
_ _ _ _ _

s

i
; NUREG/CR-0301

| BNL-NUREG 50880

i
i

:

i
4

i
;

!e PREllMINARY INVESTIGATION OF TURBULENT REACTIVE.

:

!' MIXING IN PCRV/CV GAS MIXTURES

i

!=

! J.L Boccio
;

I
:

|
!

|
4

i

!

!

!
!

|

|
Date Published - August 1978

i

i

,

|
'

!

| HTGR SAFETY DIVISION

| DEPARTMENT OF NUCLEAR ENERGY, BROOKHAVEN NATIONAL LABORATORY

l UPTON, NEW YORK 11973
|

|

|

781122022'7

If) pv 33 {} Prepared for the U.S. Nuclear Regulatory Commission

ja] w[y; g {C su
|

P ;! Office of Nuclear Regulatory Research;

> Contract No. EY-76-C-02-0016ic; ;I
.

,

| 6 3 ?$ 0 f3
j d !j d ni O

:
i

)

_ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , , -



- - - - -

'

NUREG/CR 0301

BNL NUREG 50880

R-8

|

PRELIMINARY INVESTIGATION OF TURBULENT REACTIVE
3

{ MIXING IN PCRV/CV GAS MIXTURES
|

J.L B0ccio

,

I |

Manuscript Completed - May 1978

Date Published - August 1978
I

HTGR SAFETY DIVISION

DEPARTMENT OF NUCLEAR ENERGY

BROOKHAVEN NATIONAL LABORATORY

A5500ATED UNIVERSITIES, INC.

UPTON, NEW YORK 11973

PREPARED FOR THE UNITED STATES NUCLEAR REGULATORY COMMISSION

DIVISION OF REACTOR SAFETY RESEARCH,0FFICE OF NUCLEAR REGULATORY RESEARCH

UNDER CONTRACT N0. EY-76 C-02-0016

NRC FIN N0. A 3016

_- - - - - - - - ---------- - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ -



(
l .

k!
e

NOTICE

This report was prepared aa an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, or any of their employees, makes any warranty, expressed or implied, or
assumes any legalliability or responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or process disclosed in this report, or
represents that its use by such third party would not infringe privately owned rights.

The views expresmi in this report are not necessarily those of the U.S. Nuclear
Regulatory Commission.

Available from
,

U.S. Nuclear Regulatory Commission'

Washington, D.C. 20535
_

Available from
National Technical Information Service

Springfield, Virginia 22161

f

_ - - - - _ _ _ . _ - _ _ - _ . .



.

'

_ ABSTRACT

Relaxation of the prima facie assumption of complete mixing of primary

containment and secondary containment gases during postulated depressurization

}
accidents within gas cooled reactors has led to a study program designed to

,

| identify and selectively quantify the relevant gas dynamic processes which

are manifest during the depressurization event. Uncertainty in the degree |

of gas mixedness naturally leads to uncertainty in containment vessel design

pressure and heat loads and possible combustion hazards therein. This report

details an analytical approach in the modeling of the exhaust-jet structure

during a penetration failure. A chemical kinetics model is also described

for the possibility of examining diffusive flame structure assuming the

exhaust jet is composed of combustibles as well.

The salient features of the mixing model and associated reaction

kinetics are embodied in the classical problem of a turbulent, chemically

reacting jet exhausting into a stationary ambient atmosphere capable of

supporting combustion. A so-called "two equation" turbulence model is linked

to a chemical l<inetics code describing the production of CO and H O with
2 2

He and N nsidered as inert diluents. The usefulness of the model is
2

exemplified by experimental / numerical comparisons presented in the open

literature and within this report. The need for such a calculational tool

in HTGR safety research in stressed as well.

