US Army Communications - Electronics Command Directorate of Safety Risk Management

Radiological Survey Report
Building 217 and Building 218 (Partial)
Federal Emergency Management Agency
National Instrumentation Center

Berryville, Virginia 22 - 30 January 1997

EXECUTIVE SUMMARY RADIOLOGICAL ASSESSMENT SURVEY OF BUILDING 217 AND BUILDING 218 (PARTIAL) FEDERAL EMERGENCY MANAGEMENT AGENCY NATIONAL INSTRUMENTATION CENTER

BERRYVILLE, VIRGINIA 22 - 31 January 1997

- 1. Purpose. This survey was conducted to verify that no residual radioactivity, which was the result of operations involving radioactive material, was present in Building 217 and the areas surveyed in Building 218. During the past ten years these buildings were utilized as administrative offices, instrument laboratories, repair, fabrication and calibration shops. Sealed radioactive sources were used to support these activities. The majority of the radioactive sources used contained Cobalt-60 (60Co) and Cesium-137 (137Cs). Other sources used contained Radium-226 (226Ra) and Uranium-238 (238U). Considering their radioactive material use history the buildings were classified as "unaffected" areas and surveyed for contamination potential as defined in NUREG/CR-5849.
- 2. Summary of Results. The results of the survey indicate there is no residual radioactivity, which is distinguishable from background, as a result of operations involving radioactive material in Building 217 and the areas surveyed in Building 218.
- 3. Recommendations. Recommend that Building 217 and the surveyed areas of Building 218 be released for unrestricted use.

RADIOLOGICAL ASSESSMENT SURVEY OF BUILDING 217 AND BUILDING 218 (PARTIAL) FEDERAL EMERGENCY MANAGEMENT AGENCY NATIONAL INSTRUMENTATION CENTER

BERRYVILLE, VIRGINIA 22 - 31 JANUARY 1997

- 1. REFERENCES. See Appendix A.
- 2. AUTHORITY. The survey was performed in response to a verbal request from the Federal Emergency Management Agency (FEMA) National Instrumentation Center (NIC) Project Officer, Mr. Carl Siebentritt.
- 3. PURPOSE. This survey was conducted to verify that no residual radioactivity, which was the result of operations involving radioactive material, was present in Building 217 and the areas surveyed in Building 218. During the past ten years these buildings were utilized as administrative offices, instrument laboratories, repair, fabrication and calibration shops. Sealed radioactive sources were used to support these activities. The majority of the radioactive sources used contained ⁶⁰Co and ¹³⁷Cs. Other sources used in these buildings contained ²²⁶Ra and ²³⁸U. Considering their radioative material use history the buildings were classified as "unaffected" areas and the surveys for contamination potential were conducted as defined in NUREG/CR-5849.

4. GENERAL.

a. This survey was conducted to detect ⁶⁰Co, ¹³⁷Cs, ²²⁶Ra and ²³⁸U. These radionuclides are used in instrument check and calibration sources, and are component parts of, or contained in, FEMA designed commodities that were used in buildings 217 and 218.

- b. The building surveys were performed by Team Leader, Mr. Martin Connolly, IceSolv, Inc. (Contractor), Senior Health Physics Technician; Mr. Richard Chalk, IceSolv, Inc., Junior Health Physics Technician; and Mr. John McDonald, IceSolv, Inc., Junior Health Physics Technician. The surveys were conducted during the period of 22 through 31 January 1997.
- c. The personnel that conducted the surveys are radiation safety specialists with varied training and experience in radiological health and safety. All members of the survey team have completed appropriate occupational health and safety training provided by the US Army Communications-Electronics Command (CECOM) Directorate of Safety Risk Management (DSRM) to effect a safe working environment.
- d. Laboratory analyses were performed by the CECOM DSRM Radiation Analysis Laboratory under the supervision of the laboratory manager, Mr. Brian McKee, M.H. Chew & Associates, Inc. (Contractor).
 - e. List of abbreviations is found in Appendix B.

5. BACKGROUND.

a. Chronology.

- (1) FEMA is currently licensed by the US Nuclear Regulatory Commission (NRC), under License Number 08-01297-06, Docket Number 030-07130, to possess and use radioactive material to conduct calibration and testing of its radiation detection instrumentation and for training of emergency response personnel. The activities that used licensed radioactive material in Building 217 and the surveyed areas of Building 218 have been terminated and all radioactive material removed.
- (2) During the past ten years these buildings were utilized as administrative offices, instrument laboratories, repair, fabrication and calibration shops. Sealed radioactive sources were used in these buildings. All radioactive material was removed from

this building prior to 22 January 1997. Considering their radioactive material use history the buildings were surveyed as "unaffected" buildings as defined in NUREG/CR-5849.

- (3) The CECOM DSRM began planning and preparation for performing this survey in early January 1997.
- (4) The survey of the buildings began 22 January 1997 and was completed on 31 January 1997.
- b. <u>Site Condition at Time of Termination Survey</u>. Building 217 and the areas of Building 218 surveyed were vacant with furniture in place as indicated on survey maps included in Appendix C, SURVEY DATA.
- c. <u>Identity of Potential Contaminants and Their Release</u> Guidelines.
- (1) The radionuclides of interest for the survey covered by this report are 60 Co, 137 Cs, 226 Ra and 238 U.
- (2) Release guidelines were taken from NRC Regulatory Guide 1.86, Table 1, Acceptable Surface Contamination Levels. Table 1 lists release limits for the isotopes of interest.

Table 1

Nuclide	Average	Maximum	Removable
Cobalt 60 Cesium 137 Uranium 238	5,000 dpm/100cm ²	15,000 dpm/100cm ²	1,000 dpm/100cm ²
Radium 226	100 dpm/100cm ²	300 dpm/100cm ²	20 dpm/100 cm ²

^{** (}dpm/100 cm²) disintergrations per minute per one hundred square centimeters.

6. RADIATION SURVEYS AND RESULTS.

a. Field Survey Instruments.

(1) A list of survey instruments, parameters, efficiencies, and minimum detectable activities is provided in Table 2. All instruments were calibrated in accordance with US

Army Test Measurement and Diagnostic Equipment Activity schedules for "ACTIVE" (Health and Safety) instruments. Daily instrument performance check results are listed on the attached table.

- (2) Minimum Detectable Activity (MDA).
- (a) MDA for fixed alpha and/or beta was determined for each instrument operating in the scaler mode using the following formula that considers counting time, detector efficiency and the detector's sensitive area:

$$MDA = \frac{\left(\frac{2.71}{5}\right) + 3.29\sqrt{\frac{Bkg\ rate_{cpm}}{5} + \frac{Bkg\ rate_{cpm}}{1}}}{Detector\ Eff \times \frac{Detector\ area}{100}}$$

(b) MDA for alpha and beta scanning was calculated using the following formula that considers the instrument response time, detector efficiency and the detector's sensitive area:

$$MDA = \frac{4.65 + \sqrt{\frac{Bkg_{cpm}}{2 (Inst. time const)}}}{Detector Eff \times \frac{Detector area}{100}}$$

(3) Flag Values: Detection flag values are instrument readings in counts per minute (cpm) that if exceeded, dictate that additional survey or evaluation of the area is required. The flag value is calculated at 25 percent of the fixed contamination release plus background. The following are example calculations of flag values:

Alpha Flag:

$$(100 dpm \times 0.25 \times inst eff) + Bkg rate_{cpm} = Flag value_{cpm}$$

Example Calculation, alpha:

$$(100 dpm \times 0.25 \times .366) + 13 cpm = 21 cpm$$

Beta Flag:

$$(5000 dpm \times 0.25 \times inst eff) + Bkg rate_{cpm} = Flag value_{cpm}$$

Example Calculation, beta:

$$(5000 dpm \times 0.25 \times .392) + 900 cpm = 1390 cpm$$

(4) No flag value was exceeded on any reading taken in this survey.

Table 2
Daily Pre-Operation Performance Check

Date	Instrument Serial No.	Alpha Efficiency (percent)	Alpha Bkg (cpm)*	Alpha MDA (dpm/100 cm ²)**	Beta Efficiency (percent)	Beta Bkg (cpm)	Beta MDA (dpm/100 cm ²)
23 JAN 97	1175A	100***	1	10	N/A	N/A	N/A
24 JAN 97	1175A	100	1	10	N/A	N/A	N/A
29 JAN 97	1175A	100	1	10	N/A	N/A	N/A
30 JAN 97	1175A	100	1	10	N/A	N/A	N/A
LUDLU	M MODEL # 23	60 WITH 575 C	M2 ALPHA AN	ND BETA (GAS	FLOW PROPOR	TIONAL DET	ECTOR)
22 JAN 97	133663	33.53	20	8	31.16	1113	62
23 JAN 97	133663	33.53	27	9	31.16	1193	64
24 JAN 97	133663	33.53	7	11	31.16	532	76
LUDLL	M MODEL # 22	24 WITH 575 C	M' ALPHA AP	ND BETA (GAS	FLOW PROPOR	TIONAL DET	ECTOR)
29 JAN 97	119806	36.25	5	4	33.73	700	45
	LUDLUM M	ODEL # 2224 W	ITH 15.5 CM ²	G-M DETECTO	R (< 0.7 mg / CA	A ² window)	-d
29 JAN 97	132143	N/A	N/A	N/A	20.1	50	1468
30 JAN 97	132143	N/A	N/A	N/A	20.1	43	1373

Ludium Model 19 Twice Daily QA Checks

Date	Instrument Serial No.	Range Response Checks++					Performed
		5000	500	250	50	25	by
22 JAN AM	127410	600	230	120	26	17	R.C.
22 JAN PM	127410	600	250	130	26	17	R.A.C.
23 JAN AM	127410	600	230	120	25	17	R.C.
23 JAN PM	127410	600	260	120	26	16	R.C.
23 JAN AM	131265	700	260	120	28	17	RAC
23 JAN PM	131265	700	250	120	30	17	RAC

^{* (}cpm) is total counts per minute, no probe area correction.

b. Survey Method.

(1) A minimum ten percent of all work surface, shelves, drawers, and floor surface in the survey area was scanned for alpha, beta and gamma radiation. When the scanning was completed random sample points were selected through out the buildings. The sample points are spread across the buildings interior and the location of each is marked on one of the maps in appendix C,

^{** (}dpm/100 cm²) is disintergrations per minute per one hundred square centimeters. Product of MDA formula calculation.

^{***} AN/PDR-77 Alpha detector is calibrated and electronically compensated to provide direct reading in dpm/100 cm² which is 100 percent efficiency.

⁺⁺ Check source, 137Cs, 2 microCuries, ID Number 539-5-3, Assay date 1 June 1996.

SURVEY DATA. At each sample point a sample data set was collected. A sample data set consists of an alpha and beta count rate measurement, a gamma dose rate measurement, and a gross alpha-beta wipe.

