EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1ST HALF 86

- 1. Regulatory Limits
 - a. Fission and Activation Gases:
 - (1) Instantaneous Nuclide Dependant (all release points)

Shield Building Auxiliary Building Condenser Vacuum Exhaust Service Building

- <u>NOTE</u>: Total plant release rate limit per nuclide are established by TVA's Radiological Control, Radiation Protection Branch. These limits are further evaluated to each vent based on design flowrate. Technical Specification will not be exceeded until the sum of individual isotope release rate per release rate limit exceeds 1.0.
- b. & c. Iodines and particulates, half-lives > 8 days
 - (1) Instantaneous Nuclide Dependant
 - NOTE: Total plant release rate limit per nuclide are established by TVA's Radiological Control, Radiation Protection Branch. These limits are further evaluated to each vent based on design flowrate. Technical Specifications will not be exceeded until the sum of individual isotope release rate per release rate limit exceeds 1.0.

Liquid effluent: $\sum MPC \leq 1.0$ (reference 19CFR20, Appendix B, note 3C, Table II, column 2).

e. Tritium

d .

- Liquid ≤ 3.0E-3 µCi/ml (ref. 10CFR20, Table II, column 2)
- (2) Airborne (reference 10CFR20, Table II, column 1)

Shield Building	≤ 3.138E+03 μCi/sec
Auxiliary Building	≤ 2.555E+04 µCi/sec
Service Building	≤ 1.165E+03 μCi/sec
Condenser Vacuum Exhaust	≤ 5.043E+00 uCi/sec

NOTE: These limits are established by TVA based on each vents design flowrate.

-1-

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1ST HALF 86

2. Maximum Permissible Concentrations

....

.

in,

- a. Fission and Activation Gases: Not Applicable
- b. Iodines: Not Applicable
- c. Particulates, half-lives > 8 days: Not Applicable
- d. Liquid effluents: sum of indv. MPC ratios ≤ 1.0 (ref. 10CFR20, Appendix B, Note 1)
- 3. Average Energy Not Applicable
- 4. Measurements and Approximations of Total Radioactivity
 - a. Fission and Activation Gases

Airborne effluent gaseous activity is continuously monitored and recorded. Additional grab samples from the shield, auxiliary, service and condenser vacuum exhausts are taken and analyzed at least monthly to determine the quantity of noble gas activity released for the month based on the average vent flowrates recorded for the sample period. Also, noble gas samples are collected and evalvated for the shield and auxiliary buildings following startup, shutdown or a rated thermal power change exceeding 15% within one hour. The vent flowrates for the shield auxiliary, service buildings, and condenser vacuum exhaust are determined and recorded once a shift.

The quantity of noble gases released through the shield and auxiliary building due to purging or venting of containment and releases of waste gas decay tanks are also determined.

The total noble gas activity released for the month is then determined by summing all of the activity released from each vent for all sampling periods, the activity released from purging or venting of containment, and the activity released from waste gas decay tank(s).

NOTE: Every effort is made to ensure that all effluents from Sequoyah are conducted such that all Technical Specification LLDs are met. Whenever an analysis does not identify a radioisotope, a "0.00E-01 C'" is recorded for the release. This does not necessarily mean that no activity was released for that particular radioisotope but that the concentration was below the Technical Specification and analysis capability. Refer to Tables A and B for estimates of these typical values.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1st HALF 86

4. Measurements and Approximation of Total Radioactivity (continued)

When an analysis results in a non-Technical Specification radioisotope being identified in one quarter and not the other, a "N/A" is recorded for the quarter in which it was not identified. These radioisotopes will not be recorded in Tables A and B since they are not Technical Specifications.

b. & c. Iodines and Particulates

Iodine and particulate activity is continuously monitored and recorded. Charcoal and particulate samples are taken from the shield and auxiliary building exhausts and analyzed at least weekly to determine the total activity released from the plant based on the average vent flowrates recorded for sampling period.

Also, particulate and charcoal samples are taken from the auxiliary and shield buildings once per 24 hours for 2 days following startup, shutdown or a rated thermal power change exceeding 15% within one hour. The quantity of iodine and particulate released from each went during each sampling period is then determined using the average vent flowrates recorded for the sampling period and activity concentration.