- tii -
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fSECTION I

INTRODUCTION

Analysis of high temperature gas-cooled reactor (HTGR) plant response |

under normal, upset and accident conditions requires an overall simulation,

/ of major plant components in which interaction between components and systems
i

are realistically taken into account. This is, for example, the basic premise

)behind the TAP code However, in order to hold the program to a manage-.

able size necessitates the use of simplified submodels for some of the more

complex portions of the system. More detailed models of individual subsystems

have been derived to continuously check the overall reliability of this ap-

proach. For example, the OXIDE-3 code is a third generation computer code

developed for the purpose of analyzing the transient reactor core response

following accidental inleakage of steam and/or air to the primary coolant

system. The CONTEMP-G( } computer program was developed to simulate contain-

ment atmospheric response to postulated penetration failures within the pre-

stressed concrete reactor vessel (PCRV) under the assumption of complete and

homogeneous mixing of PCRV coolant and containment vessel (CV) atmosphere. A

refinement thereof is modelled with the HTCRF4 ) and H.4ZARD codes, wherein

the possibility for, and consequences of, primary coolait layering due to in-

complete, albeit pre-specified, mixing is examined. Spacifically, (a) the question

of the flammability hazards within the PCRV due to CV gas inleakage after

}penetration failure , or (b) the question of the flammability within the

CV during a penetration failure (5) are addressed under the assutrptions of

homogeneous or partial PCRV/CV gas "mixedness" and instantaneously fast chem-

ical reaction kinetics.

-1-
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Notwithstanding, the extreme remoteness of an occurrence resulting from

the question posed by statement (b) above, which presupposes that combustibles,

viz., H /C0 are generated within the PCRV due to water / steam leakage prior to
2

a penetration failure, the relative ease in extending a binary gas (He/ Air)
&

containment response code into a multicomponent gas (He/ Air /CO/H ) response j2
\

code warranted its subsequent investigation. ]|
'

Regardless, the presumption in knowing the degree of PCRV/CV gas "mixedness"

(either fully mixed as in CONTEMP-G or partially mixed as in HAZARD), and the

assumption ~ chemical equilibrium amongst gas specie components requires further

investigation with codes which realistically model the subsequent turbulent

mixing of PCRV gas with CV gas and possible concomitant chemical reaction kinetics.

In particular, these two factors,

eturbulent, diffusive mixing

efinite-rate chemical kinetics

are extremely relevant in the investigation of post-penetration failures, espec-

ially if gas layering is indeed prcbable. In this regard, it is quite likely

that fluid-mechanic flow times in turbulent, buoyant plumes are comparable to

chemical reaction times, necessitating investigations in diffusion-controlled
%

as well as chemically-controlled mixing processes. Furthermore, it is felt that

as a precursor in the investigation of detonability within large vessels,

experience accrued in turbulent, reactive mixing is of paramount importance.

Accordingly, this report deals specifically in numerically nodeling free,

turbulent, reactive shear layers. As a subprogram, it has direct app.'ication

in extending existing codes specifically designed in penetration failure studies.

Also, the main thrust in the numerical approach has bearing in the study of

buoyant plumes and buoyant wall-jets, fission product release and accompanying

-2-
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deposition. Accordingly, Section II deale wholly with the basic governing

differential equations generally used in describing turbulent, reactive shear

flows. Along with the basic conservation equations of msss, momentum and

energy, a well-tried turbulence model and turbulence modeling phenomenology
'3
j are also discussed. As a preface to the numerical technique, a mapping trans-

k formation of the independent variables is described in Section III indicating,
'

from a numerical standpoint, its relevance in modeling flows with free bound-

aries. A hybrid implicit / explicit numerical technique is described in Section V.

The nr :d for such a mixed finite-dif ference approach when considering reactive

flows is also discussed in this section. A description of the chemical-kinetic

rate mechanism for a H /C0/0 system with He and N2 considered as inert dilutants2 2

is presented in Section VI. One major aspect of the overall approach, namely,

that the numerical code is not restricted to only this kinetics scheme, is also

emphasized. Section VII exhibits some numerical / experimental comparisons for

nonreactive, diffusive flows, indicating the efficacy in the turbulence model

and the numerical approaches used. Section VIII is devoted to a qualitative

interpretation of select numerical experiments in reactive flows; problem areas

are defined and means of code augmentation discussed throughout. Finally,

Section IX reemphasizes the need for such a mathematical tool in HTCR reactor

safety and elaborates further its possibic use in other areas pertaining thereto.

1

.

-3-
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SECTION II

GOVERNING EQUATIONS FOR TURBULENT REACTIVE SHEAR FLOWS

Conceptually, methods exist for solving the equations for unsteady, three-

dimenetonal flows, which are g principle capable of predicting the details of .

