using the standard design methods
: as specified in ACI 349. However, the stiffness of these walls is

found to be considerably less than the value of stiffness calculated
by the usual design methods.

3. During inad cycling. such as would occur during a seismic event,
reinforced-concrete shear walls exhibit significant hysteretic energy-

loss. The amount of energy loss per cycle, and hence the effective
damping, is dependent upon load level (about 7 g on the models, 0.6 g !,

S i

on a prototype wall). |
i

,

4. At higher load levels, the measured acceleration response is con-
) siderably less than would be predicted by a linear response spectrum. I

This latter finding is in agreement with the result predicted by the

3

4
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Newmark-Hall Nonlinear Design Response Spectrum.3 To our knowledge,
,

this is the only experimental verification of this nonlinear approach
for the analysis of shear wall-type structures.

5. Standard vibrating test methods (such as sine sweeps and resonance
search and dwell) that are widely used to evaluate damping ratios,

| modal frequencies, and mode shapes for many structures and machines,
| were found to be both inadequate and inappropriate when appiled to

reinforced-concrete shear walls, even at moderate load levels. The

reason is that the properties of stiffness and damping of the
reinforced-concrete shear walls change continually with load cycling,
and the load cycle history associated with these conventional vibra-
tion tests is in no way representative of the load cycle history as-
sociated with seismic responses. As a result of this finding, all of
the subsequent dynamic tests carried out as a part of this program
used simulated seismic loading. It is important to note, however,

j that two of the most widely quoted studies of high load tests on
reinforced-concrete structures used sinusoidal vibration excitation.4,5

The transition of the testing of isolated shear walls to small-scale struc-
tures began in FY 83. The structures were models of a prototypical Category I,
two-story, diesel generator building. The shape and dimensions of the assumed

orototype structure are shown in Fig. 2, together with the dimension of two
>caled versions of this structure.' The 1/30- and 1/10-scale models were tested
during FY 83 and 84 and the results of these tests are presented in this report.
Although preliminary static and dynamic tests were conducted on the one-story,

1/30-scale models, the emphasis was on simulated seismic tests of two-story
structures during which the models were driven by an appropriately scaled ver-
sion of the 1940 El Centro N-S earthquake accelerogram.

II. CONSTRUCTION OF H0 DEL STRUCTURES

All of the structures tested during FY 83 and 84 were small-scale models
of a prototypical Category I, diesel generator building. The shape and

' Figure 2 shows a two-story structure; however, several single-story versions
of the 1/30-scale structure were also constructed and tested.

4
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i Fig. 2. Two-story structure: model and prototype,
i

| dimensions of the assumed prototype structure are shown in Fig. 2 together
: with the dimensions of the two scaled versions of this structure.

The model structures were constructed using a microconcrete having the
! properties given in Table I.
i In the 1/30-scale models, the reinforcement consisted of 1/2-in. welded,

f (nonwoven), square mesh hardware cloth at each wall surface. This resulted in

| 0.287. reinforcement in each direction, on both wall surfaces. The 1/10-scale
i models were reinforced using a deformed model reinforcing rod obtained from
I the Portland Cement Association (PCA designation 0,1-1). This rod was tied in

a 1,0-in. square mesh and placed at each wall surface to give the same per-
centage reinforcement as was used in the 1/30-scale model.

5
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TABLE I
~

CONCRETE PROPERTIES
!

1

! 1/30-Scale Models 1/10-Scale Models !

Procerty (1-in. thick wall)- (3-in. thick wal_l) {!

j Ultimate compressive strength, f 2040 - 3270 psi 3180 - 3330 psi

i Tensile strength, f 270 - 440 psi 375 - 430 psi
.

t
6 6 i

Modulus of elasticity, E 2.3-2.6 x 10 psi 2.8 x 10 p,g

|'

The nominal reinforcement material properties are shown in Table II. ,

All of the model structures that were constructed and tested during this
'

program are listed in Table I-A in Appendix A. The material properties ob-
tained from compression and split cylinder tests conducted on test cylinders i.

i cast during the construction of each model structure and concrete modulus and -

reinforcement material properties are given in Table II-A in Appendix A. ;

i Regardless of scale, the sequence of model construction was the same. The {

}
base slab was cast with reinforcing wires or bars embedded in the slab at the '

i wall locations,* and the base slab concrete was roughened where the walls would

j join the base. After the base slab had hardened, the reinforcing and forms

] for the first-story walls and ceiling were put in place. Next the microcon- [

| crete was placed and tamped and/or tamped and vibrated. The second-story con-
|

| struction was similar to the first story. After casting, the 1/30-scale models !

I i
{ t
~

TABLE II !

REINFORCING PROPERTIES i

; ;

I 1/30-Scale Models 1/10-Scale Models !
j Pronerty (1-in. thick walll (3-in. thick wall) !
l

'

j Hire diameter 0.042 in. 0.113 in. j

j Yield stress 42,700 psi 42,400 psi

Ultimate tensile strength 53,100 psi 50,000 psi'

6 6j Modulus of elasticity 25.6 x 10 psi 28.5 x 10 p3g j

I Elongation 4 per cent 13.1 per cent !
!

|

| *In one series of. tests the effect of embeddment depth was investigated. |

|

| 6
,

! !
4

|*
<
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#

were placed into a moist chamber for 2 weeks of curing. The 1/10-scale models .

were wrapped in plastic during the curing period, because they were too large '

for the moist chamber.
Figure 3 shows a single-story, 1/30-scale structure during construction;

the base mat has been cast, the reinforcement has been assembled, and the in-
side and outside forms (plexiglass) are in place. Figure 4 shows a 1/10-scale
structure during construction. The base and first story have been cast and |
forms (marine plywood) stripped, and the second-story reinforcement and inside !

forms are in place,

i

III. EXPERIMENTAL PROGRAM '

!

!

I

A. Preliminar_y Static Tests: Sino_le-Story. 1/30-Scale Structures 1

Eleven, single-story,1/30-scale models of the diesel generator building 1

were statically tested to failure under both monotonic and cyclic load condi- I

tions. The purpose of these tests was to compare measured values of stiffness, ;

cracking load, and ultimate load with the values obtained by calculation using |
material properties and geometry.

The tests we conducted used the same horizontal axis, 20,000-lb force,
servohydraulic testing machine that had been used in the isolated shear wall

'Q;,_
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Fig. 3. A single-story, 1/30-scale structure under construction.
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Fig. 4. A two-story, 1/10-scale structure under construction. '

I tests. See Ref. 2 for more details. Models were tested with the load applied |

| either parallel to the longer dimension (longitudinal load) or parallel to the
! shorter dimension (transverse load). The load was applied through a 1-in.- ;

| thick steel plate that was rigidly clamped around the entire perimeter at the
top of the walls. A rigid frame, clamped to the upper surface of the struc- ;

,

ture's base, supported displacement transducers that measured the horizontal ;

| movement of the roof slab and base slab. The data recorded are plotted as !

load vs relative deformation diagrams, that is, roof slab motion minus base

slab motion. Figure 5 shows a structure in the test machine; the holding frame
and the displacement transducers on one end (a similar set is mounted on the

far end) are visible. In this photo, the loading plate has not yet been bolted
to the top of the structure. In Fig. 6 the top plate has been bolted to the
structure and connected to the hydraulic ram (at the far end), and the struc-
ture is ready for a longitudinal load test.

The two structures subjected to cyclic loading (No. 3D-8 in the transverse
direction and No. 3D-9 in the longitudinal direction) behaved in much the same

Iway as the isolated shear walls that had been tested using cyclic loading (see
Ref. 2). That is, below a threshold value the hysteresis loop in the load vs
deformation diagram is small and does not grow as the load is cycled at a fixed

8
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Fig. 6. Static, longitudinal load test: 1/30-scale structure.

level. Above this threshold value, the area inside the hysteresis loops
increase with both increase in load level and load cycling at a fixed load

| level. -

The structures subjected to monotonic loading also behaved in much the i

; same way as the isolated shear walls that had been tested previously under
monotonic loading. Figures 7 and 8 show two structures that were failed by
monotonic loading. Structure No. 3D-4, shown in Fig. 7, was loaded in the

0longitudinal direction. Notice that, although 45 cracks due to shear have
,

developed, there is also some "lifting" from the base slab that may have in-
creased the ultimate deformation and decreased the ultimate load. However,

this partial base failure should have had no effect on the measured low-load
,

property evaluation. Structure 3D-2, shown in Fig. 8, was loaded in the trans-
Uverse direct on. The 45 cracks, due to shear, were wall-developed before

the long wall collapsed.
'

Figures 9 and 10 show the force vs deformation diagrams obtained from these

two monotonic tests. The smail steps visible in these curves, marked C), ;

C , etc., are associated with crack formation. As was the case with the
2

!
'

l
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Fig. 7. Single-story, 1/30-scale structure failed by monotonic,
longitudinal static load,

isolated shear walls, there is no truly linear region in these load vs defor-
mation diagrams; therefore, the way in which the structural stiffness (K) is
defined and, hence, evaluated is of great importance.

The tangent modulus at the origin will, of course, give the largest value
for the stiffness (K); however, this value does not appear to be the desired
value K used to compute the expected modal frequencies and response motions

when the structure is seismically loaded to a relatively high level. For pre-
dicting response in the large-load region, it might be argued that K should be
evaluated as the secant modulus at the load level necessary to produce cracking
(P ). This has been done for structure 3D-2 in Fig. 10, and, as shown, givesc

a value of K (at P = P ) - 0.54 x M Mn.
c

Since the modulus of elasticity (E) of normal weight concrete is often

evaluated as the secant modulus of the stress vs strain curve at a stress level
of 50% of the ultimate stress (see ASTM C469), it may be reasonable and

consistent to evaluate the structural stiffness (K) as the secant modulus of
the load vs deflection curve at a load level of 50% of the ultimate load.
This also has been done for structure 3D-2 on Fig. 10, and, as shown, gives a

i 11
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| Fig. 9. Load vs deflection: mono- Fig. 10. Load vs deflection: mono-
| tonic, longitudinal test. tonic, transverse test, t

,
,

6value of K (at Pg - P /2) - 0.76 x 10 lb/in. This latter method (K evaluatedu

at PL - P /2) has been used to evaluate the stiffness of all of the 1/30-scale,u

single-story structures that were statically tested. The results from these
i
' tests on 11 structures are given in Table III. |

Notice that only two structures (30-4 and 3D-9) were tested with loading j
j in the longitudinal direction. This was the result of the decisicn to conduct
i all simulated seismic tests with loading in the transverse direction. Also
| note that only two structures (3D-8 and 30-9) were subjected to cyclic loading.
I This was the result of the observation that load cycling had little effect on

the property value of greatest interest (K evaluated at 50% of ultimate load). |

Some of these structures (3D-7, 10, 11, 12, 13, 19, and 20) were deliber-,

ately aged for different times (from less than I hr, tested immediately after
; removal from the 100% humidity chamber, to 48 weeks) in an attempt to investi-
j gate the effect of aging on the structural properties. Inspection of Table
! III and Fig,11 shows that there is no apparent correlation between age and

f either stiffness (K) or ultimate load (P ). These same structures also wereu
given different amounts of reinforcement embedment depth in the base slab (see |

1Fig. 11) to determine the effect of this variable on failure mode. No effect i

es noted. )

i
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TABLE III |

RESULTS FROM STATIC TESTS

(1/30-Scale, Single-Story Structures),

i

f|" M ulus M N S$ K O b/in, uStructure *
L,,, g ,

(number) Age (Weeks) Type (psi) g(Ib) f(psi a 10 ) Kaasured' Competed * Ratto

30 - 2/(9) M.T 7700 8940 2.% 0.76 2.90 3.82 *

30 - s/(7) C.T 2300 6100 2.73 C.90 2.63 3.35

30 - 7/(48) M.T 2353 58e0 2.76 0.92 _ 2.71 2.95

30 - 10/(24) M.T 3270 4900 3.26 1.14- 3.19 2.a0

30 - 11/(6) MT 3090 7100 3.17 0.92 3.11 3.3e

38 - 12/(12) M,T 2050 6330 2.58 1.23 2.53 2.06
,

30 - 13/(3) N,7 2040 4500 2.57 0.98 2.52 2.86

30 - 19/(0) M.T u.A. 5900 N.A. 0.87 1.A. m.A.

