COMMONWEALTH EDISON COMPANY CALCULATION TITLE PAGE

CALCULATION NO. BYR97-023		PAGE NO.: 1
X SAFETY RELATED	REGULATORY RELATED	NON-SAFETY RELATED
CALCULATION TITLE: Determination of RCS Dose Ec Factor Based on Plant Trip I	quivalent Iodine-131 Re Data	lease Rate and Spike
STATION/UNIT: Byron 1	SYSTEM ABBREVIATION:	RC
EQUIPMENT NO .: (FAPPL.)	PROJECT NO. (IF APPL.)	
N/A		
REV: 0 STATUS: Approved	CHRON NO. N/A	DATE: N/A
PREPARED BY: Aussi haubing	/M. Marchionda - R.P. / J. Smith - SSE-Prog.	DATE 1-23-97 1/23-97
REVISION SUMMART		
Original issue.		*
ELECTRONIC CALCULATION DATA (Name ext/size/date/hour: min/verific	FILES REVISED: ation method/remarks)	
BYR97023.mcd 18425 bytes 01 IODIN075.xls 50176 bytes 01	/23/97 8:34:18 PM Matchcad N /23/97 8:51:06 PM Excel Vers	Version 5.0 sion 5.0
DO ANY ASSUMPTIONS IN THIS CALCUL	ATION REQUIRE LATER VERIFICA	TION? YES X NO
REVIEWED BY	/ D. Palmer - R.P.	DATE: 1-24-97
REVIEW METHOD: Detailed review	/ G. Lahti - NFS of the original calculation.	COMMENTS (C, NC OR CI):
APPROVED BY: Partie Donario	2 I PAUL R. DOWAY,	DATE: 1/24/97
9707150275 970703		

PDR ADOCK 05000454

ŝ.

COMMONWEALTH EDISON COMPANY CALCULATION TITLE PAGE

X SAFETY RELATED CALCULATION TITLE: Petermination of ECS Dose Equ actor Based on Plant Trip Da	REGULATORY RELATED	NON-SAFETY RELATED
Determination of RCS Dose Equ actor Based on Plant Trip Da	ivalent Iodine-131 Rel ta	same Rate and Spike
STATION/UNIT: Byron 1	SYSTEM ABBREVIATION:	20
QUIPMENT NO .: (PAPEL)	PROJECT NO .: OF APPLI	Callenge of the second s
N/A		
EV: 0 STATUS: Approved	CHRON NO. N/A	DATE: N/A
REPARED BY: Mai Thushout	/M. Marchionda - R.P. / J. Smith - SSE-Prog.	DATE 1-23-97 1/23/97
Original issue.		
LECTRONIC CALCULATION DATA F Name ext/size/date/hour: min/verificati	FILES REVISED: ion method/remarks)	
DO ANY ASSUMPTIONS IN THIS CALGULAT REVIEWED BY:	TION REQUIRE LATER VERIFICAT	10N? YES X NO DATE: /-2/-97
KEVIEW METHOD Detailed faview of	the original calculation. C	UNIMERIS (C. NC UR CI).

1/1#

COMMONWEALTH EDISON COMPANY CALCULATION REVISION PAGE

CALCULATION NO. BY	(R97-023	PAGE NO.: 2		
REV. STATUS:	CHRON NO.	DATE.		
PREPARED BY		DATE:		
REVISION SUMMARY				
ELECTRONIC CALCULATION DATA FILES REVISED: None (Name ext/size/date/hour: min/verification method/remarks)				
DO ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER VERIFICATION				
REVIEWED BY:		DATE:		
REVIEW METHOD: Detail	ed review of original calculation.	COMMENT'S (C, NC OR CI):		
APPROVED BY:		DATE:		

COMMONWEALTH EDISON COMPANY CALCULATION TABLE OF CONTENTS

	PROJECT NO. N/A	
CALCULATION NO. BYR97-023	REV. NO. 0	PAGE NO. 3
DESCRIPTION	PAGE NO.	SUB-PAGE NO.
TITLE PAGE	1	
REVISION SUMMARY	2	
TABLE OF CONTENTS	3	
PURPOSE/OBJECTIVE	4	
METHODOLOGY AND ACCEPTANCE CRITERIA	4	
ASSUMPTIONS	4-5	
DESIGN INPUT	5	
REFERENCES	5	
SUMMARY AND CONCLUSIONS	7	
ATTACHMENTS		
A - Calculations	A-1 thru A-7	
B - Reactor Trip Data Tables	B-1 thru B-2	
C - CVCS Letdown Flowrate Sensitivity Study	C-1 thru C-9	
D - Adams and Atwood Report	D-1 thru D-11	

COMMONWEALTH EDISON COMPANY

GAL OLU ATIONING			
CALCULATION NO	BVP07 022	DROJECT NO NIA	DAOPHO
WITH WWW WWW IT WITH IT W.	01101-020	FRUJEUT NU. NA	PAGENOA

PURPOSE/OBJECTIVE:

The purpose of this calculation is to determine the Reactor Coolant System (RCS) Dose Equivalent lodine-131 (DE I-131) release rates and the iodine spike factors for Byron Units 1 and 2 based on plant reactor trip data. The results of the calculation will be used to support the Byron Unit 1 Cycle 8 Technical Specification Amendment Request (TSAR) to reduce the RCS iodine concentration to 0.2 μ Ci/gm.

METHODOLOGY AND ACCEPTANCE CRITERIA:

The methodology outlined in the paper presented by Adams and Atwood (Ref. 1) will be used to calculate the pre-trip and post-trip RCS DE I-131 release rates. The RCS DE I-131 activity data utilized in the calculation is taken from previous Byron Units 1 and 2 reactor trips. The concurrent iodine spike factor is calculated as the ratio of the post-trip DE I-131 release rate to the pre-trip DE I-131 release rate. The accident initiated DE I-131 release rate based on the NRC Standard Review Plan (SRP) methodology will be calculated and compared to the plant data.

The purpose of this calculation is to evaluate the DE I-131 release rate based on actual plant data. No acceptance criteria is required. However, since the Byron site allowable primary to secondary leak rate limit was calculated based on the SRP methodology (Ref. 6 and Ref. 8), the DE I-131 release rate ratio based on plant trip data should be below the release rate determined by the SRP methodology (500). For iodine release rate spiking factors higher than 500, values up to 12,000 are acceptable per Ref. 1 and justification for acceptance will be included the Tech Spec Amendment Request discussed above.

ASSUMPTIONS:

- The purification system decontamination factor (DF) is assumed to be 99 (99% removal efficiency) as recommended in Ref. 1. Even though the DF is specified in B/B UFSAR 9.3.4.1.2.5 as a minimum factor of 10 (90% removal efficiency), using a higher DF is conservative since it will result in higher DE-131 release rates.
- 2) The CVCS letdown flow (purification system flow) is assumed to be the minimum operating flow of 75 gpm (Ref. 7) for both the pre-trip and post-trip conditions. An assumed letdown flowrate is necessary due to the absence of historical data. A sensitivity study evaluating the impact of CVCS letdown flow on iodine release rates and spiking factor was performed and documented in Attachment C. The spiking factors associated with the minimum normal operating letdown flow (75 gpm) resulted in more conservative (higher) iodine spiking factors.

and the state of t		1	
REVISION NO. 0		and the second state of th	
	Construction of the local data and the second s		And a second

COMMONWEALTH EDISON COMPANY

CALCULATION NO	DVD07 000	DDOLEOTIO	1/A	
CALCULATION NU	MIRM/-U/S	PROTECT NO P	Λ / Λ	DAGE NO -
0.1200211011110.			NIM	FAGEINUS
	and her a state of the state of			the second secon

The use of a 75 gpm letdown flow allows comparison to the NRC SRP methodology results, which also assumed a 75 gpm letdown flow. Therefore, a CVCS letdown flowrate of 75 gpm is assumed.

3) The effect of boron on the RCS density was assumed to be negligible since the boron mass is less than 1% of the total RCS mass at the beginning of core life.

DESIGN INPUTS

- 1) The total volume of the RCS is 12,062 ft³. (Ref. 2.)
- 2) The full power RCS temperature and pressure are 586.2 °F and 2250 psia. (Ref. 2 and 3)
- 3) The RCS specific volume at full power is 0.02258 ft³/lbm. (Ref. 4 and Assumption 3)
- 4) The decay constant for iodine-131 is 3.59x10⁻³ /hr. (Ref. 5)
- 5) The Purification System Specific volume at 370 psia and 110 °F is 0.01615 ft³/lb. (Ref. 4, Ref. 5 and Assumption 3)

REFERENCES:

- "The Iodine Spike Release Rate During a Steam Generator Tube Rupture", James P. Adams and Corwin L. Atwood. Nuclear Technology Vol. 94, June 1994.
- 2) B/B UFSAR Table 11.1-1, Rev. 0.
- 3) B/B UFSAR Table 5.1-1, Rev. 6
- 4) ASME Steam Table, Fifth Edition
- 5) Byron Operating Procedures BOP CV-17, Rev. 7 and BOP CV-9, Rev. 2.

	and the second	Present lands in the second strategy and strategy and strategy are stated as a second strategy as a second strategy as		Constant water respond on the constant data and the second state of the second state of the second state of the
REVISION NO.	0			
Parameterization and the Annual An		for an owner where we can see the second	And the state of the	designed an approximate state of the state state of the s

COMMONWEALTH EDISON COMPANY

0 4 1 0 1 11 4 TH 0 1 1 1 1	there are a local of there " the two of the second		
CALCULATION NO	BYR97-023	PROJECT NO NIA	DACENO
or the or the tribulit into .		THOUL OT NO. NIM	FAGE NU. 6

- 6) "Radiological Consequences of Main Steam Line Failures Outside Containment of a PWR", NRC Standard Review Plan (SRP) 15.1.5 Appendix A, Rev. 2, July, 1981.
- 7) B/B UFSAR Table 9.3-2, Rev. 0.
- 8) ComEd Calculation, ATD-0410, "Allowable Leakrate Calculation for Steam Generator Interim Plugging Criteria", Revision 0, July 31, 1994.
- 9) NDIT BYR97-068
- 10) Byron Letter 97-5022. "Applicability of Reactor Trip Iodine Concentration Data to Support Reduced Iodine Technical Specification Change", dated 1/23/97.

*

CALCULATIONS:

The calculations are contained in Attachment A.

DETET OT ONE ATO	
REVISION NO.	

COMMONWEALTH EDISON COMPANY

CALCULATION NO: BYR97-023 PROJECT NO. N/A PAGE NO. 7

SUMMARY AND CONCLUSIONS:

Based on Byron Unit 1 and 2 reactor trip data, the steady state and post-trip iodine-131 release rate and iodine spike factor were calculated and summarized below:

Event	Pre-Trip Iodine Concentration (µCi/gm)	Post-Trip Concentration (µCi/gm)	Steady State Release Rate (Ci/hr)	Post-Trip Maximum Release Rate (Ci/hr)	Iodine Spike Factor
1	2.00E-2	1.40E-1	3.52E-1	5.24E+1	149.0
2	2.90E-2	2.90E-1	5.10E-1	1.10E+2	215.5
3	3.00E-3	6.90E-3	5.28E-2	2.35E+0	44.6
4	1.60E-2	3.30E-1	2.81E-1	1.27E+2	451.3
5	6.70E-3	8.00E-2	1.18E-1	3.04E+1	258.6
6	4.51E-4	3.48E-4	7.93E-3	8.50E-2	10.7
7	4.00E-2	2.60E-1	7.04E-1	9.69E+1	137.8
8	3.20E-2	1.90E-1	5.63E-1	7.05E+1	125.4
9	1.20E-2	3.30E-1	2.11E-1	1.27E+2	603.9
10	4.10E-3	6.80E-2	7.21E-2	2.61E+1	• 361.7
11	7.25E-4	4.70E-4	1.28E-2	1.02E-1	8.0
12	4.70E-4	4.20E-4	8.27E-3	1.11E-1	13.4

The event initiated maximum RCS iodine-131 release rates are lower that that predicted by the SRP methodology (8797 Ci/hr). The largest release rate calculated for Events 4 and 9 is 127 Ci/hr, which is significantly below the NRC SRP calculated value of 8,797 Ci/hr.

All events, with the exception of Event 9, had iodine release rate spiking factors less than the assumed SRP value of 500. Event 9 had a spiking factor of 603.9. Event 9 occurred in Byron Unit 2 Cycle 1 with failed fuel and a very low steady state release rate, which tends to inflate the spiking ratio.

PERCENT STATESTICS OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPT	particular and a second s	and the second	
REVISION NO.	0		

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: BYR97-023 Revision 0 Page A-1

ATTACHMENT A CALCULATIONS

Variable and Constant Definitions

- Ro Pre-trip Steady State Release Rate [Ci/hr]
- R Post-trip Steady State Release Rate [Ci/hr]

Rm Maximum post-Trip Iodine Release Rate [Ci/hr]

- L, Total Iodine Removal Rate [1/hr]
- L_d lodine-131 Decay constant [1/hr]
- L_p Purification removal constant [1/hr]
- Ao Steady State RCS Iodine Inventory [Ci]
- Am Maximum Transient RCS lodine Inventory [Ci]
- S Iodine Release Rate Spike Factor
- Co Pre-trip DE I-131 Concentration [µCi/gm]
- C Post-trip DE I-131 Concentration [µCi/gm]
- F Purification System (CVCS Letdown) Flow Rate [gpm]
- P Purification System (CVCS Letdown) Flow Rate[kg/hr]

DF Purification System Decontamination Factor

- M RCS Mass Inventory [kg]
- V RCS Volume [ft³]
- v RCS Specific Volume [ft3/lb]
- v_p Purification System Specific Volume [ft3/lb]

Define units of Curie and microCurie

Ci 1 μ Ci Ci 10⁻⁶ μ Ci = 1.10⁻⁶ ·Ci

Calculate RCS Mass Inventory, M

Volume of RCS:V12062 ft3(Design Input 1)Specific Volume of RCS:v0.02258 $\frac{ft^3}{lb}$ (Design Input 3)

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page <u>A-2</u>

.

