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ABSTRACT

Industry data representing the time to recovery of loss of
off-site power at nuclear power plants for 63 incidents caused by
plant-centered losses, grid losses, or severe weather losses are
fit with exponential, lognormal, gamma and Weibull probability
models. A Bayesian analysis is used to compare the adequacy of
each of these models and to provide uncertainty bounds on each of
the fitted models. A composite model that combines the prob-
ability models fitted to each of the three sources of data is
presented as a method for predicting the time to recovery of loss
of off-site power. The composite model is very general and can
be made site specific by making adjustments on the models used,
such as might occur due to the type of switchyard configuration
or type of grid, and by adjusting the weights on the individual
models, such as might occur with weather conditions existing at a
particular plant. Adjustments in the composite model are shown
for different models used for switchyard configuration and for
different weights due to weather. Bayesian approaches are also
presented for modeling the frequency of initiating eve its leading
to loss of off-site power. One Bayesian model assume. that all
plants share a common incidence rate for loss of of f-site power,
while the other Bayesian approach models the incidence rate for
each plant relative to the incidence rates of all other plants.
Combining the Bayesian models for the frequency of the initiating
events with the composite Bayesian model for recovery provides !

the necessary vehicle for a complete model that incorporates
uncertainty into a probabilistic risk assessment.

iii/iv



- _ _ _ _ _ _ _ _

TABLE OF CONTENTS

Section Pace

1. Introduction ............................................. I

2. Fitting Exponential and Lognormal Probability Models 5.....

3. Fitting the Gamma Probability Model 8......................

4. Fitting the Weibull Probability Model 9....................

5. A Bayesian Comparison of Alternative Probability Models .. 13

6. Bayesian Analysis of the Uncertainty Associated with
P(T s t) 14.................................................

The Bayesian Posterior Density 15.........................
Uncertainty Bounds 16.....................................
Monte Carlo Implementation 17.............................
Factoring the Joint Posterior Density .................. 17
Acceptance-Rejection Sampling 18..........................
Results for the Gamma Probability Model 18............. ..

Interpreting the Uncertainty Bounds ................... 20
Bounds for the Weibull Probability Model 20...............

Results for the Weibull Probability Model 21..............

7. A Composite Model for Time to Recovery of LOSP ........... 21

Dirichlet Distribution ................................. 23
Uncertainty for the Composite Model ................... 23

8. Modifying the Composi te Model for Speci fic Plants . . . . . . . . 25

Modifying the Distribution for Plant Centered LOSP ..... 25
Tests for Pooling Data ................................ 27
Modifying the Weather Term in the Composite Model ..... 30
Modifying the Grid Component in the Composite Model 31....

The Expected Time to Recovery for the Composite Model 31..

9. Bayesian Analyses of the Frequency of the Initiating
Leading to LOSP ......................................... 33

Bayesian Analysis Assuming a Common Incidence Rate .... 33Bayesian Analysis Assuming Individual Incidence Rates . 33

References .................................................. 43

v

,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- - -



.. - . .- -

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of John
Flack of the NRC for conversations to clarify many issues with
respect to modeling time to recovery of loss of off-site power,
F. Eric Haskin of Sandia National Laboratories for encouraging us
to write this report and for his valuable comments, to Arthur
Payne of Sandia National Laboratories for helping to clarify many
engineering issues, Michael J. Shortencarier of Sandia National
Laboratories for his assistance with the many figures that appear
in this report, and to Ruby Cochrell of Sandia National Laborato-
ries for her editorial and format suggestions that greatly
improved the final form of this report. This report was prepared
in support of the Phenomenology and Risk Uncertainty Evaluation
Program sponsored at Sandia National Laboratories by the Nuclear
Regulatory Commission.

,

1

,

vi

._ - . . . ._ - . . _ . _ , . . - _ - . . . _ - - - _ , - , .



1. INTRODUCTION

Industry data representing the time to recovery of loss of
I off-site power (LOSP) at ntclear power plants are presented in

Appendix A of the Nuclear Regulatory Commission Report NUREG-
1032. The loss of off-site power as defined in that NRC report
is

the interruption of the preferred power supply to the"
...

essential and nonessential switchgear buses necessitating or
resulting in the use of emergency AC power supplies."

NUREG-1032 further states

"... total loss of offsite power is a relatively infrequent
occurrence at nuclear power plants Historically, a loss...

of offsite power has occurred with a frequency of about once
per 10 site ye??s. The typical duration of these events has
been on the order of one-half hour."

The data reported in NUREG-1032 were obtained from the Licensee
Event Report System and are classified as being plant-centered
(PC), grid (G), or caused by severe weather (W). Again citing
from NUREG-1032,

' Plant-centered events are those in which the design and
operational characteristics of the plant itself play a role
in the likelihood or duration of the loss-of-offsite-power
event. Area or weather effects include the reifability of
the grid and external influences on the grid or at the site
(such as severe weather) that have an effect on the likelf-
hood and duration of the loss of offsite power."
The data reported in NUREG-1032 consist of the time (inhours) to recovery of loss of off-site power for 59 reported

incidents through 1935. Since that time, four additional inci-
dents have been reported. All data are shown in Table 1, with
the most recent values identified with an asterisk. The data are
current through June 1987. Summary statistics for the LOSP are
shown in Table 2.

The LOSP data are displayed by each category in Figure 1 as
"true" boxplots. The actual box por' tion of the plot is formed by
the lower and upper quartiles of the sample data, with the median
indicated by a vertical line within the box. The left-handendpoint of the boxplot is located at the maximum of

X 1.5 x (interquartile range) and X.25 - min'
For example, consider the first boxplot in Figure 1, which is

for the plant-centered data. Since X .002 for the plant- j
-

min
centered data, the left-hand endpoint of the boxplot for the |plant-centered data is found as !

I

|

|
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Table 1. Time to Recovery (in hours) for 63 Recorded Incidents
of Loss of Off-Site Power at Nuclear Power Plants

Plant Centered (n=43)

0.002 0.067 0.200 0.400 0.767* 1.750
0.003 0.070 0.250 0.430 0.900 2.750
0.003 0.080 0.250 0.480 0.900 7.467*
0.004 0.083 0.250 0.500 0.930
0.013 0.130 0.270 0.500 1.030
0.015 0.150 0.280 0.500 1.150
0.017 0.167 0.330 0.570 1.480
0.020 0.183 0.334 0.670 1.667*

Grid (n=13)

0.130 0.300 0.330 0.920 1.500 2.083
0.180 0.330 0.550 1.030 2.000 6.470

i 0.250

Severe Weather (n=7)

1.750 4.000 4.317* 5.000 5.500 8.900
2.667 s

__

t

Table 2. Summary Statistics for the LOSP Data in Table 1

Plant Scid Weather All Data

lower quartile (X .25): 0.080 0.275 2.667 0.167

] Median (X .50): 0.280 0.550 4.317 0.430

Upp- . quartile (X .75): 0.767 1.750 5.500 1.480

Sample mean (X): 0.651 1.236 4.591 1.210

max (0.080 - 1.5(0.767 - 0.080) = -0.951, .002) = .002.

The right-hand endpoint of the boxplot is located at the minimum
of

X .75 + 1.5 x (interquartile range) and Xmax *

Since X 7.467 for the plant-centered data, the right-hand-
max

endpoint of the boxplot for the plant-centered data is found as

min (0.767 + 1.5(0.767 - 0.080) = 1.798, 7.467) = 1.798.

2
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Figure 1. Boxplots of Data for the Time to Recovery LOSP

Any data values beyond the right-hand endpoint (or below the
left-hand endpoint) indicate a high degree of skewness, and for
symmetric distributions, would be considered as outliers. The
b: sis for the identification of outliers is a boxplot for normal
populations, where 1.5 x (interquartile range) subtracted from
the lower quartile and added to the upper quartile will cover
99.3% of the distribution. In Figure 1 the symbol "x" is used to
identify the outliers. For the plant-centered data, the two
largest observations, 2.750 and 7.467 are identified as outliers.
More importantly, the general form of each of the boxplots
(except for severe weather, which has only seven observations) is
consistent with data that are highly skewed.