Iany turbulent flow, by starting with the highly reliable Navier-Stokes equations.

However, the practical possibility of utilizing these numerical techniques is,

presently, very small because of the great disparity of scale between the size

of most practical flow domains and the sizes of the turbulent fluid eddy struc-

ture. To circumvent this scale disparity problem, which manifests itself by

the employment of an impractical fine grid network for numerical computation

of even the most simplest of turbulence flow phenomena, investigators, in the

consequences of turbulence in flows of practical engineering interest, have

resorted to the use of various " turbulence models".

In general, these are sets of equations which attempt to describe the con-

vective transport, the diffusion, the generation and the decay of certain sta-
.

tistical properties of a turbulent fluid -- the so-called " correlations".

Particularly, the subject of turbulence modeling of free shear layers has, in

'}'recent years, received a considerable amount of attention. A major con-

sequence of these studies is the general agreement that turbulence models which
,

|
include within the describing set of partial differential equations a means for I

also determining the transport of turbulent kinetic energy yield results which |

are superior to those relying on local eddy-viscosity assumptions (i.e.,

" algebraic" models of turbulence). Although a hierarchy of such models has

been developed, ranked according to the number of additional differential equa-

tions solved simultaneously to describe the mean and fluctuating structure

1

within shear layers, most emphasis has been placed upon the "two-equation
!

-4-
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turbulence models" which describe the approximate transport of turbulent kinetic

energy, k, and its dissipation rate, c. These are solved in conjunction with

the usual equations describing the transport of mean momentum, energy and mass.

The link between the " apparent" eddy transport coefficients, e.g., eddy vis-

i

cosity, appearing in the mean conservation equations as a result of the usual

Eulerian time-averaging techniques applied to the Navier Stokes equations, is
,

made using algebraic, constitutive equations directly relating these turbulence

transport coefficients to the turbulent kinetic energy and dissipation rate.

In this regard, the problem under consideration, that is, the free turbulent

mixing of two chemically reacting, co-axial streams (Figure 1) involving N

chemical species made up from L elements and undergoing R_ chemical reactions,

is addressed using a two-equation turbulence model that has been extensively

investigated by Spalding and his co-workers at the Imperial Co11ege(8,9) ,

II.1 The Mean Flow Conservation Equations

For compressible turbulent flows, the equations describing the transport of

mean momentum, energy and mass are, in principle, derived in a similar fashion as

those for incompressible turbulent flows. The mean velocity field follows from

the Navier Stokes equations by the usual decomposition of the velocity vector,

'u, into mean and fluctuating components, u = Iif+uf (i = 1,2,3), and applica-
f f

tion of standard time-averaging techniques. The resulting equations for the mean

velocity field, tr , have, in general, the same form as the original Navier Stokes
1

e

equations except for the addition of the apparent turbulent stress terms

(Reynolds stresses) which, written in cartesian tenser notation, have the form

pu 'u ' (pEdensity). To close this system, additional equations must be sought
f

i
for the second order correlation terms R E (u 'u '), usually provided by the

i

( -5-
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2Newtonier constitutive relation R = (2/3)(k )(S ) - 2p ST O , where Sg is

2the usual strain rate tensor given by S = 1/2(8u /8x + Bu /8x ), k is the
f f

2turbulent kinetic energy defined by k = 1/2 Rg , and pT |is the turbulent

eddy viscosity. An equation describing the dynamics of the turbulence kinetic

e

energy can also be derived from the Navier-Stokes equations by the following

procedure: (1) multiplying the x component of the Navier-Stokes equation by
,

u', (2) multiplying the x component of the Naver-Stokes equation by u ,

(3) adding the two resulting equations, (4) time-averaging, and finally (5) re-

sorting to tensor contraction. The resulting equation is quite complex, in-

cluding triple order (u 'u 'u ') correlations, and means for making this equationg

more tractable are discussed by Bradshaw and others( ) .

