

RELATIONSHIPS BETWEEN ROAD ACCIDENTS AND HOURLY TRAFFIC FLOW-1 "88 FE8 -2 A9:28

ANALYSES AND INTERPRETATION

OFFICE OF SECRETARy. DOCK TING A. SERVICE. BRANCH

Avishai Ceder and Moshe Liver
Transportation Research Institute, Technion-Israel Institute of Technology, Haifa, Israel

(Received is Ap. 2 1980)

Abstract

This research extends the investigation of the relationships between measures of accidents and traffic flow, and considers the hourly flow instead of the average daily traffic (ADT), which has already been reported. The findings of this study serve as a basis for further clarification of the interactions between various levels of traffic flow and road accidents. Eight four-lane road sections were studied during an 8 -year period, providing adequate data base' in carefully predefined criteria. Power functions are filled and classified according to (1) time-sequence analysis for each roadway section; and (2) cross sectional araby sis on a one year basis. The results are presented, separately for multi and single vehicle accidents, in a matrix-format. A linear dependency was observed between the power and the logarithm of the multiple constant. This was done in a similar fashion to the previously reported study of the relationstips betweell toad accidents and ADI. The results for each type of analysis and type of accident are discussed, and three examples of a practical application are given.

1. INTRODUCTION

This research was conducted as part of the establishment of the safety evaluation procedures for the analysis and interpretation of road accidents in Israel. The format of the entire research, based on gathering nationwide data, is shown in Fig. I. The basis for such research is the availability of an adequate data bank consisting of effective reporting, storage, retrieval and compilation systems. The study was conducted in four major phases, as indicated in Fig. I: (1) phase I investigates the relationships (power functions) between two measures of total accidents (density and rate), and average daily traffic (ADT) on four-lane and two-lane it.ierurban road sections; (2) phase II extends the investigation of phase 1 for the four-lane sections through separate consideration of single and multi-vehicle accidents; (3) phase III examines deterministic relationships between two weighted accident measures and the hourly traffic flow for each type of accident; and (4) phase IV attempts to go thoroughly into the relationships between measures of accidents and hourly traffic flow by separating the traffic stream into free-flow and congested -flow modes, and by interpreting the results in a probabilistic manner.

Phases I and 11 were previously reported by Ceder and Livneh [1978). Phases III and IV are described sequentially in this (Part I) and in the following (Part II) papers.

In the past, some aspect of road geometry has been identified as a dominant factor in accident causation at a given location. Thereafter, an attempt was made to interpret the frequency and number of accidents using the ADT value as additional information to the road geometry. Nevertheless, when eliminating considerations of geometry, the ADT by itself cannot be used to explain the overall interaction between traffic flow characteristics and accidents. For that purpose, one should approach the actual traffic flow observed at the time of the accident. In addition, the level of risk associated with traffic flow can be determined only on the basis of smaller time intervals than daily periods. This work attempts to clarify and improve the understanding of the relationships between measures of accidents and hourly traffic flow, which is more fundamental than the accident/ADT relationship. The analysis and interpretation are performed in a simitar fashion to that outlined in phases I and It of the study.

2. SOME PREVIOUS STUDIES

The common measure of accidents considered in relation to hourly traffic flow, q; is the "accident rate" A. This rate is usually based on the number of accidents per year per million (or 10°) motor vehicle-kilometers (or miles); that is, the annual number of accidents based on the annual amount of exposure. Several forms of relationship between A, and q have been

found in the literature. The variety of $A,-q$ dependency is probably due to different types of accidents, ranges of flows in the analysis, and road designs.

Belmont [1953], found for two-lane sections that A, (during daylight only) increases almost linearly with q. whereas Smeed [1995), has shown that A, for total accidents has a small variation for different ansual q values. Nonetheless, Smeed pointed out that A, values for single-ve sicle accidents have a tendency to decrease with the increase of q, and multi-vehicle accidents show the opposite tendency.

Leutzbach \{1966\} and Gwynn [1967], have concluded for four-tane divided sections that a U-shaped dependency exists between A, (for total accidents) and q. where the minimum A, values are obtained for q values between approx. 600 to $1300 \mathrm{veh} / \mathrm{hr}$ per two lanes. Thereafter, Baker and Gwynn [1968], noted that A, (total accidents) increases rapidly below $q=550$ veh/hr per two lanes, but has little variation beyond this flow value.