Another approach to displaying the LOSP data is to use an
empirical distribution function (e.d.f.) such as shown in Figures
2 to 4 (the weather data are not shown since there are only seven
observations). The steps in the e.d.f. occur at each of the data
values in the sample, and the step heights used in graphing the
e.d.f.s are equal to 1/n, where n is the number of sample obser-
vations being plotted. One immediate advantage of the e.d.f.
representation over an approach based on grouping the data in a
histogram or boxplot display is that each data value is dis-

| played.

In addition, the e.d.f. removes the subjectivity associated
with grouping the data in a histogram, thus its construction is
not analyst dependent. Moreover, the distribution function of a
candidate probability model can be plotted jointly with the
e.d.f., and a goodness-of-fit test designed for use with distri-
bution functions can be used to determine the adeouacy of fit.
Like the boxplots, the e.d.f.s show the PC data to consist of
mostly small values and the overall data to be more spread out.

3

|



_ - . - _

_.

|
-

-|

:

1- . ,

|

C 0.8 - ;
E
5 'r

S 0.6 -
E

h 0.4 -
5
3 02-

f

0- [, , , , , , , , i

O 1 2 3 4 5 6 7 8 .9
'

TIME TO RECOVER LOSP (hours)

Figure 2. E.D.F. for Time to' Recover LOSP (Plant Centered)

1-
|

C 08-
5
s
8 0.6-

'

E
'

O.4-

i
8 02-

;

'

0- , , , , , , , , ,

O 1 2 3 4 5 6 7 8 9 i

TIME TO RECOVER LOSP (hours)

Figure 3. E.D.F. for Time to Recover LOSP (Grid) |

|

1-
-

-
.

U 0.8 -
5
s
80.6-
E i

f0.4-
i ;

8 02-
!

0- , , , , , , , , ,

0 1 2 3 4 5 6 7 8 9

TIME TO RECOVER LOSP (hours)

Figure 4. E.D.F. for Time to Recover LOSP (All Data)

,

4
,,

. . ~ . _ . _ - _ . . , _ _ , . _ _ _ _ - . _ _ _ _ . - . _ . . _ _ _ _ . _ _ _ , . _ . . . - . . . , . _ . , .



_ _ _ _ _

Section 2 of this report considers modeling the skewed LOSP
data with exponential and lognormal distributions. Sections 3
and 4 provide details of modeling the LOSP data with gamma and
Weibull distributions respectively, while Section 5 presents a
Bayesian comparison of the various probability models. Section 6
presents a Bayesian approach to modeling the uncertainty in the
probability estimates provided by the gamma and Weibull distribu-
tions. Section 7 provides a composite model for the LOSP data
with plant specific modifications of the composite. model pre-
sented in Section 8. The frequency of the initiating events
leading to LOSP is modeled in Section 9.

2. FITTING EXPONENTIAL AND LOGNORMAL PROBABILITY MODELS

Two probability models frequently used for failure data are
the exponential and lognormal distributions. Each of these
models will be briefly discussed. The probability density func-
tion for the exponential distribution is given as follows:

tf(t) = ae- t a 0, a > 0. (1)

The maximum likelihood estimate of the parameter a, where 1/a is
the mean time to recovery, is a = n/st $ where t i....,t represent
the sample data. n

The estimate of the parameter a can used to obtain the esti-
tmated distribution function F(t) P(T s t) =f f(x)dx, which=

gives the probability that LOSP will be recovered Sithin t hours.
The graph of each cumulative distribution function (c.d.f.) can
be added to the graph of the respective e.d.f. in Figures 2 to 4

.

|for a visual comparison of how well the exponential model fits 1

the data. However, since the P(T a t) is of interest in this
application, that is the probability that the time to recover
LOSP will be longer than some time t, Figures 5 to 7 have been
constructed with the graph of 1 F(t), along with the corres--

pondingly constructed complementary counterpart of the e.d.f.
Note that the horizontal scale used in Figure 5 is different than
the one used for both Figures 6 and 7 because of the shorter
times of plant-centered losses.

The graphs in Figures 5 and 7 both show the fitted exponen-
tial model to be consistently above the counterpart of the e.d.f.
and then to be consistently below. Such behavior indicates a
definite bias in the fit, in Figure 6 the bias is less apparent,
but there are only 13 observations. And as will be shown, many
different distributions can be fit to small data sets.

The probability density function for the lognormal distribu-
tion is given as follows:

f(t) = 1/(to/27) exp(-[(in t p)/o]2/2) ta0, -*<p<=, o>0 (2)

5
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The maximum likelihood estimates of the location and scale param-
^

eters, p and o, are p -E in t /n and o - r (in t p)2/n.^2
-

g g

The fitted lognormal probability models are shown in Fioures
8 to 10 in a manner analogous to the exponential models in
Figures 5 to 7. Bias in the lognormal model is also apparent in
Figures 8 and 10, but the bias is just opposite of that shown in
Figures 5 and 7. In Figure 9 it could be argued that the lognor-
mal model provides an adequate fit for the data just as the
exponential model did in Figure 6. Again this result is due to
the small sample size.

3. FITTING THE GAMMA PROBABILITY MODEL

Another candidate for modeling time to recover LOSP is the
gamma distribution, which is skewed to the right, and is indexed
by a shape parameter (a) and a scale parameter (B). This distri-
bution has positive probability on the interval [0,=) and has the
flexibility to represent many different shapes of probability
distributions for fitting data. The probability density function
for the two-parameter gamma distribution is given as follows:

f(t) = s [r(a)]~I t "I -st '

e t a 0, a > 0, s > 0 (3)
I

where r(a) is the gamma function and t is the recovery time. The
discussion in the following paragraph concerns the procedure for t

estimating the parameters a and s.

Lawless (1982, pages 204-206) provides a discussion of the
maximum likelihood procedure used for estimating the parameters a
and s in the density function given in Equation (3). His
procedure can be summarized using the following steps.

1. Find the arithmetie mean ({} and t:1e geometric mean (I) for
the sample data.

2. Calculate s - log (l / E).

s'I(17.79728 + 11.968477 s + s )-123. Compute a =

2(8.898919 + 9.059950 s + .9775373 s ) if .5772 < s s 17x
^

= s"I(.5000876 + .1648852 s - .0544274 s 2)or a

if 0 < s s .5772.
A A I

4. Compute s = a / {.
~

The results of the calculations used to find the estimates of the
a and 4 for each of the plant-centered, grid, andparameters

entire data sets are given in Table 3.

8
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Table 3. Maximum likelihood Estimates for the Parameters
and 4 in a Gamma Distributiona

Plant Centered Grid Entire Data Set

t: 0.6514 1.2364 1.2099

E: 0.1978 0.6543 0.3547

s: 1.1917 0.6364 1.2270

a: 0.5197 0.9161 0.5057

h: 0.7977 0.7409 0.4180

Graphs of the three fitted probability models appear in
Figures 11 to 13. Figure 11 makes it clear that the gamma prob-
ability model provides a very good model for the time to recovery
of LOSP for the plant-centered data and does not show the bias of
the exponential and lognormal probability models. Kolomogrov
goodness-of-fit tests (Conover, 1980) support this conclusion.
For the grid data in Figure 12 the result of the small sample
size is again apparent, as the gamma probability model provides
about the same fit as the previous models. Figure 13 shows that
tSe gamma probability model provides a better fit than the
exponential model for the overall data. The gamma probability
model for the overall data fits the small and large times better
than the lognormal probability model, but is not as good in the ,

middle of the distribution. !