-

Mass of RCS:
$$M = 2.423 \cdot 10^5 \cdot kg$$

(1 lb = 0.4536 kg)

Calculate Purification Flowrate, P, Decontamination Factor, DF

Purif. Sys. Spec. Vol: v_p 0.01615 $\frac{ft^3}{lb}$ (Design Input 5)Purif. Sys. Flow:F75 $\frac{gal}{min}$ (Assumption 2)P $\frac{F}{v_p}$ (1 ft3 = 7.4805 gal)
(1 lb = 0.4536 kg)
(1 hr = 60 min)P = 1.69 \cdot 10^4 $\cdot \frac{kg}{hr}$ Decon. Factor:DF99(Assumption 1)

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: BYR97-023 Revision 0 Page A-3

Byron Reactor Trip Data

This calculation evaluates the data from 12 reactor trip events at Byron listed in Attachment B. Each event is individually evaluated and designated by i, as follows:

i = 1...12

	C	o,
00.10	2	μCi
		gm
2.90.10	2	μCi
		gm
3.00 10	3	μCi
		gm
60 10	2	μCi
		gm
5 70 10	3	μCί
		gm
4.51.10	4	μCi
		gm
4.00.10	2	μCi
		gm
3.20 10	2	μCi
		gm
1.20 10	2	μCi
		gm
4.10.10	3	μCi
		gm
7.25.10	4	μCi
		gm
4.70.10	4	μCi
		gm

CONTRACTOR OF THE PARTY OF THE	in the second	THE R. P. LEWIS CO., LANSING MICH.
1 40.10	1	μCi
1.40 10		gm
2 90 10	1	μCI
2.30.10		gm
6 00 10	3	μCi
0.30.10		gm
2 20 40	1	μCi
3.30.10		gm
8 00 40	2	μCi
0.00 10		gm
2 40 40	4	μCi
3.40.10		gm
2 60 40	1	μCi
2.00.10		gm
4 00 40	1	μCi
1.90 10		gm
2 20 40	1	μCi
3.30.10		gm
6 90 40	- 2	μCi
0.00.10		gm
4 70 40	4	μCi
4.70-10		gm
4 00 40	- 4	μCi
4.20 10		gm

C

(Ref. 9) (Ref. 10) ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page <u>A-4</u>

I. Calculate the Pre-trip Steady State Release Rate, Ro

Ro = L, * Ao

(E: tuation 3 of Ref. 1)

Where: Ao = M * Co

Ro = L, * M *Co

Where: $L_t = L_d + L_o$ (Ref. 1)

L d 3.59 10 ³ hr ¹ (Design Input 4)

	Lp	P- 1 - 1 DF M	(Ref. 1)
	L p =	= 0.069•hr ¹	
t	Ld	Lp	
t =	= 0.073	3 · hr ¹	

Ro, Lt M.Co,

See Table A.1 for results of this calculation of Ro, for each reactor trip event.

II. Calculate Maximum Post-trip DE I-131 Release Rate. Rm

 $R = [L_{t} *(A - Ao^{*}exp(-L_{t}*t))] / [1 - exp(-L_{t}*t)]$ (Equation 1 of Ref. 1)

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page A-5

The post-trip maximum transient RCS inventory, A, is calculated based on 3 times the maximum post-trip RCS DE I-131 activity, in accordance with Ref. 1.

 $A = 3 * C_1 * M$ and Ao = Co * M (Ref. 1)

Therefore, the maximum post-trip DE I-131 release rate, Rm, is defined as:

Rm = [L, * (3*C, *M - Co*M*exp(-L,*t)] / [1-exp(-L,*t)]

The values for Lt, Ci, and M are defined in Section I, above.

Assume 2 hrs. from iodine spike initiating event to maximum iodine concentration:

Rm,

#L

 $\frac{L_t \cdot 3 \cdot C_i \cdot M - Co_i \cdot M \cdot exp - L_t \cdot t}{1 - exp - L_t \cdot t}$

See Table A.1 for the results of this calculation of Rm, for each reactor trip event.

III. Calculate Iodine Spike Factor, S

The concurrent iodine spike factor, S, is defined as the ratio of the post-trip release rate (Rm) to the pre-trip release rate (Ro).

See Table A.1 for the results of this calculation of S_i for each reactor trip event.

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page <u>A-6</u>

IV. Calculate Iodine Release Rate, Rs, Using SRP Methodology

Steady State RCS DE I-131 Concentration: Cs 1.0 $\frac{\mu Ci}{gm}$

Calculate steady state DE I-131 activity, As:

As Cs·M As = 2.423·10⁸ ·μCi

Calculate steady state DE I-131 release rate, Rs:

Rs = L * As (Ref. 6)

Where: $L_{t} = 0.073 \cdot hr^{1}$ (Section 1)

Rs L_t As Rs = 1.759 \cdot 10⁷ $\cdot \frac{\mu Ci}{hr}$

Per SRP, Ref. 6, an accident initiated spike factor of 500 times is used to calculate the post accident RCS DE I-131 release rate, Rsa:

Rsa Rs 500 (Ref. 6) Rsa = $8.797 \cdot 10^3 \cdot \frac{Ci}{hr}$

This is larger than all of the post-accident release rates calculated in Sections I and II above.

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page <u>A-7 (Final)</u>

TABLE A.1

Ro	Rm	
Ci	CI	
hr	hr	Si
0.352	52.417	148.955
0.51	109.977	215.535
0.053	2.357	44.647
0.282	127.06	451.339
0.118	30.485	258.597
0.008	0.085	10.727
0.704	97.024	137.859
0.563	70.59	125.375
0.211	127.51	603.918
0.072	26.092	361.686
0.013	0.102	7.99
0.008	0.111	13.435

ComED CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: <u>BYR97-023</u> Revision <u>0</u> Page <u>B-1</u>

> ATTACHMENT B BYRON REACTOR TRIP DATA

ComEd CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: BYR97-023 Revision: 0 Page: B-2 (Final)

記録の業	(注)	No.	會建建			Collere	GF Post	美国 主义的	糖香油
Event	Unit	Cycle	Trin Date	वाना ब्राना		lodina (uGi/gm) (Ref. 9)	lodine) (uCl/gm) (Rcf. 9)	Post Trip lodine (date/time)	Failed Fuel (Y/N)
1	1	1	1/29/86	0:06	98%	2.00E-02	1.40E-01	1/29/86 3:45	Y
2	1	1	9/30/86	9:11	93%	2.90E-02	2.90E-01	9/30/86 11:35	Y
3	1	2	7/29/87	22:11	98%	3.00E-03	6.90E-03	7/30/87 1:10	Y
4	1	2	7/16/88	4:31	98%	1.60E-02	3.30E-01	7/16/88 7:30	Y
5	1	3	1/31/89	9:56	99%	6.70E-03	8.00E-02	1/31/89 12:00	Y
6	1	8	9/11/96	0:17	96.5%	4.51E-04	3.48E-04	9/11/96 2:30	N
7	2	1	7/14/87	18:15	98%	4.00E-02	2.60E-01	7/15/87 0:15	Y
8	2	1	7/25/87	12:16	98%	3.20E-02	1.90E-01	7/25/87 14:15	Y
9	2	1	2/12/88	18:04	94%	1.20E-02	3.30E-01	2/12/88 20:50	Y
10	2	1	12/15/88	10:02	40%	4.10E-03	6.80E-02	12/15/88 12:45	Y
11	2	5	9/24/94	10:12	100%	7.25E-04	4.70E-04	9/24/94 12:20	N
12	2	6	5/23/96	8:04	98%	4.70E-04	4.20E-04	5/23/96 10:20	N

1. (P. 41

ComEd CALCULATION SHEET (Alternate NEP-12-02 Exhibit E) Calculation Number: BYR97-023 Revision: 0 Page: B-2 (Final)

						ISE FIR	C Post		Mat at
				<u>i</u> ldi:	• Failt				Failed
SEANI:FI		MCACINE.	TINCAL		THE PERMINE	ISIDAICHIE			I MELTINA
1	1	1	1/29/86	0:06	98%	2.00E-02	1.40E-01	1/29/86 3:45	Y
2	1	1	9/30/86	9:11	93%	2.90E-02	2.90E-01	9/30/86 11:35	Y
3	1	2	7/29/87	22:11	98%	3.00E-03	6.90E-03	7/30/87 1:10	Y
4	1	2	7/16/88	4:31	98%	1.60E-02	3.30E-01	7/16/88 7:30	Y
5	1	3	1/31/89	9:56	99%	6.70E-03	8.00E-02	1/31/89 12:00	Y
6	1	8	9/11/96	0:17	96.5%	4.51E-04	3.48E-04	9/11/96 2:30	N
7	2	1	7/14/87	18:15	98%	4.00E-02	2.60E-01	7/15/37 0:15	N
8	2	1	7/25/87	12:16	98%	3.20E-02	1.90E-01	7/25/(7 14:15	Y
9	2	1	2/12/88	18:04	94%	1.20E-02	3.30E-01	2/12/58 20:50	Y
10	2	1	12/15/88	10:02	40%	4.10E-03	6.80E-02	12/15/38 12:45	Y
11	2	5	9/24/94	10:12	100%	7.25E-04	4.70E-04	9/24/54 12:20	N
12	2	6	5/23/96	8:04	98%	4.70E-04	4.20E-04	5/23/96 10:20	N

COMMONWEALTH EDISON COMPANY

CALCULATION NO: BYR97-023 PROJECT NO. N/A PAGE NO. C1

ATTACHMENT C CVCS LETDOWN FLOW SENSITIVITY EVALUATION

Purpose and Approach:

The purpose of this sensitivity study is to evaluate the impact of CVCS Letdown flowrate variations on the pre-trip iodine release rate, post-trip iodine release rate, and the release rate spiking factor. The sensitivity study compares the release rate and spiking factor using the minimum and maximum normal operating CVCS letdown flowrate, 75 gpm and 120 gpm, respectively. The purpose of the study is to support Assumption 2.

Methodology and Acceptance Criteria:

The methodology of Attachment C is consistent with Attachment A with the same design inputs and variables. The spreadsheet has no acceptance criteria, but also serves as a validation to Attachment A. The header of the spreadsheet is labelled according to the letdown flowrate.

Assumptions:

All assumptions and design inputs are consistent with those previously stated except letdown flowrate was varied from 75 gpm to 120 gpm.

All twenty eight reactor trip events documented in reference 9 were included in the study. Sample ID's 2, 3, 4, 8, 10, 15, 17, 18, 19, 22, 27, and 28 correspond to events 1 through 12 which were used in Attachment A.

Summary and Conclusions:

Table C-1 summarizes the data for all 28 reactor trip events. Table C-2 documents the pre-trip steady state iodine release rate, post-trip iodine release rate, and spike factor using 75 gpm letdown flowrate. Table C-3 documents the equations used in Table C-2. Table C-4 documents the pre-trip steady state iodine release rate, post-trip iodine release rate, and spike factor using 120 gpm letdown flowrate. Table C-5 documents the equations used in Table C-4.

The effect of letdown flow on pre-trip and post-trip release rate is minimal as illustrated by comparing to the SRP calculated release rate in Attachment A. The SRP methodology calculated a release rate of 8797 Ci/hr. The maximum post trip release rate at 75 gpm letdown is 127 Ci/hr. The maximum

-	A support to the process plant design of the set of the	opened a second	port of the local data and the local data and the	THE WORK DOWNLOAD AND THE REAL PROPERTY OF THE ADDRESS OF THE	Approximate and a second s	and the second state of th	In column shared of the second state of the se
F	EVISION NO.	0					
	A starting of a starting and particular the second starting starting and the starting of the starting starting and the starting	The statement of the second seco	particular construction or other particular	the second se	age considered descent of a fact and a second	date of a summarian in an also down to control or sector and a summariant	CONTRACTOR AND A DAMAGE AND A DAMAGE AND A DAMAGE A DAMAGE

COMMONWEALTH EDISON CCMPANY

CALCULATION NO: BYR97-023 PROJECT NO. N/A PAGE NO. C2

post trip release rate at 120 gpm is 132 Ci/hr. The margin to the release rate methodology (8797 Ci/hr) is significant in both cases. By increasing the total removal rate of I-131 (e.g. increasing letdown from 75 gpm to 120 gpm), the ratio of the pre-trip release rates is more greatly affected thant the ratio of the post-trip release rates. In other words, the pre-trip number increases at a higher rate than the post-trip numbers.