The vent flowrates from the shield and auxiliary buildings are recorded once a shift.

The total particulate and iodine activity released for the month is then determined by summing all of the activity released from the shield and auxiliary buildings for all sampling periods.

- d. Liquid Effluents
 - <u>Batch</u> (Radwaste and condensate regenerants to cooling tower blowdown)

Total gamma isotopic activity concentrations are determined on each batch of liquid effluent prior to release. The total curie content of a released batch is determined by summing each nuclide's concentration and multiplying by the total volume discharged. The total activity released during a month is then determined by summing the activity content of each batch discharged during the month.

(2) <u>Continuous Releases and Periodic Continuous Releases</u> (Condensate regenerants, turbine building sump and steam generator blowdown)

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT SUPPLEMENTAL INFORMATION 1st HALF 86

4. Measurements and Approximation of Total Radicactivity (continued)

Total gamma isotopic activity concentration is determined daily on a composite sample from the condensate system and turbine building sump and weekly for steam generator blowdown. The total curie content of the continuous release is determined by summing each nuclide's concentration and multiplying by the total volume discharged. The total activity released during the month is then determined by summing the activity content of each daily and weekly composite for month.

5. Batch

6.

0

0

				Units	
			Quarter 1st	Quarter 2nd	
а.	Liq	uid			
	1.	Number of batches released (Radwaste only) 72	80	Each
	2.	Total time period for batch releases	10428	11698	Minutes
	3.	Maximum time period for a batch release	240	209	
	4.	Average time period for batch releases	145	146	A. A. A. A. A. A. A. A. A.
	5.	Minimum stream flow during periods of			
		effluent into a flowing stream:	(a)	(a)	
		 (a) See Radiological Control Section's portion of semi-annual effluent rele 	ase repo	rt.	
b.	Gas	eous			
	(1)	Number of batches released	13	15	Each
	(2)	Total time period for batch releases	796	770	Minutes
		Maximum time period for a batch release	131	167	Minutes
		Average time period for batch releases	99	156	Minutes
		Minimum time period for a batch release	71	142	Minutes
Abno	rmal	Releases			
а.	Lig	uid			
	(1)	Number of Releases	0	0	
	(2)	Total Activity Released 0.0	0E-01	0.00E-01	Ci
b.	Gas	eous			
	(1)	Number of Releases	0	0	
	(2)	Total Activity Released 0.0	0E-01	0.00E-01	Ci

10

0

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>lst</u> HALF <u>86</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE

Fiss	ion and Activation Products	Unit	Quarter lst	Total LError	Quarter 2nd	Total LError
1. 2.	Total Releases Average Diluted Cond. During Period of All Identified	Curies	3.47E-02	£1.0E+01	2.16E-02	±1.0+01
3.	Isotopes Percent of Applicable Limit (N MPC \leq 1) Σ ¹ =1	uCi/ml	S.88E-08 9.31E-02		1.60E-08 5.02E-02	
	NOTE: Percent of applicabl after dilution, rela the isotope fraction	ted to the	eir appropria			
Trit	ium					
1. 2.	Total Release Average Diluted Cond. During Period	Curies µCi/ml	1.36E+02 1.52E-04	±1.0E+01	3.53E+01 2.61E-05	±1.0E+01
3.	Percent of Applicable Limit (3.0E-03 µCi/m1)	1	5.07E+00		8.72E-01	
Diss	olved and Entrained Gases					
1. 2.	Total Release Average Diluted Cond. During Period	Curies µCi/ml	7.48E-04 8.36E-10	±1.5E+01	1.34E-03 9.93E-10	±1.5E+01
3.	Percent of Applicable Limit (2.0E-04 µCi/ml)	r	4.18E-04		4.968-04	
Gros	s Alpha Radioactivity					
1.	Total Release	Curies	0.00E-01	±1.5E+01	0.00E-01	±1.5E+01
Volu	me of Wasto Release					
(Bef	ore Dilution)	Liters	4.31E+08	±1.0E+01	5.14E+08	±1.0E+01
Volu Peri	me of Dilution Water for od	Liters	4.64E+08	±1.0E+01	8.36E+08	±1.0E+01

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>lst</u> HALF <u>86</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE

G. Isotope Summary

Required by Technical Specifications/Others

		Continuo	us Mode	Batch	Mode
Nuclide	Unit	Quarter 1st	Quarter 2nd	Quarter 1st	Quarter 2nd
1. Strontium-89	Ci	0.00E-01	0.00E-01	0.00E-01	0.008.01
2. Strontium-90	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01 0.00E-01
3. Iron-55	Ci	0.00E-01	0.00E-01	9.37E-03	4.48E-03
4. Manganese-54	Ci	5.29E-06	0.00E-01	1.75E-03	1.00E-03
5. Cobalt-58	Ci	3.22E-06	2.37E-05	4.30E-03	2.00E-03
6. Iron-59	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
7. Cobalt-60	Ci	4.06E-04	1.58E-05	1.09E-02	9.47E-03
8. Zinc-65	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
9. Molybdenum-99	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
10. Iodine-131	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
11. Cesium-134	Ci	2.13E-05	2.43E-04	9.67E-04	9.18E-04
12. Cesium-137	Ci	4.02E-05	7.03E-04	1.998-03	1.87E-03
13. Cerium-141	Ci	0.00E-01	0.00E-01	3.83E-06	0.00E-01
14. Cerium-144	Ci	0.00E-01	5.13E-04	0.00E-01	0.00E-01
Others (Specify)			And A.C. And		0.000-01
15. Chronium-51	Ci	N/A	N/A	7.46E-05	4.24E-05
16. Niobium-95	Ci	N/A	N/A	5.08E-05	6.75E-06
17. Niobium-97	Ci	N/A	N/A	N/A	7.43E-09
18. Zinc-69m	Ci	N/A	N/A	3.36E-06	N/A
19. Tellurium-132m	Ci	N/A	N/A	N/A	3.00E-04
20. Ruthenium-103	Ci	N/A	N/A	3.56E-06	N/A
21. Yttrium-91	Ci	N/A	N/A	4.74E-03	N/A
22. Technicium-99m	Ci	N/A	N/A	3.05E-06	N/A
23. Ruthenium-106	Ci	N/A	N/A	9.04E-05	N/A
Total for Period	Ci	4.762-04	1.50E-03	3.42E-02	2.01E-02

NOTE: Refer to Table A for values reported as 0.00E-01

-6-

FFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1:t</u> HALF <u>86</u> LIQUID EFFLUENTS - TOTAL PLANT DISCHARGE

G. Isotope Summary

Dissolved Gasses Required by Technical Specifications/Others

			Continuo	us Mode	Batch Mode		
Nuc	lide	Unit	Quarter 1st	Quarter 2nd	Quarter 1st	Quarter 2nd	
1.	Krypton-87	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01	
24	Krypton-88	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01	
1.1	Xenon-133	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01	
4.	Xenon-133m	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01	
5.	Xenon-135	Ci	0.00E-01	0.00E-01	2.06E-06	0.00E-01	
6.	Xenon-138	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01	
Oth	ers (Specify)						
7.	Krypton-85	Ci	<u>N/A</u>	<u>N/A</u>	7.46E-04	1.34E-03	
Total f	or Period	Ci	0.00E-01	0.00E-01	7.48E-04	1.34E-03	

NOTE: Refer to Table A for values reported as 0.00E-01

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1ST</u> HALF <u>86</u> GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

21

6

the y

1

		Continuou	us Mode	Batch	Mode
E. Fission Gases	Unit	Quarter lst	Quarter 2nd	<u>Quarter</u> 1st	Quarter 2nd
Required by Tech	hnical Sp	ecifications			
1. Krypton-87	CI	0.002-01	0.008-01	0.00E-01	0.00E-01
2. Krypton-88	Ci	0.00E-01	0.008-01	0.00E-01	0.00E-01
3. Xenon-133	Ci	0.00E-01	0.00E-01	4.59E-05	1.24E-02
4. Xenon-133m	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
5. Xenon-135	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
6. Xenon-138	Ci	0.00E-01	0.00E-01	0.00E-01	0.00E-01
Others (Specify)					
7. Krypton-85	Ci	<u>N/A</u>	N/A	7.67E-01	4.318-01
8. Xenon-131m	Ci	<u>N/A</u>	<u>N/A</u>	1.86E-03	N/A
Total for Period	Ci	0.00E-01	0.00E-01	7.69E-01	4.43E-01
F. Iodines					
Required by Tech	hnical Sp	pecifications			
1. Iodine-131	Ci	0.00E-01	2.69E-08		
Others (specify					

Total for Period Ci 0.062-01 2.69E-08

1

L

TYNE .