IAn important point with respect to probability models used to |fit the overall data is that the overall data represents a mix- |

ture of distributions; and as such, probability models that are j
appropriate for the plant-centered or grid portions of the data
will usually not be appropriate for the overall data. Thus if
the plant-centered data and the grid data are both appropriately
modeled with gamma distributions, then the overall data would
represent a mixture of gamma distributions, and as such are not
properly modeled with a gamma distribution. In addition, the
overall data also contains the weather data for which a prob-

iability model has not yet been specified.
4. FITTING THE WEIBULL PROBABILITY MODEL !

An alternative formulation for modeling time to recovery of
LOSP employs the Weibull distribution, which is skewed to the

I right and is indexed by a shape parameter (p) and a scale param-
eter (A). This distribution has positive probability on the
interval (0,=) and has found wides,pread use in life testing
studies because it offers more flexibility than the traditional
exponential model. Like the gamma model, the Weibull model has
the flexibility to represent many different shapes of probability
distributions for fitting data. The Weibull probability model is

i
9
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related to the exponential model in the following manner. If T

is a Weibull random variable, then T# is an exponential random
variable.

The probability density function for the two-parameter Wei-
bull distribution is given as follows:

f(t) - A#pt#-I exp(-At)# t a: 0 (4)
-

,

where A>0, p>0, and t is the recovery time. The discussion in' the following paragraph concerns the procedure for estimating the
parameters A and p. ;

'

Lawless (1982, pages 142-143) provides a discussion of the !maximum likelihood procedure used for estimating the parameters A i

and 4 in the density function given in Equation (4). His i

procedure requires numerical methods to solve the following

equations for A and p.

= - E tj ~ -1/hn. g
: A

g (5)i=1

1/h - f E log t g=0 (6)It log t j/ It -

1-1 1-1 1-1 '

!
I

iThe results of the calculations used to find the estimates of ithe parameters A and p for each of the plant-centered, grid, and
|

; entire data sets are given in Table 4.
!

1

Table 4. Maximum Likelihood Estimates for the Parameters;

; A and 4 in a Weibull Distribution
!

Plant Centered Er_1.d. Entire Data Set
A

A: 2.1125 0.8662 1.1576
^
p: 0.6544 0.8891 0.6396

|

|
^

1 The estimates of the parameters A and p are used to obtain
I

the Weibull probability model for LOSP as was done for the gamma
probability model. Figures 14 to 16_show ths analogors results
for the Weibull distribution as Figures 11 to 13 showed for gamma
distribution. The interpretation of the graphs is similar to
that for the gamma model with the exception that the Weibull |appears to provide a better fit to the overall data. '

11
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5. A BAYESIAN CONPARISON OF ALTERNATIVE PROBABILITY N0DELS

The Bayesian method for comparing alternative probability
models produces pos;.erior probabilities that each of the models
is the correct model. It is assumed, a priori, that each of the
models is equs'.ly like'.y to be the correct model and that one of
the models ic.the co.' rect model. Therefore, when comparing the
gamma and Weibull models, each model is assigned a prior prob-
ability of .5. The revision of these prior probabilities is
conducted using Bayes' Theorem. For example, the probability of
the gamma family being correct is obtained from Bayes' Theorem as

P(Gamma |t i....,t )n

.5P(t ,...,tn| Gamma)3 (;),

.5P(t g.... tn| Gamma) + .5P(t i,...,tn|Weibull)

The term P(t ,....tn| Gamma) is calculated from the priory

density of the parameters a and p, p(a,p), and the likelihood
function of the data

L(t i,...,tnl '#) " " f (t i l '#)' (8)r

where f,(t j|a,4) is the gamma density function of Equation (3).
From p(a,p) 1/(as) and L(t g.....tnja,p), P(t g....,tn| Gamma) is-

calculated, as

P(t i....,tn| Gamma) - f A0 p( .p)L(t 3,... t |a,p)da ds. (9)0 n

The calculation of P(Weibull|t 3,...,t ) is accomplished in the
n

same manner with the roles of the Weibull and gamma densities
interchanged in the above discussion and p(p,A) - 1/(pA).

The above analysis extends to encompass other probability
models and to the comparison of more than two probability models
at one time. In the results given below the posterior prob-
abilities have been calculated for the exponential, lognormal,
gamma, and Weibull probability models, using the plant-centered
event data, the grid centered event data, and all of the data
combined into a single data set. Each probability model in
Equation (7) is given a prior probability of .25, althoughdifferent weights could be used for each model. The results of
the comparison of the four probability models are given in Table
5. For the exponential model and lognormal models the priors,
p(o) - 1/a, and p(a) = 1/o were used, respectively.

13



Table 5. Posterior Probabilities for the Probability Models s

Used with Each Category of Loss of Off-Site Power

Posterior Probability
Probability

Model Plant Centered Enid All Data

Exponential 4E-4 .181 4E-6

Lognormal .041 .533 .019

Gamma .466 .175 .430

Weibull .492 .111 .551

The posterior probabilities of the gamma and Weibull families
for the plant-centered data almost sum to 1.0 by themselves, as
is also the case for the entire data set, thus either of these
models would be favored over either the lognormal or exponential
models. Specifically, in the case of plant-centered data, the
Weibull model would be essentially the same as the gamma, but
favored over both the lognormal model by 12 to 1 (.492 to .041),
and heavily favored over the exponential model by 1230 to 1 (.492
to 4E-4). For the grid data that involved only 13 data values,
none of the models differed greatly. This corresponds to com-
ments made earlier with respect to the difficulty of choosing a
model using a small number of observations. Thus the choice
among the four models is not clear, and any one of the family of
distributions will serve almost as well as the other. The
Weibull and gamma are favored over the other two models for the
entire data set with the Weibull being f avored over the exponen-

| tial model by 143,169 to 1.
!

! 6. BAYESIAN ANALYSIS OF THE UNCERTAINTY ASSOCIATED WITH P(T s t)

The calculation of the cumulative probability,

F(t) - P(T s t) = F(t|o,p)

depends on knowing a and p. However, if a and p are uncertain,
then P(T s t) is uncertain, if a and 4 possess a joint probabil-
ity distribution, at in Bayesian statistics, then P(T s t) is a
random variable and as such has a probability distribution that
is induced by the joint distribution on a and p. This distribu-
tion is of interest in probabilistic risk analysis since it is
desirable not only to have an estimate of P(T s t), but also to
have an expression of the uncertainty in P(T s t) for each given
value t. Thus a Bayesian analysis is used as the vehicle to
quantify the uncertainty.

The Bayesian analysis for LOSP is predicated on the assump-
tion that recovery times follow a two parameter gamma distribu-
tion with neither the shape parameter, a, nor the scale param-
eter, p, known. (The Weibull distribution is considered later in

14
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this section.) The distribetions have been verified through the
examination of data sets in Sections 3 to 5.

Let T denote the time to recovery from a LOSP incident. The
probability that recovery will occur during the first t hours of
the incident is given by:

t t

F(t|a,4) - f f(x) dx f 4 x 'I '#*/r(a) dx (10)e
0 0

where t a 0, a >0, and p > 0.

Once point estimates of a and 4 have been developed following
the steps outlined in Section 3, inserting the point estimates of
a and 4 into Equation (10) produces an estimate of the function
F(t|a,4). This method produces only a point estimate of the
distribution of recovery time and does not )roduce information
about the uncertainty in the estimate of F(t a,p). The problem
of producing confidence limits or Bayesian uncertainty intervals
for the function F(t|a,4) is difficult to solve since the prob-
ability function contains the complete gamma function r(o), which
introduces severe analytic and numerical difficulties.