Since the pre-trip iodine release rate is the denominator of the spike factor, the minimum letdown flowrate yields the higher iodine spike factor. Using 75 gpm letdown flowrate, the spike factor is higher in every event. For this reason, using 75 gpm is a conservative assumption.

the second of the second se		R	EV	I	S	Ι	0	N	NO.	
---	--	---	----	---	---	---	---	---	-----	--

0

Event	Unit	Cycle	Trip Date	Trip Time	Power at Trip	Pre Trip Iodine (uCl/gm)	Post Trip Iodine (uCl/gm)	Post Trip lodine (date/time)	(No) Failed Fuel (NFF/FF)
1	1	1	1/16/86	4:49	98%	5.20E-03	2.89E-02	1/13/86 14:30	FF
2	1	1	1/29/86	0:06	98%	2.00E-02	1.40E-01	1/29/86 3:45	FF
3	1	1	9/30/86	9:11	93%	2.90E-02	2.90E-01	9/30/86 11:35	FF
4	1	2	7/29/87	22:11	98%	3.00E-03	6.90E-03	7/30/87 1:10	FF
5	1	2	7/31/87	1:53	30%	4.70E-03	1.30E-02	7/31/87 7:40	FF
6	1	2	8/11/87	10:11	97%	6.10E-03	1.605-02	8/12/87 10:30	FF
7	1	2	4/18/88	21:48	98%	8.20E-03	5.30E-02	4/19/88 8:00	FF
8	1	2	7/16/88	4:31	98%	1.60E-02	3.30E-01	7/16/88 7:30	FF
9	1	2	8/4/88	0.47	98%	2.50E-01	1.70E-01	8/5/88 8:40	FF
10	1	3	1/31/89	9:56	99%	6.70E-03	8.00E-02	1/31/89 12:00	FF
11	1	4	5/3/90	3:00	79%	2.10E-03	1.70E-03	5/3/90 6:45	NFF
12	1	4	8/19/90	4:25	78%	1.60E-03	2.10E-03	8/19/90 6:40	NFF
13	1	4	12/3/90	12:40	98%	2.50E-03	2.10E-03	12/3/90 15:00	NFF
14	1	5	1/29/92	9:01	93%	2.00E-02	2.60E-01	1/30/92 8:16	FF
15	1	8	9/11/96	0:17	96.5%	4.51E-04	3.48E-04	9/11/96 2:30	NFF
16	2	1	4/27/87	16:03	89%	2.00E-02	3.10E-03	4/27/87 18:30	NFF
17	2	1	7/14/87	18:15	98%	4.00E-02	2.60E-01	7/15/87 0:15	FF
18	2	1	7/25/87	12:16	98%	3.20E-02	1.90E-01	7/25/87 14:15	FF
19	2	1	2/12/88	18:04	94%	1.20E-02	3.30E-01	2/12/88 20:50	FF
20	2	1	5/6/88	12:16	94%	1.90E-02	2.90E-01	5/6/88 13:30	FF
21	2	1	7/14/88	1:14	95%	1.50E-02	2.40E-01	7/14/88 9:30	FF
22	2	1	12/15/88	10:02	40%	4.10E-03	6.80E-02	12/15/88 12:45	FF
23	2	2	1/18/90	0:42	99%	5.60E-03	7.60E-02	1/19/90 7:40	FF
24	2	3	12/20/90	4:08	72%	1.50E-03	1.105-01	12/20/90 3:50	FF
2.5	2	4	6/10/92	13:25	100%	5.63E-04	4.80E-04	6/10/92 16:00	NFF
26	2	4	5/11/93	22:38	97%	1.10E-03	4.925-04	5/12/93 6:35	NFF
27	2	5	9/24/94	10:12	100%	7.25E-04	4.70E-04	9/24/94 12:20	NFF
28	2	6	5/23/96	8:04	98%	4.70E-04	4.20E-04	5/23/96 10:20	NFE

Calculation No.	BYR97-023 Attachment: C					
Attachment						
Revision No.	00					
Page No.	Page 3 of 9					

.

	A	B	С	D	E	F	G	Н	1
1	Sample ID:	Maximum Post-Trip Iodine (3x Sample)	Re Pre-Trip Steady State Release Rate (Ci/hr)	Post Trip Release Rate R (Ci/hr)	Spike Factor [R/Rd]	B/ MWe	Pre-Trip Iodine (uCl/mi)	Post-Trip Iodiue (uCl/mi)	% Reactor power
2	Unit-1								00.001
3	1	8.67E-02	9.15E-02	1.07E+01	1.17E+02	9.28E-03	5.20E-03	2.89E-02	98.0%
4	2	4.20E-01	3.52E-01	5.24E+01	1.49E+02	4.55E-02	2.00E-02	1.40E-01	98.0%
5	3	8.70E-01	5.10E-01	1.10E+02	2.15E+02	1.01E-01	2.90E-02	2.90E-01	93.0%
6	4	2.07E-02	5.28E-02	2.35E+00	4.46E+01	2.04E-03	3.00E-03	6.90E-03	98.0%
7	5	3.90E-02	8.27E-02	4.54E+00	5.49E+01	1.29E-02	4.70E-03	1.30E-02	30.0%
8	6	4.80E-02	1.07E-01	5.55E+00	5.18E+01	4.87E-03	6.10E-03	1.60E-02	97.0%
9	7	1.59E-01	1.44E-01	1.97E+01	1.37E+02	1.72E-02	8.20E-03	5.30E-02	98.0%
10	8	9.90E-01	2.81E-01	1.27E+02	4.51E+02	1.10E-01	1.60E-02	3.30E-01	98.0%
11	9	5.10E-01	4.40E+00	3.82E+01	8.68E+00	3.32E-02	2.50E-01	1.70E-01	98.0%
12	10	2.40E-01	1.18E-01	3.04E+01	2.58E+02	2.62E-02	6.70E-03	8.00E-02	99.0%
13	11	5.10E-03	3.69E-02	4.27E-01	1.16E+01	4.60E-04	2.10E-03	1.70E-03	79.0%
14	12	6.30E-03	2.81E-02	6.39E-01	2.27E+01	6.97E-04	1.60E-03	2.10E-03	78.0%
15	13	6.30E-03	4.40E-02	5.38E-01	1.22E+01	4.67E-04	2.50E-03	2.10E-03	98.0%
16	14	7.80E-01	3.52E-01	9.92E+01	2.82E+02	9.07E-02	2.00E-02	2.60E-01	93.0%
17	15	1.04E-03	7.93E-03	8.50E-02	1.07E+01	7.50E-05	4.51E-04	3.48E-04	96.5%
18	Unit-2								
19	16	9.30E-03	3.52E-01	-1.04E+00	-2.95E+00	-9.94E-04	2.00E-02	3.10E-03	89.0%
20	17	7.80E-01	7.04E-01	9.69E+01	1.38E+02	8.40E-02	4.00E-02	2.60E-01	98.2%
21	18	5.70E-01	5.63E-01	7.05E+01	1.25E+02	6.12E-02	3.20E-02	1.90E-01	98.0%
22	19	9.90E-01	2.11E-01	1.27E+02	6.03E+02	1.15E-01	1.20E-02	3.30E-01	94.0%
23	20	8.70E-01	3.34E-01	1.11E+02	3.32E+02	1.00E-01	1.90E-02	2.90E-01	94.0%
24	21	7.20E-01	2.64E-01	9.19E+01	3.48E+02	8.23E-02	1.50E-02	2.40E-01	95.0%
25	22	2.04E-01	7.21E-02	2.61E+01	3.61E+02	5.54E-02	4.10E-03	6.80E-02	40.0%
26	23	2.28E-01	9.85E-02	2.90E+01	2.94E+02	2.49E-02	5.60E-03	7.60E-02	99.0%
27	24	3.30E-01	2.64E-02	4.27E+01	1.62E+03	5.05E-02	1.50E-03	1.10E-01	72.0%
28	25	1.44E-03	9.91E-03	1.24E-01	1.25E+01	1.05E-04	5.63E-04	4.80E-04	100.0%
29	26	1.48E-03	1.94E-02	6.82E-02	3.53E+00	5.99E-05	1.10E-03	4.92E-04	97.0%
30	27	1.41E-03	1.28E-02	1.02E-01	7.98E+00	8.66E-05	7.25E-04	4.70E-04	100.0%
31	28	1.26E-03	8.27E-03	1.11E-01	1.34E+01	9.64E-05	4.70E-04	4.20E-04	98.0%

Release Rate (75)

Calculation No. BYR97-023 Attachment Attachment: C Revision No. 00 Page No. Page 4 of 9

	A B		C	D	E
1	Sample (D:	Maximun Post-Trip Iodine (3x Sample)	Re Pre-Trip Steady State Release Pate (Cl/hr)	Post Top Release Rate R (Cl/hr)	Spike Factor [R/R_]
2	Unit-1				-02/02
3	1	=3*H3	=(G3*17.5934)	1=(130) ⁻ ((B3)-(0.8647 (G3))	-03/03
4	2	=3"H4	=(G4*17.5934)	=(130) ⁻ ((B4)-(0.8047 G4))	-D4/C4
5	3	=3*H5	=(G5*17.5934)	(130) ⁻ ((85)-(0.8647 (65))	-05/05
6	4	=3*H6	=(G6*17.5934)	=(130)*((Bb)-(0.8647*G0))	-D0/C0
17	5	=3*H7	=(G7*17.5934)	=(130)*((B7)-(0.8647*G7))	
8	6	=3*H8	=(G8"17.5934)	=(130) ⁻ ((88)-(0.8647 G8))	-D0/C0
9	7	=3*H9	=(G9*17.5934)	=(130) ⁻ ((B9)-(0.8647 ⁻ G9))	-D9/09
10	8	=3*H10	=(G10*17.5934)	=(130)^((B10)-(0.8647*G10))	-D10/C10
11	9	=3*H11	=(G11*17.5934)	=(130)*((811)-(0.8647*G11))	-D12/C12
12	10	=3*H12	=(G12*17.5934)	=(130) ⁻ ((B12)-(0.8647 G12))	-D12/C12
13	111	=3*H13	=(G13*17.5934)	=(130) ⁻ ((B13)-(0.8647 G13))	-013/013
14	12	=3*H14	=(G14*17.5934)	=(130)*((B14)-(0.8647*G14))	=D14/C14
15	13	=3°H15	=(G15*17.5934)	=(130)*((B15)-(0.8647*G15))	=D15/C15
16	14	=3*H16	=(G16*17.5934)	=(130)"((B16)-(0.8647 G16))	-010/010
17	15	=3*H17	=(G17*17.5934)	=(130)*((B17)-(0.8647*G17))	
18	Unit-2				
19	16	=3*H19	=(G19*17.5934)	=(130)*((B19)-(0.8647*G19))	=D19/C19
20	17	=3*H20	=(G20*17.5934)	=(130)*((B20)-(0.8647*G20))	=D20/C20
21	18	=3*H21	=(G21*17.5934)	=(130)*((B21)-(0.8647*G21))	=D21/C21
22	19	=3*H22	=(G22*17.5934)	=(130)*((B22)-(0.8647*G22))	=D22/C22
23	20	=3*H23	=(G23*17.5934)	=(130)*((B23)-(0.8647*G23))	=D23/C23
24	21	=3*H24	=(G24*17.5934)	=(130)*((B24)-(0.8647*G24))	=D24/C24
25	22	=3*H25	=(G25*17.5934)	=(130)*((B25)-(0.8647*G25))	=D25/C25
26	23	=3*H26	=(G26*17.5934)	=(130)*((B26)-(0.8647*G26))	=D26/C26
27	24	=3*H27	=(G27*17.5934)	=(130)*((B27)-(0.8647*G27))	=D27/C27
28	25	=3*H28	=(G28*17.5934)	=(130)*((B28)-(0.8647*G28))	=D28/C28
29	26	=3*H29	=(G29*17.5934)	=(130)*((B29)-(0.8647*G29))	=D29/C29
30	27	=3*H30	=(G30*17.5934)	=(130)*((B30)-(0.8647*G30))	=D30/C30
31	28	=3*H31	=(G31*17.5934)	=(130)*((B31)-(0.8647*G31))	=D31/C31

IODIN075.XLS

Release Rate (75)

Attachment Revision No. Page No.