For compressible flows, the situation is more complex in the sense that

fluctuations in density (p') and temperature (T') must also be considered for non-

reacting flows and, most recently(6) , concentration fluctuations in multi-component,

reacting flows as well. The scope of this tudy does not lend itself to the

elaboration of these details; one interested in further clarification can resort

to the previously cited references. Accordingly, the equations to follow are

simply stated without further recourse to their origin. Suffice it to say

that they are considered by most investigators as the standard equations for

compressible turbulent flow.

Thus, for the subject problem under discussion, we assume the mean flow

to be (1) steady (or at 1 cast quasi-steady), (2) axisymmetric, and (3) well .

approximated by the so-called boundary-layer assumptions where gradients in

b
the direction normal to the flow are considered much greater than those in the

axial (or flow) direction. Considering the simplifying assumption of a binary

Fickian diffusion law with the same diffusion coefficient for each of the

-6-



species, the resulting equations describing the transport of mean momentum,

energy, mass and species are:

Momentum'*
|
|

~

f - + g(D ~ (pu + pv =r pr(p+p )
E

1p
Energy: I

-1 t
pu + pv =r + -1 + (Pr-1) "p

(2)

N Ba -'

gf-1 h+ *t 1
i=1

Mass:

(pur)+h(pvr)=0 (3)

Species:

Bu Ba
"i f + "*f _1 3- )prpP" Bxg + P" 3r

t
()~# 1+ 3r ) iBr ( Sc (

i = 1,2,3, .... N-L

Elements:

Ba 35 [ \3p 3
*

d + ov i = r-1 pru !
1 + f )' M

t
(5)pu

8x Br 3r Sc \ t er1

(,

j = 1,2 .... L

*
For clarity, the bar over each mean flow variable has been omitted.

-7-
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1

In these equations, u and v are the mean axial (x) and radial (r) com-

ponents of velocity, respectively; p is the mean gas density, p the pressure;

H the total enthalpy; p the turbulent eddy viscosity coefficien*.; a and d the
f

mass fraction of species i and element j, respectively; O the mass rate of pro-
f

,

duction of species i; Pr and Sc the turbulent enthalpy and nass exchange
t

coefficients; Le the turbulent Lewis number. ,

The instantaneous mass rate of production * per unit volume is, through

the law of mass action, given by

R

E=V ( h - Vjj) kg ,3 f 1 jp (a $ ) G (6)
1 f

I"Ij=1

where

N j
m -1

j j c,j ("i i
~E

y

"j s "dj (7)
u

i=1

N

m E (v'' -v')

The forward rate constant, k , and the equilibrium constant K are based upon
g eJ

the molar concentrations for the j th reaction expressed in the form

k
N g ,

#

{vf3 g'' M j = 1,2, .... R (8)g'M av
1

b .j ,
-

i *

( In this formulation, the phe.tomenological equations for the chemical kinetics

|
do not include the effects of fluctuations in concentration and temperature.

!

' -8-



g' and v13 '' are the stoichiometric coefficients of the reaction. Thewhere v

fluid is assumed to be comprised of a mixture of ideal gases; thus, the equation

of state is given by

N

p = pR T [ a /W = pR T/W (9),, g

1-1

where R is the universal gas constant. In practice, the temperature, T, is.
g

determined by an iterative solution to the equation that defines the static

enthalpy, h, of the gas mixture, i.e.,

N

h = H - 1/2(u + v ) = [ (a /W )h (T) (10)f 1
i=1

where h (T) is the sum of the sensible enthalpy and chemical energy of species i

at 0 K for the standard state and is presumed given by a polynomial expression

involving T, i.e.,

T( ~ } (11)h (T) = ag
k=1

Once the chemical kinetic mechanism, i.e., Equation (8), are defined and

the condition that the backward rate constants k are related to the forwardbd
rates, k and the equilibrium constant K , the above system of equations is,

f

closed once expressions for the turbulent exchange coefficients, p , Pr , Sc ,

Le and turbulent kinetic energy are derived. In practice, one usually pre-

supposes that the turbulent exchange coefficient for heat (Pr ) and mass (Sc )r
t

in gas-dynamic flows are constants and of order of unity. As such, phenomeno-
\,,

logical laws and/or equations are required to evaluate the turbulent momentum

exchange coefficient, p , and the turbulent kinetic energy.