-

NOTE: Refer to Table B for values reported as 0.00E-01.

-8-

14.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1ST</u> HALF <u>36</u> GASEOUS EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

. ...

Sur	nmati	on of All Releases	Unit	Quarter 1st	Total <u>%Error</u>	Quarter 2nd	Total <u>Merror</u>
۸.	Fis	sion and Activation Prod	ucts				
	1, 2.	Total Releases Average Release	Ci	7.69E-01	±1.92+01	4.43E-01	±1.0E+01
	3.	Rate for Period Percent of Techical	µCi/sec	9.898-02		5.63E-02	
		Specification Limit	1	2.30E-05		1.32E-05	
Β.	Iod	ines					
	1. 2.	Total Iodine-131 Average Release	Ci	0.00E-01	±1.0E+01	2.69E-08	±1.0E+01
	3.	Rate for Period Percent of Technical Specification Limit	µCi/sec	0.00E-01		3.42E-09	
		(1.60E-01 µCi/sec)	1	0.008-01		2.14E.06	
с.	Part	ticulates					
	1.	Particulates with half-lives 8 days	Ci	2.48E-04	±1.5E+01	1.15E-03	±1.5E+01
	2.	Average Release Rate for Period Percent of Techni-	µCi/sec	3.19E.05		1.46E-04	
	5.	cal Specification Limit	1	9.81E-04		5.73E-03	
	4.	Gross Alpha Radio- activity	Ci	0.00E-01	±1.5E+01	0.00E-01	±1.5E+01
D.	Trit	ium					
	1. 2. 3.	Total Release Average Release Rate for Period Percent of Technical	Ci µCi/sec	4.67E+00 6.01E-01	±1.0E+01	5.98E+00 7.61E-01	±1.0E+01
		Specification Limit 3.3E+04 µCi/sec)	•	1.82E-03		2.31E-03	

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1ST</u> HALF <u>86</u> GASF 7S EFFLUENTS-SUMMATION OF ALL RELEASES (GROUND LEVEL RELEASES)

G. Particulates

1.00

Required by Technical Specifications/Others

Nuc	lide Unit		Continuous Mode		
			Quarter	Quarter	
			lst	2nd	
1.	Strontium-89	Ci	0.00E-01	0.00E-01	
2.	Strontium-90	Ci	0.00E-01	0.00E-01	
3.	Manganese-54	Ci	0.00E-01	8.36E-06	
4.	Cobalt-58	Ci	1.21E-04	4.60E-04	
5.	Iron-59	Ci	0.00E-01	0.00E-01	
6.	Cobalt-60	Ci	1.21E-04	6.31E-04	
7.	Zinc-65	Ci	0.00E-01	0.00E-01	
8.	Molybdenum-99	Ci	0.00E-01	0.00E-01	
9.	Cesium-134	Ci	0.00E-01	2.17E-05	
10.	Cesium-137	Ci	0.00E-01	2.66E-05	
11.	Cerium-141	Ci	8.56E-07	0.00E-01	
12.	Cerium-144	Ci	0.00E 01	0.00E-01	
Other	rs (Specify)		and an interest of the section of the		
13.	Tellurium-132	Ci	4.35E-06	N/A	
14.	Chronium-51	Ci	N/A	1.42E-14	
15.	Cobalt-57	Ci	N/A	3.55E-06	
Total f	or Period	Ci	2.478-04	1.15E-03	

NOTE: Refer to Table B for values reported as 0.00E-01.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>lst</u> HALF <u>86</u> TABLE A LIQUID "TYPICAL LLD" EVALUATION (2)

At (2)