Calculation No. BYR97-023 Attachment: C 00 Page 5 of 9

	F	G	Н	1		
1	<u>₿∕</u> MWe	Pre-Trip lodine (uCl/ml)	Post-Trip Iodine (uCi/mi)	% Reactor power		
2						
3	=D3/(1175*l3)	='[IODIN075.XLS]Unit Trips'IG2	='[IODIN075.XLS]Unit Trips'IH2	='[IODIN075.XLS]Unit Trips'IF2		
4	=D4/(1175*14)	='[IODIN075.XLS]Unit Trips'IG3	='[IODIN075.XLS]Unit Trips'!H3	='[IODIN075.XLS]Unit Trips'IF3		
5	=D5/(1175*15)	='[IODIN075.XLS]Unit Trips'IG4	='[IODIN075.XLS]Unit Trips'!H4	='[IODIN075.XLS]Unit Trips'IF4		
6	=D6/(1175*16)	='[IODIN075.XLS]Unit Trips'IG5	='[IODIN075.XLS]Unit Trips'IH5	='[IODIN075.XLS]Unit Trips'IF5		
7	=D7/(1175*17)	='[IODIN075.XLS]Unit Trips'IG6	='[IODIN075.XLS]Unit Trips'!H6	='[IODIN075.XLS]Unit Trips'IF6		
8	=D8/(1175*18)	='[IODIN075.XLS]Unit Trips'IG7	='[IODIN075.XLS]Unit Trips'!H7	='[IODIN075.XLS]Unit Trips'IF7		
9	=D9/(1175*19)	='[IODIN075.XLS]Unit Trips'IG8	='[IODIN075.XLS]Unit Trips'!H8	='[IODIN075.XLS]Unit Trips'IF8		
10	=D10/(1175*110)	='[IODIN075.XLS]Unit Trips'IG9	='[IODIN075.XLS]Unit Trips'!H9	='[IODIN075 XLS]Unit Trips'!F9		
11	=D11/(1175*111)	='[IODIN075.XLS]Uni! Trips'IG10	='[IODIN075.XLS]Unit Trips'!H10	='[IODIN075.XLS]Unit Trips'IF10		
12	=D12/(1175*112)	='[IODIN075.XLS]Unit Trips'IG11	='[IODIN075.XLS]Unit Trips'IH11	='[IODIN075.XLS]Unit Trips'IF11		
13	=D13/(1175*113)	='[IODIN075.XLS]Unit Trips'IG12	='[IODIN075.XLS]Unit Trips'!H12	='[IODIN075.XLS]Unit Trips'!F12		
14	=D14/(1175*I14)	='[IOD!N075.XLS]Unit Trips'IG13	='[IODIN075.XLS]Unit Trips'!H13	='[IODINu75.XLS]Unit Trips !F13		
15	=D15/(1175*I15)	='[IODiN075.XLS]Unit Trips'IG14	='[IODIN075.XLS]Unit Trips'!H14	='[IODIN075.XLS]Unit Trips'IF14		
16	=D16/(1175°I16)	='[IODIN075.XLS]Unit Trips'IG15	='[IODIN075.XLS]Unit Trips'!H15	='[IODIN075.XLS]Unit Trips'!F15		
17	=D17/(1175*117)	='[IODIN075.XLS]Unit Trips'IG16	='[IODIN075.XLS]Unit Trips'!H16	='[IODIN075.XLS]Unit Trips'!F16		
18			l			
19	=D19/(1175*119)	='[IODIN075.XLS]Unit Trips'IG18	='[IODIN075.XLS]Unit Trips'IH18	='[IODIN075.XLS]Unit Trips'!F18		
20	=D20/(1175°120)	='[IODIN075.XLS]Unit Trips'IG19	='[IODIN075.XLS]Unit Trips'!H19	='[IODIN075.XLS]Unit Trips'!F19		
21	=D21/(1175*121)	='[IODIN075.XLS]Unit Trips'IG20	='[IODIN075.XLS]Unit Trips'!H20	='[IODIN075.XLS]Unit Trips'!F20		
22	=D22/(1175*122)	='[IODIN075.XLS]Unit Trips'IG21	='[!ODIN075.XLS]Unit Trips'!H21	='[IODIN075.XLS]Unit Trips'!F21		
23	=D23/(1175*123)	='[IODIN075.XLS]Unit Trips'IG22	='[IODIN075.XLS]Unit Trips'!H22	='[IODIN075.XLS]Unit Trips'!F22		
24	=D24/(1175*124)	='[IODIN075.XLS]Unit Trips'IG23	='[IODIN075.XLS]Unit Trips'!H23	='[IODIN075.XLS]Unit Trips'!F23		
25	=D25/(1175*125)	='[IODIN075.XLS]Unit Trips'IG24	='[IODIN075.XLS]Unit Trips'!H24	='[IODIN075.XLS]Unit Trips'!F24		
26	=D26/(1175*126)	='[IODIN075.XLS]Unit Trips'IG25	='[IODIN075.XLS]Unit Trips'!H25	='[IODIN075.XLS]Unit Trips'!F25		
27	=D27/(1175*127)	="[IODIN075.XLS]Unit Trips'IG26	='[IODIN075.XLS]Unit Trips'!H26	='[IODIN075.XLS]Unit Trips'!F26		
28	=D28/(1175*128)	='[IODIN075.XLS]Unit Trips'IG27	="[IODIN075.XLS]Unit Trips'!H27	='[IODIN075.XLS]Unit Trips'IF27		
29	=D29/(1175*129)	='[IODIN075.XLS]Unit Trips'!G28	='[IODIN075.XLS]Unit Trips'IH28	='[IODIN075.XLS]Unit Trips'!F28		
30	=D30/(1175*130)	='[IODIN075.XLS]Unit Trips'IG29	='[IODIN075.XLS]Unit Trips'IH29	='[IODIN075.XLS]Unit Trips'!F29		
31	=D31/(1175*I31)	='[IODIN075.XLS]Unit Trips'!G30	='[IODIN075.XLS]Unit Trips'!H30	='[IODIN075.XLS]Unit Trips'!F30		

IODIN075.XLS

Release Rate (75)

Attachment Revision No. Page No.

Calculation No. BYR97-023 Attachment: C 00 Page 6 of 9

C A 1	01	5	CA	100-
34	DL	Е.	6-4	

-4

•

	A	B	C	D	E	F	G	Н	
1	Sample ID:	Maximum Post-Trip Iodine (3x Sample)	Re Pre-Trip Steady State Release Rate (C/hr)	Post Trip Relaase Rate R (Ci/hr)	Spike Factor [R/Ra]	R/MWR	Pre-Trip ledine (uCi/mi)	Post-Trip Iodine (uCi/ml)	% Reactor power
2	Unit-1							CONTRACTOR OF THE OWNER OF THE OWNER	
3	1	8.67E-02	1.45E-01	1.12E+01	7.71E+01	9.72E-03	5.20E-03	2.89E-02	98.00%
4	2	4.20E-01	5.58E-01	5.48E+01	9.81E+01	4.76E-02	2.00E-02	1.40E-01	98.00%
5	3	8.70E-01	8.09E-01	1.15E+02	1.42E+02	1.05E-01	2.90E-02	2.90E-01	93.00%
6	4	2.07E-02	8.37E-02	2.485+00	2.97E+01	2.16E-03	3.00E-03	6.90E-03	98.00%
7	5	3.90E-02	1.31E-01	4.78E+00	3.64E+01	1.36E-02	4.70E-03	1.30E-02	30.00%
8	6	4.80E-02	1.70E-01	5.85E+00	3.44E+01	5.13E-03	6.10E-03	1.60E-02	97.00%
9	7	1.59E-01	2.29E-01	2.07E+01	9.03E+01	1.79E-02	8.20E-03	5.30E-02	98.00%
10	8	9.90E-01	4.46E-01	1.32E+02	2.97E+02	1.15E-01	1.60E-02	3.30E-01	98.00%
11	9	5.10E-01	6.98E+00	4.22E+01	6.05E+00	3.67E-02	2.50E-01	1.70E-01	98.00%
12	10	2.40E-01	1.87E-01	3.18E+01	1.70E+02	2.73E-02	6.70E-03	8.00E-02	99.00%
13	11	5.10E-03	5.86E-02	4.65E-01	7.94E+00	5.01E-04	2.10E-03	1.70E-03	79.00%
14	12	6.30E-03	4.46E-02	6.81E-01	1.53E+01	7.44E-04	1.60E-03	2.10E-03	78.00%
15	13	6.30E-03	6.98E-02	5.85E-01	8.38E+00	5.08E-04	2.50E-03	2.10E-03	98.00%
16	14	7.80E-01	5.58E-01	1.04E+02	1.86E+02	9.47E-02	2.00E-02	2.60E-01	93.00%
17	15	1.04E-03	1.26E-02	9.29E-02	7.39E+00	8.20E-05	4.51E-04	3.48E-04	96.50%
18	Unit-2								
19	16	9.30E-03	5.58E-01	-8.92E-01	-1.60E+00	-8.53E-04	2.00E-02	3.10E-03	89 00%
20	17	7.80E-01	1.12E+00	1.01E+02	9.08E+01	8.79E-02	4.00E-02	2.60E-01	98.20%
21	18	5.70E-01	8.93E-01	7.38E+01	8.26E+01	6.41E-02	3.20E-02	1.90E-01	98.00%
22	19	9.90E-01	3.35E-01	1.33E+02	3.97E+02	1.20E-01	1.20E-02	3.30E-01	94.00%
23	20	8.70E-01	5.30E-01	1.16E+02	2.19E+02	1.05E-01	1.90E-02	2.90E-01	94.00%
24	21	7.20E-01	4.19E-01	9.59E+01	2.29E+02	8.60E-02	1.50E-02	2.40E-01	95.00%
25	22	2.04E-01	1.14E-01	2.72E+01	2.38E+02	5.79E-02	4.10E-03	6.80E-02	40.00%
26	23	2.28E-01	1.56E-01	3.03E+01	1.94E+02	2.60E-02	5.60E-03	7.60E-02	99.00%
27	24	3.30E-01	4.19E-02	4.46E+01	1.06E+03	5.27E-02	1.50E-03	1.10E-01	72.00%
28	25	1.44E-03	1.57E-02	1.35E-01	8.56E+00	1.15E-04	5.63E-04	4.80E-04	100.00%
29	26	1.48E-03	3.07E-02	8.16E-02	2.66E+00	7.16E-05	1.10E-03	4.92E-04	97.00%
30	27	1.41E-03	2.02E-02	1.13E-01	5.59E+00	9.62E-05	7.25E-04	4.70E-04	100.00%
31	28	1.26E-03	1.31E-02	1.20E-01	9.16E+00	1.04E-04	4.70E-04	4.20E-04	98.00%

Calculation No. Attachment h avision No. Page No.

BYR97-023 Attachment: 00 Page 7 of 9

0

IODIN075 XLS

(Release Rate (120))

	A	В	C	D	E	
1	Sample ID:	Maximum Post-Trip Iodine (3x Sample)	Representate (Ci/IIr)	Post Trip Release Rate R (Ci/hr)	Spike Factor [R/Re]	
2	Unit-1					
3	1	=3*H3	=(G3*27.9026)	=(135.5)*((B3)-(0.7941*G3))	=D3/C3	
4	2	=3*H4	=(G4*27.9026)	=(135.5)*((B4)-(0.7941*G4))	=D4/C4	
5	3	=3*115	=(G5*27.9026)	=(135.5)*((B5)-(0.7941*G5))	=D5/C5	
6	4	=3*H6	=(G6*27.9026)	=(135.5)*((B6)-(0.7941*G6))	=D6/C6	
7	5	=3*H7	=(G7*27.9026)	=(135.5)*((B7)-(0.7941*G7))	=D7/C7	
8	6	=3*H8	=(G8*27.9026)	=(135.5)*((B8)-(0.7941*G8))	=D8/C8	
9	7	=3*H9	=(G9*27.9026)	=(135.5)*((B9)-(0.7941*G9))	=D9/C9	
10	8	=3*H10	=(G10*27.9026)	=(135.5)*((B10)-(0.7941*G10))	=D10/C10	
11	9	=3*H11	=(G11*27.9026)	=(135.5)*((B11)-(0.7941*G11))	=D11/C11	
12	10	=3*H12	=(G12*27.9026)	=(135.5)*((B12)-(0.7941*G12))	=D12/C12	
13	11	=3*H13	=(G13*27.9026)	=(135.5)*((B13)-(0.7941*G13))	=D13/C13	
14	12	=3*H14	=(G14*27.9026)	=(135.5)*((B14)-(0.7941*G14))	=D14/C14	
15	13	=3*H15	=(G15*27.9026)	=(135.5)*((B15)-(0.7941*G15))	=D15/C15	
16	14	=3*H16	=(G16*27.9026)	=(135.5)*((B16)-(0.7941*G16))	=D16/C16	
17	15	=3°H17	=(G17*27.9026)	=(135.5)*((B17)-(0.7941*G17))	=D17/C17	
18	Unit-2					
19	16	=3*H19	=(G19*27.9026)	=(135.5)*((B19)-(0.7941*G19))	=D19/C19	
20	17	=3*H20	=(G20*27.9026)	=(135.5)*((B20)-(0.7941*G20))	=D20/C20	
21	18	=3*H21	=(G21*27.9026)	=(135.5)*((B21)-(0.7941*G21))	=D21/C21	
22	19	=3*H22	=(G22*27.9026)	=(135.5)*((B22)-(0.7941*G22))	=D22/C22	
23	20	=3*H23	=(G23*27.9026)	=(135.5)*((B23)-(0.7941*G23))	=D23/C23	
24	21	=3*H24	=(G24*27.9026)	=(135.5)*((B24)-(0.7941*G24))	=D24/C24	
25	22	=3*H25	=(G25*27.9026)	=(135.5)*((B25)-(0.7941*G25))	=D25/C25	
26	23	=3*H26	=(G26*27.9026)	=(135.5)*((B26)-(0.7941*G26))	=D26/C26	
27	24	=3*H27	=(G27*27.9026)	=(135.5)*((B27)-(0.7941*G27))	=D27/C27	
28	25	=3*1+28	=(G28*27.9026)	=(135.5)*((B28)-(0.7941*G28))	=D28/C28	
29	26	=3*H29	=(G29*27.9026)	=(135.5)*((B29)-(0.7941*G29))	=D29/C29	
30	27	=3*H30	=(G30*27.9026)	=(135.5)*((B30)-(0.7941*G30))	=D30/C30	
31	28	=3*H31	=(G31*27.9026)	=(135.5)*((B31)-(0.7941°G31))	=D31/C31	

IODIN075.XLS

(Release Rate (120))