1

The Bayesian Posterior Density

The Bayesian analysis yields explicit, probabilistic uncer-
c tainty bounds and is based on the joint posterior probability

distribution of a and p calculated using data from LOSP incidents
and Bayes' Theorem. The data are denoted by t i.....tn. Each
datum is the time to recovery for an independent LOSP incident.
Thus, measurements for n distinct incidents comprise the data
set. The joint probability density function, or likelihoodfunction, for the n independent observations is

n

L(t),...,tn) 1-1n f(t 4|a,p)

- 4" P 'I '#S/r(a)" (11)e

where f(t|a,4) is the derivative of F(t|a,4) with respect to t,
P-nt and S - E t

$ j,

Bayes' Theorem combines the information in the likelihood
function with prior, or s u b j e c '. i v e , information concerning a and
4 In this analysis, the use of prior information is forgone,
and instead, a noninformative prior distribution will be used to
avoid injecting subjective information into the analysis. Fol-lowing Jeffreys (1961), t h e .i o i n t orior density for and p isa
taken to be proportional to 1/(op). This expression does not, in
fact, define a proper probability distribution, its usefulnessarises, instead, from the lack of information about the relative
likelihoods of various values of a and p.

15
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i

Combining the likelihood function and the prior distribution
using Bayes' Theorem amounts to multiplying the likelihood func-
tion and the prior distribution and then finding a normalizing
constant that makes the area under the resulting joint function
of a and p equal *o unity. The resulting ioint oosterior density
of a and p is given by:

h(a,p|t i.....t ) - (p" P 'l -#S]/[kapr(a)"] (12)e
n

where k is the constant

k - f f [p" P 'I '#3]/[apr(a)"] da dp (13)e
00

Uncertainty Bounds

Engineering anal often employ the complementary prob-ability function G(t|ysesa,p) - 1 - F(t|a,p) - P(T > t), which is the
probability that recovery will not be achieved before t hours.
Each pair of parameter values, (a, p), defines a different
recovery time complementary cumulative probability function. At
a given value of t, the pairs (a, p) can be conceptually ordered
in such a way that each successive pair produces a larger value
of G(t|a,p). Let the set of pairs (a, p) that produce values of
G(tja,p) s q be denoted by R(t,q) for 4 s q s 1. Formally,

R(t,q) - ((a p)|G(t|a,p) s q). (14)

C R(t,q) then defines a region of values in the a, p parameter
space for which the probability of the recovery time exceeding t
is not greater than q.

The uncertainty bounds for the recovery time distribution are
found from R(t,q) and h(a, pit g....,t ). For example, the 90%nupper uncertainty bound is the value for which there is only a
10% chance that the true recovery probability exceeds this value.
The value of the 90% uncertainty bound is the value of q that
satisfies:

f f h(a,p|t 3,....t ) da ds .90. (15)nR(t,q)

Similarly, bounds other than the 90% bourd are generated using
various values for the right side of Equation (15). Note thatsince t is fixed, the uncertainty bounds for other values of t
must be found through the set R(t,q) that is specific to that t.

16
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Monte Carlo Implementation

in practice the procedure described above is virtually impos-
sible to implement. The difficulty is in the need to define
R(t,q) for all values of t and q. This must be done so that the
various values of q can be searched to find the one value that
satisfies Equation (15). An alternative methodology that is
capable of providing the same uncertainty bounds is a Monte Carlo
implementation of the Bayesian analysis.

The Monte Carlo implementation of the Bayesian analysis
requires that value; of a and 4 be sampled from the joint poster-
ior density of a and s given in Equation (12). For each sampled
pair (a,s), G(t|o,s) is found for the values of t that cover the
range of interest. The process is repeated many times until a
sufficient number of observations are obtained to estimate the
probability distribution function,

G ( t |fo ra,s). This distribution
forms the required uncertainty bound a given value of t.

While there is some error due to the finite size of the Monte
Carlo sample, the error can be controlled to any desired level by
setting an appropriate Monte Carlo sample size.
Factorina the Joint Posterior Density

;

While the Monte Carlo implementation of the Bayesian analysis
provides a means for estimating the probability distribution
function of G(t|a,b), there are some technical issues concerning
sampling from the joint distribution of a and s that must be
resolved. Recall that the joint posterior distribution is given
by Equation (12). One may sample from h(a,s|t 3,...,t n) by fac-
toring the joint density h(a,4|t

of s giveh) ainto the product of the3,...,t
conditional density function and the unconditional
or marginal density of a. Thus,

h(a,4|t),...,tn) - h,g,(s) h,(a) (16)

where, by some algebra,

gg,(s) - 4" -I ""e-#S/r(na) (17)h S

and

h,(a) - P -I r(na)/(kaS" [r(a))"). (18)

The function in Equation (17) is recognized as a gamma density
function, while the function in Equation (18) is a density that
is not a member of a well-studied family of densities, in fact,
h,(a) cannot be integrated analytically to find the corresponding
cumulative distribution function. Thus, the acceptance-rejection
method of sampling is used to generate values from this density.

17
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Acceptance-Re.iection Samolina

The acceptance-rejection method of random deviate generation
is applicable when the values are generated from a density func-
tion that is bounded from above. This condition holds for the
density in Equation (18). Although it is not always an efficient
algorithm to use, it can be employed when only the density func-
tion is known. Thus, acceptance-rejection methods can be used in
a wider variety of situations than many other methods. Briefly,
acceptance-rejection generation of a random deviate is accom-
plished using the steps:

1. Transform the random variable X (i.e. a in (18)) to another
random variable Y so that the range of values of the random
variable Y is (0,1]. Since the random variable a >0, the
transformation that is used is Y a/(1 + a). Denote the-

density of the transformed random variable by h*(y). It is
assumed that h*(y) is bounded from above.

2. Calculate the maximum value of the dgasity function of the
transformed random variable Y. Call this value w.

3. Generate two uniform random deviates, u and u '
3 2

4. If u s h*(u )/w, then let the generated random deviate, y,
2 y

be equal to u , and the reverse transformation, - Y/(1-Y),a
3

gives the value of the random deviate a. Otherwise, return
to Step 3.

The potential inefficiency of the acceptance-rejection metho-
dology stems from the test in Step 4. If the inequality does not
hold true, no random deviate is generated. Thus, particularly if
the density of the transformed random variable is very peaked,
many uniform random deviates may be needed in order to generate
one value of Y. However, the cost of generating uniform random
deviates is very low compared to the cost of function evaluation,
and thus acceptance-rejection procedures may be more efficient if
the alternative method requires difficult function evaluations.

Results for the Gamma Probability Model

figures 17 to 19 show the 90% Bayesian uncertainty bounds for
the gamma probability model resulting from the acceptance-rejec-
tion sampling procedure for plant-centered, grid, and overall
data, respectively. The bounds in Figure 17 are quite narrow
rerlecting the greater number of observations for plant-centered
data (n-43), and the empirical derived step function is entirely
contained within the bounds. The bounds in Figure 18 for the
grid data are much wider than those for the plant-centered data

i

reflecting the smaller sample size (n-13). Again these bounds |
provide good coverage of the empirical step function in the I

graph. With n=63, the bounds in Figure 19 are narrow, but the
deficiency of the gamma probability model for the overall data is
evidenced by empirical step function being on, or outside of, the
bounds. I

18
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Interoretino the Uncertainty Bounds

The Bayesian method of generating the uncertainty bounds
shown in Figures 17 to 19 lends itself to an empirical inter-
pretation. The process of generating pairs of values of a and A
may be viewed as one that generates complementary cumulative
probability functions or curves for the time to rccovery of LOSP.
Each pair of values. (a, 4), is mapped into a distinct curve.
Thus a Monte Carlo simulation of N pairs of values of a and 4 is
a Monte Carlo simulation of N recovery curves.

No single curve generated in the simulation forms an uncer.
tainty bound, rather the uncertainty bound is found from an
envelope of curves. For example, the 90% uncertainty bound is
found by identifying the .05xN Q smallest curve and the .95xNQ
1argest curve at each value of the time variable. Thus it is
possible that one curve could provide part of the upper un-
certainty bound at one value of the time variable and part of the
lower uncertainty bound at a d i f f e re r.t value of the time vari-
able.