Pfundt [1969], has compared three types of day and night accidents: rear-end collisions due to blocked lane(s); rear-end collisions due to slow and disabled vehicles; and single-vehicle accidents due to loss of control. For the first type of accident, A, tends to have a convex upward eurve with q (particularly at night); for the remaining two types, the curves are convex downward. In a different study, Leutzbach et al. [1970], have shown that on a four-lane Autobahn section in Germany, the resultant U-shaped curve in the $A,-q$ plane is mainly attributed to rear-end accidents, whereas q values have little effect upon the A, values of single-vehicle accidents. Chapman (1971), analyzed accident and flow data from England, and generally agree with Pfundt's findings.

Recently, Brilon [1976], in a study of 8 four-lane sections on German Autobahns, found similar results (U-shaped curves) to those reported by Leutzbach et al. [1970]. In addition, Brilon hypothesizes that the minimum A, value is obtained for the most frequent range of q. This hypothesis is examined, among other analyses, in a following section. It should be emphasized that all the above mentioned studies consider the relationship between A, and q only on the basis of roadway classification (eross sectional analysis).

3. DATA CLASSIFICATION AND ANALYSIS ORIENTATION

The data were selected, based on carefully defined criteria, with the aid of the data bank of the Israel Central Bureau of Statistics. As shown in Fig. 1, the data include (i) fatal and injury accidents on 4 -lane interurban road sections. including the type and hour of day of the accidents; and (i) hourly traflic flow: a daily profile (accomplished by fixed counters), by hour of day, for each road section. The overall data were gathered for an 8 -year period (i967-75), excluding the war year 1973. In order to eliminate any undesirable and/or unknown influence of external parameters, four major criteria were imposed as follows:
(1) The roadway sections exclude geometric design elements which disturb the traffic flow (steep grades, curves, roadside obstacles, etc.), and are isolated from interactions, entries and exits (to eliminate the influence of cross-trafic);
(2) No changes were made in the roadway section characteristics of section length, pavement width, and shoulder width during the period 1967-75 (to ensure a comparable base for the data);
(3) There were different daily profiles for q : two daily peaks, one peak or no peak flow (to establish generality); and
(4) There were similar daily profiles for q. excluding weekends, for each roadway section during the period of 1967-75 (10 ensure steady travel characteristics).

In order to clarify criterion (4), an example of average daily q profiles of a roadway section is exhibited in Fig. 2. The left illustration in Fig. 2 shows that the general tendency of each year profile is eminently preserved. However, there are changes in the levels of each yearprofile as the result of increasing ADT values with tine. The latter effect on daily q profites can be eliminated, to some extent, by the use of normalized q values. That is, taking $\rho=q / q_{\text {m }}$ instead of q, where $0<\rho \leqslant 1.0$ and q_{m} is the maximum q value, demonstrates the similarity between the average daily q value, as shown on the right illustration in Fig. 2 . It is worth noting that criterion (4) has also been applied to an examination of four seasonal average daily q profiles for each year, to ensure the steady characteristics of the travel patiern on each selected roadway

Fig. 2. An example (Roadway 13, ser zion 6), of daily profiles of q and ρ (normalized values) for an 8-year
section. By the above described procedure, a total of 8 four-lane divided roadway sections were selected for study.

The accident and q data collected from the 8 roadway sections during the 8 -year period were anaiyzed on a separate basis (described in detail by Ceder and Livneh, 1978), as follows: (i) lime-sequence analysis of data for specific roadway section over an extended period of time (8 years); (ii) cross-sectional analysis of data for a given period of time (one year) for a group of roadway sections (8 sections) having the same roadway classification.

This approach enable, in essence, the consideration of dyramic and environmental effects inherent in the relationship between measures of accidents and measures of traffic flow. In the next iwo paragraphs the differences between a consideraion of ADT and q values with respect to the time-sequence and cross sectional analyses are explained.