- (2) Ludlum Model 19 MicroR meters were used for all gamma scanning and dose rate measurements. Gamma scanning was done with the detector no more than 15 centimeters from the surface being scanned. The fixed gamma dose rate measurements were taken one meter above each sample points surface.
- (3) Ludlum Models 2224 and 2360 Scaler/Ratemeters with 575 cm² gas flow proportional (GFP) probes were used for alpha and beta surface area scanning. The probe was kept within one centimeter (cm) of the surface being scanned. The scan rate was less than one probe width per second (five cm). Audio speakers were used for all scanning.
- (4) To facilitate the timely completion of the survey fixed alpha and beta readings were taken with three instrument types. The Ludlum Model 2360 with 575 cm² GFP probe was used to measure both alpha and beta, the AN/PDR-77 with 100 cm² Scintillation probe was used for Alpha and the Ludlum model 2224 with 15.5 cm² G-M probe was used for beta.
- (5) A gross alpha and beta wipe was taken at each sample point. One hundred cm² of the sample point surface was wiped using a cloth wipe (commercial name NUCON). After collection the wipe was placed in its individual labeled paper folder (supplied with the wipe) and taken to the CECOM DRSM counting laboratory.

- c. <u>Laboratory counting</u>. The gross alpha and beta wipes were counted in a low background gas flow proportional counting system. The source used to determine the alpha detection efficiency of the system was Americium-241 (²⁴¹Am). The source used to determine beta detection efficiency was Strontium-90 (⁹⁰Sr). All sources used for efficiency determinations are traceable to the National Institute for Standards and Technology.
- d. Field instrument results. Gamma dose rate measurements and surface area scanning detected no activity greater than flag values in the area surveyed. The fixed alpha, beta and gamma readings at the sample points are included in Appendix C, SURVEY DATA.
- e. <u>Laboratory analysis results</u>. The review of counting results indicated no removable contamination from the isotopes of interest in Building 217 and the areas of Building 218 surveyed. The counting results are included in Appendix C, SURVEY DATA.
- 7. CONCLUSION. The results of this radiological study indicated that there is no radioactive contamination in Building 217 and the surveyed areas of Building 218.

8. RECOMMENDATION. Recommend that Building 217 be released for unrestricted use. Recommend administrative controls in place be maintained on the areas of building 218 that were surveyed to ensure that radioactive material is not introduced into these areas. When all radioactive material is removed from Building 218 the remaining area of the building can then be surveyed and if below release limits the entire building may be released for unrestricted use.

David E. Craig

Health Physicist, IceSolv, Inc.,

Contracted to,

Radiological Engineering Division CECOM Directorate of Safety Risk

Management

Approved:

Steven A. Horne

Director

Safety Risk Management

APPENDIX A

REFERENCES

- 1. NUREG/CR-5849, Manual for Conducting Radiological Surveys in Support of License Termination, Draft Report for Comment, June 1992.
- 2. US Nuclear Regulatory Commission Regulatory Guide 1.86, Termination of Operating Licenses for Nuclear Reactors, June 1974.
- 3. Title 10, Code of Federal Regulations (CFR), Part 20, Standards for Protection Against Radiation.

APPENDIX B

ABBREVIATIONS

bkg	background
cpm	counts per minute
dpm	disintegration per minute
Eff	efficiency
inst	instrument

APPENDIX C

SURVEY DATA

Contents

- 1. Building 217, survey point narrative.
- 2. Building 217, survey maps.
- 3. Building 217, survey readings and laboratory data.
- 4. Building 218, survey point narrative.
- 5. Building 218, survey maps.
- 6. Building 218, survey readings and laboratory data.

FEMA. Winchester, VA. Building 217 Survey points

Room 101

		Room 101
	1 - 9 on the floor	
	10 and 11 are on the walls	
		Room 101A
	points 12 and 15 are on the walls	
	13 - 15 are on the floor	
		Room 101B
	Randoms 17 and 18 are on the floor	
	19 and 20 are on the walls	
		Dan-100
		Room 102
	points 21 and 22 are on the floor	
•	23 is on the closet shelve	
•	24 - 32 are on the floor 33 and 34 are on the window seal	
•	35 is on the work bench	
•	33 is on the work bench	
		Room 103
	Randoms 36 - 45 are on the floor	
	46 and 47 are on the window seal	
	48 is on the desk	
	49 and 50 are on the walls	
		Room 118
	Randoms 51 - 54 are on the floor	
	55 is on the window seal	
	56 is on the floor	
	57 is on the door	
	58 is on the light switch	
	59 is on the shelf over the sink	
		Room 104
	Bandama 60 60 and on the Gara	1,00111104
•	Randoms 60 - 69 are on the floor 70 - 71 are on the work benches	
	72 is on the window seal	
	7 is on the wall	
	13 off the watt	
		Room 105

Randoms 74 - 86 are on the floor

88 is on the window seal

87 on the wall

- 89 is under the electrical penetration
- · 90 and 91 are on the window seal
- 92 is on the wall
- 93 and 94 are on the work bench
- 95 is on the storage bin

Room 106

- · Randoms 96 108 are on the floor
- 109 is on the shower drain
- 110 and 112 are on the wall
- = 111, 113 and 114 are on the work bench
- · 115 is on the storage rack shelf.
- 116 is on the wall with the air nozzle
- 117 is on top of the dish washer
- 118 is on the right side of the sink
- 119 is on shelf above sink
- 120 is to the left of the sink
- 121 is on the shelf under sink
- 122 is on the floor

Room 107

- Randoms 123 137 are on the floor
- 138 and 139 on boards used as shelves in old x-ray room
- 140 is on the floor
- 141 144 on x-ray machine measurement track
- 145 149 is on the floor
- 150 is on the ventilation duct
- 151 and 152 is on the table
- 153 is on the x-ray machine cart frame
- 154 is on x-ray machine elec, equipment desk top
- 155 is on work table
- 156 is on x-ray machine cart frame
- 157 is on x-ray cart Picuglas
- 158 is on the desk top
- 159 is on the pallet
- 160 is on the wooden book shelf
- · 161 is on heat/AC vent
- 162 is under thermostat controls

Main Hall

- 163 165 are on the floor
- 166 is on the wall
- 167 is on the floor
- · 168 is on the dosimeter shelf
- 169 is on the bulletin board
- 170 172 is on the floor
- 173 is on the wall under the dosimeter shelf
- 174 is on the wall over the dosimeter shelf
- 175 177 is on the floor
- 178 is on the wall
- '79 is on the wall under the area RAD monitor
- 80 and 181 is on the floor

- 182 is on the electrical panel
- 183 186 is on the floor
- 187 is on the water fountain
- 188 on the floor
- 189 is on the wall under the light switch
- 190 192 is on the floor
- 193 is on the wall
- 194 is on the floor
- 195 is on the wall
- 196 is on the wall under the area RAD monitor
- 197 199 is on the floor
- 200 is on the wall
- 201 204 is on the floor
- 205 is on the wall above the elec. outlet
- 206 is on the wall next to the light switch
- 207 is on the floor

Hall # 2 with stairs

- 208 and 209 are on the floor
- 210 is on the exit door
- 211 is on the heat/AC vent
- 212 is under the light switch
- 213 is on the floor
- 214 is on the stairs
- · 215 and 216 are on the landing
- · 217 is on the wall over the landing
- 218 is on the steps
- · 219 is on the landing at the top of the steps
- · 220 is in the door way going into the upstairs hall way
- 221 is on the door

Room 204A

- · 222 is on the floor in front of the sink
- 223 is on the wall in the back of the closet
- · 224 is on the wall above the sink

Room 204

- Randoms 225 235 are on the floor
- 236 and 237 are on the work bench
- 238 is on the wall with the air nozzle
- 239 is on the work bench
- · 240 is on the desk shelf

Room 214

- 241 245 are on the floor
- 246 is on the door leading to the toilet
- 247 is under the light switch in bath room

Room 203

- 248 259 are on the floor
- 260 and 261 are on the desk in the north end of the room
- · 262 is on the vent under the window in the south end of the room
- 263 is on the work bench in the south end of the room
- 264 is on top of the file cabinet
- 265 is on south wall
- 266 is on top of the file cabinet on north wall

Room 202

- 267 279 are on the floor
- 280 is on the north wall by the door
- 281 is on the wooden shelves
- 282 is on the hand cart
- 283 is on top of the large cabinet in the south end of the room
- . 284 is on the file cabinet at the north end of the room

Room 201

- 285 297 are on the floor
- 298 is on the wall next to the air nozzle
- 299 is on the desk top
- 300 is on the wall

Room 201A

- 301 -303 are on the floor
- 304 is on the door
- 305 is on the wall under the light switch

Telephone closet

• 306 is on the floor

Main hall way upstairs

- 307 309 are on the floor
- 310 is on the west wall
- 311 is on the east wall
- 312 under dosimeter rack
- 313 316 are on the floor
- 317 is under TDL badge rack
- 318 and 319 are on the floor
- 320 is on the east wall
- 321 324 are on the floor
- 325 is under RAD monitor
- 326 is on the floor
- · 327 is on the electrical panel
- 328 and 329 is on the floor
- 330 is on the west wall
- 331 is on the floor
- 332 is on the water fountain
- 333 338 are on the floor
- 339 is on the west wall
- 340 -348 are on the floor
- 349 is on the heat/ AC vent
- 350 is on the wall

Room 205

- 351 366 are on the floor
- 367 is on the work bench at the north end of the room
- 368 is inside the chem. lab vent hood
- 369 is under the water nozzle on the west wall
- 370 is in the sink in the south end of the room
- · 371 is on the storage locker on the bottom shelf
- 372 is under the water nozzle on the east side of the room
- 373 is under the thermostat controls

Room 224

- 374 377 are on the floor
- 378 are on the door leading to the bathroom

• 379 is under the light switch in the sink room

Room 206

- 380 395 are on the floor
- 396 is under the thermostat
- 397 is on the large drawer cabinet
- 398 is on top of the file cabinet
- · 399 is on the work bench
- 400 is on the wall above the vent
- 401 is on the storage locker in the north end of the room

Room 207

- 402 430 are on the floor
- 431 is on the table in the north end of the room
- 432 is on the doors opening to room 218
- 433 is on the instrument storage cabinet
- 434 is on the wall near the air nozzle
- · 435 and 436 are on the cabinet on the east wall
- 437 is on the desk top
- 438 is on the computer desk
- 439 is on the instrument storage locker
- 440 is on the south wall under the air nozzle
- 441 is on the desk
- 442 is on the floor
- 443 is on the desk

Hall with stairs

- 444 is on top of the stairs
- · 445 is on the door
- 446 is on the steps
- 447 and 448 are on the landing floor
- 449 is on the landing wall
- 450 is on the bottom of the stairway wall
- 451 is on the bottom of the stairs
- 452 is on the wall at the bottom of the stairs
- 453 and 454 are on the floor
- 455 458 are on the floor
- 459 is on the entrance to the building
- 460 is above the vent in the hall
- 461 and 462 are in the closet at the foot of the steps

Room 234

- 463 466 are on the floor
- 467 is under the light switch
- 468 is on the inside of the bath room door

Room 207A

- 469 471 are on the floor
- 472 is on the shower drain
- 473 is under the light switch
- 474 is on the inside of the door
- 475 is on the outside of the door

Room 207

476 and 477 are on the doors leading to building 218

FEMA RADCON SURVEY DATA BUILDING 217

FEMA-WINCHESTER, VA. BLDG. 217 1ST- FLOOR MAP FILE NAMES (h:\rer\maps)

Microsoft Powerpoint

FEMA-WINCHESTER, VA. BLDG.217

- SURVEY MAPS
- NUMBERS (# 's) INDICATE SURVEY LOCATIONS
- SEE SURVEY DATA POINT LOCATIONS FOR IDENTIFICATION

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-101 JAN. 24, 1997

NORTH

FEMA-WINCHESTER, VA.
BLDG. 217
ROOM-101A
JAN. 24, 1997

NORTH

FEMA-WINCHESTER, VA.
BLDG. 217
ROOM-101B
JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-102 JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-103 JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM- 104 JAN. 24, 1997

FEMA-WINCHESTER, VA BLDG. 217 ROOM-105 JAN. 24, 1997

FEMA - WINCHESTER, VA. BLDG. 217 ROOM-106 JAN. 24, 1997

35.6.