Nuclide	Tech. Spec. LLD	15 min	30 min	1 hr	2 hr	<u> </u>
Fission and Ad	ctivation Products					
Manganese-54	5.0E-07	9.73E-09	9.73E-09	9.73E-09	9.73E-09	<u>9.73E-09</u>
Cobalt-58	5.0E-07	1.22E-08	1.22E-08	1.22E-08	1.22E-08	<u>1.22E-08</u>
Iron-59	5.0E-07	1.74E-08	1.74E-08	1.74E-08	1.75E-08	1.75E-08
Cobalt-60	5.0E-07	1.55E-08	1.55E-08	1.55E-08	1.55E-08	1.55E-08
Zinc-65	5.0E-07	1.70E-08	1.70E-08	1.70E-08	1.70E-08	1.70E-08
Molybdenum-99	5.0E-07	7.99E-08	8.01E-08	8.06E-08	8.14E-08	8.23E-08
Cesium-134	5.0E-07	1.16E-08	1.16E-08	1.16E-08	1.16E-08	1.16E-08
Cocium-137	5.0E-07	1.33E-08	1.33E-08	1.33E-08	1.33E-08	1.33E-08
Cerium-141	5.0E-07	2.08E-08	2.08E-08	2.08E-08	2.08E-08	2.08E-08
Cerium-144	5.0E-07	8.94E-08	8.94E-08	8.94E-08	8.94E-08	8.94E-08
Iodine-131	5.0E-07	9.83E-09	9.84E-09	9.85E-09	9.89E-09	9.93E-09
Dissolved and	Entrained Gases					
Krypton-87	<u>1.0E-05</u>	2.33E-08	2.67E-08	3.50E-08	6.04E-08	1.04E-07
Krypton-88	<u>1.0E-05</u>	3.90E-08	4.14E-08	4.68E-08	5.97E-08	7.628-08
Xenon-133	<u>1.0E-05</u>	2.95E-08	2.96E-08	2.96E-08	2.98E-08	3.00E-08
Xenon-133m	<u>1.0E-05</u>	9.91E-08	9.94E-08	1.00E-07	1.01E-07	1.03E-07
Xenon-135	<u>1.0E-05</u>	1.02E-08	1.04E-08	1.08E-08	1.17E-08	1.26E-08
Xenon-138	<u>1.0E-05</u>	6.06E-08	1.26E-07	5.47E-07	1.03E-05	1.94E-04
Tritium () Gross Alpha Strontium-89() Strontium-90() Iron-55()						

NOTES:

2.X

 All evaluations are µCi/ml. All analyses are performed to ensure that Technical Specifications are met, in addition to typical LLD values.

- (2) At is the time between sample collection and counting time. This time is utilized to verify that Technical Specification LLDs are met.
- (3) All these analyses are required to meet Tech. Spec. LLD limits and are individually evaluated to ensure compliance. However, the 2nd Quarter 1986 Sr-89 Radwaste composite and Condemin composite results exceeded Tech. Spec. LLDs by 4.21 and 531 respectively. Instrumentation malfunctions were incurred during the analysis period and all composite samples were expended before resolution of the matter.

Due to plant shutdown in August 1985, Sr-89 and Sr-90 has not been detected in releases since the 3rd Quarter 1985. No strontium activity was expected this quarter (nor was any apparently detected since the specific activity computer calculations resulted in negative Sr-89 quantities for both Radwaste and Condemin composites). The Sr-90 LLDs (and specific activities) were well below the SE-08µCi/ml limit. Since the strontium analysis was performed much later than normal, we suspect that the longer decay time used in the LLD calculation may be a major contributor to the Sr-89 discrepancy.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>lst</u> HALF <u>86</u> TABLE B GASEOUS "TYPICAL LLD" EVALUATION(1)

At (2)