In the time-sequence analysis (for a specific roadway section), each ADT value refers to a different measure of accidents, due to their possible mutual changes over the considered period of time; hence, they constitute, say, eight data points for the 8 -year period. The time-sequence analysis with q is based for each year on a number of data points (dependent on the insidered q range and intervals), whereas only one data point is presented when cons oring the accident/ADT relationship. The ADT value increases, usually, with time, and this increase is reflected in the time-sequence analysis. The q values, however, could have only an upper bound, and therefore, it is perhaps only possible to notice the changes with time for high q values. Nevertheless, the time dependency, in the time-sequence analysis, for the relationship between measures of accidents and q, is relatively negligible, due to overlap among the q ranges of the considered years.

In the cross sectional analysie (for a given year), each ADT value refers to a different measure of accidents, due to the various roadway sections; hence, they constitute, say, eight data points for 8 roadway sections. Similar to the explanations for the time-sequence analysis, when considering q values, one obtains several data points for each road section rather than a single data point (for the accident/ADT relationship).

To summarize, for the time-sequence analysis, the relationship between measures of accidents and q emphasizes the uniqueness of each readway section, while for the crose sectional analysis, the uniqueness of each year (or other given period) is emphasized.

4. MEASURES AND MODELS

The data were gathered, basically, by matching each type of accident with the average q value al the time of the accident. The q value is considered with respect to the interval $q \pm \Delta q$,
where $\Delta q=$ intervals of

The mea: particular ye sectional an:
where $L_{i}=$ denotes a se th:n $L_{i}=L$. type) which

Another interval. He
where $t_{i}(q)$ (excluding v

An exart time-sequen cross sectio

As the c research:
where $A_{d v}$ (acc/ $10^{1} \mathrm{~km}$) accident rat
where $\Delta q=50$ veh/hr per direction of travel (two lanes). That is, each q range was divided into intervals of $100 \mathrm{veh} / \mathrm{hr}$ on a iwo-lane basis.

The mea*ures of accidents were carefully defined and selected as follows: $i \Rightarrow$ denotes either a particular year (for the time-sequence analysis) or a partic, ar roadway section (for the cross sectional analysis).

$$
A_{d}(q)=\sum_{i} \frac{N_{i}(q)}{L_{i}}=\left\{\begin{array}{l}
\text { accident density }(\text { acc/km }) \\
\text { for the interval } q \pm \Delta q
\end{array}\right\}
$$

where $L_{i}=$ the length, in kilometres, of roadway section i; in the cross sectional analysis i denotes a section and L_{i} is a variable, while in the time-sequence analysis i denotes a year and
 type) which occurred during the five work days of each week for the interval $q \pm \Delta q$.

Another component which should be taken into account is the exposure time of each $q \pm \Delta q$ interval. Hence:

$$
T(q)=\sum_{i} \sum_{i} t_{v}(q)=\left\{\begin{array}{l}
\text { the annual exposure time of } \\
\text { traffic flows within the interval } q \pm \Delta q
\end{array}\right\}
$$

where $t_{y}(q)=$ the daily exposure time for the interval $q \pm \Delta q$ at the j th day, $j=1,2, \ldots, 261$ (excluding weekends).

An example of $T(q)$ distribution is shown in Fig. 3, where the upper illustration is for the time-sequence analysis (one section, over an 8 year period), and the lower illustration is for the cross sectional analysis (one year for 8 sections).

As the consequence of the above definitions, two accident measures were selected for this research:

$$
\begin{align*}
& A_{d v}(q)=\frac{A_{d}(q) \cdot 10^{3}}{T(q)} \tag{1}\\
& A_{1}(q)=\frac{A_{d *}(q) \cdot 10^{6}}{q} \tag{2}
\end{align*}
$$

where $A_{d x}(q)=$ weighted accident $\left(a c c / 10^{\prime} \mathrm{km} \cdot \mathrm{hr}\right)$, which means the accident density (acc/10 $/ \mathrm{km}$) per one hour exposare of traffic flows within the interval $q \pm \Delta q$; and $A,(q)=$ accident rate (ace/ 10^{h} veh-km).

Fig. 3. An example of T (q) disuibutions for the time sequence (upper part) and cross sectional (lowet part) analyses.