30 - 20/(0) MT u.A. SCO N.A. 1.02 m.A. u.A.
-

>

30 - 4/(5) M.L 3320 12200 3.28 1.74 6.08 3.49

30 - 9/(8) C.L 2690 9100 2.% 1.67 5.47 3.28

M - monetonic: C - cycile: T - transverse; L - longitudinal.*

Averageofte143resultsfromfive.1-in. diam.m2-in.-longcylinders.** '

E = 57.000 dfc. See Ref. 6.***

t E evaluated as the secant modulus of the load vs defleetion plot at a load level of p,/2,there
P is the masteum load.
Computed using E = 57.000 h see test (Discussion of Results) for details of this comtation.tt

,

:
f
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Fig. 11. Effect of aging on stiffness modulus.

The values of structural stiffness (K) that were determined from these
static tests were compared to the values calculated from material properties
and geometry using the usual mechanics-of-materials methods. These calcula-
tions are shown and the comparison is discussed in the Discussion of Results.
B. Preliminarv Ovnamic Tests: Single-Story. 1/30-Scale Structures

Two single-story, 1/30-scale structures were subjected to 0.5-g broad-band
random base excitation to measure their effective elastic region resonant or
modal frequency (f). This value (f) is used to calculate a "dynamic" stiffness
that can be compared to either the stiffness calculated from material proper-
ties or to the stiffness as measured in static tests. These tests were con-
ducted on the 20,000-1b (force) electrodynamic shaker previously used to test
the isolated shear walls at the Los Alamos National Laboratory (see Ref. 2).

Figure 12 shows a structure mounted on the shake table ready for transverse
direction testing. Nuc.erous accelerometers and displacement transducers were

monitored during these tests, but the essential data taken were the following:

;

L. 15
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y(t)-theacceleration-timehistoryoftheinput(base) motion.
2 (t) - the acceleration-time history of the response motion at the roof

level.

The modal frequency was measured in the following manner. The structure
was subjected to a 0.25-g - 0.5-g base acceleration (Y).* Both the input sig-
nal Y(t) and the response signal M(t) were recorded, and the transfer function
T.F.[N(t)/y(t)] was computed. The modal frequency was obtained from the trans-

fer function presented in the phase and amplitude plots as shown in Fig. 13.
To compute the effective stiffness (K) from this dynamic test data, it is

necessary to measure the modal frequency, as explained in the previous
paragraph, using the same structure, but with different amounts of mass added
to the structure. Structure 3D-5 was tested at low acceleration (02.5-0.5 g)

levels under three conditions: (1) no mass added to the structure, (2) ap-

proximately 130 lb added, and (3) approximately 230 lb added. Mass was added
by clamping steel plates to the top of the structure. Figure 12 shows the

structure with 231 lb of weight added. Structure 3D-6 was tested with no mas',

added and with 230 lb added.
Using the measured modal frequencies from two tests in which different

amount of mass (H ) were added to the structure, it is possible to eliminate
A

the effective distributed mass of the structure (H ) from the relationshipg
between modal frequency (w), total mass (H ), and effective stiffness (K),

T

thus

2
2 (No+NADDED}- w HK - w 'g

or
.

g ADDED#II"o#"T) - IlHH -
'

i

*The excitation level is low to minimize damage due to testing, because the
low-load level stiffness is the property desired from this test. The signal
may be either broad-band random or a scaled version of the 1940 El Centro N-S
that was used in later tests. The minimum input acceleration level for good
signal reproducibility was used and generally was about 0.25-0.5 g for these
models.
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Fig. 13. Sample transfer function plot.

in which
the measured modal frequency with no added mass,o -

g

"T the measured modal frequency with a given amount of mass-

added, and

the amount of mass added.M -
ACDED

By substituting the second equation back into the first, we can compute
the structure's stiffness (K) from the data without the necessity of deciding
upon the lumped mass equivalent of the structure's distributed mass.* The
stiffnesses obtained using the above method on the two single-story,1/30-
scale models are given in Table IV.

from
*It is also possible to determine the effective distributed mass (Mo)in goodthis data. For structure 3D-5, Ho is found to be 19.2 lbs, which is,

agreement with the values obtained by taking the top slab mass (10.7 lb) plus
the mass of wall for a height equal to twice the slab thickness (2 x 4.36 -
8.72 lb).

|
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TABLE IV

RESULTS FROM DYNAMIC TESTS

(1/30-Scale, Single-Story Structures)

iMeasured**' Stiffness
6 m* I SM q y Ib/in. x 10 )Structure Load c

5(No.) (Type) (ps1.1 (p.si x 10 ). _f H.!L ! Call (Test) "Cal #Test Remarks

3D-5 M,T 2620 2.91 212 2.86 0.69 4.14 3rd test. 130 lb added

M,7 2620 2.91 155 2.86 0.62 4.61 4th test, 230 lb added

M.L 2620 2.91 325 5.40 1.54 3.51 1st test. 130 lb added

M.L 2620 2.91 247 5.40 1.51 3.58 2nd test, 230 lb added

30-6 M.T 2500 2.85 167 2.79 0.71 3.93 1st test 230 lb added

M - monotonic; C - cyclic T - transverse; L - longitudinal.*

Average of tea p results from five, 1-in. dias. x 2-in.-long cylinders.**

E = 57,000 /f ; see Ref. 6.***
e

t 30-5 first-mode freq. with no added mass was 950 Hz longitudinal and 560 Hz transverse.
30-6 first-mode freq. with no added mass was 560 Hz transverse.
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These results are compared to stiffness values obtained by calculation and

from the static tests in the section titled "Discussion of Results." These
measured modal frequencies were also useful in designing and interpreting the

results of the simulated seismic tests that were cond'ucted on 1/30- and 1/10-
scale two-story structures. These simulated seismic tests, which were the

main thrust of this program, are described in the following section.
C. Simulated Seismic Tests: Two-Story. 1/30- and 1/10-Scale Structures

These tests were conducted to develop information about the following^

parameters;

1. values of effective stiffness (K) and damping ((), and the way in
which these values vary with earthquake magnitude, as measured by
peak acceleration (y )'pk

2. peak acceleration input required to produce nonlinear / inelastic re-
sponse,

3. peak acceleration input required to produce failure of the structure,
and

4. the way in which floor retponse spectra are affected by the level of
input acceleration.

Furthermore, since results were obtained from two sizes of structures (1/30
scale and 1/10 scale), they can be compared, thus providing a partial check of
the scaling. Finally, the results obtained can be projected to predict proto-
type behavior by utilizing the appropriate scaling laws.

Three, two-story,1/30-scale structures were fabricated and tested on the
LANL electrodynamic shake table (Fig. 14). Two 1/10-scale, two-story struc-
tures were built at Los Alamos and transported to the Construction Engineering
Research Laboratory (CERL) located at Champaign, Illinois. Figure 15 shows a

1/10-scale structure mounted on the servohydraulically driven table at CERL.
The specification of the two test facilities are given in Appendix 8.

Except during some preliminary tests at 0.25 g levels, lumped masses (steel
plates) were added to these structures so that the 1/30-scale structure was a
true 1/3-scale model of the 1/10-scale structure. Also, except during these
low-acceleration-level preliminary tests, the excitation signal was a properly
scaled version of the 1940 El Centro N-S accelerogram. The scaling of the
models and the test signal are discussed in detail in Appendix C.

During these tests, numerous accelerometers and displacement transducers

were mounted on the structure. Figure 16 illustrates a typical instrumentation

20
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Fig. 16. Typical instrumentation package: simulated seismic tests. |

I
|

pattern. All of the transducer signals were recorded on FM tape recorders so
that they could be stored, digitized, and analyzed using all available data
processing and computational facilities. Figures 17 and 18 illustrate the
data taking and handling procedures.

Numerous still photographs were taken to document the post-test condition

of the structure. Figure 19 is an example. The two tests at CERL on 1/10-
scale structures were both recorded on video tape.

The test sequence was essentially the same for each structure, and that
sequence is summarized in the following numbered paragraphs.
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Fig. 18. Dynamic test data reduction.
!

D. Summary of Test Sequence

1. The test table was loaded with steel plates to approximate the weight of
the structure to be tested. The seismic simulator was then driven with

:

the command signal that was used during the proposed test. The Dase line-
corrected accelerogram of the 1940 El Centro N-S, which was frequency
scaled and used in all of these simulated seismic tests,* is shown in I

*See Appendix C for a discussion of the scaling.
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Fig. 20. A series of tests was conducted during which the amplitude (peak
table acceleration) was gradually increased. The purpose of tnis "dummy
load" test was to allow the facility operator to establish the necessary
system (electrical, servo, mechanical) transfer functions,which were used

| to properly control the facility during the actual test of the model
'

structure.
I 2. The "dummy load" was removed and the structure to be tested was bolted to
|

| the test table. At this point, the steel plates that were added to the

model to fulfill the scaling laws were not attached.
3. The "bare" model was instrumented (the number of accelerometers was fewer

than shown in Fig. 16, but the accelerometers designated No.1, No. 4, and
No. 7 in Fig. 16 were always used) and subjected to one or more low-level
dynamic tests. The peak accelerations for a bare model were as low as
0.25 g up to 1.7 g. (This dynamic signal can be any low-level random wave

form.) The purpose of this. test was to obtain some information on the
response of the bare model for comparison to the response of the final
model, that is, one with masses added to fulfill the scaling laws. Figure

21 shows a typical transfer function plot obtained from one of these bare

24
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Fig. 20. 1940 El Centro N-S accelerogram (normalized to 1 g peak).

niedel tests. In this example (from the test of the 1/30-scale model,

3D-10), the transfer function is computed as first-floor response (Y),
accelerometer No. 4 in Fig. 16) over base input (V) accelerometer No. 1
in Fig. 16). Notice that, for this two-story structure, two modal fre-
quencies are identified--specifically 342 and 950 Hz.* The same modes can
also be identified from the transfer function T.F. (Y /V), where Y is

g 2
the second-floor response (that is, accelerometer No. 7 in Fig.16).

4. Following these bare model test , mass was added to each structure so that
each structure would be a Case III scale model " of the assumed proto-
type structure, that is, a typical Category I, diesel generator building |

with a wall thickness of 30 in. It is important to note that this added

mass does not represent equipment attached to the prototype; rather, it I

represents mass added to the model structures to fulfill the required sim-
ilitude conditionsor scaling laws. The way in which these added masses

were attached to the structures and the amount added at each story level |

are shown in Fig. 22. The appearance of the structures with added mass

attached and ready for testing is shown in Figs. 14 and 15.