This method of constructing uncertainty bounds is based on
the axioms of probability and thus has a strong foundation. The
gamma probability model was used here because the data are fit
better by gamma than by either the exponential or lognormal
models. Bounds based on the Weibull model are now considered.
Bounds for the Weibull Probability Model

Bayesian analysis of the uncertainty associated with the Wei-
bull probability model proceeds in the same way as the analysis
just presented for the gamma probability model. Again, a dif-
fuse joint prior distribution is employed for the two uncertain
parameters, in this case the joint prior is 1/(Ap). The likeli- <

hood function analogous to that given in Equation (11) for a
sample of n observations given by t 3,....t IS '

n

#
4)"P 1,-A SAL(t .....t ) - (A 39)i n

,

where S E tf and P - n t Multiplying the joint prior distri-g.
bution by the likelihood function and a normalizing constant, k,
yields the posterior distribution for A and 4 given by

A
h(A,0|t i.....tn) - kA"#'I n-l s-1,-A (20)

S
s p

.

Equation (20) can be factored into the unconditional or marginal
density function of p, h (s), and the conditional density func-g

tion of A given p, h3gp(A). These densities are

h,(s) - kr(n)p"'I A-lj$n gg)P

20
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:

i
,

:

and

3 g(A) - A"#'I "e-A S
h S /r(n). (22) ;

1

The uncertainty bounds for the Weibull probability model are ;
generated using the same Monte Carlo scheme that was used to
generate the uncertainty bounds for the gamma probability model,

j Sampling is done first from h (p) using acceptance-rejectionp
methods. The generated value of A is used to specify the condi-
tional distribution of A, and a value of A is selected using the
inverse function method of random deviate generation,

i Results for the Weibull Probability Model

Figures 20 to 22 show the 90% uncertainty bounds for the lWeibull probability model resulting from the acceptance-rejection ;
sampling procedure for plant-centered, grid, and overall data,
respectively. The results shown in Figures 20 and 21 are very

i similar to those for the gamma probability model in Figures 17 ;
and 18, respectively. The results shown in Figure 22 may be ;

slightly better than the corresponding results shown in Figure 19 '

for the overall data. This is consistent with the posterior
,probabilities given earlier for the gamma and Weibull models for !the overall data. '

7. A COMPOSITE MODEL FOR TIME To RECOVERY OF LOSP
1

The analyses in the previous sections provide support for !,

modeling the plant centered data and the grid data with either '

gamma or Weibull probability models. Thus, it is appropriate to I

recall the last paragraph of Section 3, which indicated thati ;probability models appropriate for portions of the data will -

i usually not be appropriate for the 6ntire composite data set,
i| That is, the composite data set represents a mixture of distribu-

tions. An alternative to modeling the entire data with a single
; probability model, as has been done in the previous sections, is '

,

i to use a composite probability model that combines the various
! entities of plant-centered, grid, and weather into a single model

in order to predict the time to recovery, given a LOSP. The
i composite model is formed by pooling data from plant-centered,
i grid-centered, and weather sources. The question that needs to
i be addressed is how to construct a composite recovery curve from !
. models for each of these three types of power loss. A solution !

| to this problem is to form a mixture distribution that is aweighted average of each of the three types of failures. Such ai

[ model can be expressed as
|'

| |

G(x) - p3 3(x) + p2 2(*) + P 0 (x) (23)G 0
33

where the G (x) are complementary cumulative probability func-4tions representing the three types of failures, and the p areweights that reflect the occurrence rates of the three type,s of
power loss. Of course, p3 + p2 + P3 * I*

f 21
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The model in Equation (23) contains the parameters p, p2'g

and p3, which may be estimated by the observed relative frequen-
cies of each of the three types of power loss. There is also
uncertainty in these estimates so that the total uncertainty in
the curve in Equation (23) is a function of the uncertainties
about the p as well as the uncertainties about the G (x).g g

Dirichlet Distribution

The information about the uncertainty in the pis may be
analyzed by Bayesian methods using a noninformative pribr distri-
bution and a multinomial likelihood function. The resulting
posterior distribution is known as a Dirichlet distribution. The
Dirichlet distribution for two random variables, pi and p2' "III
be used since p3 - 1 - p g - p2 This Dirichlet density is given
by

!f(p3,p2 "l'"2'"3)
n -1 n 'I

II'P 'P ) 3'I
"g 2- (r(n +n +"3)/(r(n )r(n )r(n )l) P (24)3 2 g 2 3 1 P2 1 2

where n is the frequency of observations in the i th, c a t e g o ry .g

The likelihood function for frequencies of mutually exclusive
events is the multinomial likelihood function given by

n n
L(n ! Ig n '"3 "I'P ) * ("l+"2+"3)!/I"1 "2 in IIP P2 P3 (25)2 2 3 .

When Equation (25) is combined with the noninformative prior
distribution

w(p g.p2) * I/ IIP l P )(I ' P 1 ~ P )] (26)2 2

via Bayes' Theorem, the resulting posterior density is that givenin Equation (24).

Uncertainty for the Composite Model

The expression of uncertainty about the function in Equation
(23) is accomplished in the same manner as was used for the
individual models discussed in the previous sections. Thedifference here is that not only will the uncertain parameters of
the distributions G (x) be sampied, but in addition, values of pj

g

and p2 will be sampled from the posterior distribution given in
Equation (24). For the demonstration of this technique, thegamma family of distributions is used to represent the distri-
bution of recovery time for each type of power loss. The techni-
que is to sample from the collection of eight uncertain param-
eters (three alphas, three betas, and two values of the propor-
tions, p ) and construct a curve for each sampled set of values.g

23
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This process is repeated many times so that a collection of
'j curves is accumulated. The uncertainty bounds are derived at

various values of the recovery time in the identical manner that
was used for the individual curves calculated in the preceding,

sections.

1 Sampling from the Dirichlet distribution is most easily
facilitated by the acceptance-rejection method. This case
requires the sampling of pairs of values of p3 and p2 rather than
a single parameter value. One pair of values of p3 and p2 is
formed by generating three uniformly distributed random numbers.
Two of the random numbers are the potential values of p3 and p2'
while the third number is compared to the height of the density

; at p3, p2 divided by the maximum value of the density. If the

third number is less than the density divided by the maximum
density, then the pair is accepted. Otherwise the pair is re-
jected and three new random numbers are created and the process
is repeated.

The uncertainty results obtained by Monte Carlo estimation of
i G(x) are shown in Figure 23. The results shown in Figure 23 are

based on using all the PC data (n -43), the grid data (n "I3)'
'

g 2

and the weather data (n 7). The three curves shown in Figure 23
3represent the .05, .50 and .95 quantiles for G(x) at each value

of time.

i
1 |
'
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8. MODIFYING THE COMPOSITE MODEL FOR SPECIFIC PLANTS

The composite model in Equation (23) is very general and
flexible and is easily modified to reflect conditions at specific
plants. There are several ways in which the model can be modifi-
ed:

1. The functions in Equation (23) are completely general and iq
not all have to be the same. That is, one distribution such
as the Weibull could be used to represent G;(x) for the

plant-centered term, another distribution such as the gamma
could be used to represent G (x) for the grid term, while

2
yet another distribution could be used for the weather term
G I*)*3

specific G x) can be modified for a particular plant.2. A
e x a m pl e , 4 (i twill be shown in this section that theFor

plant-centered data can be split into three separate groups -

based on switchyard design with each switchyard design
having its own model.

3. The weights pi can be modified to reflect conditions at a
particular plant. For example, it will be shown in this
section how the weather weight, p3, might be modified for a
specific plant.

Modifyina the Distribution for Plant-Centered LOSP

The composite model in Equation (23) is generic in the sense
that all data from all plants have been combined to form a single
model. That model may or may not be appropriate for a specific

,

plant. For example, the data previously given for time to recov-
ery of LOSP for plant-centered data was subdivided in NUREG-1032
into three plant switchyard design groups (see NUREG-1032 for a
detailed explanation of the design groups). The data are given
in Table 6 and the corresponding boxplots shown in Figure 24.