1/23/97

Calculation No. Attachment Revision No Page No

BYR97-023 Attachment: (00 Page 8 of 9

	F	G	Н	1	
	Dapas	Ora Trio Iodina (uCimi)	Post-Trip Iodina (uCl/mi)	% Reastor power	
2	NORAC	a territe territe (versit)			
2	-D2//1175*13)	="ILODIN075 XI SILInit Trips"IG2	='IODIN075 XI SIUnit Trips'IH2	='IIODIN075.XLSIUnit Trips'IF2	
A	=DA/(1175*14)	='iODIN075 XI SILINIT Trips'IG3	='IIODIN075 XLSIUnit Trips'IH3	='IIODIN075.XLS]Unit Trips'IF3	Ca Att Re Pa
5	=D5/(1175*15)	='IIODIN075 XI SIUnit Trips'IG4	='IIODIN075 XLSIUnit Trips'IH4	='IIODIN075.XLSJUnit Trips'IF4	lcu tact visi ge l
6	=D6/(1175*16)	='IIODIN075 XLSIUnit Trips'IG5	='TIODIN075.XLS]Unit Trips'IH5	='[IODIN075.XLS]Unit Trips'IF5	latu ume No.
7	=D7/(1175*17)	='IIODIN075 XLSIUnit Trips'IG6	='IIODIN075.XLSIUnit Trips'IH6	='[IODIN075.XLS]Unit Trips'!F6	No
8	=D8/(1175*18)	='IIODIN075 XLSIUnit Trips'IG7	='IIODIN075.XLS]Unit Trips'IH7	='[IODIN075.XLS]Unit Trips'IF7	No
9	=D9/(1175*19)	='IIODIN075.XLS]Unit Trips'IG8	='[IODIN075.XLS]Unit Trips'!H8	='[IODIN075.XLS]Unit Trips'IF8	
10	=D10/(1175*110)	='IIODIN075.XLS]Unit Trips'IG9	='[IODIN075.XLS]Unit Trips'!H9	='[IODIN075.XLS]Unit Trips'IF9	Pag
11	=D11/(1175*111)	='[IODIN075.XLS]Unit Trips'!G10	='[IODIN075.XLS]Unit Trips'IH10	='[IODIN075.XLS]Unit Trips'IF10	R9
12	=D12/(1175*112)	='[IODIN075.XLS]Unit Trips'IG11	='[IODIN075.XLS]Unit Trips'!H11	='[IODIN075.XLS]Unit Trips'IF11	Ine Ine
13	=D13/(1175*113)	='[IODIN075.XLS]Unit Trips'IG12	='[IODIN075.XLS]Unit Trips'!H12	='[IODIN075.XLS]Unit Trips'IF12	La 11:23
14	=D14/(1175*114)	='[IODIN075.XLS]Unit Trips'IG13	="[IODIN075.XLS]Unit Trips'!H13	='[IODIN075.XLS]Unit Trips'IF13	
15	=D15/(1175*115)	="[IODIN075.XLS]Unit Trips'!G14	='[IODIN075.XLS]Unit Trips'IH14	='[IODIN075.XLS]Unit Trips'IF14	
16	=D16/(1175*116)	='[IODIN075.XLS]Unit Trips'IG15	='[IODIN075.XLS]Unit Trips'!H15	='[IODIN075.XLS]Unit Trips'!F15	4 14 13
17	=D17/(1175*I17)	='[IODIN075.XLS]Unit Trips'IG16	='[IODIN075.XLS]Unit Trips'IH16	='[IODIN075.XLS]Unit Trips' F16	_
18					_
19	=D19/(1175*I19)	='[IODIN075.XLS]Unit Trips'IG18	="[IODIN075.XLS]Unit Trips'IH18	='[IODIN075.XLS]Unit Trips'IF18	
20	=D20/(1175*120)	='[IODIN075.XLS]Unit Trips'IG19	='[IODIN075.XLS]Unit Trips'!H19	='[IODIN075.XLS]Unit Trips'IF19	
21	=D21/(1175*l21)	='[IODIN075.XLS]Unit Trips'IG20	='[IODIN075.XLS]Unit Trips'IH20	='[IODIN075.XLS]Unit Trips'IF20	
22	=D22/(1175*122)	='[IODIN075.XLS]Unit Trips'IG21	='[IODIN075.XLS]Unit Trips'IH21	='[IODIN075.XLS]Unit Trips'IF21	
23	=D23/(1175*123)	='[IODIN075.XLS]Unit Trips'IG22	='[IODIN075.XLS]Unit Trips'!H22	='[IODIN075.XLS]Unit Trips'IF22	
24	=D24/(1175*124)	='[IODIN075.XLS]Unit Trips'IG23	='[IODIN075.XLS]Unit Trips'IH23	="[IODIN075.XLS]Unit Trips'IF23	
25	=D25/(1175*125)	='[IODIN075.XLS]Unit Trips'IG24	='[IODIN075.XLS]Unit Trips'IH24	='[IODIN075 XLS]Unit Trips'!F24	
28	=D26/(1175*126)	='[IODIN075.XLS]Unit Trips'IG25	='[IODIN075.XLS]Unit Trips'IH25	="[IODIN075.XLS]Unit Trips'!F25	
27	=D27/(1175*127)	='[IODIN075.XLS]Unit Trips'IG26	='[IODIN075.XLS]Unit Trips'IH26	='[IODIN075.XLS]Unit Trips'!F26	
28	=D28/(1175*l28)	='[IODIN075.XLS]Unit Trips'IG27	='[IODIN075.XLS]Unit Trips'IH27	= [IODIN075.XLS]Unit Trips'IF27	
29	=D29/(1175*l29)	='[IODIN075.XLS]Unit Trips'IG28	='[IODIN075.XLS]Unit Trips'IH28	= 10DIN075.XLSJUnit Trips'IF28	
30	=D30/(1175*130)	='[IODIN075.XLS]Unit Trips'IG29	='[IODIN075.XLS]Unit Trips'IH29	= IODINU/5.XLSJUnit Trips/1-29	A) 10 (3)
31	=D31/(1175*l31)	[='[IODIN075.XLS]Unit Trips'IG30	TIODIN075.XLSJUnit Trips/1H30	= [IODINU/5.ALS]UNIT THPS IF 30	

(Release Rate (120))

IODIN075.XLS

THE IODINE SPIKE RELEASE RATE DURING A STEAM GENERATOR TUBE RUPTURE

JAMES P. ADAMS and CORWIN L. ATWOOD Idaho National Engineering Laboratory, EG&G Idaho, Inc. P.O. Box 1625, Idaho Falls, Idaho 83415

Received May 10, 1990 Accepted for Publication October 16, 1990

The U.S. Nuclear Regulatory Commission (NRC) requires utilities to determine the response of a pressurized water reactor (PWR) to a steam generator tube rupture (SGTR) as part of the safety analysis for the plent. The SGTR analysis includes assumptions regarding the presence of fission product iodine in the reactor coolant resulting from iodine spikes. To get a better understanding of i e spiking, reactor trip and associated radiocher. y data were collected from 26 PWRs. These date were compared against validation criteria to determ ... their applicability to an investigation of the magnitude of an iodine spike following a reactor trip. The applicable data and the results of a statistical analysis are presented. Conclusions are made from this analysis of iodine spiking following reactor trips concerning the magnitude of a spike during an SGTR and compared with the NRC analysis criteria. The conclusion is then made that the iodine release rate expected during an SGTR, on the basis of the analysis of the data base, is much less (by a factor of 15 or more) than that specified by the NRC for analysis of this accident type.

L. INTRODUCTION

And Dealers & Annual Transformer

In pressurized water reactors (PWRs), water in the primary coolant system is pressurized to prevent it from boiling. This high-pressure water is circulated through heat exchanger tubes in the steam generators where its heat is transferred to lower pressure secondary coolant, producing steam, which is used to generate electrical power. The tubes represent a large fraction of the reactor coolant system (RCS) boundary, and rupture of these tubes can result in a direct path to the envi-

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991

NUCLEAR FUEL CYCLES

Calculation No. Attachment Revision No. Page No.

00	Attachment: D						
VV	00						

ronment for primary coolant (containment bypass) through either the atmospheric dump valves or secondary relief valves. Since the primary coolant can carry radioactive materials, a steam generator tube rupture (SGTR) accident has been designated as a design-basis accident for PWRs and is analyzed as part of a plant's final safety analysis report (FSAR). The U.S. Nuclear Regulatory Commission (NRC) regulations regarding the FSAR for PWRs are listed in 10CFR50 (Ref. 1). Guidelines are provided for interpretation of these regulations in the Standard Review Plan² (SRP).

An iodine spike is a temporary increase in the concentration of fission product iodine that sometimes occurs as a result of a large reactor power or RCS pressure change. The iodine, a fission product released to the coolant, comes either as a product of the fissioning of tramp uranium on the fuel element cladding surface or from the fuel itself, being released through tiny holes in the cladding of otherwise undamaged fuel rods. The cladding defects can occur during the manufacturing process or as a result of corrosion during operations (e.g., hydriding). This iodine (specifically, ¹³¹) represents the principal source of radiation potentially leaked to the environment during an SGTR.

Reference 2 describes two different scenarios to be assumed in the analysis of an SGTR. The first includes the assumption that an iodine spike occurs prior to initiation of the SGTR. The second includes the assumption that the SGTR occurs coincident with the iodine spike. In each case, the SRP provides guidelines regarding the magnitude of the iodine spike and the consequent RCS iodine concentration that are assumed in the analysis of this transient. An earlier study³ compared the SRP guidelines for an SGTR with preexisting iodine spike and iodine spiking data from operating PWRs.

The SRP guidelines governing analysis of the second scenario (SGTR with coincident iodine spike) specify that the iodine concentration is to be assumed to result from an SGTR-initiated iodine spike that increases the

P.2/12

JAN 22 '97 03:14PM BNCT/FSP PROGRAMS

Adams and Atwood ODINE SPIKE RELEASE RATE

iodine release rate (the rate at which the iodine is released from the fuel element to the RCS coolant) to a value that is 500 times the steady-state release rate. Reference 2 further directs that the steady-state release rate (used in this calculation) should be based on an RCS iodine concentration of 1 μ Cl/g, the technical specification limit. This paper contains the results of a study conducted to evaluate this guideline and to determine the probability that an iodine spike of a given magnitude will occur as a result of an SGTR. These results were published previously in Ref. 4.

II. ANALYSIS

The objective of this study is to determine the probability that an SGTR would result in an iodine spike of a given magnitude. In the analysis below, this probability is considered to be equal to the probability that a reactor trip would result in an iodine spike of the same magnitude. The methodology used in this study was

- to develop a data base of reactor trips and associated radioiodine concentrations from commercial PWR operations
- 2. to bound the magnitude of the maximum iodine concentration following the trip
- to bound the release rate from the fuel to the RCS during each event
- 4. to estimate the desired probabilities.

II.A. lodine Spiking Data Base

Fewer than 10 SGTR events have occurred in U.S. PWRs. The uncertainties associated with a statistical analysis of this small number of events would be so large that the results would not be useful to predict the behavior of future iodine spiking events. However, an SGTR occurring during power operations would result in a reactor trip, which is a large power excursion. Reference 5 indicates that "This (jodine) increase is often observed during power increases and reactor coolant depressurizations following power decreases." Since it is this power excursion that causes the iodine spike, it assumed that the probability that an SGTR event results in an iodine spike of a given magnitude is equal to the probability that a reactor trip would result in an iodine spit of the same magnitude. This assumption -that the reactor trip causes the iodine spike rather than anything else associated with the SGTR itself-allows a much larger data base to be developed.

There are other phenomena that can affect the iodine spike, specifically a power increase or a pressure transient, that could affect the validity of this assumption. The power increase (e.g., if the reactor is quickly brought back to power following a spurious trip) may be ignored since it is highly unlikely that reactor oper-

BYR97-023				
Attachment: D				
00				
Page Zof 11				
	Attachment: D 00 Page Z of 11			

ators would attempt power operations following an SGTR-induced scram.

There is a pressure transient inherent with a reactor trip because the principal heat source is immediately lost when the control rods are inserted and the heat sink is maintained until the main steam stop valves can be closed. The effects of this pressure transient are inherently included in this data base.

Additional pressure transients may occur as the operators attempt to bring the plant to a safe shutdown condition. However, it is expected that operators would require some time to diagnose the transient and initiate depressurization (-0.5 h). Buildup of the iodine is exponential, and thus, a large fraction of the concentration increase would occur prior to the operator-initiated depressurization. Therefore, it is considered that any perturbing effects of a subsequent depressurization transient are relatively small and are adequately covered by the conservatism built into the analysis.

One phenomena not taken into account is the possibility that iodine may plate out onto reactor surfaces and thus not be measurable during the transient. It has been observed⁶ that at acidic pH conditions, iodine can plate out under water, and this may perturb the measurement of iodine in the RCS. However, since the iodine spiking data were obtained during normal power operations, any plateout of iodine during these measured transients may be expected to also exist during an SGTR, and the measured iodine release rate may be interpreted as an "effective" release rate and used as such.

Iodine spiking data resulting from reactor trips were collected from 26 PWRs. These plants were selected from all regions of the country and from all three PWR vendors. For each plant, Table I lists the operating utility, vendor, time frame from which the data were collected, and the number of events that ultimately satisfied the validation criteria. Of the plants used in this study, 14 (50%) were Westinghouse (W) design, 5 (20%) were Babcock & Wilcox (B&W) design, and 7 (30%) were Combustion Engineering (C-E) design.

Five specific criteria were used to ensure that the data could be compared among plants and that the resulting data base would be valid. The criteria are

- sufficient steady-state power prior to the trip to ensure an adequate buildup of iodine. The specific criterion used was a minimum of 5 days at steady-state power operation, resulting in a minimum of 35% of the steady-state ¹³¹ I concentration. In nearly all cases, the steady-state power operation lasted several weeks to several months rather than the minimum 5 days.
- knowledge of the steady-state iodine concentration

JAN 22 '97 03:15PM BNCT/FSP PROGRAMS

Adams and Atwood

TABLE I

BYR97-023 Attachment: D

00

Calculation No.

Attachment

Revision No.

Page No.