FEMA - WINCHESTER, VA. BLDG. 217 ROOM-107 JAN. 24, 1997

FEMA-WINCHESTER, VA.
BLDG. 217
ROOM-118
JAN. 24, 1997

North

6

FEMA - WINCHESTER, VA. BLDG. 217 ROOM- MAIN HALL JAN. 24, 1997

FEMA - WINCHESTER, VA.
BLDG. 217 ROOM- HALL-2 W/STAIRS

JAN. 24, 1997

FEMA - WINCHESTER, VA. BLDG. 217 ROOM- HALL-1 W/STAIRS JAN. 24, 1997

North

12'9"

Entrance

FEMA - WINCHESTER, VA. BLDG. 217 2ND FLOOR MAP FILE NAMES (H:\RER\MAPS)

North

FEMA - WINCHESTER, VA. BLDG. 217 ROOM- HALL-2 JAN. 24, 1997

13.2. able FEMA-WINCHESTER, VA. JAN. 24, 1997 BLDG. 217 ROOM-201 North closet

FEMA-WINCHESTER, VA. BLDG. 217 ROOM- 201A JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217

ROOM-203

JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-204 JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-205 JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-206 JAN. 24, 1997

FEMA-WINCHESTER, VA.
BLDG. 217
ROOM- 224
JAN. 24, 1997

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-207 JAN. 24, 1997

FEMA-WINCHESTER, VA.
BLDG. 217
ROOM-207A
JAN. 24, 1997

north

FEMA-WINCHESTER, VA. BLDG. 217 ROOM-234 JAN. 24, 1997

north

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 101

25.1	100.1	m	45.1	12753	/EY
3m 1	Bee 1	-13	25.1	11967	1 m V

CONSTANTS	+	Alpha	Bet	a	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm ²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm ²	578	cm²		n/a

COUNTING LAB

BKG	0.967	cpm	3.600	cpm	n/a
MDA	5.29°	dpm/100cm ²	5.676	dpm/100cm ²	n/a

	Gamma	Alp	oha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
001	0	-3.524	0.0	-4.669	-62.2
002	0	-3.159	0.0	-3.780	-54.4
003	0	-3.524	-3.1	-4.224	-48.9
004	-1	-3.524	-1.0	-4.002	-48.9
005	0	-3.159	1.0	-3.557	-33.3
006	0	-3.159	0.0	-4.447	-68.8
007	0	-3.524	0.0	-3.113	-74.4
800	-1	-3.159	-1.0	-2.890	-56.6
009	0	-2.795	-1.0	-4.224	-28.9
010	-1	-3.159	-1.0	-3.557	-61.1
011	-1	3 159	1.0	-4.891	20.0

LOCATION

MDA

ZONE: FEMA

5.293 dpm/100cm²

SUBZONE: N/A

BUILDING: 217

ROOM: 101A

dpm/100cm²

FIELD SURVEY

CONSTANTS	A	Alpha	Be	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	. 6	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB					A La Gardina Communication School	
BKG	0.967	cpm	3.600	cpm		n/a

5.676

0	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lao dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
012		-3.524	-3.1	-4.891	-4.4
013	0	-3.159	2.1	-2.446	-52.2
014	0	-3.159	-1.0	-3.335	-62.2
015	-1	-3.524	3.1	-3.335	-31.1
016	0	-3.524	-1.0	-3.780	-37.8

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 101B

FIELD SURVEY

CONSTANTS	1	Alpha	Bei	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

	A REPLACEMENT AND A SECURITION OF THE PARTY				
BKG	0.967	cpm	3.600	cpm	n/a
MDA	5.293	dpm/100cm ²	5.676	dpm/100cm ²	n/a

C	Gamma	Alp	ha	B	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
017	-1	-3.159	-2.1	-5.114	-56.6
018	-1	-3.524	0.0	-4.891	-102.2
019	-1	-3.524	1.0	-2.890	-37.8
020	-1	-3.524	-1.0	-3.113	13.3

LOCATION

MDA

ZONE: FEMA

5.293 dpm/100cm²

SUBZONE: N/A

BUILDING 217

ROOM: 102

5.676 dpm/100cm²

FIELD SURVEY

CONSTANTS	,	Alpha	Be	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²	1	n/a
COUNTING LAB			PERSONAL PROPERTY AND ASSESSMENT			Name of Street, Street
BKG	0.967	cpm	3.600	cpm		n/a

All data on this report is background corrected. Negative values in the report are calculated activities that were below measured background.

	Gamma	Alp	na	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
021	-1	-3.159	1.0	-4.669	-62.2
022	4	-2.795	-3.1	-4.224	-66.6
023	-1	-3.524	-2.1	-3.557	-65.5
024	-1	-3.159	-1.0	-3.780	-58.9
025	0	-3 159	1.0	-3.335	-89.9
026	0	-3.524	0.0	-3.780	-60.0
027	0	-3.524	0.0	-3.780	-43.3
028	-1	-2.795	3.1	-4.669	-54.4
029	1	-3.159	-1.0	-2.668	0.0
030	-1	-3.159	0.0	-3.780	-58.9
031	0	-3.524	2.1	-3.780	-48.9
032	-1	-3.524	-3.1	-4.224	-74.4
033	0	-2.430	-3.1	-1.556	-51.1
034	0	-2.795	1.0	-3.113	-76.6
035	0	-3.524	0.0	-4.669	-74.4

n/a

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

103

FIELD SURVEY

ONSTANTS	1	Alpha	Bet	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

0.967 cpm 3.600 cpm n/a BKG 5.293 dpm/100cm² 5.676 dpm/100cm² n/a MDA

	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
036	-1	-3.159	-2.1	-5.336	-62.2
037	0	-3.159	1.0	-4.002	-40.0
038	0	-3.524	6.2	-5.781	-48.9
039		-3.159	-3.1	-4.891	-34.4
040	1	-2.430	-1.0	-3.113	-55.5
041	0	-3.524	-1.0	-4.002	-48.9
042	0	-2.795	-1.0	-3.335	-61.1
043	0	-3.159	-1.0	-2.446	-44.4
044	4	-3.159	-1.0	-4.447	-66.6
045	0	-2.795	0.0	-2.446	-63.3
046	0	-3.159	-3.1	-2.001	-81.1
047	0	-3.524	-2.1	-4.447	-81.1
048	0	-3.159	-1.0	-2.446	-65.5
049	-1	-3.524	2.1	-4.224	8.9
050	0	-3.159	2.1	-4.891	41.1

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 104

		/EY

CONSTANTS		Alpha	Be	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm ²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

BKG	0.333	cpm	2.133	cpm	n/a
MDA	3.336	dpm/100cm ²	4.249	dpm/100cm ²	n/a

	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
060	1	-0.847	0.0	0.592	-47.7
061	-1	-0.847	1.0	1.702	-44.4
062	0	-1.209	0.0	-0.962	-57.7
063	0	-1.209	-1.0	0.370	-66.6
064	0	-0.484	-2.1	-0.296	-48.9
065	1	-1.209	-3.1	-0.962	-35.5
066	0	-1.209	0.0	-0.740	-35.5
067	0	-1.209	1.0	-0.296	-54.4
068	-1	-1.209	-3.1	-0.296	-99.9
069	-1	-0.484	-1.0	0.370	-73.3
070	0	-0.484	-2.1	-0.962	-64.4
071	-1	-1.209	-2.1	0.814	-68.8
072	0	-1.209	-2.1	-0.074	-47.7
073	-1	-1.209	3.1	-0.296	-10.0

LOCATION

ZONE.

FEMA

SUBZONE: N/A

BUILDING 217

ROOM:

105

FIELD SURVEY CONSTANTS Alpha Beta Gamma 4 upm/100cm² 295 dpm/100cm² microR/hour BKG (8 cpm) (532 cpm) n/a MDA 11 dpm/100cm² 76 dpm/100cm² n/a **Detector Efficiency** 33.53 percent 31.16 percent n/a 578 cm² 578 cm² Probe area COUNTING LAB 0.333 cpm 2.133 cpm n/a BKG 3.336 dpm/100cm² 4.249 dpm/100cm² n/a MDA

	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
074	0	-1.209	-2.1	1.036	-74.4
075	0	-0.847	0.0	-0.074	-47.7
076	2	-1.209	2.1	-2.517	7.8
077		-1.209	-3.1	-1.628	-1.1
078	1	-0.847	-2.1	-0.518	-8.9
079	1	-0.847	-1.0	1.258	-46.6
080	1	-1.209	0.0	0.148	-32.2
081	0	-0.847	-2.1	-2.517	-34.4
082	0	-0.484	-3.1	0.814	-73.3
083	0	-0.484	-1.0	-0.074	-54.4
084	-1_	-1.209	-1.0	-0.518	-44.4
085	0	-0.847	-1.0	0.148	-23.3
086		-0.847	1.0	-0.296	-78.8
087	0	-0.847	6.2	-2.295	46.6
880	1	-0.847	-1.0	-0.296	-13.3
089	3	-0.484	1.0	-0.29€	136.6
090	1	-0.484	-1.0	-1.406	-23.3
091	1	-0.121	-1.0	0.370	-36.6
092	0	-1.209	6.2	0.148	-1.1
093	0	-0.484	2.1	-0.074	-57.7
094	0	-1.209	1.0	0.370	-34.4
095	0	-0.484	1.0	0.148	-75.5

LOCATION

MDA

were below measured background.