Based on the three switchyard groupings in Table 6, three
separate Weibull probability models as in Equation (4) have been
fit to the data. The parameter estimates for A and p determined |
from Equations (5) and (6) are given in Table 7. The resulting
fitted probability models are shown in Figure 25 along with the
Weibull fit for the entire set of plant-centered data previously
shown in Figure 14. Figure ?5 shows that Group 12 has the
closest agreement with the model based on the overall data set.

j The three groupings given in NLiEG-1032 were made with respect to
what is physically valid for the plant under consideration. The
grouping of these data will now be examined by considering a' ,

statistical analysis of the fitted models shown in Figure 25. l

|

I
|
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Table 6. Plant-Centered Data from Table 1 Categorized by
Switchyard Configuration

Plant-Centered Group 11. n-14

0.002 0.003 0.013 0.017 0.080
0.150 0.167 0.183 0.250 0.210
0.330 0.430 0.480 0.500

Plant-Centered Group 12. n-13

0.003 0.020 0.070 0.083 0.130
0.250 0.250 0.280 0.334 0.500
0.670 1.030 1.480

Plant-Centered Group 13. n-16

0.904 0.015 0.067 0.200 0.400
0.500 0.570 0.767* 0.900 0.900
0.930 1.150 1.667* 1.750 2.750
7.467*

Table 7. Maximum Likelihood Estimates for the Parameters A
and 4 for the Weibull Distributions Fit to the
Switchyard Type in Table 6

Group Il GrouD Il GrouD 13

$: 5.2721 2.7897 0.9663

h: 0.8248 0.8331 0.7294
i

PC NRC GROUP 11

|
- --

__

PC NRC group 12

F |-
PC NRC GROUP ;3

h- | '

I i )
0 2 4 1

TIME TO RECOVER LOSP (Hours)

Figure 24. Boxplots of Three Groupings of the Plant Centered Data
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Tests for Poolina Data
m

The question that arises with respect to the plant-centered
data is whether the three plant design groups of data should be
modeled as one data set or three distinct data sets. A test of
the homogeneity of the distributions of the data provides useful
information to the analyst in making tSis decision.

The method that has been employed to ascertain whether pool-
ing of the three groups of data is appropriate is a generalized
likelihood ratio test (GLRT). The GLRT is a method of construct-ing tests of competing hypotheses. The hypotheses must be struc-
tured so that one hypothesis contains a subset of the possibili-
ties contained in the other hypothesis. For example, assume that
the data in the ith group are distributed according to the gamma
distribution with parameters a,ibutions of the data ir. a test ofand 4 for 1-1, 2, 3. The test4of the homogeneity of the distr
the null hypothesis:

H ( l * "2 " 3) and (p g-42*#) (27)0 3

against the alternative hypothesis that at least two of the a$and/or at least two of the p are different.g

| The GLRT statistic is constructed by finding the maximum of
the likelihood function under the null hypothesis and the maximum

27
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'
,

Iof the likelihood function without the constraints imposed by the
null hypothesis. A function of the ratio of these two maxima
forms the test statistic. Under some mild regularity conditions
about the parent distribution of the data, the probability
distribution of the test statistic is the chi-squared probability !
distribution with v degrees of freedom where v is the number of i

parameters constrained by the nuli hypothesis. For the null :

hypothesis given in Equation (27), u =4, since two of the values
of og and two of the values of 4 are constrained by the null

9

hypothesis. Let T denote the test statistic and f(x|a,4) repre- s

sent the density function of the data. Then, for the three group
problem, T is given by:

3 n
Imax I E log f(t g3|a,B)

a,s 1-1 j-1
(28),

3 ng
I max I log f(t jj|ag,4 )31-1 ag,sj j-1

where t is the jth observation among the n observations fromgj g

the 11A group of observations.

The GLRT test described above has the following practical
implications from the potential conclusions of the test. If the
null hypothesis is rejected, the analyst should conclude that the
distribution of the recovery time depends upon the type of elec-
trical switchyard. If the null hypothesis is not rejected, the
analyst should not conclude that the distribution of recovery

1times is dependent upon the electrical switchyard configuration.

The GLRT requires that a family of probability distributions,
such as the gamma or Weibull distributions, be specified to
calculate the statistic T given in Equation (28). In order to
ameliorate this assumption, parallel analyses have been made
assuming gamma probability distributions and Weibull distri-
butions. For each family of distributions, tests of the follow-
ing hypotheses were performed:

1. All three groups are homogeneous.

2. The first and second groups are homogeneous.

3. The first and third groups are homogeneous.

4. The second and third groups are homogeneous.

The results of each test using both the gamma and Weibull family
of distributions are given in Table 8.

28
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Table 8. Results of Hypotheses Tests for Pooling Data i

i

! Tests of Homogeneity
Gamma Distributions

Question v T p-value

1 4 14.80 .0051
2 2 1.96 .3745
3 2 11.85 .0027
4 2 5.64 .0595

Tests of Homogeneity |
Weibull Distributions

Question v T p-value

1 4 12.22 .0158
2 2 1.75 .4173,

3 2 10.01 .0067
4 2 4.78 .0916

:

The results obtained from the gamma and Weibull distributions
are very similar, indicating that the findings are not dependent '

,

,

on the choice of the family for these two distributions. The p-
'

value associated with the test of Question 1 is small enough to
warrant rejection of the null hypothesis in Equation (27). Since
the null hypothesis of one model for all three switchyard con-,

figurations has been rejected, the next step in the analysis is
to proceed with testing the hypotheses in questions 2 through 4.
Tests of questions 2 and 4 show that the groups 1 and 2 are not :

significantly different, and that groups 2 and 3 are not signifi- |
,

cantly different; however, groups 1 and 3 are significantly
different. This is one of the types of problems that can be

,

encountered when making comparisons of this type, in that it is'

not clear whether to treat group two by itself or to pool these
data with either group one or group three. Thus, this would be a
good place to supplement the statistical analysis with engineer- i

ing judgment with respect to what is physically valid for the
plants under consideration.

( One impact of modeling the plant-centered data based on
| switchyard configuration is to increase the width of the uncer-

1
I tainty bounds because of the decreased s&mple size used to fit
| the probability mode'. for the plant-centered term in Equation

(23). The results shown in Figure 26 are based on using only the !PC data from Group 12. As one might suspect, the bounds in
! Figure 26 based on the smaller sample size are wider than those
! in Figure 23 for the larger sample size. Note that the models

shown in
| Figures 23 and 26 both use a point value of p q - 43/63
i

for the plant-contered component.

29
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Figure 26. Uncertainty Bounds for G(x) from Equation (23) Based
on Using Only the Plant Centered Data in Group 12

Modifyina the Weiaht for the Weather Term in the Composite Model

The weights pi appearing in the composite model are used to
determine the reldtive influence of each of the three sources of
LOSP. Based on the 63 incidents of LOSP, the weights are 43/63
for plant-centered losses, 13/63 for grid losses, and 7/63 for
weather-related losses. Thus, if any one weight is adjusted, the
remaining weights must also be adjusted, since the weights sum to
1.0. In this subsection the influence of weather is modified by
adjusting the weight p. This modification is intended to showhow to ad.iust the weiahts, but not necessarily as the proper way
to modify the weather weiaht for a specific olant.

In NUREG-1032, proportionality factors are presented that are
used in modeling the frequency of various types of weather such

'
1

as snow and ice, winds from 75 to 125 m.p.h., and tornados.
These proportionality factors can be combined in a linear fashion
with the weather conditions at a specific site to form a weather
hazard index for the site. Based on information supplied by the
NRC, these indexes range from .00020 to .14508 covering 79 '

plants. All but two of these indexes are .01310 or less. The 1

median of all indexes 's .00510, while the arithmetic mean for |.

the indexes, excluding the two largest observations, is .00566.