1

'Information beyond 1000 Hz is questionable because of frequency limitations i

in the data analysis procedure. '

''See Appendix C.
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5. The model, with the appropriate mass added, was then subjected to a series
of simulated seismic events. The excitation was a properly frequency-
scaled version of the 1940 El Centro N-S acceleration / time signal (see
Fig. 20). It is important to note that, during the test series, the-intent
was to vary only one parameter, the peak input acceleration, Y . Thispk
was the case since the object was to determine how modal frequency, damp-
ing, and floor response spectra vary with increasing seismic amplitude for
a given earthquake. Ideally, frequency scaling and,.hence, the energy
content at each. frequency remains constant during the test series on any
model.'

He recognize that damage occurs progressively as the level of input accel-
eration is increased. Therefore, the results obtained from these tests par-
ticularly at the higher acceleration levels are probably not the same as might
be obtained if a new or previously untested structure was used for each test.
Clearly, the approach used here is a trade off between desired results and
program cost.

The data from these simulated seismic tests were reduced in the following
manner:

1. All of the tape recorded signals (accelerations and displacements)
were digitized and stored in digital form. See Fig. 18.

2. All signals were inspected in the time domain, and peak displacements
and accelerations were measured and recorded.

3. Desired floor response spectra (FRS) were computed, using a suitable
program with the appropriate digitized acceleration vs time signal as4

input. The method is outlined in Fig. 23.
i

l

! *In practice there is some variation in the frequency,,cor'ent, and energy dis-
tribution in the frequency domain, with variation in Ypk. This is true be-

| cause neither of the shaker facilities used (Los Alamos or CERL) nor any other
facilities known to the authors are capable of exactly reproducing a transient
control signal independent of that signal's amplitude. The ideal can be closely
approached if we allow iteration between input signal and table response--that
is, repetitive testing and input signal correction. However, repetitive testing
further damages the structure, and, therefore, is not a suitable technique for
these tests. The way in which this small but undesirable variation in frequency
content is accounted for is discussed in more detail in Appendix B.
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Fig. 23. Computation of floor response spectra, FRS.

4. Hodal frequencies and equivalent damping ratios were determined by
transforming the appropriate signals from the time domain into the
frequency domain and by computing transfer functions. The way in
which these functions are used to determine modal frequencies and
equivalent damping ratios is discussed in more detail in Appendix D.

IV. DISCUSSION OF RESULTS

A. Preliminary Static Tests: Single-Story. 1/30-Sc31e Stru dirai
The basic purpose of the static tests conducted on the single-story, 1/30-

scale structures was to determine the effective stiffness (K) of these struc-
tures. This is of utmost importance in seismic design and analysis, since the
effective stiffness is one of the fundamental properties required for com-
putation of a structure's modal frequency.

In seismic design or analysis of prototype structures, the usual practice
is to compute the structural stiffness using mechanics-of-materials methods

' with the structure's geometry and the concrete's measured material properties.
Typically, the initial uncracked stiffness (K) is computed using the
relationship

28 :
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K K,
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where

A G/h,K -
s e

3
K 3EI/h ,-

b
G the concrete shear modulus - E/2(1 +p),-

h the story height,-

A - the effective shear area,
e

the concrete elastic modulus, |E -

the section moment of inertia, and !I -

Poisson's ratio, assumed to be 0.2 for concrete.p =

|
The computed stiffness clearly depends on the value used for elastic modulus
of the concrete. Since concrete is not a linear elastic material, it is common !

Icivil engineering practice to specify a minimum concrete cylinder compressive
i i

strength, f , and to measure the strength for each batch. An elastic modulus
c

is computed based on this value of f . The formula used is E -

57,000 (for normal weight con rete, ACI 349-76, Sec. 8 3). In
general, this value of E will correspond to a secant modulus through a point

c

on the stress-strain curve that is about 45-50% of the value of the ultimate3

strength of the concrete. All of the computed stiffness values given in Table III
for the single-story, 1/30-scale structures were computed using this method.,

Hith the load vs deformation data available from the static tests of these*

* structures, a measured value of stiffness is also available. However, as pointed
out in the previous section of this report, these load vs deformation plots are
not linear and, therefore, the way in which stiffness is measured is of I

considerable importance. The values of measured Stiffness given in Table III were
determined as the secant modulus of the load vs deformation plot at a' load level
equal to 501. of the ultimate load (P }'

u
The important conclusion is that, for these structures >the computed stiff-

nesses are between two and four times the measured stiffness (see the ratio column |

in Table III). If the computed values of stiffness were used to predict the modal |
frequency (f) of these structures, we would expect that the values would be too
large by factors of /2.06 to /3.82, since-modal frequency is

29
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proportional to /KI this error, in turn, would effect all seismic response
calculations.
B. Preliminary Dynamic Tests: Sinale-Story. 1/30-Scale Structures

The above conclusion was investigated with dynamic tests of single-story,

1/30-scale structures. Table IV compares the values of stiffness obtained
from these dynamic tests with the values obtained by calculation using material
properties E - 57,000 Note that structure 3D-5 was tested sev-.

eral times under a variety of conditions. If we consider only the transverse
tests on the two structures, we find that the effective transverse dynamic

6stiffnesses are between 0.62 and 0.71 lb/in. x 10 . These values are some-
6what lower than those determined by static tests (0.76 - 1.14 lb/in. x 10 ,

see Table III) but they are in far better agreement with static test results
6than they are with calculated values of stiffness (62.86 lb/in. x 10 ). He |

again concluded that the effective stiffness of these structures is consider-
ably less than the value calculated using the usual methods. The data from

the static and dynamic tests on the 1/30-scale structures are summarized in
Fig. 24.

TRANSVERSE l/30--SCALE TESTS

USING E, = 57000 /f'
x10' -

, , ; y

K . O.9 8 E
4 -

(UNCRACKED
~ '

THEORETICAL)7
E

3 ~

A STATIC TESTS
,

* DYN AMIC TESTS

m 0.9 8 E,
*

$2 - 4 -

Lt.

b 3D -12] 30.go

| -

30 13 -a
-

3D-6 3D-2
3D-5

OL I I I I
p

| 0 1 2 3 4 x10,
| E, (psi)

| Fig. 24. Stiffness: 1/30-scale structures.
1
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C. Simulated Seismic Tests: Two-Story. 1/30- and 1/10-Scale Structures
!The simulated seismic tests involved five, two-story structures: three

1/30 scale and two 1/10 scale. These structures, designed as scale models of
the assumed prototypical diesel generator building, are shown in Fig. 2. Table

V lists these structures together with material properties and measured virgin
modal frequencies.

These modal frequencies were determined from the transfer function plots,
as explained in the previous section of this report. However, in these tests

|
using a properly time- (or frequency-) scaled El Centro N-S accelerogram, the |

( structure is so stiff relative to the frequency content of the input that the |
| second mode response is very small. As a result, the second-mode frequency

,

cannot be determ'ined with any precision. For the same reason, the second-mode

response is of little practical importance in this investigation of stiffness -

differences; therefore, only first-mode frequencies are tabulated.
These measured first-mode frequencies can be used in two ways;
1. The results from the 1/30-scale structure can be used to predict the

behavior of the 1/10-scale structure. i

2. The results from the tests on both structures can be used to predict
the behavior of the assumed prototype, and these two predictions of

,

prototype behavior can be compared.
!

Table VI compares the virgin first-mode frequency as measured on 1/10-
scale structures to the values predicted from the values measured on the 1/30-
scale structures;- that is, the 1/30-scale structures are used as 1/3-scale '

models of the 1/10-scale structures. The authors believe that the data shown
i

TABLE V :

THO-STORY STRUCTURES USED IN SIMULATED SEISHIC TESTS
|
|

Structure Virgin First Mode Frequency (f )>

i4
f' Test No Mass Added Hass Added

_Go) . Scale IAs.fl location DLzl DLzl ;

!

3D-10-2 1/30 2600 Los Alamos 342 104
3D-11-2 1/30 2890 Los Alamos 354 94 !

: 30-12-2 1/30 N.A. Los Alamos 270 94
CERL No. I 1/10 3180 CERL 100 54,

CERL No. 2 1/10 3330 CERL 94 53

31
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in Table VI verify that these two structural sizes (1/30- and 1/10-scale)
serve as adequate models for each other. Whether they are adequate models of
the assumed prototype has, of course, not been proven in these tests.*

Table VII shows the predicted virgin first-mode frequency of the assumed
prototype using all of the data from the 5 model tests. The predicted values

for prototype first-mode frequency range from 7.5 - 11.8 Hz. This is a large

scatter on a percentage basis. However, in any design using response spectra
techniques, the difference between these values for the assumed first-mode
frequency would have little effect. Furthermore, as the variation in measured I

modal frequencies of these 5 structures indicates, it would be impossible to
build a prototype structure to obtain a precisely defined first-mode frequency.

Following the low-load level dynamic tests, each of the 5 two-story struc-
,

tures was subjected to a series of simulated seismic tests in which the peak
acceleration input level (Y ) was progressively increased. The data from

pk
these tests make it possible to determine the following:

1. the way in which effective stiffness (K) and effective damping (()
vary with acceleration input level (V )'pk

'During FY 1985, a new configuration will be tested. Two sizes of this con-
figuration will be fabricated and seismicly tested. The smaller structure
will use microconcrete and wire reinforcement and the larger will use regular
aggregate concrete and standard reinforcement. These tests should address the
feasibility of scaling to prototype size.

TABLE VI
,

,

COMPARIS0N OF 1/30- and 1/10-SCALE RESULTS 1

(Virgin, First-Mode Frequencies) )

Test Predicted from'
Condition Structure Measured 30-10-2 30-11-2 30-12-2

No Mass Added CERL No. 1 100 [342d} [354d} 270 6
CERL No. 2 94 (=114 [ (= 118 f = 90 f

Mass Added CERL No. 1 54 104 8 94 8 94 d
CERL No. 2 53 - 60 - 54 - 54

'Hith no mass added, the frequency scale relatin the 1/30- and the 1/10-scale
structures is 3; with added mass, the scale is 3, See Appendix C.
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TABLE VII ;

PREDICTION OF PROTOTYPE VIRGIN FIRST-H0DE FREQUENCY

Predicted
Model No. Prototype
Predicted Scaling Method' First-Hode

xNt fjp(HO
_

From f)p - f1H f

3D-10-2
,

No Mass Added fjp - 342 x 1/30 11.4

Mass Added f)p - 104 x 1/11.8 8.8

30-11-2

No Mass Added f)p - 354 x 1/30 11.8

Hass Added f 94 x 1/11.8 8.0jp -
1

3D-12-2 1

No Mass Added f)p - 270 x 1/30 9.0 ,

Mass Added f)p - 94 x 1/12.2 7.7

;
'

CERL No.1

No Mass Added f)p - 100 x 1/10 10.0

)Hass Added f 54 x 1/6.8 7.9jp -
|

CERL No. 2 -

No Mass Added f 94 x 1/10 9.4 |jp-
Hass Added f)p - 53 x 1/7.04 7.5

1

'See Appendix C for a discussion of scaling,

t f)p - first-mode frequency of the prototype.
f)q - first-mode frequency of the model.
N - the frequency scale factor, defined as f /f .

7 p g
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2. the level of (V ) beyond which the stiffness and damping begin to
pk

undergo significant change,
3. the level of (Y ) required to produce failure of the structure, and

pk
4. the way in which floor response spectra vary with the level of input

acceleration.
Table VIII shows the test sequence used for each of the 5 structures.