Page 3 of

PWR Plants Used in This Study

Plant	Utility	NSSS Vendor	Time Frame	Number of Events
Arkansas Nuclear One-1 Arkansas Nuclear One-2 Calvert Cliffs-1 Calvert Cliffs-2 Catawba-1 Catawba-2	Arkansas Power and Light Company Arkansas Power and Light Company Baltimore Gas and Electric Company Baltimore Gas and Electric Company Duke Power Company Duke Power Company	B&W C-E C-E C-E W W	1976 to 1989 1980 to 1989 1979 to 1989 1979 to 1989 1979 to 1989 1986 to 1988 1986 to 1988	3 18 5 1 3 5
Cook-1 Cook-2 Crystal River-3 Haddam Neck McGuire-1 McGuire-2	Indiana & Michigan Electric Company Indiana & Michigan Electric Company Florida Power Corporation Connecticut Yankee Atomic Power Company Duke Power Company Duke Power Company	W B&W W W	1983 to 1989 1984 to 1989 1977 to 1989 1984 to 1989 1986 to 1988 1986 to 1988	4 2 0 6 6 6
Millstone-2 Millstone-3 North Anna-1 North Anna-2 Oconee-1 Oconee-2 Oconee-3	Northeast Utilities Service Company Northeast Utilities Service Company Virginia Power Company Virginia Power Company Duke Power Company Duke Power Company Duke Power Company Duke Power Company	C-E W W B&W B&W B&W B&W	1984 to 1989 1987 to 1989 1978 to 1989 1980 to 1989 1986 to 1988 1986 to 1988 1986 to 1988	6 2 14 7 0 1
Palisades Prairie Island-1 Prairie Island-2 San Onofre-2 San Onofre-3 Surry-1 Surry-2	Consumers Power Company Northern States Power Company Northern States Power Company Southern California Edison Company Southern California Edison Company Virginia Power Company Virginia Power Company	C-E ₩ C-E ₩ C-E ₩ W	1980 to 1989 1974 to 1989 1975 to 1989 1984 to 1989 1984 to 1989 1972 to 1989 1973 to 1989	12 7 7 11 8 24 10

- 3. availability of at least one posttrip chemistry sample taken 2 to 6 h after trip
- 4. no posttrip RCS perturbation (e.g., recriticality) prior to the RCS sample
- 5. availability of all requisite transient information (purification flow, trip date and time, posttrip sample date and time).

These criteria are discussed in more detail in Ref. 4.

These five criteria were applied to each reactor trip event, and only those events meeting the criteria were included in the data base. The resultant data base is listed in Table II. Included in the table are the plant name, nuclear steam supply system (NSSS) vendor, the trip date, percentage of reactor power prior to trip, the pretrip iodine concentration, posttrip (2 to 6 h after trip) maximum measured concentration, and the calculated iodine release rate for each of the transient events. The release rate in this table is based on the bounded maximum iodine concentration (three times the measured posttrip concentration as discussed in Sec. II.B) and an assumed time after trip of 2 h (discussed in Sec. II.C).

II.E. Bounding Analysis for Maximum Iodine Concentration

An analysis was performed to bound the actual maximum iodine concentration for each iodine spike event. This analysis is necessary because, in most cases, RCS samples are taken infrequently (in some cases only every 4 h and in others, only every 24 h) rather than continuously during the iodine spike.

The data used in this bounding analysis were obtained from licensee event reports (LERs). Twenty-four iodine spiking events were extracted from the LERs with multiple RCS coolant samples; these events were used to estimate the time dependence of the concentration. The maximum iodine concentration was bounded for each event by interpolation (where possible) or extrapolation of the data. Based on the results of this bounding analysis, it is judged that the maximum iodine concentration resulting from a reactor trip is no more than a factor of 3 greater than any value measured 2 to 6 h after trip. This analysis is discussed in detail in Ref. 4. Thus, the bounded maximum values are the measured values (Post-I in Table II), conservatively multiplied by a factor of 3 and used to calculate the jodine release rates as discussed in Sec. II.C.

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991 JAN 22 '97 D3:15PM BNCT/FSP PROGRAMS

Adams and Atwood

IODINE SPIKE RELEASE RATE

Calculation No. BYR97-023 Attachment Revision No. Page No.

Attachment: D 00

Page 4 of

		T	ABLE II			
lodine	Release	Rate	Following	a	Reactor	Trip

Event		NISSS	Trio	Dames	0		Collector with the second stress, and the
Number	Plant	Vandor	Date	Power (勿)	Pre-1* (µCi/g)	Post-1° (µCi/g)	R3 (2)* (C1/h)
1 2 3 4 5	ANO-1ª ANO-1 ANO-1 ANO-2 ANO-2	B&W B&W B&W C-E C-E	800822* 801208 850531 800129 800624	100 75 100 100 100	5.64E-01 ^r 2.46E-01 7.02E-02 2.61E-01 1.28E-01	1.44E+01 7.43E+00 3.32E+00 1.11E+00 3.00E-01	5.53E+03 2.86E+03 1.28E+03 3.36E+02 8.48E+01
6 7 8 9 10	ANO-2 ANO-2 ANO-2 ANO-2 ANO-2	C-E C-E C-E C-E C-E	800724 810217 810820 811123 811221	100 100 100 100 95	1.27E-01 1.23E-01 3.62E-01 5.05E-02 6.47E-02	4.39E-01 1.11E+00 4.81E-01 1.79E-01 2.46E-01	1.30E+02 3.47E+02 1.20E+02 5.30E+01 7.36E+01
11 12 13 14 15	ANO-2 ANO-2 ANO-2 ANO-2 ANO-2	С-Е С-Е С-Е С-Е	840617 840720 840828 841026 850204	100 100 100 100 100	4.06E-02 3.08E-02 2.98E-02 4.43E-02 5.51E-02	1.94E-01 1.53E-01 1.71E-01 2.36E-01 3.88E-01	5.89E+01 4.66E+01 5.25E+01 7.22E+01 1.20E+02
16 17 18 19 20	ANO-2 ANO-2 ANO-2 ANO-2 ANO-2	С- Е Е Е Е Е Е Е Е	50813 860211 860421 870909 881201	100 100 100 100 100	9.25E-02 5.75E-02 4.80E-02 5.06E-03 7.82E-02	6.83E-01 9.00E-01 8.74E-01 6.07E-03 5.45E-01	2.125+02 2.86E+02 2.79E+02 1.47E+00 1.69E+02
21 22 23 24 25	ANO-2 CalClf-1 CalClf-1 CalClf-1 CalClf-1	С-Е С-Е С-Е С-Е	890418 810116 820711 830126 830919	100 92 84 100 96	4.17E-02 3.24E-03 3.59E-03 2.86E-02 2.15E-02	5.31E-01 1.70E-03 2.64E-02 4.48E-01 2.75E-01	1.68E+02 3.01E-01 9.56E+00 1.66E+02 1.01E+02
26 27 28 29 30	CalClf-1 CalClf-2 Catawba-1 Catawba-1 Catawba-1	C-EE VWWW	870911 870301 860419 860514 870409	100 95 100 100 100	4.23E-02 7.44E-02 4.70E-03 5.50E-03 3.90E-03	3.95E-01 8.58E-01 3.88E-03 3.15E-02 3.54E-03	1.44E+02 3.15E+02 1.00E+00 1.18E+01 9.59E-01
31 32 33 34 35	Catawba-2 Catawba-2 Catawba-2 Catawba-2 Catawba-2 Catawba-2	₩ ₩ ₩ ₩	870128 870506 870727 880626 880929	100 100 90 100 95	8.10E-04 6.10E-04 3.80E-04 6.10E-04 4.60E-04	1.89E-03 9.34E-04 2.91E-04 6.80E-04 7.88E-04	6.56E-01 3.02E-01 7.23E-02 2.00E-01 2.60E-01
36 37 38 39 40	Cook-1 Cook-1 Cok-1 Cok-1 Cok-1 Cok-2	***	860722 861122 870604 881123 841119	90 90 90 90 96	2.40E03 2.10E03 2.20E03 1.00E04 1.20E03	5.67E02 4.84E01 2.99E01 8.00E04 8.00E04	2.34E+01 2.10E+02 1.30E+02 3.36E-01 1.89E-01
41 42 43 44 45	Cook-2 HadmNk HadmNk HadmNk HadmNk	***	860201 851110 851121 860604 860617	80 100 100 97 98	1.40E-03 1.30E-02 6.80E-03 8.60E-03 4.30E-03	3.06E-02 2.37E-01 8.96E-02 8.93E-03 1.01E-02	1.26E+01 7.41E+01 2.79E+01 2.16E+00 2.87E+00
46 47 48 49 50	HadmNk HadmNk McGui-1 McGui-1 McGui-1	W W W W	860830 870416 860105 860924 870415	100 100 100 100	5.50E-03 8.40E-03 7.87E-03 5.30E-03 5.60E-03	1.08E-02 1.00E-01 3.00E-01 3.3CE-02 1.10E-01	2.99E+00 3.10E+01 1.22E+02 1.30E+01 4.27E+01

See footnotes at end of table.

(Continued)

364

NUCLEAR TECHNOLOGY VOL 94 JUNE 1991

1 rate betieften feine beiten al nation.

Adams and Alwood Revision No.

Attachment

Calculation No. BYR97-023

Attachment: D 00

Page No.

Page 5 of 11

ABLE II	(Continued)
---------	-------------

Even: Number	Plant	NSSS	Trip	Power	Pre-I	Post-í	R3(2)	-
51 52 53 54	McGui-1 McGui-1 McGui-1 McGui-2	W W W W	880323 880416 380620 860115	100 100 100 100	5.50E-03 6.90E-03 1.10E-02 6.50E-03	1.70E-01 1.40E-01 6.20E-01 4.10E-02	(CL/h) 6.86E+01 5.64E+01 2.52E+02	
55 56 57 58 59	McGui-2 McGui-2 McGui-2 McGui-2 McGui-2	W W W W	860722 860827 870120 870916 880112	93 100 100 100 89	1.60E03 3.70E03 5.90E03 9.50E02 1.50E02	3.60E-02 7.30E-02 9.10E-02 5.80E-01 2.80E-01	1.41E+01 2.86E+01 3.48E+01 2.21E+02 1.10E+02	the second
61 62 63 64 65	Mill-2 Mill-2 Mill-2 Mill-2 Mill-2 Mill-2	C-E C-E C-E C-E	841115 841128 860812 870723 871116 881025	100 100 100 100	5.04E02 6.19E02 4.09E03 8.30E03 1.60E02	1.05E+00 7.04E-01 5.25E-03 8.77E-02 1.35E-01	3.68E+02 2.44E+02 1.42E+00 3.03E+01 4.45E+01	
66 67 68 69 70	Mill-3 Mill-3 NoAnna-1 NoAnna-1 NoAnna-1	W W W W	881005 881022 781024 781214 800618	100 100 100 98 100	1.082 -02 1.17E03 3.22E-03 4.50E02 4.10E-02 3.00E03	6.79E-01 3.14E-01 9.73E-03 3.93E-02	5.41E+01 2.79E+02 1.28E+02 9.53E-01 9.63E+00	
71 72 73 74 75	NoAnna-1 NoAnna-1 NoAnna-1 NoAnna-1 NoAnna-1	W W W W	810624 810710 810803 830606 841114	100 100 100 100 100	6.50E02 7.60E02 8.30E02 4.40E02 3.00E03	2.59E-01 8.45E-01 8.24E-01 9.37E-01 3.00E-03	8.25E+01 2.82E+02 2.74E+02 3.16E+02 7.47E-01	
76 77 78 79 80	NoAnna-1 NoAnna-1 NoAnna-1 NoAnna-1 NoAnna-1	W W W W	841231 851024 860223 860326 860520	100 100 100 100 100	4.00E-03 8.00E-03 4.00E-03 4.00E-03 4.00E-03	2.40E-03 5.74E-02 1.11E-01 1.33E-01 1.98E-01	4.49E-01 1.89E+01 3.76E+01 4.51E+01 6.73E+01	
81 82 83 84 85	NoAnna-1 NoAnna-2 NoAnna-2 NoAnna-2 NoAnna-2	****	860531 810122 810306 810606 811209	100 100 100 100	4.00E-03 5.00E-03 1.00E-02 1.50E-02 1.40E-02	1.16E-01 3.02E-01 4.03E-01 2.60E-01 2.22E-01	3.93E+01 1.03E+02 1.37E+02 8.74E+01 7.45E+01	
86 87 88 89 90	NoAnna-2 NoAnna-2 NoAnna-2 Ocon-2 Palis	W W B&W C-E	830227 860529 860629 870420 800826	100 100 100 87 88	1.30E-02 1.00E-03 1.00E-03 2.40E-02 7.10E-02	1.59E-01 1.00E-03 1.00E-03 1.60E-01 7.28E-01	5.31E+01 2.49E-01 2.49E-01 5.86E+01 2.82E+02	
91 92 93 94 95	Palis Palis Palis Palis Palis	C-EE C-EE C-EE C-EE	800928 801009 801223 810115 821016	81 96 99 98 100	4.50E-02 2.01E-01 5.00E-02 1.16E-01 5.00E-02	2.58E-01 9.18E-01 3.04E-01 7.64E-01 5.60E-01	9.76E+01 3.44E+02 1.15E+02 2.91E+02 2.17E+02	
96 97 98 99 100	Palis Palis Palis Palis Palis	C-E C-E C-E C-E C-E	821028 830126 830519 850811 870620	90 97 99 98 100	8.40E-02 4.00°E-02 5.50E-02 1.10E-02 8.70E-02	1.36E-01 1.70E-01 1.35E-01 8.80E-03 4.70E-01	4.38E+01 6.30E+01 4.94E+01 2.33E+00 1.83E+02	
101 102 103 104 105	Palis Prīsl-1 Prīsl-1 Prīsl-1 Prīsl-1	C-E W W W	870710 770107 780831 790608 791115	94 100 100 100 64	5.70E02 1.10E03 2.52E02 6.88E03 7.24E04	1.90E-01 6.40E-02 1.15E+00 1.79E-01 6.66E-02	7.16E+01 1.35E+01 2.43E+02 3.77E+01 1.42E+01	