The models which were found appropriate for the analyses made are power functions (same as the models in phases I and II, see Fig. 1):

$$
\begin{align*}
& A_{\alpha_{2}}(q)=a_{3} q^{n} \tag{3}\\
& A_{1}(q)=a_{4} q^{n_{4}} \tag{4}
\end{align*}
$$

where a_{3}, a_{4} and p_{3}, p_{4} are constant parameters which are determined b_{y} a linear regression technique. Note that the powers p_{3} and p_{4} delermined the functional tendency (certainly for positive a_{3}, d_{4} values):
$p_{3}, p_{4}>1 \Rightarrow$ convex upward;
$p_{3}, p_{4}=1 \Rightarrow$ linear upward;
$1>p_{3}, p_{4}>0 \Rightarrow$ concave upward;
$p_{3}, p_{4}=0 \Rightarrow$ constant linear; and
$0>p_{3}, p_{4} \Rightarrow$ convex downward.

The models represented by eqns (3) and (4) are fitted separately for single- and multi-vehicle accidents. The sum of these models for each category of analysis (time-sequence and cross sectional), might reveal the possible Jependency between the total accidents and q, and might also yield the earlier mentioned U -shaped function. If the latter is the result, then one can arrive at equations satisfying optimum conditions, i.e. $d A_{d} d \mathrm{~d} q=0$ or $d A d d q=0$, which yield the following optimum parameters:

$$
\begin{align*}
& q_{d v}=\left(\frac{-p_{j}^{i} a_{3}^{*}}{p_{i}^{j} a_{3}^{\prime}}\right)^{1 /(p i-p j} \tag{5}\\
& q_{r e}=\left(\frac{-p_{i}^{i} a_{i}^{*}}{p_{i}^{\prime} a_{4}^{\prime}}\right)^{1 / p_{i}-p s}
\end{align*}
$$

where the prime represents the parameters of eqns (3) and (4) for single-vehicle accidents and the do tble prime for multi-vehicle accidents. The substitution of $q_{d 0}$ and $q_{r e}$ (provided that each is a positive value) in eqns (3) and (4), respectively, gives accordingly the optimum weighted accident density measure, $A_{\text {dee }}$ and the optimum accident rate measure $A_{\text {re }}$

5. RESULTS AND FINDINGS

The results of the time-sequence and cross sectional analyses are summarized in Tables 1 and 2, respertively. These regression results, by accident type, refer to eqns (3)-(5), and are accompanied by the standard error values ($S E_{d n}$ and $S E$, in units of $A_{d v}$ and A_{n} respectively).

The results given in Tables 1 and 2 are shown in Figs. 4 and 5 for multi and single-vehicle accidents, respectively; also an attempt is made in Fig. 6 to show the summation of the curves. Note that in Figs. $4-6$ all the curves are within the actual q range. From these results and analyses, four major findings are identified:
(a) For the multi-vehicle accident models all $p_{3}>0$ with a convexity tendency for the time-sequence models ($1<p_{1}<2$), and mixed functional tendency for the cross sectional models. While $A_{d *}(q)$ is always increasing with q, the $A_{r}(q)$ is either increasing or slightly decreasing with $q\left(-0.37<p_{4}<3.82\right)$. There are two interesting observations: (i) three out of four time-sequence models in which $A_{,}(q)$ does not increase sharply with q are characterized by fow upper bound value of the q range; and (ii) the two cross sectional models obtained for two years before the energy crisis (1971-72), indicate a lower safety level than the two models after the energy crisis (1974-75), where all four models have similar a ranges.
(b) For the single-vehicle accident models all $p_{4}<0$ indicating convex downward curves in the $A_{s}-q$ plane. On the other hand, there is a mixeu functional tendency for the $A_{d v}-q$ relationship. The comparison between single-and multi-accident models demonstrates less curve-dispersion of the former for both the time-sequence and cross sectional analyses.
(c) For the summation of the single- and multi-vehicle accident models half of the $A_{i}(q)$ models are characterized by U-shaped curves, and the remaining half by convex downward surves. Three out of four of the $A,(q)$ models which do not have U-shaped curves are indicated

regression

 ertainly formulti-vehicle ce and cross q, and might ne can arrive ich yield the
accidents and ided that each hum weighted
d in Tables)-(5), and are respectively). single-vehicle of the curves. se results and
dency for the ross sectional ing or slightly i) three out of characterized pdels obtained than the two inges.
ward curves in of the $A_{d x}-9$ honstrates less nalyses.
If of the $A,(q)$ vex downward s are indicated