The data presented in Table VIII have been plotted in Figs. 25 and 26 to
'

show the variation in first-mode frequency (f ) with input acceleration levelj
(Y )**pk

Figure 25 shows the data taken during FY 83 from tests on two 1/30-scale

models (3D-10-2 and 3D-11-2) and one 1/10-scale model (CERL No. 1). Figure 26 ,

shows the data taken during FY 84 from tests on an additional 1/30-scale model ;

(3D-12-2) and on a second 1/10-scale model (CERL No. 2). These FY 84 tests

differed from the FY 83 tests in two respects: (1) the attached masses were
adjusted slightly (mass added to the second-story was decreased) to better
represent the equivalent distributed mass, and (2) the drive signal (V vs t)
used in the 1/30-scale test was refined to better match the drive signal used
in the 1/10-scale test. As can be seen by comparing Figs. 25 and 26, these |
two modifications had only minor effect and all of the data could have been |

plotted on a single sheet.
The solid lines shown in Figs. 25 and 26 are not "best fit" curves for the

data points shown. Rather, they were added to suggest the fo11cwing design
,

application of these data: ;

1. All n.cdals suggest that the assumed prototype diesel generator build- )
ing will have a virgin first-mode frequency of 7.5 - 8.8 Hz. |

2. When subjected to the El Centro N-S earthquake of peak magnitude up
,

to 0.2 g, the prototype will respond with this virgin first-mode fre-
quency.

'All of the data presented in Table VIII from the several tests can ,Ybe plottedon the same sheet by multiplying f1 by the frequency scale (N ) and pkf.

by the acceleration scale (Ny). This is true since, under these test condi-

tions (appropriate masses added to each model and the base motion properly
frequency and acceleration scaled), the 1/30-scale structure is a 1/3-scale
model of the 1/10-scale structure, and both structures are models of the as-
sumed prototype. In addition, when plotted in this manner, prototype behavior,
predicted by each model, is shown directly.

~

34

. - - , - - . . _ . . . . - , . - - . , . _ = - . - . _ _ - - . - ,- - _._. . ..



TABLE VIII

TEST SEQUENCE

(Two-Story Structures, Simulated Seismic, with Added Mass)

Input Heasured First
Test J.evel Mode Frequency

.

Structure (No.) Yp(g) f (Hz) Retarks1

30-10-2
1/30-Scale 1 1.5 104 1

Los Alamos 2 5.3 80 2

30-11-2 1 <0.5 94 1.3
1/30-Scale 2 0.75 93 --

Los Alamos 3 1.0 92 --

4 1.5 90 --

5 8.2 63 2

6 <0.5 71 4

30-12-2 1 0.4 94 1

1/30-Scale 2 0.75 93

Los Alamos 3 1.35 91
4 3.17 91

5 4.09 90
6 6.26 87
7 6.41 85
8 11.86 69
9 11.23 64

510 20.0 --

CERL #1 1 0.7 54 1

1/10-Scale 2 1.2 54
CERL 3 2.0 51

4 2.7 50
5 3.5 49
6 4.7 41
7 7.0 44
8 9.0 41

9 10.0 38 |
10 12.0 24

6 j11 16.0 --

CERL #2 1 0.83 53 1 i

1/10-Scale 2 0.74 53 I
,

CERL 3 1.85 50 )|

| 4 3.94 48 i

i 5 5.43 46 |

| 6 6.86 39 |

| 7 8.28 33 |

| 8 11.3 25 1

71 9 17.0 --

Remarks:
1. Low-level tests with no mass added preceded this test.
2. End of test--shaker displacement limit reached. Structure did not fail.
3. A wide-band test (rather than simulated seismic).
4 A wide-band, low-level test to establish irreversible change; note that fl

only partially "recovers."
5. Structure failed by shear at junction of base to first-story wall.
6. Structure failed by shear of first-story wall; see Fig. 19.
7. Same as #5 above and walls completely separated from base.
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EXAMPLE:

AT POINT A' CERL TEST No 1
f, = 24 x 1/6.8 =3.5 H2

y = 12 x 1/4.6 = 2.6 gpg

Fig. 25. Variation in first-mode frequency, FY 1983 tests.

3. If subjected to a peak intensity of greater than 0.2 g, the proto-
types will respond with a reduced effective first-mode frequency.
The greater the amplitude, the lower the effective modal frequency.
This implies that the floor response spectra for a given acceleration-
vs-time excitation (in this case the El Centro, N-S) will vary with
peak amplitude of input. This is contrary to the usual linear design
assumption.

4. Inspection of the various models indicate that these reductions in
modal frequency will occur withoV_t visible signs of cracking;
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Fig. 26. Variation in first-mode frequency. FY 1984 tests.

5. Low-level, wido-frequency-band diagnostic tests, which were performed
between the seismic tests, indicate that any reduction in the effec-

| tive modal frequency will be permanent.
6. The assumed prototype diesel generator building would not fa'il (sig-

nificant visual cracking and breaking loose from the foundation at
the lower walls) until the amplitude exceeded 2.5 g.

Figure 19 illustrates the crack pattern on one of the lower-story end walls
of a 1/10-scale model af ter the test. The orientation of the cracks is con-
sistent with the predominant development of shear stress in the end wall.
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IThis diagonal crack pattern was not visible in the 1/30-scale models, probably
because of the lower ultimate elongation of the reinforcement used in the 1/30-
scale models, (4% for 1/30 scale, 13.1% for 1/10 scale).'

The quantification of damping associated with the response of structures
subject to transient loads that produces nonlinear and/or inelastic responses
has proved to be a very difficult problem. This is especially true for rein-
forced concrete structures for which the exact damping mechanism is unknown

(that is, is damping viscous, structural, Coulomb, or perhaps a combination of
'

all three?)
Because one of the objectives of this program is to improve our ability to

analyze structures loaded into their inelastic region, we have attempted to
characterize and quantify damping in a way that will be most useful in the
analysis process. Therefore, because most analysis methods utilize response

spectra and computations that involve equivalent viscous damping ratios, these
tools and concepts are used in our evaluation and quantification of damping

(C).*
Two methods of quantifying damping have been used. The first method will

be referred to as the "Floor Response Spectra (FRS) Hatching Technique" and
the second method as the "Transfer Function Analysis Technique (TFAT)." '

The "FRS Matching Technique" involves the use of a computer model and
iteration with different values of damping ratio (() until the computer-
generated FRS "match" the FRS generated from response data measured during a
test at a given input acceleration level (V )*pk

The TFAT involves plotting the transfer function (TF) of the response ac- ,
.

celeration, W)(t) or 2 (t), to the input, V(t), at a given input accelera- !'

2

tion level (Y ). The real part of this transfer function is then examined
pk

to determine the damping ratio (().**'

In Fig. 27 the computed values of damping ratio, (() from tests of these
,

models, are plotted vs the peak acceleration level (V ) of the test for whichpk
that value of damping ratio applies. All of the values, except the 2 points

>

'The use of and assigning values for "equivalent viscous damping ratios (()"
should not be taken to imply that the damping mechanism is viscous. Rather
this value use is only an attempt to assign an appropriate value to a term
that is needed in response spectra and other methods of analysis.
**These methods are discussed in more detail in Appendices 0 and E.

I
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indicated as FRS Matching Technique, were determined using the TFAT. There is
considerable scatter in the data, but the authors believe that the following |

observations are justified:
1. These 3 models respond to inputs with magnitude of less than 4 g s as

if they had equivalent viscous damping ratios of 5.5% - 8%.
2. For input magnitudes of 4 - 9 g, the effective viscous damping tends

to increase.
3. At input magnitudes greater than 9 g (where all of the models are

known to be close to failure), the damping is uncertain.
The next important issue concerning damping is whether or not the damping

'
effects are distorted in the models as compared within prototype. If so, how

are the effective damping ratios measured in these models related to the effec-
tive damping in the prototype? As demonstrated in Ref. 7, we would expect
that damping forces are distorted between the 1/30- and the 1/10-scale models,
but only if the damping mechanism is viscous. Analysis of the data plotted in i

Fig. 27 confirms that the damping mechanism is not viscous and, therefore, the
values of equivalent damping ratios determined from these model tests are ex-
pected to apply to the prototype structure.*

In cunnection with these observations, it is important to note that, since
in both models (1/30- and 1/10-scale), acceleration is scaled by a factor of
approximately 5, the region of noticeably increasing damping (region A - B in
Fig. 27) corresponds to input amplitude (V ) to the prototype in excess of

pk
1.g peak acceleration.

,

!

The way in which a structure modifies the input base motion is of great

| interest, and this information is usually expressed in terms of FRS. The way

in which FRS is defined is shown in Fig. 23. The usual practice is to assume
that the structure is a linear system. With this assumption, for a given
structure subjected to an acceleration signal of a given frequency content,
the FRS is a constant; that is, FRS is independer:t of amplitude of the input
signal. As pointed out in the preceding paragraphs, the structures being dis- I

cussed in this report have been loaded into their nonlinear / inelastic range.
Therefore, it is important to determine how this nonlinear / inelastic response
affects the FRS.

|

'The details of this analysis are included in Ref. 7.
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This has been done using the data obtained from the tests of a 1/10-scale
structure (CERL No. 1); however, frequencies and accelerations have been scaled
to prototype values, as was done in Figs. 25 and 26. Figure 28 shows the first-

and second-floor-response spectra (FRS) and FRS ) computed from the meas-2

ured response (X) and X ) of the 1/10-scale structure during a low g level2
test (1.3 g on the model, 0.26 g on the prototype). As would be expected, the
maximum amplification occurs in the region of the structure's first-mode fre-

quency (f - 54 Hz; f /N7 - 7.9 Hz). Because this is a stiff structurej j
(relative to the frequency content of the input, that is, the 1940 El Centro
N-S) the second and higher modes produce relatively insignificant amplifica-
tions. Now if this structure remained unaltered at higher input level tests,
we would expect that the FRS would remain as shown in Fig. 28. He know, of

course, from our previous analysis of shifts in modal frequency at higher input
levels, that the structure undergoes progressive decrease in stiffness at the
higher input levels. Therefore, we anticipate that the floor response spectra
will vary with input level.
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This is indeed the case, as can be seen by comparing Figs. 29, 30, and 31
with Fig. 28. As the base acceleration input level is increase /1 and the ef-
fective first-modal frequency is decreased, the frequency region over which
amplification occurs is down shifted and, in this particular case, the magni-
tude of peak amplification is decreased. Note, however, that as the first

mode frequency is decreased toward the frequency region in which the input
signal is maximum, the amplification of the response in this region is in-
creased and, if the first-mode frequency should be reduced so as to exactly
correspond to one of the frequencies at which the input level reaches a peak,
the maximum magnification of response could, of course, be increased.
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V. CONCLUSIONS AND RECOMMENDATIONS

Based on the data presented in this paper, on the data from the isolated
shear wall tests (see Ref. 2), and upon recent studies made by other investi-
gators,8,9 the authors believe that the actual stiffnesses of prototypical,
Category I structures may be considerably less than the values computed using
the usual design procacares. He recognize that, because all of these tests
involve small structures (models), the observed smaller values of stiffness

could be structure-size related.
The Technical Review Group (TRG) for this program has recommended that the

effect of using "model" or microconcrete material be evaluated. A program to
resolve this issue is ueing planned for FY 1985.

He believe that the prototype structures could experience considerable
nonlinear and inelastic response without showing visible signs of cracking.
When cracking appears, the structure may have experienced large nonlinear and

42
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inelastic response, and the effective structural stiffness may already be sig- {
nificantly reduced. The input acceleration level required to produ:e.this ;

condition is, however, very large. For the prototypical diesel generator
building subjected to the 1940 El Centro N-S earthquake investigated in this j

study, the cracking and the very large reduction in first-mode frequency would
be expected at an input' acceleration level of 0.2 g or higher.