ZONE:

FEMA

SUBZONE: N/A

BUILDING: 217

3.336 dpm/100cm²

ROOM:

106

dpm/100cm²

n/a

FIELD SURVEY

CONSTANTS	A	Alpha	Ве	ta	G	amma
BKG	4 (8	dpm/100cm² cpm)	295 (532	dpm/100cm² cpm)	5	microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB						alah da mang amang alah da pada a
BKG	0.333	cpm	2.133	cpm		n/a

4.249

All data on this report is background corrected. Negative values in the report are calculated activities that

Cample	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
096	0	-1.209	-3.1	0.148	-47.7
097	-1	-1.209	6.2	0.814	-30.0
098	M	-0.484	6.2	0.592	-58.9
099	0	-0.847	1.0	-1.184	-48.9
100	-1	-0 484	-1.0	0.592	-32.2
101	0	-0.304	0.0	0.854	-72.2
102	0	-0.304	0.0	1.299	-30.0
103	0	-0.304	2.1	0.631	-44.4
104	1.0	0.790	-2.1	1.076	-24.4
105	0	-0.304	1.0	0.186	-71.1
106	0	-0.304	-1.0	1.076	-50.0
107	-1	-0.304	1.0	-0.037	-52.2
108	0	0.425	1.0	1.744	-56.6
109	-1	0.061	3.1	-0.037	-86.6
110	-1	-0.304	1.0	1.076	6.7
111	-1	-0.304	-1.0	-1.150	-46.6
112	-1	-0.304	2.1	-0.928	6.7
113	-1	-0.304	3.1	-0.705	-70.0
114	-1	-0.304	0.0	1.522	-62.2
115	0	0.061	-1.0	0.186	-61.1
116	0	-0.304	1.0	0.408	77.7
117	0	-0.304	-3.1	0.854	~50.0

Cample	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²	
118	0	0.425	-2.1	-0.037	-58.9	
119	0	0.061	1.0	1.522	-81.1	
120	0	0.061	2.1	1.522	-48.9	
121	0	0.790	1.0	-0.037	-105.5	
122	0	0.061	-3.1	0.854	-54.4	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

107

960.1	geor p	and.	455. 6	1 (8%)	VEY	*
- 100	No. 5	- 13	56.1	1121	A feet 1	r

CONSTANTS	,	Alpha	Be	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB		Control of the Control of Anthropology (S. 1985), encourse		THE OWN TO A MARKET THE STREET AND ASSESSMENT OF THE STREET ASSESSMENT ASSESSMENT OF THE STREET	***************************************	
BKG	0.083	cpm	1.717	cpm		n/a
MDA	2.169	dpm/100cm ²	3.883	dpm/100cm ²		n/a

Sample	Gamma	Alp	ha	B	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
123	0	0.061	4.1	-1.373	-63.3
124	0	-0.304	1.0	0.854	-36.6
125	0	1.884	0.0	1.076	-38.9
126	0	-0.304	0.0	3.080	-22.2
131	0	0.061	3.1	0.186	-83.3
132	0	-0.304	-1.0	1.076	-28.9
133	0	0.425	4.1	-0.037	-33.3
134	0	-0.304	2.1	1.076	-45.5
135	0	-0.304	0.0	-0.250	-51.1
136	0	0.425	4.1	-0.260	-56.6
137	0	-0.304	3.1	-0.037	-42.2
138	1 1	-0.304	0.0	0.186	-53.3
139	0	0.061	5.2	0.186	-60.0
140	0	0.061	2.1	0.854	-47.7
141	-1	0.061	2.1	1.076	-92.2
142	4	0.061	-1.0	-2.041	-93.3
143	0	0.425	-1.0	0.408	-71.1
144	-1	0.061	-2.1	0.854	-114.4
145	0	0.061	7.2	-0.705	-44.4
146	0	0.425	3.1	0.186	-28.9
147	1	-0.304	-1.0	-0.037	-60.0
148	0	0.061	1.0	0.186	-37.8

0	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
149	0	0.061	1.0	-0.037	-68.8
150	0	0.061	5.2	1.076	-52.2
151	0	0.229	1.0	-0.240	-75.5
152	0	-0.828	-1.0	-0.893	-85.5
3	0	-0.123	0.0	0.632	-91.1
154	0	-0.828	1.0	-1.111	-91.1
155	-1	0.229	3.1	1.068	-60.0
156	-1	-0.123	0.0	-1.547	-75.5
157	-1	-0.828	1.0	-0.458	-83.3
158	0	-0.123	-1.0	-0.893	-71.1
159	0	-0.828	-1.0	0.850	-54.4
160	-1	-0.828	-2.1	0.414	-84.4
161	0	0.229	1.0	3.247	-57.7
162	-1	-0.123	3.1	-2.201	-35.5

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 118

FIELD SURVEY

CONSTANTS	<i>A</i>	Alpha	Bet	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

BKG	0.333	cpm	2.133	cpm	n/a
MDA	3.336	dpm/100cm ²	4.249	dpm/100cm ²	n/a

	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
051	-1	-1.209	0.0	-1.184	-54.4
052	-1	-0.484	1.0	-0.518	-56.6
053	0	-0.847	4.1	-2.739	-26.7
054	-0	-0.484	2.1	1.258	-51.1
055	0	-1.209	1.0	-0.074	-72.2
056	0	-0.847	-1.0	-0.962	-72.2
057	0	-1.209	-1.0	-2.739	-11.1
058	-1	-0.847	0.0	-0.740	-33.3
059	0	-0.484	-1.0	-0.074	-64.4

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 134

FIELD SU	Ent & Charles & N.
Date # 1800 1 1 3 206 1 1	but I I bear V

CONSTANTS		Alpha	Be	ta	G	amma
BKG	4	dpni/100cm²	295	dpm/100cm²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	ACCOMMON ASSESSMENT OF THE PARTY OF THE PART	THE PARTY SHEET, N. SHEET,	A CONTRACTOR OF THE CONTRACTOR			Commonweal Street, Statement of Street, Street
Part Co.	0.002	com	1 717	com		n/a

0.083 cpm 1.717 cpm n/a BKG 2.169 dpm/100cm² 3.883 dpm/100cm² n/a MDA

	Gamma	Alp	ha	3	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
127	0	-0.304	-1.0	-0.260	-55.5
128	0	0.061	1.0	0.854	-53.3
129	0	-0.304	3.1	0.408	-13.3
130	0	-0.304	-2.1	1.076	6.7

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

HS1

FIELD SURVEY

CONSTANTS	+	Alpha	Bet	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

0.150 2.483 cprn BKG cpm n/a 2.569 dpm/100cm² 4.545 dpm/100cm² MDA n/a

Camala	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
444	0	-0.182	2.1	-2.410	-13.3
445	0	-0.182	1.0	-1.742	-11.1
446		-0.546	3.1	-1.520	-17.8
447	2	-0.546	-1.0	-1.520	-12.2
448	2	-0.546	2.1	0.037	-30.0
449	2	-0.546	0.0	-2.187	68.8
450	4	-0.182	-2.1	-0.408	2.2
451	2	0.229	0.0	1.064	-20.0
452	1	0.582	-2.1	0.630	-27.8
453	4	-0.123	7.2	-0.239	-65.5
454	1	-0.123	1.0	1.499	-58.9
455	0	0.229	0.0	-1.542	-44.4
456	0	1.287	2.1	-1.108	-43.3
457	-1	-0.123	2.1	1.282	-46.6
458	0	-0.123	1.0	0.413	-94.4
459	0	-0.476	5.2	0.195	-40.0
460	0	-0.476	4.1	-0.022	-24.4
461	1	-0.476	4.1	0.413	-70.0
462	1	-0.476	-2.1	1.064	0.0

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: HS2

FIELD SURVEY

CONSTANTS	1	Alpha	Bet	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm ²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

BKG	0.235	cpm	2.110	cpm	r.*
MDA	2.738	dpm/100cm ²	3.912	dpm/100cm ²	n/a

	Gamma	Alp	oha	B	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
208	-1	0.580	-1.0	-0.675	-42.2
209	0	-0.123	-1.0	0.849	-44.4
210	0	-0.826	2.1	0.632	1.1
211	0	-0.123	0.0	-0.022	-43.3
212	0	0.580	-2.1	0.414	15.5
213	0	0.580	1.0	-0.675	-73.3
214	1	-0.474	-1.0	-1.329	-41.1
215	2	0.580	-1.0	-0.457	-17.8
216	3	-0.826	2.1	-0.893	-18.9
217	3	0.228	3.1	-0.457	-62.2
218	2	-0.123	2.1	-0.457	-16.7
219	3 1	-0.474	1.0	0.632	-4.4
220	0	-0.123	3.1	2.156	-26.7
221	0	-0.826	1.0	-0.893	-47.7

LOCATION

MDA

ZONE: FEMA

2.745 dpm/100cm²

SUBZONE: N/A

BUILDING: 217

ROOM: MH1

dpm/100cm²

n/a

FI	EL	D.	SU	RV	/EY

CONSTANTS	+	Alpha	Ве	ta	G	amma
BKG	4 (8	dpm/100cm ² cpm)	295 (532	dpm/100cm ² cpm)	5	microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB			THE RESIDENCE OF THE PARTY OF T			
BKG	0.235	cpm	2.110	cpm		n/a

3.914

Campia	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
163	0	-0.476	-1.0	0.196	-51.1
164	0	-0.476	1.0	0.196	-81.1
165	0	-0.476	0.0	0.414	-71.1
166	-1	-0.828	1.0	-0.458	-62.2
167	4.0	-0.476	0.0	0.196	-86.6
168	-1	-0.123	2.1	-0.676	-108.8
169	-1	0.229	-1.0	-0.676	-43.3
170	41	-0.828	3.1	-0.022	-62.2
171	-1	0.229	-2.1	0.632	-114.4
172	-1	-0.123	-2.1	1.504	-74.4
173	-1	-0.476	4.1	0.414	-36.6
174	0	1.286	-1.0	-0.240	-13.3
175	-1	-0.476	-2.1	0.632	-114.4
176	0	0.229	-3.1	0.632	-47.7
177	0	0.229	0.0	-0.893	-86.6
178	-1	-0.123	4.1	-1.547	-44.4
179	-1	-0.476	1.0	0.632	-20.0
180	-1	-0.123	0.0	0.414	-53.3
181	-1	0.229	7.2	-0.022	-63.3
182	-1	-0.476	0.0	0.632	-60.0
183	-1	0.229	-1.0	0.632	-51.1
184	-1	-0.476	-2.1	1.068	-87.7