(Continued)

÷

 $\gamma_{\rm g}$

Adams and Atwood

ODINE SPIKE RELEASE RATE

Calculation No. BYR97-023 Attachment Attachment: D Revision No. 00 Page No. Page 6 of 11

			TABLE	II (Continued	tage		
Event Number	Plant	NSSS Vendor	Trip Date	Power (%)	Pre-1 (µCi/g)	Post-I (µCi/g)	R3(2) (Ci/h)
106 107 108 109 110	Prisi-1 Prisi-1 Prisi-1 Prisi-2 Prisi-2 Prisi-2	**	801111 810831 850915 750121 791101	100 100 100 45 100	1.47E-04 2.87E-04 1.00E-04 5.28E-05 7.35E-04	1.09E04 2.58E-04 3.42E-02 3.90E-05 7.40E-04	1.42E-02 3.76E-02 7.35E+00 5.04E-03 1.14E-01
111 112 113 114 115	Prisi-2 Prisi-2 Prisi-2 Prisi-2 Prisi-2	W W W W	801020 810516 811205 820325 860728	100 100 100 100	4.36E-04 1.37E-04 2.63E-04 3.40E-04 2.00E-04	4.95E-04 2.15E-04 2.30E-04 2.85E-04 3.20E-02	7.88E-02 3.77E-02 3.33E-02 4.01E-02 6.86E+00
116 117 118 119 120	SanOno-2 SanOno-2 SanOno-2 SanOno-2 SanOno-2	С-Е С-Е С-Е С-Е	840104 850518 850801 850820 850912	100 100 100 100 100	7.89E-02 1.38E-02 1.32E-02 1.72E-02 1.60E-02	2.36E01 5.72E02 7.47E02 5.14E02 6.98E02	8.07E+01 2.10E+01 2.69E+01 1.76E+01 2.47E+01
121 122 123 124 125	SanOno-2 SanOno-2 SanOno-2 SanOno-2 SanOno-2	C-E C-E C-E C-E C-E	851018 860109 860812 860913 861210	100 100 100 60 100	1.17E-02 4.01E-02 9.89E-02 7.43E-02 6.86E-02	5.90E-02 3.25E-01 1.20E+00 1.70E+00 1.66E+00	2.12E+01 1.25E+02 4.46E+02 6.69E+02 6.53E+02
126 127 128 129 130	SanOno-2 SanOno-3 SanOno-3 SanOno-3 SanOno-3	C-E C-E C-E C-E C-E	870205 840106 840601 840611 860412	100 100 100 100	7.61E-02 4.27E-01 4.03E-01 5.05E-01 4.55E-02	2.04E+00 2.16E+00 1.99E+00 2.61E+00 7.51E-02	8.05E+02 8.05E+02 7.47E+02 9.83E+02 2.48E+01
131 132 133 134 135	SanOno-3 SanOno-3 SanOno-3 SanOno-3 Surry-1	С-Е С-Е С-Е С-Е С-Е	860726 860.4 870621 880219 770726	100 94 100 100 100	6.47E-02 4.70E-02 9.58E-02 4.49E-02 2.20E-02	2.65E-01 1.92E-01 5.26E-01 5.64E-02 6.93E-01	9.82E+01 7.13E+01 1.99E+02 1.74E+01 2.22E+03
136 137 138 139 140	Surry-1 Surry-1 Surry-1 Surry-1 Surry-1	***	800603 810822 811125 811216 820325	100 100 100 100	7.00E-03 7.60E-02 1.82E-01 5.90E-02 1.60E-01	2.30E-01 1.98E+00 5.07E+00 8.12E-01 5.57E+00	7.38E+01 6.34E+02 1.63E+03 2.58E+02 1.79E+03
141 142 143 144 245	Surry-1 Surry-1 Surry-1 Surry-1 Surry-1	W W W W	820413 820425 820713 820824 821104	100 100 100 100 100	1.79E-01 1.30E-01 1.15E-01 9.30E-02 6.20E-02	5.14E+00 3.12E+00 8.97E+00 8.20E+00 2.65E+00	1.65E+03 9.99E+02 2.89E+03 2.65E+03 8.52E+02
146 147 148 149 150	Surry-1 Surry-1 Surry-1 Surry-1 Surry-1	**	821129 830914 840106 840206 840613	100 100 100 100	1.29E-01 1.10E-02 5.60E-02 7.40E-02 3.60E-02	5.18E+00 5.35E-01 9.22E-01 1.44E+00 1.18E+00	1.67E+03 1.72E+02 2.94E+02 4.60E+02 3.79E+02
151 152 153 154 155	Surry-1 Surry-1 Surry-1 Surry-1 Surry-1	****	840926 850126 850804 860107 870516	80 100 100 97 100	3.30E-02 1.01E-01 2.60E-02 2.40E-02 6.00E-03	6.31E-01 1.49E-01 1.44E+00 1.72E+00 3.30E-03	2.01E+02 3.98E+01 4.64E+02 5.55E+02 5.58E-01
156 157 158 159 160	Surry-1 Surry-1 Surry-1 Surry-2 Surry-2	****	870807 870920 880216 771108 780624	100 100 100 100	4.00E-03 7.00E-03 9.00E-03 2.00E-04 5.00E-04	3.30E-03 2.42E-01 9.30E-01 3.00E-04 3.00E-04	7.34E-01 7.77E+01 3.00E+02 8.04E-02 5.54E-02

(Continued)

366

1 ł.

NUCLEAR TECHNOLOGY

JUNE 1991

VOL 94

Still H Softer de stratition findelighten and sold from

JAN 22 '97 03:17PM BNCT/FSP PROGRAMS

Adams and Atwood

Calculation No. Attachment Revision No. Page No.

BYR97-023

Attachment: D

Page 7 of

Contraction of the second second		Contract of the local division of the local		** / SAUPITING	(6)		
Event Number	Plant	NSSS Vendor	Trip Date	Power (%)	Pre-i (µCi/g)	Post-1 (µCl/g)	R3(2) (Cl/h)
161 162 163 164 165	Surry-2 Surry-2 Surry-2 Surry-2 Surry-2	W W W W	821010 830208 830412 830620 840113	100 100 100 100	2.00E-03 2.00E-03 3.00E-03 3.00E-03 3.00E-04	6.70E-02 1.82E-01 5.35E-01 3.31E-01 2.00E-03	2.15E+01 5.87E+01 1.73E+02 1.07E+02 6.22E-01
167 168	Surry-2 Surry-2 Surry-2	W W W	841029 341211 860511	100 100	2.00E-04 2.00E-04 2.00E-04	2.00E-04 3.00E-04 2.00E-04	4.81E-02 8.04E-02 4.81E-02

TABLE II (Continued)

*Pre-I is the measured steady-state iodine concentration before trip.

Post-I is the maximum measured iodine concentration 2 to 6 h after trip.

 $^{\circ}R3$ (2) is the iodine release rate based on bounded maximum iodine concentration and assumed 2 h time from trip to maximum concentration.

^aANO = Arkansas Nuclear One; CalClf = Calvert Cliffs; HadmNk = Haddam Neck: McGui = McGuire; Mill = Millstone; NoAnna = North Anna; Ocon = Oconce; Palis = Palisades; Prisl = Prairie Island; SanOno = San Onofre. *Read as August 22, 1980.

'Read as 5.64 × 10"1.

II.C. Calculation of Iodine Release Aste

The release rate of ¹³¹I from the fuel to the RCS, shown in Table II, was determined from the data using the following equation²:

$$R = \frac{L_t [A - A_0 \exp(-L_t t)]}{1 - \exp(-L_t t)} , \qquad (1)$$

where

- R = transient iodine release rate (Ci/h)
- $L_1 = \text{total iodine removal rate } (h^{-1})$
- A = maximum transient RCS iodine inventory (Ci)
- Ao = steady-state RCS iodine inventory (Ci)
 - t = time from iodine spike initiating event to maximum iodine concentration (h),

and

$$L_l = L_d + L_p , \qquad (2)$$

where

 $L_{d} = {}^{131}\text{I} \text{ decay constant} = 3.59 \times 10^{-3} \text{ h}^{-1}$

 $L_p = purification removal constant$

$$\frac{F(1-1/DF)}{M}$$

F = purification system flow rate (kg/h)

M = RCS mass inventory (kg)

DF = purification system decontamination factor.

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991

The pretrip steady-state release rate Ro is given by

$$c = L_r A_0 . \tag{3}$$

This equation is derived from Eq. (1) by calculating the limit as $t \to \infty$ and letting $A = A_0$.

In all cases included in the table, the purification flow was constant before and during the transient. Additionally, the purification system decontamination factor was assumed to be 99 (i.e., 99% of the radioactive iodine was assumed to be removed from the purification flow stream by the demineralizers). This assumption is judged acceptable because purification systems typically remove nearly all of the radioactive iodine from the fluid stream, and small variations in the decontamination factor do not significantly affect the magnitude of the purification removal constant.

Using the time from reactor trip to maximum measured lodine concentration in the equation results in an average release rate that can be used to estimate the average transient RCS iodine concentration during an SGTR event. The absence of samples taken immediately after reactor trip means that the actual time of the maximum concentration cannot be determined. Because of this, a second release rate was calculated assuming that the maximum concentration occurred 2 h after reactor trip. This 2-h time period is judged to be adequately conservative, but much better data would be required to confirm this. However, Lewis et al.⁸ indicate that the maximum measured iodine concentratior occurred sometime after 3 h in specific spiking events in Canada deuterium uranium (CANDU) reactors. Voilleque⁹ indicates a time delay of 6 h in one PWR. Seven of the 24 events (used to bound the maximum iodine concentration in this study) included samples taken before and after 2 h after scram. In all seven

Adams and Atwood

ODINE SPIKE RELEASE RATE

events, the maximum iodine concentration occurred sometime after 2 h. The calculated release rate increases as the assumed time to maximum concentration decreases; thus, the time of 2 h was used in this analvsis. This release rate (based on the bounded maximum iodine concentration and using 2 h in the equation) is listed for each event as R3(2) in Table II.

The release rate must be normalized to account for differences in reactor size because the amount of iodine being released from the fuel into the RCS is a function of the number of fuel rods in the core and the iodine inventory in those fuel rods. The SRP normalizes this number to the steady-state release rate by specifying that the release rate during the transient be 500 times larger than that which, during steady-state operation. results in an RCS concentration of 1.0 µCi/g. This methodology is difficult to assess because the number of reactor trips that occur with an RCS concentration near 1.0 µCi/g is too small to be used in this analysis. Assessing the SRP methodology (comparing the ratio of the bounded lodine spike release rate and the pretrip steady-state release rates to the SRP value of 500) using all trips results in extremely large ratios (up to 12000), not because the absolute posttrip release rate (ratio-numerator) is high but rather because the steadystate release rate (ratio-denominator) is so low. This is illustrated in Fig. 1, which shows the release rate ratio (R/R_0) plotted against the initial iodine concentration. All ratios >500 result from initial concentrations <0.3 µCL/g.

A different normalization method is proposed, namely to divide the release rate by the steady-state core power (in megawatts(electric)). Assuming that the ratio of "leaking" to intact fuel rods is approximately constant between PWRs, the release rate depends on the amount of iodine in the defective rods, which, in turn, depends on the pretrip power level. If one also

Calculation No.	BYR97-023 Attachment: D				
Attachment					
Revision No.	00				
Page No.	Page B of 11				

assumes that PWRs usually are base-load plants and operate at full power, one could normalize the release rate using the number of fuel rods in the core. However, the pretrip power level was known for each of the events in the data base, whereas the number of fuel rods was not. Therefore, the release rate was normalized using the power level. Using pretrip core power to normalize the release rate is a valid method of comparing release rates among the various plant sizes while climinating the artificiality of assuming a single steadystate iodine concentration. Thus, each release rate in Table II was divided by the pretrip core electric power level prior to performing the statistical analysis discussed in Sec. III.

III. PROBABILITY DISTRIBUTIONS FOR THE RELEASE RATE

A statistical analysis was performed on the data base in Table II to estimate the probability distribution of the normalized release rate associated with an iodine spike caused by a reactor trip. It was assumed that the events represent a random sampling of the iodine spiking that has occurred and is expected to occur in commercial PWRs. No attempt was made to correlate the data to either specific plants or fuel manufacturers. The results from this statistical analysis are cumulative probability distributions, which are measures of the probability that an SGTR would result in an iodine spike with magnitude less than a given value. Both the nominal probability distribution and the 95% confidence limit probability distribution were calculated using nonparametric statistical analysis methods.

The statistical methodology used to analyze the data base was as follows. The nominal probability corresponding to the k'th release rate out of a total of 168 events is k/169. The 95% confidence lower bounds on the cumulative probability of each point are found using the methodology discussed in Refs. 10 and 11. The results are independent of any assumption regarding the shape of the probability distribution of lodine concentrations or of lodine release rates.