-9-
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In zero-equation models, p is related directly to the mean velocity field

u, that is, p % (Au)(Ar) where (Au) is some appropriate velocity difference

associated with the flow (e.g., the difference between jet center line velocity

and the external flow velocity), and (6r) is a length scale characterizing the
.

width of the jet. Also, in zero-order modeling the turbulent kinetic energy is

not considered. In one-equation turbulence models, a turbulent kinetic energy ,

equation forms the basis for a model equation for the turbulence velocity scale

with the eddy viscosity given by p % k1 . The turbulent length scale, E , is

prescribed much as in the zero-equation approach. For the two-equation approach,

the phenomenology is much the same as in the one-equation model, except for the

fact that a differential equation is used to describe the x,r,-dependency for

the length scale, 1 (or equivalently the kinetic energy dissipation rate, c ).

II.2 The Two-Equation Turbulence Model

One of the more widely accepted two-equation turbulence models is based upon

the so-called "k-c2" model described by Launder In this approach *, the turbu-.

lent eddy viscosity is modelled using the equation

p =c ot k (12)
c p e

where C' is a function of the local axial velocity gradient.

.

'* A refinement to the k-c2 model is that proposed and subsequently used by -

Spalding (see " Concentration Fluctuations in a Round Turbulent Jet", Chem. Engr.
Sci., 1971, Vol. 26). This method has found marked success in turbulent buoyant
plumes, and its implementation into the present analysis is subsequently under
investigation.

- 10 -
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The turbulent length scale is shown by dimerosional considerations to be

related to the turbulent kinetic energy and turbulence dissipation rate, c,

via the expression

3/9c=C k '/t (13)g
e

thus requiring the turbulent viscosity to be dependent upon two properties of

*
the fluid turbulence, namely k and c, viz.,

p = C pk /c (14)
t p

Transport equations for the turbulent kinetic energy and turbulent dissipaticn

rate may be derived from the Navier-Stokes equations, employing the usual Eulerian

time-average techniques used in deriving the above noted mean conservation equa-

tions. The resulting two equations require considerable modeling, however, to

reduce the higher-order turbulence correlation terms that accrue due to the

averaging technique to more tractable forms. Based upon heuristic, dimensional

arguments, Launder shows that the two transport equations for k and c are given

by

~I -Irp g +p - pc (15)pu + pv =r

and
, . - 2 2
! ~1 -I 1fp -C (16)pu + pv =r rp + C

2

r ,

IEquations (14), (15) and (16) form the foundation of the "two-equation model" of

') Launder. Refinements in the five constants, viz., C , Cd,Cc2' Uk gand o ,.

originally deduced by Launder, have been investigated by Rodi These are.

I

- 11 -
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incorporated herein and listed in Table I. In particular, the quantity, f,

in Table I embodies an axisymmetric correction to the basic values of 0.09 and

1.94 for C and Cc2, respectively, wherep

- - 0.2 -

2Au_dx}CL
or du du

f,
/ d*

CL -
.

in which or and ou reflect the width and velocity change across the mixing layer.

A further correction to the " constant" C takes into account the fact that in

weak shear flows the rate of turbulence energy production is appreciably less

than the dissipation rate. In such circumstances, the value of C increases, and

Rodi has provided a correction for the variation in C with the average value ofp

the ratio of turbulence energy production to dissipation at any cross-section.

These empirical corrections have also been included in this analysis.

Thus, the partial differential equations describing the transport of mean

mass, momentum and energy, i.e. , Equations (1) through (5), together with Equy

tions (15) and (16), which approximate the transport of turbulent kinetic energy

and its dissipation rate, plus the aforenoted constitutive algebraic equations

form a complete set of equations for the investigation of turbulent, reactive

flows. These partial differential equations are solved subject to the following

initial and boundary conditions:

x = 0: u = u(r), H = H(r), k = k(r), c = c(r),a = a (r), E = (r)
f g

r=0 Bu/Br = BH/Dr = Bk/Br = Bc/Br = 3a /Br = BE /8r = 0 (17) hf

E'"^ E' ' "i 1E' j jE
"6~ ^r+= u+u

Pressure p is allowed to vary in the axial direction, according to an a priori

prescribed function
- 12 -
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I