The measured values for effective viscous ~ damping ratios (from 5.5 - 81.) i

are in reasonable agreement with values currently recommended for reinforced
concrete design.10 Although our studies indicate that ,at higher load levels. I

! the damping increases, the load level at which this increase occurs in the i

structure investigated (>l g) is so large that it is doubtful if this in- !
I

'
crease in damping is of any value in design for realistic loading.

The reduction of first-mode frequency, which is associated with the reduc-
tion in effective stiffness, retunes the structure relative to the input and,

as a result, the floor-response spectra are different at differr.at levels of [
4

input acceleration. The way in which this affects equipment mounted at a given ;
,

level depends upon its mounted frequency relative to the original structural |
!

first-mode frequency. In general, we can say that if equipment is mounted !

such that its resonance value is less than the original structural first-mode ;

frequency, it could be tuned to the structure's resonance during high-seismic- !

load response. '

] We believe that the results presented in this report demonstrate the poten-
,

; tial value of 1/30- or 1/10-scale-model tests. The 1/30-scale models appear

| to be appropriate to investigate a number of design and test parameters of
interest, that is, they are useful in sensitivity studies. The relative low )

: cost and convenience of the smaller models allows a larger number of parameters
; to be investigated. However, for very important parameters or for those that

f may be judged to be very sensitive to size effects, larger scales are approp-
|

5 riate.

!
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' TABLE A-I

STRUCTURES CONSTRUCTED AND TESTED DURING FY 1983 AND 1984

,

Structure
No. of Type of Location Purpose ,

No. Scale Stories -Test * of Test of Test ** '

W

3D-2 1/30 1 Static, H,T Los Alamos A

3D-4 1/30 1 Static, H,L Los Alamos A-

30-8 1/30 1 Static, C T Los Alamos A

3D-9 1/30 1 Static, C,L Los Alamos A ;

3D-5 1/30 1 Seismic, L&T Los Alamos B

; 3D-6 1/30 1 Saismic, T Los Alamos B

3D-7 1/30 1 Static, H,T Los Alamos A&C'

3D-10 1/30 1 Static, H,T Los Alamos A&C

30-11 1/30 1 Static. H,T Los Alamos A&C

3D-12 1/30 1 Static, H,T Los Alamos A&C

3D-13 1/30 1 Static, H,T Los Alamos A&C ,

3D-19 1/30 1 Static, H,T Los Alamos A&D-

3D-20 1/30 1 Static. H,T Los Alamos A&D

3D-10-2 1/30 2 Seismic, T Los Alamos E
'

3D-11-2 1/30 2 Seismic, T Los Alamos E

3D-12-2 1/30 2 Seismic, T Los Alamos E ,

.

CERL-1 1/10 2 Seismic, T CERL E&F 1
'

i CERL-2 1/10 2 Seismic, T CERL E&F

.I
*H - Honotonic Test. .

C - Cyclic Test. |

T - Transverse; load parallel to short dimensions.
L - Longitudinal; load parallel to long dimension. .

Seismic - Scaled version of El Centro (1940) N-S accelerogram. |
I

**A - Comparison of measured stiffness to computed value.
B - Heasure single-story resonant frequency, check effective stiffness4

and effective mass.
C - Model structures that have different reinforcement embedment depths in

the base slab; tested at 3, 6, 12, and 24 weeks after casting to deter-
mine the effect of steel embedment on the failure modes and aging ef-
fects on the initial stiffness.

D - Model structures tested immediately after removal from moist chamber to
determine initial stiffness before any drying occurs.

E - Test to progressively larger inputs, track changes in modal frequency,
damping, and shifts in floor response spectra.<

| F - Check scalability of results, i.e., from 1/30- to 1/10-scale structures.

f
4

:
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TABLE A-II

MATERIAL PROPERTIES, TEST STRUCTURES

Concrete Reinf orc ement Maaimum

b'
f ft E* 'y

d'UT (psi n 106) (g)
Structure E" Elongation

6I.un { psi x 10 } fgnNumber

30-2 2700 350 2.3 * " 59.000 66,500 26.9 7.7
30-4 3320 340 2.6 * " 59,000 66,500 26.9 7.7
3D-5 2620 330 2.4 t42,700 53.100 25.6 4.0
30-6 2500 310 2.4 t42.700 53,100 25.6 4.0
30-7 2350 430 2.5 142,700 53,100 25.6 4.0
30-8 2300 310 2.4 t42,700 53,100 25.6 4.0
30-9 2690 350 2.5 t42,700 53,100 25.6 4.0
3D-10 3270 440 N.A. t42,700 53,100 25.6 4.0
3D-11 3090 400 N.A. t42.700 53,100 25.6 4.0
3D-12 2050 270 N.A. t42,700 53,100 25.6 4.0
3D-13 2040 400 N.A. t42,700 53,100 25.6 4.0
3D-19 4700 470 N.A. 142,700 53,100 25.6 4.0
30-20 4300 440 3.3 +42,700 53,100 25.6 4.0
3D-10-2 2600 340 2.5 t42,700 53,100 25.6 4.0
30-11-2 2890 420 N.A. t42,700 53,100 25.6 4.0
3D-12-2 2780 390 2.8 t42,700 53,100 25.6 4.0
CERL-1 3180 430 2.8 a42,400 50,000 28.5 13.1

CERL-2 3330 375 2.6 +=42,400 50,000 28.5 13.1

Measured in compression test, initial tangent modulus.*

Measured in tensile test.**

"* Lot 2 wire.
t Lot 3 wire,

Model deformed wif e purchased f rom Const. Tech. Lab., Portland Cement Assn., 0-1-1,a

47



_ . . . - . _ _

!

!

,

APPENDIX 3
J

LOS ALAMOS AND CERL SHAKER CHARACTERISTICS

The preliminary dynamic and the simulated seisml; tests of the 1/30-'

scale structures were conducted on the electrodynamic vibration test facility
located at K-site, Los Alamos National Laboratory, Los Alamos, New Mexico.

The electrodynamic vibrator used was an 18,000-lb force machine manufacturec

by the M. B. Electronic Corporation. The shaker drives a uniaxial (horizen-
tal), 4 ft x 4 ft, magnesium alloy, slip table mounted on Team hydrostatic
bearings.

The system is capable of:
26 g peak acceleration (no load on table),
100 in./s peak velocity, and
1 0.5 in. displacement

over a frequency band of 5 - 5,000 Hz. For the FY 1983 tests, the system
'

was programmed and controlled by a Hewlett Packard 5427A digital vibration
control system. For the FY 1984 tests, a Gen Rad vibration control system

| was used. Both of these systems provide for transient vibration (i.e., sim-

I ulated seismic) control.
i Since the tests discussed in this report were completed, the Los Alamos

I,

facility has been upgraded by replacing the 18,000-1b force shaker with a ,

36,000-lb force, Unholtz-Dickie shaker.
The 1/10-scale structures discussed in this report were tested on the

servohydraulic vibration test facility operated by the Construction Engineer-
ing Research Laboratory (CERL) at Champaign, Illinois. This is a biaxial
machine (one horizontal axis plus vertical), but only single axis motion

(horizontal) was used in these tests. Test items are mounted on 12 ft x 12
ft welded aluminum table that can support a dead weight of 810,000 lb.

The system is capable of:;

A. Vertical Motion

|
810,000 lb force,

j Approximately 50-g peak acceleration (no load on table),
' 27 in./s peak velocity, and

1.375 in, displacement.

48
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B. Horizontal Motion
450,000 lb force,

Approximately 40-g peak acceleration (no load on table),
32 in./s peak velocity, and

2.75 in. displacement.
The system is controllable over a frequency range of 0-200 Hz. The

system is programmed and controlled by a Gen Rad vibration control system
that allows for transient vibration control.

49
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APPENDIX C

SCALING OF THE 1/30- AND 1/10-SCALE STRUCTURE

The 1/30-scale structures (1-in, wall thickness) and the 1/10-scale
structures (3-in. wall thickness) were designed, constructed, and tested so
that each size of structure was a Case III scale model of the assumed proto-

type diesel generator building (30-in. wall thickness). In addition, the

smaller (1/30-scale) structures were 1/3-scale, Case II nodels of the larger

(1/10- scale) structures. The various types of modeling (Case I, Case II,
and Case III) are discussed in detail in Ref. 7, with the scaling laws that
must be fulfilled for each case. In this appendix, the design of the struc-
tures and test conditions, so that the scaling laws are fulfilled, is out-
lined.

The structures being considered are shown in Fig. C-1. All model struc-
tures were constructed using microconcrete and steel reinforcement. It was
intended that the concrete and steel material properties would be the same
as those of the prototype materials. For the 1/30-scale structure, the

length scale is Nh - 30; and for the 1/10-scale structure, R - 10. The
h

length scales were selected (i.e. the sizes selected) as the smallest size
(1/30 scale) that we believed we could fabricate with good modeling of the
reinforcement detail and as the largest size (1/10-scale) that could be
tested to failure on an existing seismic simulator.

It was decided that each structure was to serve as a Case III model of
the assumed prototype. This decision was made because it was necessary to
have control of the acceleration scale, N , the mass scale, N , and they m

time scale, N , if these models were to be tested to failure on the avail-t
able seismic simulators. For both structures (1/30-scale and 1/10-scale),

the acceleration scale was selected as approximately 1/5, that is, 5 g on
the model equals I g on the prototype. This selection was made so that the
1/30-scale model could be tested on the electrodynamic seismic simulator at
the Los Alamos National Laboratory and the 1/10-scale nodel on the servo-

hydraulic seismic simulator at the Construction Engineering Research
Laboratory (CERL).

|
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fig. C-1. Model structure.
i

|

|
| For a Case III model, the scaling laws were:

Q,N.. -
y

/Q, andN -
m

0N " *t h

where S is the selected length scale and Q is the selected acceleration
h

scale. For a Q value of 1/5, this results in:
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for the 1/30-scale structure,<

| N 30=
h

Ny - 1/5,
1 ,

4500, andN, -

I
,

| N 12.25.-
t

i i

For the 1/10-scale structure, |

E 10,-
h

1
.

y - 1/5,N -

j

| 500, andN, - .

'

i

7.07.
~

N -t
i

l

! Hith the mass scale established, it was possible to design the masses ,

that must be added to the model structures to properly simulate the distri-
.

| buted mass of the prototype. The procedure was as follows:

1. The dynamic lumped mass equivalent of the prototype distributed
i mass at each level, (DLME)p, was established. (This may involve ;

j an energy method calculation, but in many cases, the (DLME), is
' taken as the mass of the structure concentrated at a given level
i plus a fraction of the distributed mass (walls) on both sides of
; that level.)
i 2. The required dynamic lumped mass equivalent of the model dis-

| tributed mass at each level, (DLME),, was then computed as

U
(DLME), - D .

! N,
t

!
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3. The amount of mass that must be added to the model to obtain the required

(DLHE),was then computed as

Required Added Hass - (DLME)m - (DLHE)g
3

N
h

The results of these computations are shown in Table C-I. Note that the
fabricated masses were slightly different than the required values. At this
point, we had the following two choices:
1. He could have reworked the masses to obtain the desired values.
2. Since these computed values were the result of the selection of Q = 1/5,

and since Q need not be exactly this value, we could have used the value

of the added masses as fabricated and work backwards to determine the
actual scale values that apply. Thus:

(DLME)p )
N* actual

a. =
,

(DLME)P Actual added mass !+

O3
h

A 2b. N Q h , andy tual actual
- -

N* actual
ac l

_

Ni c. N h-

|
t

.

actual Qactual

The second course was taken, and the actual scales to be used in testing
the model and interpreting the results are shown in Table C-I. Note that two
different assumptions for the dynamic lumped-mass equivalent of the prototype
distributed mass were investigated. As indicated in the body of this report,
these two cases gave nearly identical results. The method of attaching the
added mass is shown in Fig. C-2.
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STRUCTURE SCALE Me (bs) M2 (Ibs)

3D-10-2 1/30 228 231

4

3D-11-2 1/30 228 231
a

3D-12-2 1/30 236 166

I
Cf RL 1 1/10 1285 1330

C E R t, 2 1/10 1785 906

Fig. C-2. Method of attaching added mass.