Sample	Gamma	Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²
185	-1	0.229	4.1	1.939	-48.9
186	-1	-0.476	1.0	1.068	-88.8
187	1 -1	-0.828	-2.1	-0.676	-48.9
188	-1	-0.123	-1.0	0.632	-65.5
189	-1	-0.828	2.1	-0.893	-54.4
190	-1	-0.476	-2.1	-0.022	-84.4
191	-1	0.581	4.1	-0.893	-46.6
192	-1	-0.476	1.0	0.196	-46.6
193	-1	0.581	4.1	0.850	-6.7
194	-1	-0.123	2.1	-0.240	-82.2
195	-1	0.229	-3.1	-0.022	-84.4
196	-1	0.229	3.1	-0.022	22.2
197	-1	-0.123	-1.0	-0.893	-56.6
198	-1	0.229	1.0	-1.111	-57.7
199	-1 -	-0.828	1.0	1.068	-86.6
200	-1	0.581	-2.1	-1.111	-26.7
201	-1	0.228	-1.0	0.196	-80.0
202	0	-0.826	-3.1	0.196	-61.1
203	0	0.228	5.2	-0.675	-60.0
204	0	0.228	1.0	3.245	-62.2
205	101	0.580	3.1	-0.893	-12.2
206	-1	-0.474	1.0	1.721	-8.9
207	0	-0.123	-2.1	1.067	-73.3

LOCATION

MDA

ZONE: FEMA

2.478 dpm/100cm²

SUBZONE: N/A

BUILDING: 217

ROOM: 201

dpm/100cm²

n/a

FIELD SURVEY

CONSTANTS	/	Alpha	Be	ta	G	amma
BKG	4 (8	dpm/100cm ² cpm)	295 (532	dpm/100cm²	5	microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	A Committee of the Comm			APPENDING SECTION OF THE PROPERTY OF THE PARTY OF THE PAR		NEW TRANSPORTATION OF THE PARTY
BKG	0.133	cpm	2.200	cpm		n/a

4.307

Cample	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
285	-1	-0.485	5.2	-0.888	-95.5
286	-1.	-0.485	-2.1	0.000	-95.5
287	. 4	-0.121	-1.0	-0.444	-68.8
288	-1	-0.485	0.0	-1.777	-35.5
289	-1	-0.121	C.0	-0.444	-81.1
290	energy 1,41	-0.485	1.0	0.000	-36.6
291	1	-0.121	-1.0	-1.111	-74.4
292	-4	-0.121	1.0	-1.555	-32.2
293	4	-0.485	-1.0	-1.333	-93.3
294	-1	-0.121	1.0	1.333	-48.9
295	-1	-0.121	2.1	-0.222	-84.4
296	-1	-0.485	-2.1	-0.666	-74.4
297	-4	-0.485	1.0	0.888	-67.7
298	0	-0.121	6.2	-3.110	68.8
299	0	-0.485	-2.1	-1.333	-63.3
300	0	0.424	0.0	0.779	30.0

LOCATION

ZONE: FEMA

BUILDING: 217

SUBZONE: N/A

ROOM: 201A

FIELD SLIBVEY

CONSTANTS	1	Alpha	Ве	ta	G	amma
BKG	4 (8	dpm/100cm² cpm)	295 (532	dpm/100cm² cpm)	5	microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB				STATE BY CONTROL OF THE STATE O		
BKG	0.083	cpm	2.050	cpm		n/a
MDA	2.160	dpm/100cm ²	4.188	dpm/100cm ²		n/a

Cample	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
301	-1	0.061	0.0	3.896	-51.1
302		-0.303	-2.1	1.002	-84.4
303		0.424	-1.0	-0.334	-60.0
304	-1	-0.303	-1.0	-0.334	-17.8
305	-1	0.061	-3.1	-1.670	-68.8
200	1	-0.303	-3.1	-0.111	-72.2

LOCATION

MDA

ZONE: FEMA

2.478 dpm/100cm²

SUBZONE: N/A

BUILDING: 217

ROOM:

202

dpm/100cm²

n/a

FIELD SURVEY

CONSTANTS	1	Alpha	Ве	ta	G	amma
BKG	4 (8	dpm/100cm ² cpm)	295 (532	dpm/100cm²	5	microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	Market and a second a second and a second and a second and a second and a second an				D-Marine room on the	Control of the second s
BKG	0.133	cpm	2.200	cpm		n/a

4.307

Sample	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
267	-1	-0.485	-1.0	-1.777	-63.3
268	-1	-0.485	0.0	-3.332	-63.3
269	0	-0.485	1.0	0.666	-14.4
270	0	-0.485	-2.1	-0.444	-85.5
271	-1	-0.121	1.0	0.222	-83.3
272	-1	-0.485	-2.1	-0.444	-76.6
273	-1.	-0.485	0.0	-0.888	-41.1
274	0	-0.485	-1.0	-0.222	-43.3
275	0	-0.485	-3.1	-1.333	-32.2
276	-1	-0.485	0.0	2.221	-56.6
277	-1	-0.485	-1.0	-0.444	-47.7
278	-1	0.243	5.2	0.444	-72.2
279	- 4	-0.121	0.0	-0.222	-55.5
280		-0.485	1.0	-1.777	-73.3
281	4	-0.121	-3.1	-1.555	-104.4
282	-1	-0.121	-3.1	-2.221	-119.9
283	-1	-0.121	-1.0	-0.222	-121.0
284	-1	-0.485	0.0	-0.888	-76.6

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

203

FIELD SURVEY

CONSTANTS	+	Alpha	Be	ta	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

BKG	0.235	cpm	2.110	cpm	n/a
MDA	2.738	dpm/100cm ²	3.912	dpm/100cm ²	n/a

Cample	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²	
248	.1	-0.474	4.1	-1,329	-93.3	
249	1	0.228	1.0	-0.457	-95.5	
250	-1	0.580	-1.0	0.414	-66.6	
251	-1	-0.121	-2.1	-1.111	-71.1	
252	-1	0.607	2.1	-0.888	-61.1	
253	4	-0.485	-1.0	0.000	-74.4	
254	-1	-0.485	0.0	0.000	-53.3	
255	-1	-0.121	3.1	-1.777	-96.6	
256	-1	-0.121	-3.1	-0.222	-77.7	
257	-1	-0.485	0.0	-1.777	-67.7	
258	-2	-0.121	0.0	-1.333	-103.3	
259	-1	-0.121	-2.1	-0.888	-52.2	
260	-1	-0.485	-1.0	0.222	-97.7	
261	0	-0.121	-3.1	-1.111	-87.7	
262	1-1	-0.485	-1.0	0.222	-60.0	
263	0	-0.121	1.0	0.888	-78.8	
264	-1	-0.485	6.2	-0.666	-95.5	
265	-1	-0.485	3.1	-0.666	3.3	
266	-1	0.243	0.0	-0.444	-97.7	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 204

FIELD SURVEY

CONSTANTS	+	Alpha	Bet	la	G	amma
BKG	4	dpm/100cm²	295	dpm/100cm ²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

BKG	0.235	cpm	2.110	cpm	n/a
MDA	2.738	dpm/100cm ²	3.912	dpm/100cm ²	n/a

Comet	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²	
225	-1	-0.474	0.0	0.849	-78.8	
226		-0.123	-3.1	-0.022	-63.3	
227	-1	-0.123	-3.1	-2.418	-61.1	
228	-1	-0.474	-2.1	-1.764	-71.1	
229	0	1.282	-2.1	-1.111	-11.1	
230	0	-0.474	-1.0	0.414	-51.1	
231	0	0.228	2.1	-0.457	-63.3	
232	0	0.228	-1.0	0.196	-72.2	
233	-1	-0.123	-1.0	-0.457	-80.0	
234	-1	0.228	-3.1	0.849	-73.3	
235	0	-0.474	1.0	1.067	-72.2	
236	0	-0.474	0.0	0.414	-84.4	
237	-1	-0.826	3.1	1.285	-104.4	
238	0	-0.123	4.1	-0.240	28.9	
239	0	-0.826	1.0	-1.546	-89.9	
240	-1	0.228	0.0	-0.457	-61.1	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

204A

FIELD SURVEY

TIEED GONVET						
CONSTANTS	,	Alpha	Ве	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	SOLDS HOW YMAN AND A SOLD OF	AND THE RESIDENCE OF THE STREET, THE PROPERTY OF THE PERSON OF THE PERSO	-	MATTER CONTROL TO THE STATE OF	The second section where the section is a second section of the se	
BKG	0.235	cpm	2.110	cpm		n/a
MDA	2.738	dpm/100cm ²	3.912	dpm/100cm ²		n/a

Campia	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²	
222	-1	0.228	-2.1	-0.457	-94.4	
223	0	0.228	-2.1	-0.022	3.3	
224	0	-0.826	0.0	-0.022	-43.3	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

205

FIELD SURVEY

CONSTANTS	+	Alpha	Be	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm²	5	microR/hour
	(8	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	crn²		n/a

BKG	0.235	cpm	2.110	cpm	n/a
MDA	2.741	dpm/100cm ²	3.919	dpm/100cm ²	n/a

Cometa	Gamma	Aip	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm	
351	-1	0.932	1.0	1.506	-65.5	
352	-1	-0.475	-3.1	-0.458	-71.1	
353	546	0.229	3.1	3.251	-48.9	
354	0	-0.123	3.1	-0.676	-82.2	
355	0	-0.827	0.0	-1,331	-34.4	
356	1	0.229	1.0	-0.458	-38.9	
357	0	0.932	1.0	-0.022	-37.8	
358	0	0.229	2.1	-0.022	-85.5	
359	0	-0.123	1.0	-1.549	87.7	
360	0	-0.123	4.1	-0.240	-31.1	
361	0	-0.123	5.2	-0.240	-55.5	
362	-1	0.229	-1.0	0.196	-52.2	
363	0	-0.123	3.1	3.033	-73.3	
364	1	-0.475	0.0	-1.986	-62.2	
365	0	-0.475	-1.0	0.196	-65.5	
366	-1	-0.123	-1.0	-1.331	-63.3	
367	-1	0.580	-2.1	0.415	-63.3	
368	1	0.229	6.2	-0.458	1.1	
369	1	-0.123	6.2	-0.676	119.9	
370	0	-0.123	-1.0	-0.895	-38.9	
371	0	-0.123	5.2	-0.895	-98.8	
372	-1	-0.475	4.1	0.196	24.4	

Gamma Gamma		Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm ²	Field apm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
373	-1	0.229	2.1	-1.549	-6.7

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

206

FIELD SURVEY

CONSTANTS		Alpha	Ber	ta	G	amma
BKG	4	dpm/100cm ²	295	dpm/100cm ²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a

