The effect of roadway

 and environmental factors on the capacity c ? a triffic-signal approach individual applawilies to the intersection.

There are two types of factor which affect the capacity of an approach: roadway and environmental factors. discussed in this chapter, and traffic and control factors discussed in chapter 34 .

The roadways and environmental factors that control the capacity of an approach are the physical layout of the approach, in particular its width. the radial along which let or right-turnmy vehicles have to travel, and the gradient of the approach and its ext. from the intersection.

The epact) of an approach is measured indeperdentiy of traffic and control factors and is expressed as the saturation flow.

Saturation flow is defined as the maximum flow. expressed as equivalent passenger cars, that can cross the stop line of the approach when there is a continuous green signal indication and a continuous queue of vehicles on the approach.

Observations of traffic flow made by the Road Research Laboraios. at intersections in the London area ald also in some of the larger cities. suppiementea by controlled expenments at hie laboratory test tack. have shown that the vorataton thews) expressed in passenger var units per hour with ne parked vehiwies is given by

$$
s=550 \mathrm{w} \mathrm{p.s.u} / \mathrm{h}
$$

where w is the width of the approach in metres.
This formula is applicable to approach widths steater than 5.5 m ; at widths less than 5.5 in the relationship is not linear and saturation flows may he estimated from table 33.1 .

TABLE 33.1

W (T)	300	3.41)	3.65	+110	450	5:20
(1) 64.11)	1850	1875	1910	19511	2250	2700

These saturatton tlows have to be amended for the etfect of gradient. This moditicatien lia, heen reported as a decrease or increase of 3 per cent in the saturation flow for evert I per selt on uphill ur downhall gradient of the approactl. The gradient of the approsen wab detined as the areroge slupe hetwell the stou line and a pount on the approath ol in beture 16 . It the stes where these woservathons were inade. the shope cornanued thrnueh the intersection.

Where vehicles crossing the stop line have then to travel mmediately around a curve the rate of discharge across the stop line will be reduced. This oceurs trequently when ridht-turning wehicles are at ie to discharge during a right-thrming phase. Test-track experiments have shown that the saturation flow for cight-turning streams may be obtamed frum

$$
\begin{aligned}
& s=\frac{1800}{1+1.52 i r} \text { p.c.u. } / \mathrm{h} . \text { for single-file streams } \\
& \text { or } 1600 \text { p.c.u. } \mathrm{h} \\
& s=\frac{3000}{1+1.52 \cdot r} \text { p.s.u.h for douhie-file streams } \\
& \text { or } 2700 \text { p.c.u. } / \mathrm{h}
\end{aligned}
$$

where $r=$ turming radius in metres.
The envifunmient also has an effect on the saturation flow of an approach and while it is diflicult to define this effect precisely, generalised moditication factors are often applied.

Where a site is designed with a guod envirunment, that is dual carriageway approaches.
no maticeable pedestrian intertcrence, no parked vehicles, the interterences to tratic flov trom right-lurning vehicles, good visibility and adeyuat turning radit then the saturatiun li,w is taken as 120 per cent of the standard vaiue.

It liuwever a site is designed with poor envirunment. that is low average speeds. interterence from standing velicles and right turning vehicles. poor visibilicy and poor alignanent, then the saturation tlow is taken as 85 per cent of the standard v-lue.

Determination of the sathrazion flow of a traffic-signal approach

T, determi ie the saturation fluw of an appruach select one in which: thare is a continuous queve even at the end of the green period. Avoid situations in wheh right. turning vehicles have an ecratic eflect on the traffic flow. Fcr ease of observation it is preterable to select an approach that is restricted to straight ahead and left tarning vehicles.

Csing a stopwatch note the number, type and turning inovement of each vehicle crossing the stop line during each successive 0.1 minute interval of the green and amber perind. At the end of the amber periud there will normally be an interval of less than 0.1 thinute. Note the length of this interval and also the number and type of vehicles
crossing the stup line in the interval. These intervals are subsequently reforred to as last saturated intervals.

If at any time the flow on the approach is not saturated, then observations should be discontanued until the thow reaches saturation level azain.

If it is not found porssible tor wherve vehicle type thell only the number and turning movenemt of vehicies shound ixe noted. At the completen of ohservations a separate count is then necessary to dete:anme the composition of the traffic flow

The observations gaven in tahle 33.2 were ubtamed at a traftie-sienal controlled intersection in the City of Bradford. In this instance observations were made of mixed vehicies travelling straght alisud.