SECTION III

TRANSFORMATION TO MAPPED STREAM FUNCTION COORDINATES

For convenlence in numerical computations, the conservation equations of

mass, momentum and energy, and the second-order closure energy-dissipation
,

model equations are recast f rom the physical (x,r) plane to a mapped streamline

coordinate plane (x,w) along the lines of Patankar( } The mapping variable,"
.

e, is defined by

eE ($ - $ (x))/($g(x) - $ (x)]1 1

where E and I, respectively, represent the external and inner boundaries of the

mixing zone (see Figure 1). The term ($ ~ Y ) is a measure of the mass flow
E I

in the mixing layer at a given x-station, i.e.,

#
E

E - *I purdr=

#
1

By this process global continuity, i.e., Equation (3), is automatically satisfied,

and by definition of the stream function, $, namely

9$/Br = pur ; 8$/3x = -pvr-

the dependent variable, v, is automatically eliminated from the governing system

of equations.

Thus, by first introducing the von Mises coordinate transformation
,

(x,r) + (x,$)

.s
into the governing differential equations, noting that%'

- 13 -
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i

;

_3 . _.3 + _3 31 . _1 _ pvr 3$-8x 8x B$;3x- ,Bx -

.

|

1 . 1 St.. pur 1
3r 8$ Br at '

. ,

and thence introducing the mapped stream function coordinates

m

(x,$) + (x,w) '
'

into the resulting transformed equations, further noting that

3 3 _g d@7 /d$ d@7 3

-

E

E"E+(E I dx ~ ( dx ~ dx), E~ ~

_

f = f $ = ($g - $ f M1

yield a set of differential equations which can symbolically be represented by

the vector equations:

$ + (a + bw) h= ..d (18a)+c
4 4

,

$ = (u,H,k,c,a ,a ' *** "N-L' 1 ' 2' *** 2) (18b)g 2 1

d ,= (d ,d ,d ,d , ... d . . . , . . . dg . . . ) I (18c)H k g y 7
,

i j
7
.

4

where now the dependent variables u, H, k and c have been non-dimensionalized

u /r ; the pressure by p ; the density by p ; [respectively by u), H , u 2,
3

33 3

the eddy viscosity by p u r . Equation (18a) symbolizes a set of N+4 partial
+ ,

differential equations; the components of the source vector, d ,, for a turbulent |

- 14 -
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|
Lewis number, Le , of unity, is provided in Table II. The coefficients a,b,c , |
which result from the mapping laws are defined by:

1

|

I} " # "I ( E ~ *I) (19a)a = -(dQ /dx)/($ ~ 17 E
,

.

~ (#E*E ~ # "I !( E ~ I) (19b)b = d/dx in( E I_
~

I

.

2c ,= pur p /a,/(p ~ @I) (19 )
E

where m and m represent the mass flux per unit area entrained into the rixingy E

layer through the I-bcundary and E-boundary, respectively. Methods for eval- i

i

are escribed by Patankar anduating the expressions, r m , r *E, an
y7 E

Harsha(I ) For the present study, the approach taken by Patankar is used..

.

b

s

\

- 15 -

-_ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



-_

)
i

l

i

SECTION IV |

l

ENTRAINMENT OF FLUID AT A FREE BOUNDARY )

The normalized stream-function coordinate has the advantage that it allows the

numerical grid to automatically expand with the mixing layer, thereby always con- .

taining the relevant portion of the flow (Fig. 2). However, in order to pre-
.

'

ceed nu=erically, it is necessary to estimate the amount of fluid entrained into

the mixing layer, both through the E-boundary (outer), and, until the lower edge

of the mixing layer reaches the axis, through the I-boundary (inner) as well.

To determine the amount of mass entrained and the subsequent growth of the

stream function ($ ' I), c nsider Equation (18a) for C =u, which written,out in
E g

full is:

(# *E ~ # 'h Bu 9 ""T Bu 1Bu E dI 2 + g(p E-0)-+ II+ $ -$ B0
rn3x ,u Bu pu dxo

($ I)2_ E I _,

E

In the case of free mixing, the conditions at the edges of the boundary must be

such that

b"

3x ou dx + g(oE-0)

since by definition the outer and inner regions are inviscid. Accordingly, in the

limit u + 0, we have

2-# P"V
-

~ lin 3 T Bu Bu
I*I " tr+0 Bu (@E ~ I "J '

2
B au

3r (rp ) + (rp ) B u --
lim

4
T T Br err+r

7
.