Fie. 4. The results of the time-sequence and the cross-sectional models for mult-vehicle accidents

Fis. 5. The results of the time-sequence and the cross-sectional models for single-vehicle accidents.
by upper bound on the q range betow $1000 \mathrm{veh} / \mathrm{hr}$ per two lanes. This might be (one of the hypothesis.
reasons for this observation. Nevertheless, the optimum average $q_{\text {ee }}$ value for the minimum $A,(q)$ value is 500 veh/hr for those U-shaped models. This optimum value results from opposing tendencies of mutti-vehicle accident models (A, increasing with q) and single-vehicle accident models (A, decreasing with q). The average $q_{c e}$ value is below those ($600-1300 \mathrm{veh} / \mathrm{hr}$) which were determined by Leutzbach (1966) and Gwynn [1967), probably due to a higher upper bound on the q range (about 3000 veh/hr) than that indicated in Fig. 8.
(d) The hypothesis made by Brilon [1976], that the minimum A, value (for total accidents) is pbtained for the most frequent range of q, is not strengthened by our data. In fact, the opposite is the case, since out of sixteen data sets of $T(q)$ distributions, none agrees with Brilon's

6. Matrix representation of the results

Following a similar method to that outlined by Ceder and Livneh (1978), (phases I and II indicated in Fig. 1), the results are plotted on ihe matrix: the y-axis is the logarithm scale of a_{3} or a_{4}, and the x-axis represents the scale for p_{1} or p_{2}, respectively.

Fie. 6. The results (summation) of both multi and single-vehicle accidents

The $\log a_{3}$ values versus p_{3} values are illustrated in Fig. 7, and the $\log a_{4}$ values versus p_{4} values are illustrated in Fig. 8. From these figures, one can eminenti? observe the lincar dependency that exists between the variables. Consequently a lineat regression procedure was applied to each set of results. The filted models are shown in Figs. 9 and 8 and are indieated in Table 3 with their ceeffieint of determination r^{2}. In addition, the F statistic is used to examine the possibility of combining the linear models of both the time-sequence and cross sectional analysis. This examination leads, ikwied, to a commen model through a three-stage lest: (1) betwein the variances; (2) between a's or β_{i} 's; and (3) between α_{e} 's of β_{0} 's (see Table 3). It was found that for both the $A, \ldots(q)$ and $A,(Q)$ movets, there is no significant difference between the linear models at the 95% level. The common models are specified in Table 3, and are shown on the left pant of Figs. 7 and 8 with respect to each type of accident. The remaining parts of these figutes illustrate, for each type of accident, se, arate timesequence and eress sectional models. Some of the findings mentioned in the previous section are clearly and systematically demonstrated in this matrix representation.

Each linear model shown in Table 3 reptesents a family of curves which intersect at a unique point. For example, this point in the $A,-q$ plane ($A *, q^{*}$) is obtained by:

$$
\begin{aligned}
A^{*}= & =a_{4}\left(q^{*}\right)^{\prime} \\
& \log A^{\prime}:=\log a_{4}+p_{4} \log \left(q^{*}\right)
\end{aligned}
$$

and therefore, $\log A^{*}=\beta_{m} \log \left(q^{*}\right)=-\beta_{1}$, and similarly, $\log A_{\%}=\alpha_{m} \log (q:)=-\alpha_{1}$. These intersecting points are symbolized with an asterisk in Table 3.

7. EXAMPLES OF A PRACTICAL APPLICATION

Knowledge of the proper relationship (and limitations involved) between A_{d}, or A, and q is important from various aspects: traffic planning, design, operation and research. This section, however, introduces examples of only one practical application. That is, the evaluation of the safety level either before and after implementation of a roadway improvement project, or after short-term operation of a new roadway section. This practical application is discussed also in phases 1 and 11 (see Fig. 1), in view of the relationship between measures of accidents and ADT.