An index is simply a scale free measure that can be used to
compare the relative effect of weather at different sites. If
the weather hazard index is normalized by dividing each index by
either the median or truncated mean, the relative comparisons 1

remain unchanged. However, the division does provide a number i
that can be used to illustrate how to modify the weight p3 f the

30
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!

weather term in the composite model. Division by the truncated
! mean gives weather hazard ratios ranging from .03531 to 2.31300
| (excluding the two largest observations). This weather hazard

inratio (R)canthenbeusedtomodifytheeffectiveweight,p$a,ted:

the composite model. That is, the p in (23) would be esti3
g

R P R), and p3R/(p33 ), p2/IP + P2+p3 (p3( by / + l 3 p2 ++p2 +E
'

pR where p the weight associated with the weather
c$mp)onent. Thbs,isa value of R-1 would result in the composite r

model as shown in Equation (23), while values of R > 1 have the !
'

effect of increasing the contribution attributable to weather,
and values of R < 1 have the opposite effect.

a r

! Figure 23 shows the composite model utilizing all plant-cen-
tered data and a weather hazard ratio of R-1. Figure 26 shows
the composite model utilizing only the Group 12 plant centered ,

data and a weather hazard ratio of R=1. Figures 27 and 28 show ,

two of the many variations possible with the composite model. <

Figure 27 illustrates a "best case" situation in that an 11 plant :

configuration was used (see Figure 25 for reference) with a i<

{ weather hazard ratio of R .035. Figure 28 illustrates a "worst j

i case" situation with an 13 configuration and a value of R !-

2.313. |

Modifyino the Grid Component in the Composite Model i

The preceding discussion has shown how modifications could be ;,

made to the composite model for plant-centered and weather-'

related LOSP. The data base for grid-related LOSP consists of (

i only 13 values, and 7 of these values come from just one plant, t

Thus, some plant specific modifications may be warranted. For i

example, if the seven values from one plant are dropped from the :

) data (perhaps because the problem no longer exists), the basic
; grid model would not be appreciably chanced, but there would be !

i greater uncertainty associated with the g:id component. However. |
the weight, p in the composite model would be lowered from :

*

j ,o 6/56! 13/63 .107. If inforwation were available.206 t
-= =

! similar to that used to split the plant-centered data based on i

switchyard configuration, or similar to the weather hazard index, ;
i

i then it could be used to modify the grid component of the com-
,

! posite model in a manner similar to what has been demonstrated, j

With such adjustments, the composite model would be used to i
produce the uncertainty distribution for P(T a t) for a site- ;

specific probabilistic risk assessment. '

;

The Exoected Time to Recovery for the Composite Model

Without modifying the weights for the composite model in
i Equation (23), the expected value of the time to recovery of LOSP
'

is 1.21 hours when the G (x) are modeled with gamma distribu-j
tions, and 1.20 hours when Weibull distributions are used in the ;

model. When the G (x) are made plant specific, the respective ;j
expected values for 11, 12, and 13 switchyard configurations are
0.90, 1.03 and 1.62 hours for the gamma model and 0.96, 1.03, and
1,63 hours for the Weibull model.
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! 9. A BAYESIAN ANALYSIS OF THE FREQUENCY OF THE INITIATING EVENTS
!
j The modeling thus far in this report has concerned the time

;
! to recovery of LOSP, given that a LOSP incident has occurred. In I

this section the frequency of the initiating events leading to
LOSP is modeled under two different assumptions based on Bayesian

; methods. The first model assumes that all nuclear power generat-
i ing stations share a common incidence rate for LOSP. Under this
; model, the data for incidents leading to LOSP are pooled together
2 and the posterior distribution is found for the mean incidence i

j rate for all clants. The second approach models the incidence |

rate for each plant relative to the incidence rates of all other
plants, and the posterior distribution is found for the incidence
rate for each olant. ;

I l

! Bayesian Analysis Assumina a Common Incidence Rate

When all nuclear power generating stations are assumed to
share a common incidence rate, the procedures outlined in Martz

: and Waller (1982, pages 254-5) can be followed. With these
procedures the number of LOSP incidents n, occurring in time t,
is modeled by a Poisson distribution,

f(n|A) = P(n occurrences in total time t|A)

-At(At)"/n!| A > 0, n = 0, 1, 2, (29)=e ...

: ;

:-

where the parameter A is the intensity of the process.) '

i

Hartz and Waller (pages 286-7) show that a noninformative; ,

1/2prior for A of 1/1 yields a posterior distribution for A given ,

n of

; p(A) f(n|A) f

.' p(Aln) = ,

,

f p(A) f(n|1) dA;

! 0

(1 / A l/2) g-At (At)"/n!
= ,

f (1 / 1 1/2) ,-At (At)"/nl dA
0

t +1/2 n-1/2 ,-Atn
3

r(n + 1/2) I

2Given n, 2At follows a x (2n+1) distribution with

E(1|n) = (2n + 1)/2t (31)

33



Table 9. Results of Using Equations 29 to 31 for Initiating
Event frequencies

Weather &. Grid Plant Centered ,

E(A|n) .0284 .0864

Var ( A|i;) 3.941E-5 1.717E 4

Lower 5% Bound .0189 .0661 |

Upper 5% Bound .0394 .1090

i
2Var (A|n) - (2n + 1)/2t (32)

F

'

A two-sided Bayes probability interval for A may be derived from
2the x (2n+1) distribution as

;

2
(x /2(2n+1)/2t, x -o/2(2n+1)/2t] (33)

The data presented in Table I showed 43 incidents of LOSP [
that were plant-centered, 13 incidents that were grid related.
and 7 incidents that were weather-related. For the analysis !
presented in this section the grid and weather incidents are !
pooled together since they both influence the grid. Plant -

operating data through December 1987 shows 43 plant-centered !

incidents in 503.29 operating years, and 20 weather and grid
incidents in 721.26 calender years. Using these numbers with *

Equations (31) to (33) gives the results shown in Table 9.
|

The total frequency of LOSP is the sum of the weather / grid
losses and the plant-centered losses. Thus, the uncertainty in
the initiating event frequency is modeled by finding the distri-
button of the random variable Z A + A where A; is the-

g 2,

f ailure rate for weather / grid losses, and A is the failure rate
2

for plant centered losses. Since the random variable 2A t has a
2 4

x (2n+1) distribution, it is necessary to make a change'of vari-
able to find the distribution of 1 and then in turn to find the

4distribution of Z.

The chi-squared distribution with v degrees of freedom has
the density

y /2-1 ,-y/2v

f(y) -

r(v/2) 2"/2

34
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Let y - 2At and dy - 2t dA, thus

(2At)v/2 1 ,-2At/2 2t A v/2-1 tv/2 ,-At
f(A) = (34)=

r(v/2) 2v/2 r(v/2)
,

This is a gamraa density as appeared in Equation (3), with a v/2=

and 4 = t. The density of the random variable Z A + 1 IS=
g 2given as follows:

z
g(z) = f f (z - A2) I (*2) d*2 (35)3 A

0 1 2

t

and the distribution function is

z*
G(z*) = f g(z) dz (36)

O

"I! "2/2 vg/2-1 -(z-12)t l "2/2-1z* z
t t

, _ f f (z-A2)1 2 ' A dA dz
r(v3/2) r("2/2) 0 0 2

The integrand in Equation (36) is a confluent hypergeometric
function and would have to be evaluated numerically. While this
could be done, the numerical evaluation is quite difficult in
this case because of the particular values of the parameters for
this problem. Therefore, it is somewhat easier in this case to
use a Monte Carlo procedure to ap)roximate the distribution of
the sum of two gamma random varia)1es. For the plant-centered
frequency, the gamma distribution has parameters of a 43.5 and=