- 16 -
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which Patankar reduces further to

(#N))# *I " TI r

and, likewise, for the outer edge=

lim 3 {
# % ~ r+r hE'

E(

Thus, with the above two expressions, Equation (19b) can, in principle, be used

to evaluate ( E *I}*~

>

s

1

- 17 -
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SECTION V

THE NUMERICAL INTEGRATION PROCEDURE

Resorting to the mapping laws previously described, the lateral domain

of the mixing region, defined by 0 1 w 1 1 rather than by r < r < r , results
f E .

in a system of equationo having advantages both in conceptual simplicity and

computational efficiency. In particular, for cases involving frozen mixing -

(O = 0) or mixing with chenical equilibrium, the choice of implicit } or
f

explicit ( finite difference techniques becomes a matter of personal prefer-

ence. However, in the case of chemical non-equilibrium, the potential for a

system of " stiff" differential equations due to the possibility of one'

or more of the chemical reactions being at or near chemical equilibrium requires

to various hybrid implicit / explicit techniques ( }'

one to resort .

Thomas ( ) employs the MacCormack('} predictor-corrector scheme which is

second order accurate in both Ax,6e for all the governing equations other than

the specie conservation equation. For the specie conservation equation, Thomas

uses a modified predictor-corrector scheme whereby the predictor step is fully

explicit, while treating the species, ct1, as chemically inert (6 = 0). The chem-
1

ical production rate term, O , is differenced in implicit fashion in the
f

corrector, albeit the convection and turbulent diffusion terms are again differ-

enced in an explicit fashion.

Boccio,(l9) on the other hand, utilizes the implicit technique of Patankar
i

where the governing differential equations are integrated over a small control '

volume associated with individual grid joints in the (x,w) plane. The resulting 4

=

finite difference equations with the production terms, 0 , considered for the
1

moment zero (i.e., frozen flow) are formulated in an implicit manner and solved
I
i

1

- 18 -
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{

by means of the well known algorithm for tri-diagonal natricies. For each'

'

grid point the chemistry is decoupled from the system by assuning .{

M+a M L = 1,2, ... Na =ag g g

O

each respectively controlled by the equations

(D)ga (D) gg g g-

K
gx + (a + be)au aw

" C

and

da (k w '
:

K , _ K_
dx pu ;

.

where the a (D) comprise a subset of the dependent variable column vector &g

for the frozen flow (E = 0; d = 0) subsystem of equations. The'above ene-
f Ii

dimensional finite rate chemistry equation along a stream line within the inte- j

gration step can be solved using the linearized technique of Moretti( 0) or

Rubel( } or the Pade method of Magnus and Schecter.(22) The_present method,:
,

however, incorporates the. method of Moretti and Rubel in uncoupling and solving'

for finite rate kinetics.

V.1 Finite Difference Equations: (Interior Points, E = 0)
f

With reference to the computational grid network and notation of Figure 3,

the micro integral over the element (i, j+h), (1-1, j+ ), (1-1,j-h), (1, j-h)

is performed assuming:

*
e p varies linearly between adjacent cross-stream steps,

Q that is, w = u , j +h ;
f

9 = b (W1,3 + 91,341).

- 19 -
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p varies in a stepwise manner between adjacent stream-.

vise steps, i.e., xi-1 < * 1 *1

#"#
1,j

.
'

The micro-integral of Equation (18a), using the above assumptions, has the *

following components -

1 +h j+

[v]f,1 du ++ (a+bu) dxde =

i-1 j-h j-h

j+b

[a+bu)$ -b v du dx
\ j-h j

j -h

i j+h y

and c dudx = c Ax

i-1 j-h j_y

where a, b and c are assumed to be constant between stream-wise steps. The

above expressions can be evaluated by using the linearized expressions forv ,

where

1,j + (#1,j+1 1, j ) ('*j) ("j +1 - "j) if "j 1 " I "j+h-##

P (W) <=
g

i ,j ) (W*j) / (*j _1 j) j 1 W l U _y f-U if U1,j + (#1, j _1# W j

- 20 - i
1

_ _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ . _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