Nuclide Tech	h. Spec. LLD	15 min	30 min	1 hr	2 hr	<u>3 hr</u>
Noble Gas						
Krypton-87 Krypton-88 Xenon-133 Xenon-133 Xenon-135 Xenon-138	$\frac{1.0E-04}{1.0E-04}$ $\frac{1.0E-04}{1.0E-04}$ $\frac{1.0E-04}{1.0E-04}$ $\frac{1.0E-04}{1.0E-04}$	3.75E-07 5.86E-07 3.87E-07 1.53E-06 1.59E-07 9.45E-07	<u>4.30E-07</u> <u>6.23E-07</u> <u>3.87E-07</u> <u>1.53E-06</u> <u>1.62E-07</u> <u>1.97E-06</u>	$\frac{5.64E-07}{7.04E-07}$ $\frac{3.88E-07}{1.54E-06}$ $\frac{1.68E-07}{6.54E-06}$	9.73E-07 8.98E-07 3.90E-07 1.56E-06 1.81E-07 1.61E-04	1.68E-06 1.15E-06 3.93E-07 1.59E-06 1.96E-07 3.02E-03
Particulates						
Manganese-54 Cobalt-58 Iron-59 Cobalt-60 Zinc-65 Molybdenum-99 Cesium-134 Cesium-137 Cesium-141 Cerium-144 Iodine-131 Strontium-89 Strontium-90 Cross Alpha	$\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-10}{1.0E-10}$ $\frac{1.0E-11}{1.0E-11}$ $\frac{1.0E-11}{1.0E-11}$	$\frac{3.65E-14}{4.53E-14}$ $\frac{6.83E-14}{6.83E-14}$ $\frac{6.26E-14}{2.95E-13}$ $\frac{4.31E-14}{4.87E-14}$ $\frac{6.69E-14}{2.81E-13}$ $\frac{3.61E-14}{3.61E-14}$	$\frac{3.65E-14}{4.53E-14}$ $\frac{6.83E-14}{6.26E-14}$ $\frac{6.68E-14}{2.96E-13}$ $\frac{4.31E-14}{4.87E-14}$ $\frac{6.70E-14}{2.81E-13}$ $\frac{3.61E-14}{3.61E-14}$	$\frac{3.65E-14}{4.54E-14}$ $\frac{6.84E-14}{6.26E-14}$ $\frac{6.68E-14}{2.98E-13}$ $\frac{4.31E-14}{4.87E-14}$ $\frac{6.70E-14}{2.81E-13}$ $\frac{3.62E-14}{3.62E-14}$	$\frac{3.65E-14}{4.54E-14}$ $\frac{6.84E-14}{6.26E-14}$ $\frac{6.68E-14}{3.01E-13}$ $\frac{4.31E-14}{4.87E-14}$ $\frac{6.70E-14}{2.81E-13}$ $\frac{3.63E-14}{3.63E-14}$	$\frac{3.65E-14}{4.54E-14}$ $\frac{6.84E-14}{6.26E-14}$ $\frac{6.68E-14}{3.04E-13}$ $\frac{4.31E-14}{4.87E-14}$ $\frac{6.71E-14}{2.81E-13}$ $\frac{3.65E-14}{3.65E-14}$
Charcoal Sampl Iodine-131	1.0E-11	5.02E-14	5.03E-14	5.03E-14	5.05E-14	5.07E-14
Tritium	1.0E-06					
NOTES: (2)	to ensure the to typical h	hat Technical LLD values by	l Specificat ased on a \geq	analyses ar ions are met 24 hour san to a set tin	in addition	n
(2)	∆t is the t This time is LLDs are me	s utilized to	point of sam o verify tha	pling to ana t Technical :	lysis. Specificatio	on

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st</u> HALF <u>1986</u> SOLID WASTE (RADIOACTIVE) SHIPMENTS

A. Solid Waste Shipped Off-Site for Burial or Disposal (not Irradiated Fuel)

1.	Typ	pe of Waste	Unit	6 Month Period	Est. Tol. Error 1
	8.	Spent resins, filter sludges evaporator bottoms, etc.	m ^s Ci	7.90E+01 1.51E+03	±1.50E+01 ±1.50E+01
	b.	Dry Active Waste, Compressibl Waste Contaminated equip., etc.	e m³ Ci	2.08E+02 1.01E+02	±1.50E+01 ±1.50E+01
	с.	Irradiated Components, Control Rods, etc.	m³ Ci	None	N/A
	d,	Other (describe)	m³ Ci	None None	N/A

2. Estimate of major nuclide composition (by type of waste)

 Spent resin, filter sludges, and evaporator bottoms, etc. (nuclides determined by measurement)

		Curies	Percent
1.	Manganese-54	7.37E+01	4.87E+00
2.	Cobalt-58	2.23E+02	1.47E+01
3.	Iron-55 (by est.)	3.91E+02	2.58E+01
4.	Cobalt-60	3.63E+02	2.40E+01
5.	Strontium-90	4.622-02	3.05E-03
6.	Niobium-95	2.48E-02	1.64E-03
7.	Cesium-134	1.43E+02	9.45E+00
8.	Cesium-137	1.59E+02	1.05E+01
9.	Other Nuclides	1.60E+02	1.06E+01