Fxample 1. It is assumed that in section No. 6 of toadway No. 13, a safety improvement was carried out in January, 1976. The data collected after one year are:

		$A,(4)$		As, (Q)		A,(Q)	
ranges of 4	$T(q)$	multi. veh.	singlevel.	mulit vet.	singleveh.	multis. veh.	single. rek.
	1044	0.114					
$500-1000$	261	0.100	0120	0×33	0.450	0.811	0.613
$1000-1500$	522	0548	0.175	1050	0.315	0.840	0.268
$1500-2000$	4437	4.138	8.106	0.913	Cic 24	0.533	0.014

 results by accident bepe and the remainang part-by boith accident type and type of analysis.

Fig. 8. Matrix representation of the model's parameters a_{4} and p_{c}, where the left part distinguishes the resuits by accident type. and the remaining part-by both accudent type and type of analysis.

 \square

Table 1. Results of the linear depeadency between a_{3} and P_{3} and a_{4} and P_{4}

with suitable units to those indicated for the models. The question is, whether the level of salety improved, and to what magnitude. According to this research approach, the results derived by the time-sequence analysis can be applied to this example. Hence, the evaluation procedure is based on the results indicated in Table I for roadway No. 13, section No, 6 for each q range along with a confidence interval. Since the power functions are intrinsically linear (can be expressed by natural logarithms, in a linear form), 95% confidence limit can be found for the new data (afler the improvement), in $\left(A_{,}\right)_{\text {oen }}$ of $\ln \left(A_{\psi *}\right)_{\text {eex }}$ in the transformed plane according to:

$$
\pm t(n-2,0.975) \cdot s \cdot\left\{1+\frac{1}{n}+\frac{\left[\ln \left(A_{1}\right)_{n c *}-\overline{\left(\ln A_{i}\right)}\right)^{2}}{\sum_{i}^{2}\left(\ln \left(A_{t}\right)_{4}-\left(\overline{\ln A_{t}}\right)\right)^{2}}\right\}^{1 / 2}
$$

for a two-sided 95% level t-test using the t-table with $(n-2)$ degrees of freedom, and where n is the number of data points, s is the standard error for either $\ln A$, or $\ln A_{d n}$ and $\left(\ln A_{,}\right)$or fln $\left.A_{d_{-}}\right)$is the mean vatue of $\ln A_{\text {, }}$ or $\ln A_{d+}$ respectively. Note that this confidence limit is based on the assumption that the residuals in the transformed scale are normally distributed with mean zero and constant variance. If, for example, the confidence interval is $\pm S E_{j_{*}}$ and \pm SE, for $A_{\psi-}(q)$ and $A,(q)$, respectively, then Ly substituting the data in the models, the following results are obtained:

	A ** $^{(q)}$				A, (q)			
4	multiveh.	satety change	single vel.	safely change	multi. veh	sately change	single veh	salety change
250	(0)140	$*$				\%	590	-
750	0158	*	0092	***	0.545	\cdots	0.80	**
1250	7×2	\cdots	0.071	\ldots	1594	*	00517	***
1750	1.622	${ }^{*}$	0.068	**	3.231	-	0.09	**

[^0]The asterisks attempt to interpret the results with tespect to the confidence interval. It is worth noting that the data could also be analyzed by the $A_{d}(A D T)$ and $\Lambda,(A D T)$ models specified for the considered ooadway section in Table 3 of Ceder and Livneh [1978]. In the latter case, the results indicate significant improvement for multi-vehicle accidents and significant deterioration for single-vehicle accidents. Certainly, the consideration of q instead of ADT determines, more specifically, the telative changes in the safety level after the improvement. Furthermore, the knowledge of the exposure time for each q range might lead to isolation of the problematic daily hours from a safety standpoint.

Example 2. If the data from example 1 are associated with a new four-lane section (also after one year of operation), then it is only possible to select an appropriate cross sectional model. That is, the time-sequence model cannot be applied due to lack of comparable basis and/or information. The selection of a cross sectional model might be based on tro criteria: (i) that it includes the upper bound q range of the considered data; and (ii) that it reflects the eavironmental characteristics of the considered new roadway section (usually exhibited by the latest year model which satisfies criterion (i)). Consequently, the model selected is that of 1975 and, in a similar way to example 1 , the results are obtained by substituting the data in the models indicated for 1975 in Table 2 (based on $\mathrm{SE}_{\alpha_{*}}$ and $\mathrm{SE}_{\text {, }}$):