COUNTING LAB

0.235 2.110 BKG cpm n/a 2.741 dpm/100cm² 3.919 dpm/100cm² MDA n/a

0	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm	
380	-1	0.229	6.2	0.633	-53.3	
381	-2	-0.475	3.1	0.196	-64.4	
382	-2	0.229	-1.0	-0.240	-22.2	
383	-2	-0.475	6.2	0.415	-88.8	
384	-2	-0 475	3.1	-1.113	-80.0	
385	-2	-0.475	2.1	0.196	-75.5	
386	-1	0.580	1.0	1.287	-74.4	
387	-1	0.229	0.0	-0.458	-43.3	
388	0	-0.827	3.1	-1.331	-43.3	
389	0	-0.123	-1.0	1.069	-76.6	
390	4	-0.475	0.0	-1.331	-60.0	
391	-1	-0.827	4.1	0.851	-71.1	
392		-0.123	3.1	1.069	-51.1	
393	0	0.580	3.1	1.287	-21.1	
394	0	-0.475	2.1	-2.422	-31.1	
395	-1	-0.827	3.1	0.633	-75.5	
396	-1	0.229	1.0	-0.895	-74.4	
397	-1	0.580	3.1	0.633	-108.8	
398	4	0.580	0.0	-0.240	-107.7	
399	-1	-0.123	4.1	-0.240	-102.2	
400	0	0.580	-2.1	3.906	4.4	
401	-1	-0.182	7.2	-2.187	-51.1	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM:

207

gen a	gen g	Pro-	45.1	A PTA L	VEY
300.1	Day 8	2.3	26.1	1196.1	1 500 V

CONSTANTS	,	Alpha	Ве	ta	G	amma
BKG	4 (8	dpm/100cm ² cpm)	295 (532	dpm/100cm² cpm)	5	microR/hour
MDA Detector Efficiency	11 33.53	dpm/100cm²	76 31.16	dpm/100cm²		n/a n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	CONTRACTOR OF THE PARTY OF THE	ON A COLOR OF THE RESIDENCE THAT I SHARE YOU ARE A SHARE AND A				Special Street of the second second second second
BKG	0.150	cpm	2.483	cpm		n/a
MDA	2.569	dpm/100cm ²	4 545	dpm/100cm ²		n/a

Commis	Gamma	Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
402	-2	-0.182	5.2	-1.742	-70.0
403	-2	-0.182	2.1	-1.965	-78.8
404	-1	0.182	3.1	-0.630	-71.1
405	-1	0.546	0.0	2.261	-56.6
406	0	-0.182	5.2	-1.965	-48.9
407	-1	-0.182	1.0	-0.630	-47.7
408	0	-0.546	2.1	-0.185	-55.5
409	-1	-0.182	-1.0	-2.854	-65.5
410	-1	-0.546	-1.0	-2.854	-46.6
411	-1	-0.546	7.2	-1.520	-88.8
412	-1	-0.182	3.1	-2.187	-77.7
413	-1	0.182	0.0	0.259	-60.0
414	-1	0.182	-2.1	-3.299	-75.5
415	-1	-0.546	-1.0	-1.742	-64.4
416	-1	-0.546	-1.0	-1.742	-50.0
417	-1	-0.546	1.0	0.704	-67.7
418	-1	-0.546	-1.0	-0.185	-83.3
419	-1	-0.546	2.1	-1.520	-57.7
420	-1	-0.546	-1.0	-1.965	-48.9
421	-1	-0.182	1.0	-0.853	-61.1
422	-1	-0.182	1.0	-1.075	-83.3
423	-1	1.274	1.0	-2.854	-76.6

Sample	Gamma	Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
424	-1	-0.546	-2.1	-0.408	-75.5
425	-10	0.182	-2.1	-0.853	-25.5
426	0	-0.182	-1.0	-2.187	-25.5
427	0	-0.182	5.2	-1.520	-21.1
428	1	-0.546	3.1	-2.187	3.3
429	0	-0.182	1.0	-1.965	-64.4
430	-1	-0.546	2.1	-1.075	-81.1
431	-1	-0.182	5.2	-1.742	-73.3
432	-1	-0.546	-3.1	-0.630	-37.8
433	-1	-0.546	-1.0	0.259	-41.1
434	0	-0.546	6.2	-1.520	-53.3
435	-1	-0.546	-1.0	-1.520	-75.5
436	-1	-0.546	0.0	-3.077	-58.9
437	-1	-0.546	0.0	-3.077	-70.0
438	-1	-0.182	-1.0	-1.297	-66.6
439	-1	-0.182	0.0	-0.853	-104.4
440	0	-0.546	5.2	0.482	75.5
441	1	-0.546	0.0	-0.408	8.9
442	0	-0.546	2.1	-1.520	-75.5
443	1	-0.182	-2.1	-1.075	-46.6
476	0	-0.123	2.1	1.499	-55.5
477	0	-0.476	1.0	-1.542	-34.4

LOCATION

MDA

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 207A

FIELD SURVEY

CONSTANTS		Alpha	Ве	ta	G	amma
BKG	4 (0	dpm/100cm ² cpm)	295 (532	dpm/100cm ²	5	microR/hour
MDA	11	dpm/100cm²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB	Account to the contract of			TE MINISTERNAL PRODUCT OF THE STREET STREET, AND THE STREET STREET, AND THE ST	Contract Areas, a season	
BKG	0.235	cpm	2.110	cpm		n/a

All data on this report is background corrected. Negative values in the report are calculated activities that were below measured background.

2.748 dpm/100cm² 3.901 dpm/100cm²

Gamma		Alp	ha	В	eta
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
469	-2	0.229	2.1	0.195	-92.2
470	-2	-0.123	4.1	1.933	-86.6
471	-2	-0.123	6.2	-0.673	63.3
472	-1	-0.476	3.1	3.236	-145.5
473	-2	-0.476	2.1	-0.456	-26.7
474	-2	0.582	-1.0	-0.673	-51.1
475	-2	0.229	-2.1	-0.239	-16.7

n/a

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 214

		727				
F-1	Sec. 1	PN.	01	10	2.5	EY
ger. I	BTT 2	4.3	-70	I FC	M	be A

CONSTANTS		Alpha	Be	ta	G	amma
BKG	4 (8	dpm/100cm² cpm)	295 (532	dpm/100cm²	5	microR/hour
MDA	11	dpm/100cm²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	578	cm²		n/a
COUNTING LAB			Principle Constitution of X of Bull Add		Name and Associated a	
BKG	0.235	cpm	2.110	cpm		n/a
MDA	2.738	dpm/100cm ²	3.912	dpm/100cm ²		n/a

All data on this report is background corrected. Negative values in the report are calculated activities that were below measured background.

Cample	Gamma	Alp	ha	В	eta
Sample Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²	
241	-1	1.634	2.1	-0.457	-91.1
242	F 15 4	-0.123	0.0	-0.022	-73.3
243	-1	-0.826	0.0	-0.893	-78.8
244	-1	0.228	-1.0	2.374	-67.7
245	-1	0.580	2.1	-1.546	-70.0
246	-1	0.580	-3.1	-1.546	-45.5
247	-1	-0.826	1.0	0.849	-65.5

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING 217

ROOM: 224

· gen y	gen p	PN.	Ph 1	I PROMI	/EY
-	po- I	-1.3	266	1 1 Page 14	1 b- V

FIELD SURVET						
CONSTANTS		Alpha	Ве	ta	Gamma	
BKG	4	dpm/100cm ²	295	dpm/100cm ²	5 mic	roR/hour
	(8)	cpm)	(532	cpm)		
MDA	11	dpm/100cm ²	76	dpm/100cm ²	n/	a
Detector Efficiency	33.53	percent	31.16	percent	n/	a
Probe area	578	cm²	578	cm ²	n/	a
COUNTING LAB		MET THE STATE OF T				
BKG	0.235	cpm	2.110	cpm	n/	а
MDA	2.741	dpm/100cm ²	3.919	dpm/100cm ²	n/	2

Sample Gamma		Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
374	-1	0.229	2.1	0.633	-81.1
375	4	-0.475	4.1	1.506	-80.0
376	1.1	-0.475	3.1	-1.549	-76.6
377	0	-0.827	2.1	-1.113	-65.5
378	0	-0.475	7.2	-2.422	-25.5
379	-1	-0.827	-2.1	-0.240	-31.1

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: 234

FIELD SURVEY

CONSTANTS		Alpha	Ве	ta	Gamma
BKG	4 (8	dpm/100cm² cpm)	295 (532	dpm/100cm ² cpm)	5 microR/hour
MDA	11	dpm/100cm ²	76	dpm/100cm ²	n/a
Detector Efficiency	33.53	percent	31.16	percent	n/a
Probe area	578	cm²	578	cm ²	n/a
COUNTING LAB		TO CAR A STREET OF THE PARTY OF		THE STREET AND A STREET AS	
BKG	0.235	cpm	2.110	cpm	n/a
MDA .	2.748	dpm/100cm ²	3.901	dpm/100cm ²	n/a

Field	Lab			
(microR/hr)	dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²
0	-0.123	0.0	-1.325	-43.3
0	-0.123	0.0	-0.022	-56.6
0	-0.476	2.1	0.195	-52.2
0	-0.476	1.0	-1.325	-38.9
0	-0.829	-1.0	-0.456	-40.0
0	-0.476	3.1	-1.108	-17.8
	0 0 0 0 0	0 -0.123 0 -0.123 0 -0.476 0 -0.476 0 -0.829	0 -0.123 0.0 0 -0.123 0.0 0 -0.476 2.1 0 -0.476 1.0 0 -0.829 -1.0	0 -0.123 0.0 -1.325 0 -0.123 0.0 -0.022 0 -0.476 2.1 0.195 0 -0.476 1.0 -1.325 0 -0.829 -1.0 -0.456

LOCATION

ZONE:

FEMA

SUBZONE: N/A

BUILDING: 217

ROOM: MH2

FIELD SURVEY

CONSTANTS		Alpha	Be	ta	G	Samma
BKG	4	dpm/100cm ²	295	dpm/100cm²	5	microR/hour
	(8)	cpm)	(532	cpm)		
MDA	- 11	dpm/100cm ²	76	dpm/100cm ²		n/a
Detector Efficiency	33.53	percent	31.16	percent		n/a
Probe area	578	cm²	570	cm²		n/a