-13-

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st Half 1986</u> SOLID WASTE (RADIOACTIVE) SHIPMENTS

2. Estimate of Major Nuclide Composition (by type of waste) (continued)

 Dry Active Waste, dry compressible waste, contaminated equipment, etc.; (nuclides determined by estimate)

			Curies	Percent
	1.	Tritium	9.17E-03	9.04E-03
	2.	Carbon-14	2.35E-01	2.32E-01
	3.	Chromium-51	1.25E+00	1.23E+00
	4.	Manganese-54	7.60E-01	7.50E-01
	5.	Iron-55	8.27E+01	8.16E+01
	6.	Cobalt-58	8.09E+00	7.98E+00
	7.	Iron-59	7.34E-01	7.24E-01
	8.	Cobalt-60	4.07E+00	4.01E+00
	9.	Strontium-90	1.06E-04	1.05E-04
	10.	Zirconium-95	8.49E-02	8.37E-02
	11.	Niobium-95	2.28E-01	2.25E-01
	12.	Cesium-134	1.30E-02	1.28E-02
	13.	Cesium-137	2.12E-02	2.09E-02
	14.	Other Nuclides	3.16E+00	3.12E+00
	Irre	diated Components	N/A	N/A
4	Othe	er (describe)	M/A	N/A

]

١

8

C

d

-14-

1

...

.

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>lst</u> HALF <u>1986</u> SOLID WASTE (RADIOACTIVE) SHIPMENTS

3. Solid Waste Disposition

1. ...

4.

5.

.

Number of Shipments	Type Quantity	Mode of Transportation	Destination
a) Resin, filter slo	udges, evaporato	r bottoms, etc.	
15	LSA	Motor Freight	Barnwell, South Caroline
Number of Shipments	Type Quantity	Mode of Transportation	Destination
b) Raw, dry active	waste, compress	ible contaminated equipmen	nt, etc.
3	LSA	Motor Freight	Richland, Washington
3	LSA	Motor Freight	Richland, Washington
Number of Shipments	Type Quantity	Mode of Transportation	Destination
c) Irradiated compo None	N/A	rods, etc. N/A	N/A
Number of Shipments	Type Quantity	Mode of Transportation	Destination
d) Other (describe) None	N/A	R/A	N/A
Irradiated Fuel Shipn			
Number of Shipments	Type Quantity	Mode of Transportation	Destination
None	N/A	N/A	N/A
Solidification of Was	te		
Was solidification pe	rformed? X	Yes No.	
If yes, solidificatio	n modie: Con	ment	

-15-

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT <u>1st Half 1986</u> Solid Waste (Radioactive) shipments

6. Process Control Program (PCP)

PORC reviewed and accepted revisions were made to the PCP on 1/28/86 and 4/29/86. This PCP implements the solidification vendor's instructions into plant operating instructions. Changes were made at the direction of that vendor. Changes did not reduce the overall conformance of the solidified waste product to existing criteria for solid wastes.

7. Radioactive Waste Treatment Systems

No major changes were made to the radioactive waste treatment systems.

TENNESSEE VALLEY AUTHORITY

Sequoyah Nuclear Plant Post Office Box 2000 69:14 Soddy-Daisy, Tennestee 37379

AUG 2 9 1986

U. S. Nuclear Regulatory Commission Region II Attn: Dr. J. Nelson Grace Regional Administrator 101 Marietta Street, Suite 3100 Atlanta, Georgia 30303

Dear Sir:

In accordance with Sequoyah Nuclear Plant Technical Specification 6.9.1.9 for units 1 and 2, we are submitting the enclosed report of the radioactive discharges released from Sequoyah during the period of January 1, 1986 through June 30, 1986.

We are also submitting the most recent changes to the ODCM as specified in Technical Specification 6.14.2.1. These changes had been originally submitted in the Sequoyah Nuclear Plant Monthly Operating Report-June 1986.

Very truly yours,

TENNESSEE VALLEY AUTHORITY

P. R. Wallace

Plant Manager

DINGAL COPL

relp