	Ades(q)				A, (q)			
4	multio veh.	Salety change	Single. veh.	Salety change	nultiveh.	Salely change	Single. veh.	Salety change
250	0.102	**	0.139	***	0.394	**	0.509	**
750	0.349	**	0.024	***	0.435	**	0.026	***
1250	0618	**	0058	***	0.456	**	0.007	\cdots
1289	0.900	**	0.043	*	0.467	**	0.003	**

> Sienificant impravement
> *'an improvement, but not significant
> t+en deteriotation, hut not significant
> ex+rsignificant delerioration
with retpect op similar readany wc tions which have the same chatac feristics
wher
resul
belw
chan
impr
after
the r .

Perhaps the major finding is the significant delerioration in single-vehicle accidents at the mid-q range. When considering the $A_{i}(\mathrm{ADD})$ and $A_{q}(\mathrm{ADT})$ models in phase I , the results are a siguficant improvement in the safely level of the rew roadway section for multi-vehicle accidents and an improvement, but not significant, for single-vehicle accidents. In essence, in this example, the ignorance of q produces a situation in which the relative safely deterioration at the mid-q range cannot be detected.

Example 3. An alternative means of estimating the $A_{d v}(q)$ and $A_{1}(q)$ models is use of the interrelationship between p_{3} or ρ_{4} and $\log a_{3}$ or $\log a_{4}$, respectively. In fact, for any given q_{2} $T(q)$ and the number of accidents on a four fane section, one can obtain a crude estimation of such models. For example, on a four -lane section, the hourly flow, during specific daily hours, increased from 500 to 800 veh/hr for two lanes (due to either a closure of a parallel road or by means of traffic direction). The question is whether the level of safety has been changed and to what magnitude. The $A_{d,}$ and A, values $\operatorname{for} q=500$ veh/hr and this q value are then substituted in the common linear models indicated in Table 3. This substitution determines the appropriate models to be used for the "aflet change" $(q=800$ veh/hr $)$ data. That is, $\dot{A},(q)$ for multi-vehicle accidents is obtained through determination of a_{4} and p_{6} based on the observed value A, $=1.10 \mathrm{acc} / 10^{\circ}$ veh -km :

$$
\left.\begin{array}{c|l}
1.1=a_{4} \cdot 500^{\prime} & \begin{array}{l}
a_{4}=370 \\
\log a_{4}
\end{array}=-0.1-2.85 p_{4}
\end{array}\right\} p_{4}=-0.936
$$

and similarly, $\vec{A},(q)$ for single-vehicle accidents and $\vec{A}_{d x}(q)$ for multi- and single-vehicle accidents can be calculated. The complele "before and after" data and results are as follews:
interval. It is ADT) models 1978). In the ccidents and Iq instead of the improvead to isolation
section (also ross sectional parable basis wo criteria: (i) it reflects the hibited by the is that of 1975 le data in the

\ldots
 tac.

ccidents at the e results are a multi-vehicle In essence, in y deterioration

Is is use of the any given q. e estimation of fic daily hours, allet road or by ged and to what isubstituted in ae appropriate t multi-vehicle bserved value
single vehicle ene as follows:

Accalen bype	Siluations average	Before $5(0)$	Alter 800
mullivehicle	As*	0.55	0.00
	d_{1}	0011	-
	F	0.633	-
	$\overline{A_{e v}}$	-	0.74
singlevehisle	A_{*}	0.20	0.20
	d)	0.024	
	p)	$0.34 t$	
	$\overline{A_{e v}}$	-	(2.2)
nultivelicic	A.	1.10	1.12
	4	370	-
	P_{1}	-0.936	*-
	A,	-	0.71
single. vehicle	A,	(40	0.25
	a_{4}	62.55	-
	ρ_{4}	-0.813	-
	A,	-	0.27

where \bar{A}, and $\overline{A_{i v}}$ (The expected safely measures if the safely level remains the same) are the results of substituting $q=800$ in the models. The comparison between $A_{i *}$ and $A_{2 *}$ and between A, and \bar{A}, for $q=800$ reveals that: (i) single-vehicle accidents have almost not changed, though the absolute A, value aflet the change decreased by $40 \% 1$; and, (ii) riative improvement is observed for the multi-vehicle accidents though the absolute A_{d} value after the change increased by 60% ! For such appications, it is also advisable to determiuc that the resultent p_{3} and p_{4} values are within or close to the indicated range in Table 3.

