

Delroir

January 7, 1981
EF2-49,876

Mr. James C. Keppler, Director
Region 111
U.S. Nuclear Regulatory Comission

799 Roosevelt Road
Glen Ellyn, Illinois 60137
Subject: Einal keport of LUCFKSU.55(e) btem on Inadequate Pipe Clearance. (*35)
Dear Mr. Keppler:
On Deceaber 10, 1980, Detroit Edison's Mr. H.A. Walker, Supervisor Construction Quality Assurance, telephoned Mr. Richard Knop of NRC Region 111 to report on a problem with Inadequate Pipe Clearance in the drywell at the Fermi 2 site.

In revicwing drywell piping clearances for installation of insulation it was noted that inadequate clearance was provided in many instances for installation of the required insulation. In reviewing the actual cledrances, it was noted that in many cases adequate clearance may not have been provided for pipe expansion due to heating. This could cause physical damage to Quality assurance Level I piping, as well as possible damage to other Quality Assurance Level I equipment in the drywell.

A preliminary analysis indicates that the probable cause of the problem was the failure to specify minimum piping clearances on engineering drawings and/or construction specifications. Detroit Edison Engineering has completed their investigation of the problem and the final report is attached.

EH/HAW/CP
Very truly yours,

At tachment

```
cc: Mr. Victor Ste110, Jr., Director
    Office of Inspection and Enforcement
    Division of Reactor Inspection Programs
    U.S. Nuclear Regulatory Commission
    Washington, D.C. }2055
    Mr. Bruce Little, Resident Inspector
    U.S. Nuclear Regulatory Commission
    Resident Inspectors office
    6450 North Dixie Highway
    Newport, Michigan 48166
```


B019

 s //1
ENRICO FFRMI PONER PLANT - UNTT 2

DEFICTENCY REPORT

INADEQUATE CLEARANCE ADUICEN: TO DRMFIL PIPINC
SYSTEMS TO ACCCITODATE PPEDICTED THERUAL EXPANSICN
AND VIBRATION-INDUCED MOVEMEISS

INTROOUCII ${ }^{2}$

In order to insure that daraging contact w1ll not occur between adjacent piping systens or between piping and other adjacent plant features due to movement caused by thermal expansion. seismically induced vibration and operationally induced vibration, it is necessary to maintain manimun clearances between all closely spaced plant features. This clearance requirement was provided for during the design phase of Fermi 2's Piping Systers by application of a "Desich objective" which provided a minimu": of three (3) inches of clearance between the outer surface of each pipe (or its insulation) and ary adjacent plant features. While this oojective was generally adhered to in dosign, it was not formally established as a design requirerent, nor was it adopted as a criterion to be maintained during construction.

Supplementing the minimum clearance objectives stated above, is the planned Preoperational Vibration and Drmamic Effects Testing Procran which is described, in detail, in Sections 3.9 and 14.1 of the Fermı 2 FSAR. This program has been develoned to verify the overall validity of the various Piping Systems Thermal Expansion and Vibration Analytical Studies, corducted during the plant design phase. This prograni was not formulated, however, to cover all piping systoms nor was it intended to provide assurance of adequate clearance between plant pipinc systems and adjacent features prior to initial system heat-up/pre-operational testing.

DESCRIPTICN OF THE POTENTLAL DEFICTENCY

Field observations of installed piping systens in the drymell revealed cases where QA Level I Piping Systems pass questionably close to adjacent pipes or other adjacent plant features. Based upon these ooservations, a detalled survey was made of all installed plping systers in the drywell to determine those cases where the potential for contact, during plant operation, existed. The criteria applied durinr the survey, required the identification of all cases where a minimum of three inches of clearance was not available for a non-insulated pipe or six inches for an insulated pipe.

Deficiency Report

Page 2

Once the cases of clearance less than the specified anount were identified, a sample of the more apparently serious problems was investigated by canparison of the actual avallable clearance to the moverment predicted by the Piping System Stress Analysis. Based upon the results of the survey, cases where potential contact between the installed QA Level I piping and adjacent plant features were identified, and it was concluded that in accordance with the rules of 10 CFR 50.55 (e) (1) (iii), a potential reportable deficiency existed.

NUCTEAR REMULATORY COMUSSION NOTIFICATTON

In accordance with the rules of 10 CFR50.55(e), Item 2, verbal notification of the above describod potential deficiency was provided to the NRC Region III Staff, ty the Fermı 2 Project Quality Assurance Director, on Decenber 10, 1980.

CORRECTIVE ACTICN

For each identified location where the pipe to pipe or pipe to other adjacent feature clearance is less than three inches for non-insulated piping, or six inches for insulated piping, the piping drawings are boing marked-up with the magniture and direction of the predicted maximm thermal plus seismic deflection, as provided by the Piping Stress Analysis; plus a margin of 20\% to account for uncertainties in that analysis. These marked drawings are then used to perform a field walk-dom of each potential problem location to see whether contact could occur during oporation. If it is determined, based upon the walk-dow, that contact will not occur, no further action is taken. If, during the walk-down it is determuned that contact will occur, appropriate modifications to the piping and/or the other object, are initiated to solve the problem on a case-umique basis.

In addition, a field construction criteria document will be prepared and issued which will provide for minimum spacings to be maintained between adjacent plant features, and/or to alert the field forces to seck specific engineering assistance in cases where minimm spacings cannot be maintained.

SAFETY MPITCATICAS OF THE DEFICIEXCY

If Piping Systems thermal expansion is harpered due to contact with other adjacent plant features, there is a probability that damagingly high laads can be developed in the pipe, its supports, the restraining feature or the building structure. Such loads may cause permanent deformations in the piping and its supports and could result, in the worst case, in structural fallures. Simalarly, if piping which is vibrating due to seismically induced or operationally induced loadings, is permitted to contact adjacent plant features during that vibratory excitation period, there is a possibility that impactive damage and/or premature fatigue fallures may result.

The Pipinç Systems involved are in the final phases of construction: hovever, none of them have been hydrostatically tested, N -staned or turned over to the owner for final acceptance or preoperational testing. The walk-down program described above is part of the routine pre-hydrostatic test check out, and is

Deficiency Report
Page 3
intended to identify any apparent discrepancies in the finally constructed systems. This activity will continue throughout the systems completion and turnover sequence.

Conduct of the walk-dow program, coupled with the analytical verification activities of the Preoperational Vibration and Dynamic Effects Test Proaram, provide a very high degree of confidence that these systems will not experpence significant service loadings which were not accounted for in the original design. As a result of this confidence, it is concluded that situations which could result in piping system damage, to a degree that could crrprorise the health and safety of the public, will not occur during the preoperational test or commercial phases of plant operation.

Prepared by:

Approved by:

$\pi H C / o p$