COUNTING LAB

						-
BKG	0.083	cpm	2.050	cpm	n/a	
MDA	2.160	dpm/100cm ²	4.188	dpm/100cm ²	n/a	

Campia	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm	
307	-1	-0.303	3.1	0.779	-25.5	
308	-1	-0.303	-1.0	0.111	-96.6	
309	-1	-0.303	0.0	-0.334	-67.7	
310	-1	-0.303	1.0	-0.779	-45.5	
311	-1	0.787	1.0	-1.002	-13.3	
312	-1	0.061	-1.0	-1.447	-22.2	
313	-1	-0.303	-1.0	1.002	-91.1	
314	-1	0.424	-3.1	0.779	-89.9	
315	-1	0.061	0.0	-0.557	-78.8	
316	-1	0.061	-2.1	-1.002	-105.5	
317	-2	-0.303	0.0	0.779	-32.2	
318	-2	0.061	-1.0	-0.334	-48.9	
319	-2	-0.303	0.0	1.670	-92.2	
320	-1	0.061	0.0	0.334	40.0	
321	-2	0.424	-2.1	0.111	-75.5	
322	-1	0.061	-2.1	-0.111	-78.8	
323	-1	0.061	0.0	-1.447	-53.3	
324	-1	-0.303	-1.0	0.334	-74.4	
325	-2	0.061	0.0	0.779	-2.2	
326	-2	-0.303	0.0	0.779	-103.3	
327	-2	0.061	-1.0	-1.224	-80.0	
328	-2	0.061	4.1	-0.557	-92.2	

Sample	Gamma	Alp	ha	Beta		
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm	
329	-1	-0.303	1.0	-1.670	-72.2	
330	-1	0.061	3.1	-0.111	-34.4	
331		-0.303	0.0	-1.002	-57.7	
332	-1	0.061	0.0	-1.224	-41.1	
333	-2	0.424	2.1	0.557	-89.9	
334	-1	0.061	-2.1	-0.557	-81.1	
335	-1	-0.303	1.0	-0.557	-75.5	
336	-1	0.061	3.1	0.111	-54.4	
337	-1	0.061	-1.0	-2.115	-81.1	
338	-1	0.061	2.1	-1.002	-66.6	
339	-1	0.061	4.1	-0.334	-32.2	
340	-2	-0.303	-2.1	-1.447	-94.4	
341	-1	0.424	3.1	0.557	-54.4	
342	-1	0.061	-1.0	-0.334	-68.8	
343	-1	-0.303	3.1	0.557	-50.0	
344	-1	-0.303	1.0	0.334	-2.2	
345	-1	0.061	-1.0	1.224	-106.6	
346	-1	-0.303	-1.0	-1.002	-80.0	
347	-1	-0.303	-1.0	1.670	-76.6	
348	0	0.061	0.0	-0.334	-40.0	
349	0	-0.303	4.1	-0.779	-2.2	
350	-1	0.061	3.1	-1.447	-6.7	

FEMA. Winchester, VA. Building 218 Survey points

Machine shop, room 110

- 1 28 taken on floor
- · Wipe 29 on door
- Wipe 30 on isocut machine east side by exit
- 31 and 32 on workbench
- 33 on drill press
- 34 on north side of room on sheet metal machine
- 35 on table saw
- 36 on table press
- · 37 on jig boring machine
- 38 On sheet metal machine
- 39 on lite green lathe machine
- 40 on southwest corner work bench
- 41 on yellow lathe machine
- 42 on purple lathe machine
- 43 63 On floor
- 64 on band saw in the southeast corner
- 65 on workbench on east side of building
- · 66 on vertical band saw
- 67 in the center of the room on the workbench
- 68 is on the horizontal grinder in the north west corner
- 69 in the northwest corner on the blue grinder
- 70 on the work bench by the blue grinder
- 71 is on the tool grinding machine
- 72 in the southwest corner on jig grinder
- 73 is on the west wall
- 74 is on the Hammond grinder
- 75 is on the injection molder
- 76 on the work bench
- · 77 on southeast sheet metal machine
- 78 on honing machine
- 79 is on the sink counter top

Room 108, loading dock

- 80 100 are taken on the floor (89 on drain)
- · 210 on garage door
- 211 on machine shop locker on east wall
- 212 on x-ray equipment
- 209 on source bay hallway door
- · 208 on door leading in to room 109

Source bay hallway

- 101 130 on the floor
- 131 On top of east side of the file cabinet
- 132 on east side file cabinet
- 133 on door leading into room 114
- 134 On door leading into room 113

- 135 138 on east wall HP counting station
- 139 on east wall work bench
- 140 on door leading into room 112
- 141 on door leading into room 111
- · 142 on desk at south end of hallway

Room 111. old x-ray machine room

- 143 163 on the floor
- 164 and 165 in wooden storage cabinets on Northeast wall
- 166 in wooden storage cabinets on north wall
- 167 at the bottom of steps near the north wall
- 168 on metal storage cabinets in northwest corner
- · 169 inside machine shop storage locker
- 170 inside metal storage locker
- 171 on south wall in west corner
- 172 on work bench
- 173 on electric panel
- 174 on storage cabinet east side
- · 175 on storage cabinet east wall

Room 109. Machine snop storage

- 176 187 on floor
- 188 on door (south side)
- 189 on the electric panel
- · 190 on the double door north wall
- 191 on the first landing going down the steps
- 192 on the twelfth step
- 193 on the drain at the bottom of the steps
- . 194 on the outside of the boiler room door

Boiler room

- 195 thru 202 on the floor
- 203 on the compressor in the northwest corner
- 204 on the electric panel on the west wall
- 205 206 on the floor
- 207 is on the door

RACFEMAI ROOM 110 ROOM 110 FEMA. Winchester, VA. RACFEMA2 **ROOM 108** Building 218 (h:\rer\maps) RACFEMA4 ROOM III SOURCE BAY HALL WAY RACFEMA5 **ROOM 109** RACFEMA3 RACFEMA6 BOILER ROOM

Microsoft PowerPoint

FEMA. Winchester, VA. Building 218, room 108 January 30, 1997

FEMA. Winchester, VA. Building 218, room 109 January 30, 1997

FEMA. Winchester, VA. Building 218, room 110 January 30, 1997

FEMA. Winchester, VA. Building 218, room 111 January 30, 1997

FEMA. Winchester, VA. Buildind 218, source bay hallway January 30, 1997

99'8"

N

FEMA. Winchester, VA. Building 218, boiler room January 30, 1997

31'

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 218

ROOM: 108

FIELD SURVEY

CONSTANTS		Alpha	Be	ta	Gan	nma
BKG	1	dpm/100cm ²	1380	dpm/100cm ²	5	microR/hour
	(1	cpm)	(43	cpm)		
MDA	10	dpm/100cm ²	1372	dpm/100cm ²		n/a
Detector Efficiency	100.0	0 percent	20.11	percent		n/a
Probe area	100	cm²	15.5	cm²		n/a

BKG	0.117	cpm	2.150	cpm	n/a
MDA	2.391	dpm/100cm²	4.264	dpm/100cm ²	n/a

Samala	Gamma	Alp	na	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²	
080	0	0.670	16.0	-2.554	-160.4	
081	-1	-0.426	7.0	0.777	-224.6	
082	×1	-0.426	7.0	-1.222	-32.1	
083	-2	-0.426	12.0	-2.332	32.1	
084	-1	-0.061	3.0	-0.333	32.1	
085	0	0.304	7.0	-1.222	-160.4	
086	0	-0.061	7.0	-1.666	-160.4	
087	0	-0.426	3.0	-0.555	-160.4	
880	-1-	0.304	7.0	-1.666	-288.7	
089	-1	0.304	12.0	-1.888	32.1	
090	-1	-0.061	3.0	-0.333	417.1	
091	-1	-0.061	3.0	-1.666	32.1	
092	-1	-0.426	0.0	-1.222	-224.6	
093	-2	-0.426	12.0	-0.777	-32.1	
094	0	-0.061	12.0	-0.777	-673.7	
095	-1	-0.426	16.0	-2.110	-96.2	
096	0	-0.426	3.0	-2.776	-352.9	
097	0	-0.426	7.0	-1.888	-96.2	
98	0	-0.426	12.0	-2.554	32.1	
099	-1	1.400	7.0	-1.888	160.4	
100	0	1.035	3.0	-1.444	160.4	
208	0	0.438	12.0	-2.118	-609.6	

	Gamma	Alpha		Beta	
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
209	0	0.488	7.0	-2.563	-160.4
210	0	-0.244	3.0	-3.009	-737.9
211	-1	0.122	7.0	-1.003	-417.1
212	-1	-0.610	3.0	-2.118	-481.2

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 218

ROOM: 109

FIELD SURVEY

001/07/1/70			
CONSTANTS	Alpha	Beta	Gamma
BKG	1 dpm/100cm ²	1380 dpm/100cm ³	5 microR/hour
	(1 cpm)	(43 cpm)	
MDA	10 dpm/100cm ²	1372 dpm/100cm ²	n/a
Detector Efficiency	100.00 percent	20.11 percent	n/a
Probe area	100 cm²	15.5 cm²	n/a
COUNTING LAB		en transmitte and the Committee of Committee	
BKG	0.167 cpm	2.250 cpm	n/a
	2.668 dpm/100cm ²	4.364 dpm/100cm ²	

Campla	Gamma	Alp	oha	В	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²		
176	0	-0.244	0.0	-1.449	32.1		
177	0	-0.610	3.0	-0.557	-160.4		
178	-1	0.122	3.0	-1.226	-96.2		
179		0.122	7.0	-2.340	737.9		
180	4.6	-0.610	0.0	-1.003	-224.6		
181	-1	-0.244	7.0	-1.449	288.7		
182		-0.244	3.0	-1.672	481.2		
183	-1	0.488	12.0	0.334	-352.9		
184	0	0.488	3.0	-1.895	288.7		
185	1	0.122	16.0	-1.003	224.6		
186	0	-0.610	3.0	-0.780	-737.9		
187	0	0.122	7.0	-1.895	96.2		
188	-1	-6.244	3.0	-2.786	-673.7		
189	1.11	-0.610	3.0	-0.111	-737.9		
190	0	-0.610	3.0	-1.672	-288.7		

LOCATION

MDA

ZONE: FEMA

2.751 dpm/100cm²

SUBZONE: N/A

BUILDING: 218

ROOM: 110

dpm/100cm²

n/a

-	中巴维		proper of	FR 8 8 8	PRINCE AND	pro 5. 4
- 34	- 53	en 3	5.3	SUI	23/	- V

CONSTANTS	Alpha	Beta	Gamma
BKG	1 dpm/100cm ² (1 cpm)	1380 dpm/100cm ² (43 cpm)	5 microR/hour
MDA	10 dpm/100cm ²	1372 dpm/100cm ²	n/a
Detector Efficiency	100.00 percent	20.11 percent	n/a
Probe area	100 cm²	15.5 cm ²	n/a
COUNTING LAB			THE ART AS ALL MANAGES, THE TREMANDED COMMENT OF THE PROPERTY
BKG	0.235 cpm	2.110 cpm	n/a