CONCLUDING REMARKS

This research attempts to find quantitative models (power functions) to represent the possible dependency between two measures of accidents and the hourly flow for eight interurban road sections during an 8 -year period.

From these attempts to search for proper telationships between measures of accidents and the hourly flow, it : apparent that the technical ;rocedure involves a combination of two primary tynes of analyses: time-sequence (for each roadway section) and cross sectional (on a one yeat basis). Fot each type of analysis, the totat accidents are primarily separated into mutti- and single-vehicle accidents. The latter separation enables one to: (1) distinguish accident costs for each type of accident and for each q range: (2) find the differential effects of traffic flow on each type of accident; and (3) performio more reliable safety evaluation for "before and after" studies

Phases I and II of the overall study, described in Fig. 1, are concerned with the influence of ADT on the measures of accidents. However, this consideration by itself cannot explain the interactions befween read accidents and traflic flow, since it is only based on a daily average. The consideration of hourly flows provides a better understanding of these interactions. In addlition, it is possible to move one step forward in order to further understand the accidems/traffic fow dependency by separating the hourly flow into free-flow and congestedflow. This separation into componeats of both types of traffic flow and type of accident will uttimately lead toward more accurate accideat protiction based on the taiffce flow. The following paper (Ceder, 1982), describes this further analysis (phase IV in Fig. 1), and attempts also to determine and compare the probabilities for each accident/flow type component

Baker W．T．and Gwynn D．W．，Relationships of accident mes with howly traffic volumes．Division of Research a Exdluation．New Jersey Department of Transportation，164
Belawent D．M．Fffect of average speed and volume on moivt whicle arcidents on two－lane tangents．HRB Proc． 32. 383．195，1053

Ceder A．and Livanh M．Further evaluation of the relationships vifueen road accidents and average daily traffic．Asc． Anal \＆Pree 10．95－105， 1978.
Ceder A．Relationchips belween read accidents and hourly tafic Aovi Il．Probabilistic sporeach Submithed to Accid Anal \＆Pree．14．35－44．
Chapman R．A．Some relationships between road accident trequesciss and messures of exposure to risk．Ph．D． disserlation，University College London，Jan 1971.
Gwyen D．W．，Relationship of accident rates and accident involvenents with heurly volume．Trafofe Quart．XXI，I Jily 196）．
Leulztach W．Traflic accidents and traflic flow on the Frankfurt－Miannheim motorway－investigation of the celationship belween traffic accidents ned taflic fow（in German）．Hessisches Ministerium fur Wirtschalt und Verkehc，March 1966．
Leutzbach W．Siegenet W．and Wiedemana R．On the connection be：veen traflic accidents and traffic velume on a section of a German autobahn．Accid．Anal．\＆Pree．2．143－145（in German）， 1970.
Plundt K．There difficullies in the comparisen of aceilent tric．Accid．Anat a Prev．1，253－259， 1969.
Smeed R．I．Accident tates．Int．Road Solety \＆Irafic Res．（2），10－40，1955．

A

vestil
these
Of m
know．
theor neare motic rules streat are m？ direct a foll $=$ ？ the st upen： single multi－：

UNITED STATES

NUCLEAR REGULATORY COMMISSION

WASHINGTON, D. C. 20555

$$
\text { May } 26,1987
$$

MEMORANDUM FOR:	John Milligan
	Technassociates
FROM:	Emile L. Julian, Rcting Chief
	Docketing and Service Branch
SUBJECT:	SEABROOK EXHIBITS

Any documents filea on the open record in the SEABRook proceeding and made a part of the official hearing record as an exhibit is considered exempt from the provisions of the United States Copyright Act, unless it was originally filed under seal with the court expressly because of copyright concerns.

All of the documents sent to TI for processing fali within the exempt classificucinn.

[^0]: -Significant improvement
 ean imprevemest, but nof signilicant
 t**a delerieralion, but mot significant
 ***significant deteriotation