Table III is a listing of the normalized bounded release rates and the calculated nominal probability and 95% confidence limit probability distributions. These same results are illustrated in Fig. 2, which shows the two probability distributions plotted against the release rate and expanded to emphasize probabilities >0.5. The interpretation of the results can be illustrated by considering the 90th percentile, the value that exceeds 90% of the normalized release rates from all possible SGTR events of the type considered. The nominal value (best estimate) of the 90th percentile is given by event 152, 0.679 Ci/h · MW(electric). (Note: The event numbers in this table are for the ordered release rates; identical event numbers in different tables do not imply the same event.) This value of 0.679 corresponds to probability 0.899, or 90% when rounded. The 95%

> NUCLEAR TECHNOLOGY VOL 94 JUNE 1991

JAN 22 '97 03:19PM BNCT/FSP PROGRAMS

14

1

0 10/12

Adams and Atwood

Attachment Revision No. Page No.

Calculation No. BYR97-023 Attachment: D 00

Page 9 of 11

TABLE III Statistical Analysis of the lodine Release Rate

Évent Number	R3(2)/P* (Ci/h·MW)	Nominal Probability	95% Confidence Limit	Event Number	R3(2)/P (CI/h·MW)	Nominal Probability	95% Confidence Limit
l	9.69E-06°	0.006	0.000	51	1.93E-02	0.302	0.245
2	2.73E-05	0.012	0.002	52	2.11E-02	0.308	0.251
3	6.15E-05	0.018	0.005	53	2.25E-02	0.314	0.256
4	6.15E-05	0.024	0.008	54	2.25E-02	0.320	0.262
5	6.32E-05	0.030	0.012	55	2.30E-02	0.325	0.268
6	6.40E-05	0.036	0.016	56	2.42E-02	0.331	0.273
7	7.09E-05	0.041	0.020	57	2.45E-02	0.337	0.279
8	7.23E-05	0.047	0.024	58	2.60E-02	0.343	0.284
9	7.26E-05	0.053	0.028	59	2.72E-02	0.349	0.290
10	7.71E-05	0.059	0.033	60	2.75E-02	0.355	0.296
11 12 13 14 15	1.03E-04 1.03E-04 1.51E-04 1.75E-04 1.78E-04	0.065 0.071 0.083 0.089	0.037 0.042 0.046 0.051 0.056	61 62 63 64 65	2.95E-02 3.48E-02 3.62E-02 4.20E-02 4.40E-02	0.361 0.367 0.373 0.379 0.385	0.301 0.307 0.313 0.318 0.324
16	2.13E04	0.095	0.061	66	4.78E-02	0.391	0.330
17	2.27E04	0.101	0.066	67	4.79E-02	0.396	0.335
18	2.63E04	0.107	0.070	68	5.05E-02	0.402	0.341
19	2.79E04	0.112	0.075	69	5.10E-02	0.408	0.347
20	2.79E04	0.118	0.080	70	5.11E-02	0.414	0.353
21	3.30E04	0.124	0.085	71	5.33E-02	0.420	0.358
22	3.54E04	0.130	0.090	72	5.43E-02	0.426	0.364
23	5.03E04	0.136	0.095	73	5.63E-02	0.432	0.370
24	5.73E04	0.142	0.101	74	5.82E-02	0.438	0.376
25	7.27E04	0.148	0.106	75	5.93E-02	0.444	0.381
26	7.97E-04	0.154	0.111	76	6.12E-02	0.450	0.387
27	8.36E-04	0.160	0.116	77	6.18E-02	0.456	0.393
28	8.37E-04	0.166	0.121	78	6.22E-02	0.462	0.399
29	8.74E-04	0.172	0.126	79	6.36E-02	0.467	0.405
30	9.40E-04	0.178	0.132	80	6.48E-02	0.473	0.411
31	1.07E03	0.183	0.137	81	6.82E-02	0.479	0.416
32	1.63E03	0.189	0.142	82	6.87E-02	0.485	0.422
33	1.71E-03	0.195	0.147	83	7.24E-02	0.491	0.428
34	3.00E-03	0.201	0.153	84	7.33E-02	0.497	0.434
35	3.71E03	0.207	0.158	85	7.52E-02	0.503	0.440
36	4.92E03	0.213	0.163	86	7.53E02	0.509	0.446
37	5.15E03	0.219	0.169	87	8.11E02	0.515	0.452
38	1.03E02	0.225	0.174	88	8.35E02	0.521	0.458
39	1.08E02	0.231	0.179	89	8.41E02	0.527	0.463
40	1.10E02	0.237	0.185	90	8.58E02	0.533	0.469
41 42 43 44 45	1.12E02 1.19E02 1.31E02 1.32E02	0.243 0.249 0.254 0.260 0.266	0.190 0.196 0.201 0.207 0.212	91 92 93 94 95	8.93E-02 9.22E-02 9.23E-02 9.32E-02 9.46E-02	0.538 0.544 0.550 0.556 0.562	0.475 0.481 0.487 0.493 0.499
46	1.33E-02	0.272	0.218	96	9.79E-02	0.568	0.505
47	1.41E-02	0.278	0.223	97	9.88E-02	0.574	0.511
48	1.58E-02	0.284	0.229	98	9.95E-02	0.580	0.517
49	1.60E-02	0.290	0.234	99	1.04E-01	0.586	0.532
50	1.91E-02	0.296	0.240	100	1.12E-01	0.592	0.529

See footnotes at end of table.

(Continued)

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991

369

Adams and Atwood ODINE SPIKE RELEASE RATE

Calculation No. _____ Attachment _____ Revision No. ____ Page No. _____

BYR97-023 Attachment: D 00

Page 10 of 11

Event Number	R3(2), ~ (Ci/h·MW)	Nominal Probability	95% Confidence Limit	Event Number	R3 (2)/P (Ci/h·MW)	Nominal Probability	95% Confidence Limit
101 102 103 104 105	1.14E-01 1.15E-01 1.19E-01 1.26E-01 1.27E-01	0.598 0.604 0.609 0.615 0.621	0.535 0.541 0.547 0.553 0.559	136 137 138 139 140	3.63E-01 3.71E-01 3.74E-01 3.76E-01 3.84E-01	0.805 0.811 0.817 0.822 0.828	0.753 0.759 0.766 0.772 0.779
106 107 108 109 110	1.27E-01 1.37E-01 1.40E-01 1.40E-01 1.48E-01	0.627 0.633 0.639 0.645 0.651	0.565 0.571 0.578 0.584 0.590	141 142 143 144 145	3.91E-01 4.04E-01 4.06E-01 4.23E-01 4.43E-01	0.834 0.840 0.846 0.852 0.858	0.785 0.792 0.798 0.805 0.812
111 112 113 114 115	1.52E-01 1.53E-01 1.70E-01 1.81E-01 1.87E-01	0.657 0.663 0.669 0.675 0.680	0.596 0.602 0.608 0.614 0.620	146 147 148 149 150	4.68E-01 4.85E-01 5.89E-01 5.93E-01 5.94E-01	0.864 0.870 0.876 0.882 0.888	0.818 0.825 0.832 0.838 0.845
116 117 118 119 120	1.95E-01 1.96E-01 1.97E-01 2.06E-01 2.14E-01	0.686 0.692 0.698 0.704 0.710	0.627 0.633 0.639 0.645 0.651	151 152 153 154 155	6.08E-01 6.79E-01 7.10E-01 7.32E-01 7.32E-01	0.893 0.899 0.905 0.911 0.917	0.852 0.859 0.866 0.873
121 122 123 124 125	2.21 E-01 2.21 E-01 2.35 E-01 2.42 E-01 2.48 E-01	0.716 0.722 0.728 0.734 0.740	0.658 0.664 0.670 0.676 0.683	156 157 158 159 160	8.12E-01 8.93E-01 1.09E+00 1.28E+00 1.53E+00	0.923 0.929 0.935 0.941 0.947	0.887 0.894 0.901 0.908
126 127 128 129 130	2.555-01 2.80E-01 2.80E-01 2.85E-01 3.07E-01	0.746 0.751 0.757 0.763 0.769	0.689 0.695 0.702 0.708 0.714	161 162 163 164 165	2.08E+00 2.11E+00 2.13E+00 2.29E+00 3.39E+00	0.953 0.959 0.964 0.970 0.976	0.923 0.931 0.938 0.946
131 132 133 134 135	3.15E-01 3.25E-01 3.30E-01 3.34E-01 3.54E-01	0.775 0.781 0.787 0.793 0.799	0.721 0.727 0.733 0.740 0.746	166 167 168	3.42E+00 3.70E+00 6.62E+00	0.982 0.988 0.994	0.963 0.972 0.982

TABLE III (Continued)

 $^{*}R3(2)/P$ is the iodine release rate calculated using the bounded iodine concentration and the 2-h assumption, divided by the pretrip power. *Read as 9.69 × 10⁻⁶.

confidence upper bound on the 90th percentile is given by event 158, 1.09 Ci/h·MW(electric). With 95% confidence, it is expected that 90% (or from the table, 90.1%) of all SGTRs will result in an iodine spike with a normalized release rate <1.09 Ci/h·MW(electric). Thus, the use of the data to determine the probability of concentrations resulting from future events depends on the desired level of confidence. If nominal probability values suffice, they can be used (e.g., the nominal 90% value). If a higher degree of confidence is required, the 95% confidence probability distribution may be used.

The 90th percentile release rate is 0.679 Ci/h.

MW(electric), resulting in an absolute release rate of 679 Ci/h for a 1000-MW(electric) plant. The 95% confidence bound on the 90th percentile is 1.99 Cl/h·MW(electric), resulting in an absolute release rate of 1090 Ci/h for a 1000-MW(electric) plant. The SRP value for this size plant (based on an initial RCS concentration of 1.0 μ Ci/g and a 500-fold increase in release rate) is calculated in Ref. 4 to be 16300 Ci/h. This appears to be overly conservative and could be reduced, from this analysis, by a factor of ~15. If a higher level of assurance is deemed appropriate, a higher percentile (and, therefore, a higher normalized concentration) could be used.

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991

370

IV. CONCLUSIONS

An in-depth study of the radioiodine response of a PWR to a reactor trip has been presented, based on data from a wide variety of PWRs, including all NSSS vendors and all sections of the country. The expected radioiodine response in the RCS during an SGTR event is inferred from these data. The data indicate that the iodine release rate assumed in the calculation of an SGTR event could be reduced substantially (e.g., by a factor of 15) and still result in a conservative analysis. An alternate formalism is proposed for use in analysis of this accident type wherein an absolute release rate. normalized to plant power, is used, rather than the 500-fold increase in steady-state release rate as now specified by the SRP. The 95/90% (95% confidence. 90th percentile) value of 1.09 Ci/h . Niv/(electric) is recommended for consideration as a replacement for the current iodine release rate specification for an SGTR with coincident iodine spike.

Calculation No.BYR97-023AttachmentAttachment:Revision No.60Page No.Page 11 of 11

ACKNOWLEDGMENT

Adams and Atwood

This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC-07-76ID01570.

REFERENCES

1. "Leakage Rate Testing of Containments of Light-Water-Cooled Nuclear Power Plants," Code of Federal Regulations, Title 10, Part 50 (1979).

2. "Standard Review Plan," NUREG-0800, Rev. 2, U.S. Nuclear Regulatory Commission (1981).

3. J. P. ADAMS and M. B. SATTISON, "Frequency and Consequences Associated with a Steam Generator Tube Rupture Event," Nucl. Technol., 90, 168 (1990).

4. J. P. ADAMS and C. L. ATWOOD, "Probability of the Iodine Spike Release Rate During an SOTR," EGG-NERD-8648, EG&G Idaho, Inc. (Sep. 1989).

5. R. J. LUTZ and W. CHUBB, "Iodine Spiking-Cause and Effect," Trans. Am. Nucl. Soc., 28, 649 (1978).

6. E. C. BEAHM, S. R. DAISH, W. E. SHOCKLEY, and J. HOPENFELD, "Iodine Partitioning in Pressurized Water Reactor Steam Generator Accidents," Nucl. Technol., 90, 16 (1990).

7. R. J. LUTZ, Jr., "Iodine Behavior Under Transient Conditions in the Pressurized Water Reactor," WCAP-8637, Westinghouse Electric Corporation (1975).

8. B. J. LEWIS, D. R. DUNCAN, and C. R. PHILLIPS, "Release of Iodine from Defective Fuel Elements Following Reactor Shutdown," Nucl. Technol., 77, 303 (1987).

9. P. G. VOILLEQUÉ, "Measurements of Radioiodine Species in Samples of Pressurized Water Reactor Coolant," Nucl. Technol., 90, 23 (1990).

 N. L. JOHNSON and S. KOTZ, Discrete Distributions, Sec. 3.7.2, Eq. 28, John Wiley & Sons, New York (1969).

11. M. HOLLANDER and D. WOLFE, Nonparametric Statistical Methods, p. 56, John Wiley and Sons, New York (1973).

James P. Adams (BS, physics, Brigham Young University, 1968; PhD, physics, Iowa State University, 1972) has been at the Idaho National Engineering Laboratory (INEL) since 1979, working in reactor safety research. His interests include integral pressurized water reactor response as well as fission product release and transport during design basis and severe core damage aocidents. He is currently a scientific specialist in the Nuclear Engineering Group.

Corwin L. Atwood (AB, mathematics, Princeton University, 1962; PhD, mathematics, Cornell University, 1968) taught statistics and mathematics at several universities for 10 years. Since 1977, he has been at INEL, where he now holds the rank of principal scientist in the Statistics and Reliability Engineering Group. His interests include data analysis, probabilistic risk assessment, and statistical computing.

NUCLEAR TECHNOLOGY VOL. 94 JUNE 1991