3.904

Campia	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²	
001	-1	-0.124	7.0	1.065	96.2	
002	-1-	0.936	0.0	0.848	-352.9	
003	-1	0.936	3.0	1.935	160.4	
004	-1	0.230	3.0	0.630	96.2	
005	-1	0.583	3.0	1.065	288.7	
006	-1	-0.477	0.0	-0.239	-481.2	
007	-1	-0.124	3.0	-0.457	288.7	
800	-1	-0.477	3.0	-0.022	545.4	
009	-1	0.230	3.0	0.413	-481.2	
010	-2	-0.830	16.0	-2.196	-417.1	
011	0	-0.124	3.0	-0.022	160.4	
012	-1	0.583	0.0	0.630	160.4	
013	-1	-0.124	3.0	-1.761	-545.4	
014	-2	-0.124	3.0	1.500	-160.4	
015	-1	-0.124	3.0	0.196	-288.7	
016	-1	-0.477	0.0	0.196	-481.2	
017	-1	-0.124	0.0	-0.891	-481.2	
018	. 1	-0.477	3.0	-1.544	288.7	
019	0	-0.124	16.0	-0.891	-609.6	
020	-2	0.230	7.0	-1.326	-32.1	
021	4	-0.477	16.0	-0.891	160.4	
022	-1	-0.830	3.0	-0.457	352.9	

Sample Gamma		Alp	oha	Beta		
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm ²	
23	-2	0.230	7.0	-0.891	-481.2	
024	-1	0.230	7.0	-0.457	-417.1	
025	-2	-0.477	7.0	-0.457	-32.1	
026	-2	0.583	12.0	-1.978	-481.2	
027	-1	-0.477	11.0	-0.674	-417.1	
028	-1	-0.124	7.0	-0.891	-609.6	
029	-1	-0.830	3.0	-0.891	-673.7	
030	-2	-0.124	16.0	-0.022	-417.1	
031	-1	-0.477	12.0	-0.457	-288.7	
032	-2	-0.124	7.0	1.500	-96.2	
033	-2	-0.124	3.0	-0.457	-609.6	
034	-2	-0.477	12.0	-1.978	-609.6	
035	-1	0.230	16.0	-1.109	-288.7	
036	-2	-0.830	7.0	-0.891	-481.2	
037	-2	-0.830	11.0	0.630	-609.6	
038	-2	-0.830	11.0	0.196	-288.7	
039	-2	0.583	7.0	-0.457	-802.0	
040	-2	1.289	11.0	1.283	-737.9	
)41	-2	-0.124	7.0	0.413	-352.9	
)42	-2	0.583	11.0	0.413	32.1	
)43	-1	-0.477	7.0	-0.022	-96.2	
)44	-2	0.230	12.0	1.065	-288.7	
045	-1	-0.477	3.0	-0.239	-352.9	
)46	-1	-0.830	7.0	0.196	-160.4	
047	0	0.230	12.0	0.413	-224.6	
)48	-1.	0.230	16.0	-1.544	-417.1	
049	-1	-0.830	12.0	-1.109	-545.4	
050	-1	0.230	11.0	-0.674	-481.2	
51	-1	0.670	12.0	-0.555	-417.1	
52	0	-0.061	3.0	-1.666	96.2	
053	-1	-0.061	11.0	-1.666	-288.7	
)54	-1	1.035	12.0	-1.888	-288.7	
55	-1	-0.061	16.0	-0.777	-352.9	
56	-1	-0.426	7.0	-2.554	160.4	
57	-1	-0.061	12.0	-1.222	-160.4	
58	-1	-0.061	16.0	-0.333	-96.2	
)59	-1	-0.426	7.0	-2.332	-32.1	
060	0	-0.061	7.0	-0.777	-224.6	
061	-2	-0.061	12.0	-0.111	-224.6	
062	-1	-0.061	12.0	-1.444	96.2	
63	-1	-0.061	7.0	-0.333	-32.1	

	Gamma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm²	
064	-2	-0.061	12.0	-1.888	-417.1	
065	-1	-0.426	7.0	-1.666	417.1	
066	2.4	-0.426	16.0	-1.888	-545.4	
067	-1	-0.061	7.0	-0.333	-224.6	
068	-1	-0.426	0.0	-2.111	-609.6	
069	-2	-0.061	16.0	-0.555	-417.1	
070	-1	-0.426	3.0	-2.776	-224.6	
071	-2	-0.426	16.0	-1.444	-481.2	
072	-1	0.304	7.0	-2.554	-866.2	
073	-1	-0.061	0.0	-2.999	32.1	
074	-1	0.304	12.0	-1.222	-224.6	
075	-2	1.400	16.0	-1.666	160.4	
076	-1	-0.426	12.0	-0.555	-160.4	
077	-2	-0.061	3.0	-0.111	-224.6	
078	-2	0.304	11.0	-1.888	-288.7	
079	0	-0.426	7.0	-0.777	-288.7	

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 218

ROOM: 111

FIELD SURVEY

CONSTANTS		Alpha	Be	ta	Gan	nma
BKG	1	dprn/100cm²	1380	dpm/100cm²	5	microR/hour
MDA	10	dpm/100cm ²	1372	cpm) dpm/100cm ²		n/a
Detector Efficiency	100.00	percent	20.11	percent		n/a
Probe area	100	cm²	15.5	cm²		n/a
COUNTING LAB	A			VIII	CPL STP-12 SUSTACEUS	

BKG	0.167	cpm	2.250	cpm	n/a	
MDA	2.668	dpm/100cm ²	4.364	dpm/100cm ²	n/a	

Sample	Gamma	Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm ²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
143	0	-0.244	12.0	-1.895	352.9
144	0	-0.610	3.0	-2.340	288.7
145	0	0.122	12.0	-2.118	-352.9
146	0	0.488	7.0	-1.895	288.7
147	0	-0.244	11.0	-2.340	-224.6
148	0	0.122	7.0	-1.449	-417.1
149	0	-0.244	7.0	-2.340	-224.6
150	0	-0.610	7.0	0.334	32.1
151	- 1	0.122	12.0	-1.895	-224.6
152	-1	-0.244	3.0	-2.118	-737.9
153	-1	-0.244	3.0	-1.895	-160.4
154	-1	0.488	3.0	-1.895	-224.6
155	-1	0.122	11.0	-2.786	96.2
156	-1	-0.610	3.0	-2.118	160.4
157	0	0.122	0.0	-2.563	-160.4
158	0	-0.244	0.0	-1.226	352.9
159	0	-0.244	0.0	-1.226	-32.1
160	0	0.488	0.0	-2.786	-545.4
161	0	-0.610	11.0	-1.003	288.7
162	0	1.585	7.0	-1.895	-96.2
163	0	-0.244	7.0	-1.226	32.1
164	-1	-0.610	12.0	-1.895	-96.2

Sample	Gamma	Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²
165	0	0.488	7.0	-2.118	352.9
166	0	-0.244	3.0	-2.786	-930.4
167	-1	-0.610	16.0	-2.786	-96.2
168	-1	0.122	12.0	-1.449	-673.7
169	-1	0.122	0.0	-1.449	-32.1
170	-2	-0.610	3.0	-1.226	352.9
171	-1	0.488	11.0	-1.449	-32.1
172	-1	-0.244	7.0	-0.780	-96.2
173	-1	-0.244	11.0	-1.895	-545.4
174	-1	0.122	3.0	-0.557	-32.1
175	-1	-0.610	16.0	-0.334	-481.2

LOCATION

ZONE:

FEMA

SUBZONE: N/A

BUILDING: 218

ROOM:

SBHW

FIELD SURVEY

CONSTANTS	А	Ipha	Be	ta	Gan	nma
BKG	1	dpm/100cm ²	1380	dpm/100cm ²	5	microR/hour
	(1	cpm)	(43	cpm)		
MDA	10	dpm/100cm ²	1372	dpm/100cm ²		n/a
Detector Efficiency	100.00	percent	20.11	percent		n/a
Probe area	100	cm²	15.5	cm²		n/a

COUNTING LAB

BKG	0.167	cpm	2.250	cpm	n/a	
MDA	2.668	dpm/100cm ²	4.364	dpm/100cm ²	n/a	

Sample	Gamma	Alp	ha	В	eta
Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm ²	Lab dpm/100cm²	Field dpm/100cm
101	-1	0.488	3.0	-1.672	32.1
102	0	-0.244	12.0	-2.786	-224.6
103	0	-0.244	3.0	-1.895	160.4
104	-1	0.122	3.0	-1.449	-96.2
105	0	-0.610	12.0	-1.449	96.2
106	0	0.488	0.0	-1.672	-417.1
107	0	0.122	7.0	-1.449	-288.7
108	0	-0.244	3.0	-1.672	96.2
109	0	0.122	2.0	-2.118	-288.7
110	-1	-0.244	12.0	-1.672	-481.2
111	-1	-0.244	7.0	-1.672	-224.6
112	-1	-0.610	3.0	-1.003	-417.1
113	-1	-0.610	16.0	-0.557	-417.1
114	-1	-0.244	7.0	-1.003	-288.7
115	0	0.488	7.0	-3.232	-545.4
116	0	-0.244	7.0	-0.111	-802.0
117	0	-0.610	16.0	-1.226	352.9
118	1	-0.244	11.0	-3.232	-288.7
119	1	-0.244	3.0	-1.449	224.6
120	1	-0.244	0.0	-1.449	-288.7
121	1	-0.244	7.0	-0.780	-481.2
122	1	-0.610	3.0	-1.449	-224.6

LOCATION

ZONE: FEMA

SUBZONE: N/A

BUILDING: 218

ROOM: BOILER

FIELD SURVEY

CONSTANTS	Д	lpha	Be	ta	Gan	nma
BKG MDA	1 (1 10	drm/100cm ² cpm) dpm/100cm ²	1380 (43 1372	dpm/100cm ² cpm) dpm/100cm ²	5	microR/hour
Detector Efficiency Probe area	100.00	percent cm²	20.11 15.5	percent cm²		n/a n/a
COUNTING LAB						
BKG	0.167	cpm	2.250	cpm		n/a
MDA	2.668	dpm/100cm ²	4.364	dpm/100cm ²		n/a

Carania	Garnma	Alp	ha	Beta		
Sample Point	Field (microR/hr)	Lab dpm/100cm²	Field dpm/100cm²	Lab dpm/100cm²	Field dpm/100cm ²	
195	0	-0.244	16.0	-1.672	-96.2	
196	0	0.122	0.0	-0.111	-288.7	
197	0	-0.244	7.0	-2.118	609.6	
198	0	1.219	12.0	-1.672	224.6	
199	0	-0.244	12.0	-1.226	-224.6	
200	0	-0.244	3.0	-2.786	32.1	
201	0	-0.244	3.0	-2.118	-160.4	
202	0	-0.244	12.0	-0.111	-352.9	
203	0	-0.244	7.0	-2.118	-673.7	
204	-1	0.488	12.0	-0.334	224.6	
205	31	0.122	3.0	-1.003	-288.7	
206	-1	-0.610	7.0	-1.672	32.1	
207	4	-0.244	3.0	-0.557	-802.0	