With the model construction complete (including the attached masses) and
the scales firmly established, the test conditions could be specified. All of
the models were to be subjected to a properly scaled version of the 1940 El ;

ICentro N-S accelerogram. The base line corrected version of the signal that
was selected as the desired prototype base motion input is shown, together
with its integrals, in Fig. C-3 (a). At each test facility (Los Alamos and
CERL), this signal was entered into the seismic simulator control system in
digital form. It was then time-scaled, as appropriate, by changing the as-

,

| signed time-step value between points. For the tests conducted on structures

3D-10-2 and 3D-11-2 (1/30-scale, Nt = 11.8, tested at Los Alamos), the signal
was scaled so that the total test duration was 16/11.8 = 1.36 s, and all fre-
quency components were 'ncreased by a factor of 11.8. Likewise, the input

signal for the test of 3D-12-2 was time- and frequency-scaled by 12.2; for the
! test of CERL #1, by 6.8; and for the test of CERL #2, by 7.04.

All of the model structures were subjected to properly time-scaled seismic
inputs having a progressively larger peak value, V . For structures 3D-10-2pk
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Fig. C-3 (a). 1940 El Centro N-S accelerogram (normalized to 1-g peak).

and 3D-11-2, a peak value of 4.6 g per 1 g of prototype acceleration was used; I

for 3D-12-2, the ratio was 4.95 g/l g; for CERL #1, the ratio was 4.6 g/l g;
and for CERL #2, the ratio was 4.95 g/l g. Heasured response accelerations

are, of course, interpreted in the same way; i.e. for structures 3D-10-2 and
30-11-2, a 4.6-g response represented 1 g response in the prototype, etc.

Notethatvelocities(j)arescaledasNj-NNyt and displacements
_

(y) as N . These scales can be used to check the velocity and displacement
h,

limits required of the seismic simulator. As an example, to test structure

CERL #1, for which Ny - 1/4.6 and Nt " 0'0'

1.48, andN. -
_y

10.N -
y

Then (referring to Fig. C-3 (b) and C-3 (c) the peak velocity required per
4.6-g peak acceleration (which simulate 1 g on the prototype) is 37.94/1.48 -
25.66 in./s. The peak displacement required per 4.6-g peak acceleration is

9.82/10 - 0.98 in.
Because the CERL facility has a 30-in./s velocity limit and a 3 in.-

displacement limit, we estimate that this model can be tested to the smaller
of (30/25.66) x 4.6 - 5.37 g or (3/0.98) x 4.6 - 14.1 g's.
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Because this was a short transient signal, the velocity limit was somewhat
larger than the value of 30 in./s that was established for steady-state vibra-
tion; as a result, the CERL #1 structure was tested to a peak acceleration
of over 12 g (with some distortion of the signal frequency content, however).
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~
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0 2 4 6 8 10 12 14 16
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'

Fig. C-3 (b). 1940 El Centro N-S velocity history (accelerogram normalized
to 1-g peak).

'
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Fig. C-3 (c). 1940 El Centro N-S displacement history (accelerogram normalized
to 1-g peak).
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TABLE C-I '

; |
, COMPUTATION OF ADDED HASSES AND SCALES ,

!
'

i
i

ASSr*?$ Required Actual Final Scales |.

!Model '(0Lai), Added mass * Added Mass ** N Wy Ntm
Structure (Ib) (1b1 (Ib1

1. 30-10-2 1,125,000 208 228-Level #1 4112 1/4.6 11.8

and at Levels at Levels ;

3D-11-2 #1 and #2 #1 and #2 231-Level #2 f
1/30-Scale {;

2. CTRL #1 Same as 1125 1285-Level #1 462 1/4.6 6.8

above at Levels
1/10-Scale #1 and #2 1330-Level #2 I

:

3. 3 D-12-2 1.260,000 233 at 236 at 4460 1/4.95 12.2

at Level #1 Level #1 Level #1

1/30-Scale 888,000 164 at 166 at

, at Level #2 Level #2 Level #2 i
'

!

.
4. CTRL #2 Same as 1260 at 1285 at 495 1/4.95 1.04 ;

above Level #1 Level #1 f
1/10-Scale 888 at 906 at f

| Level #2 Level #2 |
!

; |

For 0 = 1/5. ;*

i " Includes attachment bolts.
|

1

l

1
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APPENDIX D

FREQUENCY DOMAIN ANALYSIS
4

'

1 I. INTRODUCTION

i
One of the fundamental relationships calculated in experimental structural;

dynamics is the transfer function. From this function an analyst may determine'

experimental values for natural frequencies of a structure and associated damp-;

ing ratios. In the Seismic Category I Structures Program, all experimental
values of natural frequencies and damping ratios are determined from analysis"

of transfer functions. For the reader who is unfamiliar with transfer func-
tions and the dynamic characteristics of a structure that may be determined
from them, this appendix will provide an explanation of these concepts with a
minimum of mathematical rigor. In instances where detailed mathematical justi-

,

fications are lef t out, either for the sake of brevity or coherence, the reader
will be directed to appropriate references for more material.

Since the transfer functions measured in the Seismic Category I Structures
Program are all a function of frequency, the discussion will begin by distin-
guishing between time domain and frequency domain dynamic analysis, with justi- |

fications for using frequency domain analysis in experimental applications.
Next, the transfer function will be defined and this will be followed by an

'

explanation of how natural frequencies and damping ratios are calculated from
a transfer function. Finally, assumptions made in cenjunction with the use of
transfer functions in dynamic structural analysis along with limitations and j

sources of error will be discussed.

II. TIME DOMAIN vs FREQUENCY DOMAIN DYNAMIC ANALYSIS

1

| 1s t e of t t e d c pr pe t Th dyn m c o

ties that completely characterize the linear response of a structure are nat-
ural frequencies, mode shapes and a measure of danping cr equivalent mass dis-
tribution, stiffness distribution, and damping khta these properties have

: been determined, the governing differential equation of motion for the struc-
ture can be solved with response being specified either as a function of time

i

,
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or frequency. If response is specified as a function of time (time is the
independent variable), a time domain dynamic analysis is said to have been
performed. If response of the structure is specified as a function of fre-
quency (frequency is the independent variable), a frequency domain analysis
has been performed.

Experimental dynamic structural analysis is usually concerned with deter-
mining the dynamic properties of a structure from measured input and response
data. Little information can be determined from a response-time history of a
structure if additional experiments are not performed to determine mass and

'

stiffness distributions and, for all Out the simplest geometries, the mass and
stiffness distributions are difficult to obtain. However, response-frequency
spectra (a spectrum is a plot of a variable as a function of frequency) can be
used to approximate natural frequencies, mode shapes, and damping without any
supplemental experimental measurements. For this reason response-frequency
spectra are usually chosen over time domain analysis in experimental applica-
tions.

The classical spring-mass-damper system found in most introductory vibra-
Itions texts can be used to illustrate an experimental time domain and fre-

quency domain dynamic analysis. In time domain experimental analysis, the
mass is excited by a known time-dependent forcing function and the response is
measured as a function of time. A separate static load-deflection experiment
is needed to determine the spring constant and the mass has to be weighed.
Knowing the mass, stiffness, input and response, the damping can then, in
theory, be determined by comparing the experimentally measured response to the
closed form analytical solution of the differential equation of motion. Once
the damping is determined, the spring-mass-damper system's dynamic properties
have been defined and the response to a general time-dependent forcing function
can be determined analytically. The difficulty in extending this procedure to
multi-degree-of-freedom structures becomes evident when one tries to experi-
mentally determine the mass and stiffness distributions of a more complex
structure.

In a frequency domain analysis, the spring-mass-damper system is excited
by a sinusoidal forcing function and the magnitude of the peak response is
plotted as a function of exciting frequency, as the frequency is varied over a
specified range. The peak in the response vs frequency plot corresponds to
the natural frequency of the system and an estimate of damping can be obtained

59



_.

from the decay of the peak response. With natural frequency and damping known,
the single-degree-of-freedom system's dynamic properties are defined and the :

equations of motion can be solved for a general forcing function yielding re-,

suits equivelent to those obtained in the time domain analysis above. This

concept can be extended to a multi-degree-of-freedom system, if it is noted
'

that, for each degree of freedom, there will be a corresponding peak in the
response spectra and associated damping value. Also, although beyond the scope
of this appendix, it should be noted that, with a measured input, the predomi-
nent mode shapes corresponding to the measured natural frequencies un be de-
termined without the need for additional experimental measurements.

This section has discussed why we use frequency domain dynamic analysis i;i

experimental structural dynamics. The remainder of the appendix focuses on

how frequency domain data are analyzed to determine the dynamic properties of ,

a structure.

III. DEFINING A TRANSFER FUNCTION

ihe basic relationship that is necessary for experimental determination of
a structure's natural frequencies and damping ratios in the frequency domain
is the transfer fur.ction. If a structure (see Fig. D-1) is excited by a known
forcing function, y(t), at some Point A (a base acceleration in the case of
Seismic Category I Structures), and if the response, x(t), is measured at some
Point B, it is found, in general, that the structure has transformed the input
signal to yield the response.

hBe x(t)

.

\, A. STRUCTURE htt)

y(t) :*A

!

i
Fig. D-1. Schematic of an instrumented structure.
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This transformation is denoted h(t) and the following relationship can be
established

I
iyA(t)*hAB(t) = x (t)B

,

!,

where ' indicates convolution. This relationship can be transformed into the
frequency domain by the Laplace transform as follows:

The Laplace transform of a general time-dependent function, f(t), is

) f(t) e-stf(s) - dt (1).

o

where s is the complex variable of transformation and, in generai,
,

s-o+ui (2),

and

i i- dCI , with

;

o - a measure of damping, and )
.

u - circular frequency.

| Applying this to the convolved signals, and noting that convolution in
the time domain is equivalent to multiplication in the frequency domain,
yields

!

I
i

Y (s) HAB(s) - X (s) (3)A B
,

where !
|

m

*A(t) e-stX IS) * dt (3a) iA ,-
o 1

i

1
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.

Y IS) " Y (t) e-stdt , and (3b)
.

B B
o

.

IS) " f hAB(t) e-stH dt (3c)
AB

.

o

By definition, the Laplace transform of the structure's filtering function is
the transfer function relating input at Point A to output at Point B. The

transfer function is defined in terms of the Laplace transforms of the input
and output signal as follows:

H IS) " I4)
AB

*

Since the transfer function. HAB(s), i s a function of the complex vari-
able, s, and s is made up of a real and imaginary part, HAB(s) can be thought
of as a function of two vartables describing a surface over the complex plane. ;

figure D-2 is a plot of the real and imaginary pait of a transfer function for |
a single degree-of-f-eedom system. |

It should be emphasized that the transfer function, HAB(s), only relates )
input and response at two specific points. If the input were moved to another |

point, say A' in fig. D-1, an entirely different transfer function would re-

sult, and, in general, H '8(s) HAB(s) for any A' not coincident with A.A
The Laplace transform does not lend itself to efficient numerical

computation. Therefore, in actual experimental work, a special case of the
Laplacc transform, the Fourier transform, is used. The fourier transform of a
general time signal, f(t), is:

.