TABLE 33.2 Ohserved discharge of vehicles across the stop line

During the tirst and last saturated intervals there is a loss of capaciry because of the effect of vehicies accelerating from the stationary position al the commencement of the green period and decelerating juring the ambet period.

The finw during the remainder of the observed periods represents the maximum discharge pussible and theit mean value gives the saturation flow for the approach

$$
\begin{aligned}
\text { saturafion hluw } & =2+4+2 \frac{22+2.44+2.47}{4} \\
& =2.40 \text { vehicies zer } 0.1 \text { ininute } \\
& =1440 \text { vehisies } / \mathrm{h}
\end{aligned}
$$

This value ri.ust now be coraverted th traffic-signal passenger iar units and a subsidiary trafic count is required to detarman: the composition of the traffe.

Observe the composition and biming movemerts of the traffic tlow for a period of 30 minutes and at similat the to when the original observations were made. The following composition of ira: 1 c was noted on the approsich where the flow figures given in tabie 33 : : wetr cosetred fusing the equivalent effects of varous vehicle ispes geven in chapter 34)

heavs vehicles	14 per cent
binses	5 percent
muthr cycles	6 percent
private cars	75 per cent
all vehicles proceed straight ahead	

The parsenger a. stquralent of the fluw is then

$$
11+\times 1.75+0.05 \times 2.25+0.06 \times 0.33+0.75 \times 1=1.16
$$

Saturation thos $=1+411 \times 1.16$

$=16.70$ p.c.u.h.

The desien hatife siven in Read Rescurch Techuncal Paper jo is I'Mu p.c.u.fi for a 3 of in lane widis.

Problikem

Four differmg talliz sumal approaches are escribed below. Plase them in the order of theit trattic cablatis
(a) An apponath atth end envirumental conditums where ail sehcles discharge straight aurons the ultersection and where the approash width is $7: 0 \mathrm{~m}$.
(b) An apprasich whth parer environmental conditions with a continuous uphill gradient of 3 per cent. a here dil wethister dixhlarge straght astoss the interection and where the approseh width a 1659 m.
(6) An approash with murmal environmental sonditions from whall all vehicles turn right it a dutuce tile veream on a path swith a cadius of 30 nt .
 sent: where ati : ances diwharge straght wruss the intersection and where the appraach width is 5.20 cm.

Sirlutions

The reaftive tapawites of the appreaches are
(a) saturatum thow $=530 \times 7.30=4015$ p.c.u./h
plus environmental istor of 20 :

$$
\begin{aligned}
& =4015 \times 1.2 \\
& =4818 \mathrm{p} . \mathrm{c.u} . / \mathrm{h}
\end{aligned}
$$

(b) saturation How $=550 \times 10.50=5773 \mathrm{p} . \mathrm{ciu} . \mathrm{h}$
minus envirommentai isctor of 15

$$
\begin{aligned}
& =5775 \times 0.85 \\
& =400^{\prime} 1 . . .4 . . \mathrm{h}
\end{aligned}
$$

minus gradient aticut of 3×37

$$
\begin{aligned}
& =4909 \times 0.91 \\
& =4467 \mathrm{p.s.u} . \mathrm{h}
\end{aligned}
$$

TRAFFIC SIGNAL CONTROL
(.) waration flow $=\frac{3000}{1+1 \cdot 52 / r}$ p.iu. $/:$:
$=\frac{3000}{1+1 \cdot 52 / 30}$
$=2857$ p.c.6. h
(d) saturation flow $=2700$ p.c.u. $/ \mathrm{h}$ (table 33.1)
rubs envirommental facter of 20%

$$
\begin{aligned}
& =2700 \times 1: \\
& =3240 \mathrm{pcim}, \mathrm{~h}
\end{aligned}
$$

prias gradient effect of $4 \times 3 \%$

$$
\begin{aligned}
& =3240 \times 1 \cdot 12 \\
& =3629 \text { p.c.u. } / \mathrm{h}
\end{aligned}
$$

The order of capacity of the approaches is (a), ($\mathrm{b} \mathrm{l},(\mathrm{d}),(\mathrm{c})$.