4- 503.29, while the weather / grid f requency has parameters a =

20.5 and 4 - 721.26.
A Monte Carlo procedure with n 1000 was used to estimate=

the distribution function for the frequency of the initiatingevents leading to LOSP. The graph of the estimated distribution
function is given in Figure 29. The summary statistics from that
simulatio.n are given in Table 10. The sample mean is very close
to the sum of the expected values of the weather and grid com-
ponent, and the plant-centered component given above, that is
.0284 + .0864 .1149. Note also that the sample mean is con-=

sistent with the quote from NUREG-1032 given in the introduction
as "... LOSP has occurred about once per 10 site years."
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| Table 10. Summary Statistics for the Monte Carlo Derivation
; of the Distribution for Frequency of Loss of Off- '

{' Site Power
! !
#

X X X X X X
'

i min .05 .50 .95 max ;

.1146 .0684 .0929 .1130 .1389 .1734
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} |
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j Figure 29. Estimated Cumulative Distribution Function for the !
: Frequency of Initiating Events Leading to LOSP !

l

Bayesian Analysis Assumino Individual Incidence Rates

! An alternative to the model just presented, which assumes
1 that all power generating stations share a common incidence rate,
} is to model the incidence rate for each plant individually.
! Under this model the incidence rates for individual plants tre
j assumed to belong to a superpopulation of incidence rates, thus
; the incidence rate for an individual plant is assumed to have
j been randomly selected from this superpopulation of incidence
! rates. This approach was used by Hora and Iman (1987) to model
| the f ailure rate of the solid rocket boosters on the space shut-
! tie. In that application the failure rate for predecessor solid
1 rocket systems, as well as the failure rate for the space shuttle
| were assumed to belong to a superpopulation of failure rates,
i

Data are available for n+1 plants. The value A 1 -0, 1,
... n is the "true" incidence rate / year for the ith h,lant, which
has operated for t years with s incidents of LOSP. Thus, s /tg g j g

36,
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provides an estimate of A With this notat, ion the plant ofg.O interest is i=0.

For this analysis the gamma distribution is used as a model
for the superpopulation, although many other distributions could
be used. The probability density function for the two-parameter
gamma distribution was previously given in Equation (3) as

h(A) - f (A|a,s) - s (r(a))'I ~I e'#* A a 0, o,s > 0 (37)A

The parameters a and 4 are unknown, and as in Section 6, the
noninformative prior

p(a,4) a 1/(as) a,p > 0 (38)

is used. The likelihood function of the datum (s ,t g) is Poissong

tt )s j ,A j i/s I (39)L(s g,t g|A g) - (A g g g

The joint probability of a,4,A0'*1'''''An,s0'5 1''**'5n 15

n
p(a 4) n (h(A g) L(s ,t g|A 4)) (40)g

1-0

The posterior density of a,4,A0'A l'''''An is

p*(a 4,A0'''''An) "

n
p(a,s) n (h(A j) L(s j,t g|A g))

i=0
{4g)

... . n

f f f...f p(a,4) H (h(A g) L(s ,t g|A g)) da ds dA0...dA4 n000 0 i=0

The denominator of (41) is a numerical constant that depends on
the s , t but not on a, s. A A Den ting this constantg g O' n.***'

by 1/k, (41) becomes
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!

|4

*
v
,

P !

k p(a,4) n (h(A g) L(s t g|A g)) (42)g
i=0 !j

a
t

g g)5 1 e**i tA]'I e'#A i (A t jn 4
k __3., n (43)

'

as i=0 r(a) slg ,

i !

Combining terms gives ,

1

p*(a,#,AO'''''An) "

i(#+t ) t in A"*S i'I e'Ag(n+1) 5i
n (44)- ._.

as (p(,))n+1 1-0 s g!

In order to obtain the posterior density of 1 Equation (44)
,4.0, Not i ng t h a t

. ,

must be integrated with respect to A 3,....An,
I

Aj+5 1'I e'A i(4+t g) g j r(a+s ) t is S*

dA
_

g (45)-
4

S l) i (p+t )"*5 1s!g g
4

,

i

1 allows Equation (44) to be simplified to
1

i

p*(a,s,AO) " '

,

i
'

] g(n+1}a tj0Af+50'I e'*0(p+t ) 5
0 n r(a+s ) tig

n (46)

| "# [r(a))"+I 0 I"I(s+t g) +5 1s!5 I
g

, ,

It remains to integrate p*(a 4,10) numerically with respect to a
i and B and to find k. The value k is found numerically by ihe

relation,

3 . . .

| ff f p*(a,#,Ao) = 1 (47)
l 0 0 0

i

s
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,

I i

'
1

Thus,
,

B "+I)I s in r(a+s ) i g! .=
g

I.ffi n da dp (48),

; k 0 0 ,p[pg,))n+1 i=0 (4+t ) +s i s! '

q g

i

the numerical value of k from Equat1on (48) !
substitutin$andintegratingEquationThus,

into Equation (46 (46) with respect to
and p produces the posterior density of 10* '

a

I The posterior cumulative distribution function of A0 IIS
|

e

!

F(AO) "
.

|

n r(a+s ) ti fB "+III S
==

g

! +50,4+t ) n dads (49)
'

k F,(A0 0

a4(r(a)]n+1 1-0 (s+t ) +5 1 5 1 |g 4

| where F,(A0 I +50,4+t ) is the cumulative gamma distribution func-0tion,

0 y +50'I (p+t 0) +50 e-(p+t0)Y |! A

! +50,s+t 0) f! F,(A0 dy. (50) :
0 r(a+s ) '

0

,

| The Bayesian analysis presented in the first part of this
; section modeled the plant-centered and grid / weather data separ- '

ately and used a Monte Carlo procedure to find the distribution
i of the sum of the two posterior random variables. A similar

approach is applied here with respect to Equation (49). Three
I

,

typical cases have been selected to deconstrate the technique. '

These cases are as follows. !

Plant-Centered Grid / Weather
Case 5 t 5 t0 o 0 0

1 0 11.00 0 13.51
1

2 0 2.27 0 4.00 1

3 1 9.81 0 13.09

Cases 1 and 2 have no recorded incidents of LOSP, with Case 1
having a much longer operating history. In Case 3 the plant has I

been in operation for a time similar to Case 1, however there nas
!

been one occurrence of a plant centered LOSP. The distribution !

functions for these three cases are shown in Figures 30 to 32, I
respectively. The distribution for the common incidence model {

39
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Table 11. Summary Statistics for the Monte Carlo Derivation
of the Distribution for Frequency of LOSP Using
the Bayesian Analysis for Individual incidence

| Rates
.

Previous Results Usina a Common Incidence Rate

# min X I X * max.05 .50 .95
. 147 .0684 .0929 .4136 .1389 .1734

Liig Results Usina Individual incidence Rates

1 .0915 .0000 .0207 .0900 .1686 .3505

2 .1093 .0001 .0276 .0974 .2265 .5514

3 .1111 .0000 .0453 .1010 .2106 .4514

given in Figure 29 is repeated in Figure 30 for case of comparing
the differences in the two modeling approaches. Figure 30 makes
it clear that the model assuming individual incidence rates

.' produces the greater uncertainty. Table 11 has be3n constructed
to shown the summary statistics in comparison to the mean results
shown previously in Table 10. The results in Table 11 emphasize
the greater uncertainty for the individual distributions, com-

i pared to the mean distribution given by the previous model. This
greater uncertainty is due to the shorter operating history for
individual cases compared to combining all operating histories.
As shown in figure 31, Case 2, with a shorter operating history

| than Case 1, has a much longer tail in the upper part of the
1 distribution, indicating greater uncertainty than in Case 1, even

though both have no reported incidents of LOSP. Moreover, Table!

' 11 shows the .95 quantile to be .1686 for Case 1 and .2265 for
|

,

Case 2. The means in Cases ! and 2, however, are both lower than i
i

the mean of .1147 given fcr the mean model. Cases 1 and 3 are I

shown jointly in Figure 32. In spite of the similar ope'.ating
histories for these cases, the uncertainty in Case 3 is similar;

to that for Cast 2 because of the one recorded incident of LOSP.Additionally, this causes the mean to be higher in Case 3 than in
Case 1.

1

'
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