F(u) - f(t) e-iutdt (5).
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The relationship with the Laplace transform can be easily seen if f(t) is zero
for all times t less than zero. The Fourier transform then becomes

i

|=

F(u)-[f(t)e-lutdt (6)
,

|
,

and, if the real portion of the Laplace transform is zero (o - o), Eqs. I
and 6 are equivalent. The Fourier transform, then, is just the imaginary por-
tion of the Laplace transform and can be visualized by passing a plane normal
to the complex plane through the o - o axis, as shown in Fig. 0-3. Reference

2 discusses in detail the Laplace transform, the Fourier transform, and the
relationship between the two.

The Fourier transform, which is computationally efficient due to the Fast
Fourier Transform (FFT) computer algorithm,3 is employed to calculate a func-

tion analogous to the transfer function known as the Frequency Response

Function (FRF). The FRF is defined as

X I")
B

AB ") " Y (w)'IH

A

where

Y I") " Y (t) e-iwtdt , and
A A

!.

-iut
X I") " *B(t) e dt .

B

A clarification must be made at this point, because the engineering com-

munity often uses the term transfer function to mean frequency response func-

tion. In a strict sense "transfer function" is the Laplace transform of the
function relating input to output and the "frequency response function" is the
analogous Fourier transform. However, because the Laplace transform is seldom
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used in actual experimental work, the term "transfer function" has been applied
to the frequency response function. The main body of this report is no excep-
tion, and, to be consistent with the main body of this report, from this point
on "transfer function" will imply Fourier transform and be synonymous with
"frequency response function." The term "frequency response function" will
not be used any further in this appendix.

In experimental work, the following steps are typical of those required
to measure an actual transfer function. First, with current modal analysis
hardware, the input and response signals are measured through analog trans-

ducers in the time domain. These analog signals are digitized to discrete
time domain signals by an analog to digital converter (A to D converter) and
then transformed into the frequency domain by means of the FFT algorithm.
Both the A to D conversion and the FFT may be accomplished in a single device

called a spectrum analyzer. The spectrum analyzer then performs the required
calculation relating response to input to determine the transfer function. It

should be noted that this process does not produce a continuous function in
the frequency domain and, in actuality, the transfer function is a discrete
function. Plots of the transfer function look continuous because the discrete
points are connected with straight lines.

Response and input may be measured in many ways. Typically, in structural
dynamics applications, response is measured as displacement, velocity, or ac-
celeration and input is measured as force, displacement, velocity, or accelera-'

tion. Hence, the transfer function can take on many forms depending upon the
combination of input and response measurements made. Transfer functions with -

certain combinations of input and response parameters have been given specific

names. The transmissibility function is the transfer function, which relates
a displacement response to a displacement input, and mechanical impedance is
the transfer function, which relates velocity response to force input. In all

testing of the Seismic Category I structural models, the input has been meas-
ured as an absolute base acceleration and the output as an absolute accelera-
tion at any point of interest.

The folicwing example will illustrate a closed form calculation of the
transfer function for a single-degree-of-freedom base excited structure.

The single-story models tested in this program can be idealized as a
single-degree-of-freedom lumped mass system with a base excitation as shown
below (Fig. 0-4).'
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;y(t)

k

M-
m-

;M(t).,__

c
() () ()

'##/#/4Y####/####/####/4
y(t) - SEISMIC BASE EXCITATION

k - STIFFNESS OF THE STRUCTURE'S SHEAR WALL

c - EQUIVALENT VISCOUS CLAMPlNG OF THE STRUCTURE
m - LUMPED MASS, MASS OF THE TOP-FLOOR SLAB PLUS

A PERCENTAGE OF THE WALLS MASS AS DETERMINED
BY THE RAYLEIGH METHOD

V(t) - RESPONSE OF THE TOP-FLOOR SLAB

Fig. D-4. Single-degree-of-fieedom idealization of a one-story model building.

First, the differential equation of motion must be derived from equilib-
rium considerations in the time domain. Three forces act on mass m: the in-
ertia force F , the spring force F , and the damping force F , and they allm k C
must be in equilibrium.

F (t) + F (t) + F (t) - 0 (7)m k e
,

F,(t) - mV(t) , where (7a)

2

Y(t) d *lIl , and
dt

<

m is the system mass.
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In F(t)-K[x(t)-y(t)] (7b)
k

,

k is the spring stiffness,

f(t)-c[x(t)-y(t)) , where
c

x(t) = d t) $(t)=dyt) and (7c)
d

,,

c is the damping constant.

Substituting Eqs. 7a-7c into Eq. 7, and separating terms involving base motion,
yields the following time domain equation-of-motion for the structure:

mV(t) + cx(t) + kx(t) = ky(t) + cy(t) (8).

Equation 8 will be solved for the transfer function relating the absolute
acceleration of the mass to a general time dependent base acceleration excita-
tion. To begin, Eq. 8 is transformed into the frequency domain by means of
the fourier transform as follows:

Let X(u) be the Fourier transform of the absolute acceleration response

and let Y(w) be the Fourier transform of the absolute acceleration base ex-
citation input. Then the Fourier transforms of the displacements and veloc-

5ities are

m

[y(t)e-utdt = - Y(w) (9a),

. .
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,

.

y(t) e-iwtdt - Y(w) (9b),

. o

x(t) e-iwtdt = X(w) , and (ge)
-m . u

.

[i(t)e-iwtdt = X(w) (9d).

-= w

tiow take the Fourier transform of both sides of Eq. [8):

(mV(t) + ci(t) + kx(t))e-iwtdt = {ky(t) + cy(t))e-iutdt , (10)

and substituting in the above Fourier transforms for velocity and displace-
ment yields the following equation:

X(w) mE - Y(w) E E
(11)-

" 2 _ ,2 w _
.

wa

Thi. differential equaticn in the time domain has been transformed into an
algebraic equation in the frequency domain. Solving Eq. [11] for X(w)/Y(w)
yields the transfer function relating absolute base acceleration input to
absolute acceleration response of the mass in the following manner:

H(w) U k + iac
Y(w) = g , $ue _ ,2 (12),

m

cr in terms of cyclic frequency,
,

I+I I/I"4(f) (13).
,

1 - (f/fn ) + 12(f/fn
69
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where

(-hC
. is the damping ratio,

,

.

C - 2 / km is the critical damping value, and,

c

, is the cyclic natural frequency.f =
n

1

It should be noted that the transfer function was developed for a general i

base acceleration input and that the transfer function is independent of input.
The transfer function is a complex quantity and can be plotted as either

its real and imaginary part vs frequency or its magnitude (also known as gain
factor) and phase vs frequency. Figure D-5 is a plot of the closed form anal-
ytical solution for the transfer function of a structure with similar mass and
stiffness as the single-story 1/30-scale models.;

The transfer function may be separated into its real and imaginary narts

| by rationalizing the denominator in Eq. (13) to obtain

.i
real, :

I

l - (f/f ) + C25III )
_

n n (14a)
(1 - (f/f )2)' + (2(f/f }2'

n n

imaginary.

-2((f/f )n (14b).

(1 - (f/f ) ) + (2(f/f )2n 3

These expressions may be used to determine the magnitude and

; phase as follows:
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Fig. D-5. (a) S.D.O.F. analytical transfer function calculated with 1/30-scale
model prvperties (real part). (b) S.D.0.F. analytical transfer func-
tion calculated with 1/30-scale model properties (imaginary part).
(c) S.D.O.F. analytical transfer function calculated with 1/30-scale
model properties (phase). (d) S.D.O.F. analytical transfer function
calculated with 1/30-scale model properties (magnitude).
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magnitude-|H(f)|- (real)2 + (imag)2

l
1/2 1

[ 1 + (2(f/f )n , and (15a)--

((1-(f/f) +[2(f/fl/n n

-I
phase - 4(f) - tan

~

-2((f/f")3
-

tan-I (15b).

1 - (f/f ) + 45 (III )n n
- .

.

To summarize this example, the time domain differential equation-of-motion
for the base excited single degree-of-freedom structure was derived based on
equilibrium considerations. A general time dependent base acceleration input

'

was specified and the differential equation-of-motion was transformed into a
frequency domain algebraic equation. The transfer function was determined
from the frequency domain equation and then separated into its real and imagi- '

nary parts as well as its magnitude and phase (E0E).
To conclude this section, the concept of a transfer function will be ex-

tended to a multi degree-of-freedom base excited structure. The governing set
5of n differential equations of motion for an n degree of freedom system may

be written as follows:

[m]{'x*(t)) + [c]{x(t)) + (k]{x) - -[m]{R) y(t) (16).

where
[m] * n x r. mass matrix,

fc] = n x n damping matrix,

[k] = n x n stiffness matrix,

{'x'( t )) - n x 1 vector of absolute accelerations,

{x(t)) - n x 1 vector of absolute velocities,

(x(t)) - n x 1 vector of absolute displacements,
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1

{R} n x 1 vector that associates the base acceleration
input, y(t), with the proper degree of freedom on
which it acts, and

y(t) base acceleration input.-

The procedure for determir.ing the transfer function is analogous to the
single degree-of-freedom case. First, the equation-of-motion is transformed
into t'! frequency domain to obtain

[m]-h[cl- [k] {X(w)} = -Y(w)[m]{R} (17).

The vector, {X(w)}, is divided by the scalar, Y(w), yielding an n
x 1 vector, 1/Y(w) {X(w)}, of transfer functions relating the absolute
acceleration response at each degree of freedom in the system to the absolute
base acceleration input, X(t). If the mass, damping, and stiffness matrices
are known, the vector of transfer functions may be solved for analytically as
follows:

- h {X(w)} - [m]-h[c]-h[k] [m){R} (18).

-
"

-

IV.
DETERMINING NATURAL FREQUENCIES AND DAMPING RATIOS FROM TRANSFER FUNCTIONS

The natural frequency of a lightly damped (( $ .1), single degree-of-
freedom (SDOF) system can be determined from the absolute acceleration input--
absolute acceleration response transfer function, (see Eq. 13) by noting that
the imaginary part of the transfer function (Eq. 14b) reaches a negative peak
while the real part, (Eq. 14a) goes to zero, when f - f and h - 0. Withn
this in mind, the natural frequency of the 1/30-scale model subjected to a
seismic base acceleration, as determined from the experimental transfer func-
tion plots, Figs. A-6 and 8-6, is 64.5 Hz. This technique, that will be refer-
red to as the rea, and imaginary method (RIH), can be verified by examining
the plots of the analytically determined transfer function (Figs. 5A and 58).

73

- - - _ _ _ _ _ _ .



y to
O

$ A. ;
=

0 W/VV V 9 |

g g
< 9
4 - e n

j | | | |
.g -10

0 40 80 120 160 )
'

FREQUENCY (Hd
(a)

I
|

i |
'

|
| 1

, 10 -

Io
a3

Eh
~

h
~

@g 5 - .
-

hu. i<

g _ gap, u AA A

i l i I i l i 1

0 40 80 120 16 0

FREQUENCY (Hz)

(b)

i | 1 | t 15

f-Y:n 18 0 -

^^0
I

'
'

j 10 - -'

-18 0 i ! I I I

O 60 120 180y
FREQUENCY (Hz) < |

5 -

E f
--

'

(c)
9
8
i

I I I f0 t
0 60 120 180

FREQUENCY (Hz)

(d)

Fig. D-6. (a) Heasure transfer function calculated from 1/30-scale model
response data (real part). (b) Heasure transfer function cal-
culated from 1/30-scale model response data (imaginary part).
(c) Heasure transfer function calculated from 1/30-scale model
response data (phase). (d) Heasure transfer function calcu-

,

lated from 1/30-scale model response data (magnitude).
|

) 74

1



1

|

l
!

From tne parameters used to generate these plots, that natural frequency is
known to be ;

f - 715 Hz,-
n

and the natural frequency of the system as determined from the plots is 717 Hz.
This small deviation from the actual natural frequency of the HE system is due
to the damping in the system.

Although the algebra is tedious, the mathematical development of the RIM
is simply based on finding the roots of Eq.14a and on finding the points at
which Eq.14b has a zero first derivative ard a positive second derivative.

It should be noted that the experimentally determined transfer funcion
for the 1/30-scale model has several frequencies at which the real part is
zero and the imaginary part has a negative peak. This is due to the fact that
this single story model, that has been idealized as a SDOF, short, deep canti-
lever beam with a concentrated end mass, is, in reality, a continuous structure
with many degrees of freedom. The natural frequency with the largest peak
corresponds to the shear-bending mode of the SDOF idealization and the otheri

1
' natural frequencies correspond to local modes, such as wall modes. I

IThe RIM may be extended to multi degree-of-freedom (MD0F) systems such as

| the two- and three-story scale models. These models can be accurately ideal-
| ized as two- and three-degree-of-freedom systems, respectively. The transfer

functions for the two-degree-of-freedom system will have two distinct peaks in
the imaginary part, corresponding to two zeroes in the real part; and, simi-
larly, the three-degree-of-freedom system will have three distinct peaks cor-
responding to zeroes in the real part. In general, if a wide enough frequency
range is examined, there will be a natural frequency for each degree-of-freedom
in the structure, and, if these natural frequencies are well-separated, they i

can be accurately determined by examination of the real and imaginary parts of
the transfer function. As with the single-story models, the multi-story models
will have additional points in their experimental transfer functions that can
be identifed as natural frequencies, but these points again pertain to local
modes.
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The natural frequency of a lightly damped SD0F systen may also be deter-
mined from the plots of the magnitude and phase of the transfer function. It

can be shown that the magnitude reaches a peak while the phase goes through a
0180 shift, when f - f and h - 0. Hence, from Figs. C-6 and 0-6, the

n
natural frequency of the 1/30-scale model used previously is 65.5 Hz, as de-
termined from the experimental data. Figures C-5 and D-5 estimate a value of
710 Hz as the natural frequency for the analytical case. This deviation from
the actual natural frequency and the fact that the phase change is not a full
180 are both caused by the damping in the system. Note that, for 8% damp-

ing, this deviation is less than 1%.
As with the real and imaginary experimental plots, the experimental phase

and magnitude plots identify many natural frequencies for the one-story model
corresponding to local modes. The extension of the magnitude-phase method of

identifying natural frequencies to HD0F systems is analogous to the extension
of the RIM to HD0F systems. That is, if the natural frequencies are well-

separated and if a wide enough frequency range is examined, there will be a
peak in the magnitude corresponding to a 180 phase change for as many nat-
ural frequencies as there are degrees-of-freedom.

The damping ratio for a lightly damped SDOF system can be determined from
the real part of the transfer function, as shown in Fig. 0-7.

Equation 19 may be developed mathematically by taking the real part of
the transfer function (Eq. 14a) and by solving for the frequencies where Eq.

(f)andaminimum (f).FormtheratiofII14a is a maximum
b a a b

and solve for (.
| Applying this method to the 1/30-scale model used in the previous example,

the real part of the transfer function (Fig. A-6) shows a damping ratio of
5.9%.

This method can be verified by examining the real part of the analytical
transfer function plotted in Fig. A-5. From~the parameters used to generate

this plot, the actual damping ratio is known to be
>

C
8.0%(- -

,

2 /km
(

and the damping ratio as determined from Fig. A-5 is 8.0%.
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Fig. D-7 Equivalent viscous damping from transfer function.

This method may be extended to HD0F systems with well-separated natural
frequencies by applying the method successively to the peak before and'the
peak after each natural frequency. This will give the damping ratio associated
with that particular natural frequency.

V. ASSUMPTIONS, LIMITATIONS, AND SOURCES OF ERROR |

As a final note, the assumptions and limitations of the transfer function
techniques for identifying natural frequencies and damping ratios will be dis-
cussed and, in some cases, reiterated.

The fundamental assumption for obtaining a transfer function is that the
structure's response to a time-dependent-forcing function can be described by
a linear second-order differential equation with constant coefficients. All
the relationships involving the Fourier and Laplace transforms are based on
this assumption, and for low-level excitations, the reinforced-concrete models
may be accurately idealized by this type of differential equation. As stated
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earlier, the structure is assumed to be lightly damped, that is, to have a
damping ratio of less than 101.. This assumption is necessary in establishing

the techniques for determining natural freqJencies from transfer functions.
Damping ratios for the scale models have consistently fallen between 5-81..

It is also assumed that multi-degree-of-freedom systems have well-separated
modes. When the modes are well-separated, the transfer function data can be
analyzed as a single degree-of-freedom system in the vicinity of each natural
frequency. If the modes are not well-separated, the extension of the single-
degree-of-freedom techniques for identifying natural frequencies and damping
ratios to multi-degree-of-freedom systems will yield parameter estimates with
large error.

The primary sources of error occur in the digitization, the filtering,
and on other operations that are performed by the spectrum analyzer. A
detailed discussion of these errors is beyond the scope of this appendix and
the reader is referred to Ref. 3 for a summary of this topic.
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APPENDIX E

FLOOR RESPONSE SPECTRA (FRS) MATCHING TECHNIQUE

As pointed out in the body of this report, two methods have been used to
determine values for "equivalent viscous damping ratios," from the test data.
The "Transfer Functions Analysis Technique," which is discussed in Appendix D,
is well-known and widely used. The "Floor Response Spectra (FRS) Matching
Technique," which is outlined below, was developed as part of this project
effort.

The "FRS Matching Technique" consists of the following steps:
1. A simple, lumped mass analytical model is used in iterative computa-

tions.
Because of the way in which the structures used in these tests were con-

structed and loaded, the two mass models shown in Fig. E-1 with nearly equal

masses (M) ~ M ), equal stiffness (K) - K ), and equal damping ratios2 2

(C) - (2) are chosen as the appropriate models for the structure in
its original condition.

2. Values for H and H are assigned from previous calculations ofj 2

the effective distributed masses plus the lumped mass added to each
story.

3. A value for K) and K is assigned to give the analytical model a2

first mode frequency equal to the known first mode frequency of the

M w - > W (i)i 2

K'$2 2

M *-> W , ( t)i

K , (ii

BASE c = y (t)

Fig. E-1. Lumped mass model.

1
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structure in its original condition (54 Hz for the CERL No. 1, 1/10-
scale structure). A limited amount of trial and error may be in-
volved.

4. A value for (j and (2 is assigned on a best-guess basis.
5. Using these values, the analytical model is driven with the actual

acceleration / time signal to which the structure was subjected during
a test. This requires that, for the test chosen, the actual input
acceleration / time signal (V vs t) must be digitized for use in the
analytical solution.

6. Response acceleration / time signals (E vs t, and 2 vs t) arej 2

computed and these signals, in turn, are transformed to FRS, that is,
to the procedure outlined in Fig. E-2, (except that the structure "S"

is replaced by its analytical model and N and 5 are' computedj 2

rather than measured).
7. The resulting computed FRS plots are compared with the FRS plots pre- ,

viously generated from measured responses and the K and ( are adjusted
until the curves "match."

This procedure has been carried out using the input acceleration / time sig-
nal for Test No. 2 on the CERL No.1,1/10-scale structure and the mass, stiff-

ness, and damping ratio values are shown on Fig. E-3. The resulting computed |
1

1. 2. 3. 4.
'W~ " , , ,

, , , ,

TRANSFORMED

' = y
TIME FREQ

~ I
l all A L,, _ ' > FRS, I U FL.

a11, r
TWE 3 M.,

::'; : $pg 3

1. V The input acceleration signal apphed to the base of the structure, S.

2. S A physical structure or an analytical model of the structure.

3. E, and 2 The measured (for a physical structure) or computed2
(for an anJytical model) acceleration response at the level indicated.

4. F.R.S.. Floor Response Spectra The response spetra of the response
signal M andH 'g 2

Fig. E-2. Computation of floor response spectra, FRS.
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i

FRS are shown on the figure. Comparisons of these computed FRS (Fig. E-3) and
the FRS from the measured response during Test No. 2 (Fig. 28) indicate that
the analytical model, with the parameter values (M, K, () assigned, is ade-
quate representation of the actual structure at this input level. This "match"

was accomplished in five iterations; three trials varying K to adjust f; to;

54 Hz, and two trials varying ( to adjust the amplitude of the FRS. Note
that the amplitude of the computed second-story FRS does not match the experi-
mentally determined value. Further computation demonstrated that matching
both first and second FRS simultaneously could not be achieved using the simple

model with K) -K and () - (2'2
This procedure was repeated using the input acceleration / time signals from

several additional tests of progressively higher input amplitudes (CERL No.1,
1/10-scale structure Tests No, 8 and No. 10). In each case, the first-story

stiffness (K ) was adjusted so that the first-mode frequency.(f)) of thej

analytical model was the same as the measured first mode frequency for that
particular test. The value of first damping ((3) was then adjusted as
necessary in an attempt to match computed and measured FRS. Values for M ,

g

M ' K , and (2 were not adjusted; the assumption being that, as the2 2

'' i i i iiii.| 6 a t illil| | | I t ilii

i4 - CERL TEST 2 ,4
Y = 1. 2 g * s ,4pg g ,

E = o.MEi jo 2
9 ,, _ --- SECoND Floor | M , = 4.6 9
H -- FIRST Floor i K , = 1.4 $ = o.M$,o _

BASE | , ios 1

S = o.o2 |
::,;. -

E f
'

6 - -

,'s
~

*
, ,

~

r ,

\'

I * ) ..

d ' '''" d ' '''""o
10" 10' 10' 10'

f x N (H2)g

Fig. E-3. ComputedFRS,CERLNo.1,Ypk - 1.2 g.
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input level increases (at least to some moderate level), only the first-story
is undergoing progressive degradation. Figures E-4 and E-5 show the results

of these computations. The FRS computed using Test No. 8 input and the analy-

tical model can be compared with those computed from experimental data (Fig.

30.) Clearly the 107. damping ((j - 0.10) used in the theoretical com-
putation is not large enough to reduce the FRS peak in Fig. E-4 to the peak
value determined from experimental data (Fig. 30). This can easily be adjusted

by increasing (); however, we note that the FRS computed from the analyti-
cal model do not "match" over the entire frequency range as well as they did
for the computation made at lower input level (Test No. 2, figs. E-3 and 28).

The FRS computed using the analytical model and the input from Test No.10
(during which failure occurred) are shown in Fig. E-5, and these can be com-
pared with the FRS computed from the measured response, Fig. 31. Here again

the first-story FRS peak could be matched by increasing (); however, the
deficiency in the theoretical FRS would still be evident. Specifically, we
see that, when only first-story stif fness (K ) is reduced, at high inputj
levels the model predicts that the first and second stories move together as a
rigid body on the first-story walls that are acting as a low-stiffness
spring. The experimental data (Fig. 31) shows that this is not the case;
hence at high inputs, the assumption that only the first story is damaged is
invalid.

Numerous attempts have been made to match thse FRS for the high input level

tests by adjusting K , and K , and () and (2 The limited success of thesej 2

efforts strongly suggests that the linear model (Fig. E-1) is inadequate, even
when the parameters have been "tuned." As the required analytical model
becomes more complicated, this method for determining damping becomes less

appealing.
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