The final component of the micro-integral equation, that is for the source

term, d , requires special consideration and a detailed discussion of this term

and its numerical treatment is given in Reference (8). In brief, by defining

the term

+1 +h*.
1

-

S Ep ($ ~ I) dvdedx^

E.

i j-h*
,

and one can show that

|

ig ~ (1/8)(@E ~ @I ("j ~ "j-1}( j+1 + j-1 + 6d )f_;S

l

Having linearized the source term, and assuming a linear variation in @

between adjacent grid points, the above expressions are substituted into the

micro-integral equation which, after collecting terms, yields a set of algeotaic

equations for the generic interior point 1,j in the form

(20)@i,j 3 @f,3 ,1 + Bj#1,3_g + C3=A

J = N2-1, N2-2, ... N1+1

where N2 and N1, respectively, define the grid points at w=1 and w=0. The co-

efficients A , B and C at an interior point (1,j) are defined from the follow-

ing equations:

A'= (2)(r -r )"I(rp /# )M
~ (# ~ @I)(a + beg)gg T $ i-1 E g

- (1/4)(@E ~ I( j+1 ~ j) 1-1

- 21 -
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|

|

B'= (2)(r) - r _g)~ (rp f# )j- 1-1 + (# ~ *I (# jIf 1-1
+

3 T $ E

1

|(1/4)($g - $ )(1/Ax-b)(w) - w3_1) 1_i
-

1

,

C'= (1/4)( E ~ I (0* j("j+1 ~ j-1} + j+1( j+1 ~ j (21)j

+ #j -1 ("j ~ "j - 1 } i-1 + 1,j

j 3 pg 3_g) (@E ~ I)/6* i-1D'=A'+B'+(w -w

with

- e _1) d),1 + 2 _1 + 6 2 } 1_1(1/8) ($g - $ ) 6s =

3 3 31 313

and A = A '/D ', B = B '/D ', C = C '/D
3 3 3

V.2 Finite Difference Equations: Boundary Points

Values at the end points of the grid network (N2, N1) are prescribed from

boundary conditions in the inviscid external stream (w=1, J=N2, rar ) and from
E

either boundary conditions within the unmixed portions of the jet (w=0, j = 1, r >0)
1

or symmetry conditions on the axis once the jet becomes fully mixed (w=0, j=N1+1,

r =0). For the latter situation Equation (20) is modified by the symmetry
1

statement $1 N1" 1,N1+2 where the grid point (1, N1+1) defines the jet axis;

thus, Equation (20) yields

1,N1+2 (A +B ) + Cj (22)# ,N1+1 ~

3 31

- 22 -
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V.3 Finite Dif ference Equations: Mass Entrainment

Although the coefficients A B and C are based upon flow properties,

at the (1-1) station, matrix inversion of Equation (20) can only proceed once

the mass entrainment between stations (i) and (1-1), manifested through the

[ parameters a, b and ($ -$ ), is determined. From the discussion of mass
7

entrainment in Section IV, and from Equations (19a) and (19b), it can be
.

readily shown that:

T N1+2 N1+1} (E ~ I} i-12(p #}N1+3/2 (# ~#(a)f_1
=

| (23)

T N2-1 N2-2) (E ~ *I} 1-1 1-12(p #)N2-3/2 (# ~ #(b)f,y ~#=

Having calculated the quantities a and b (or equivalently r *E ""d #1*I), theR

change in the stream function ($ -@I) can be found using Equation (19b) whereE

h($~I)"#"I ~ # *EE I E

or, in finite-dif ference nctation ,

- ,

($ ~ I)t "(E~ I)i-1 }i-1 j ( '}
E

The physical r-location of each grid point is determined by inverse quadrature,

i.e.,

2 ( E' I)
(pu) du (25)I f (r-r ) =

7

o
I which results directly from the physical significance of the stream function,

$, and the definition for w.

- 23 -
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V.4 Finite Difference Equations: Chemical Production Term

We have tacitly indicated that the introduction of finite-rate kinetics

into the investigation of fluid-flow phenomena can lead to a mathematically

" stiff" system of equations. For H / Air reactions, for example, the physical
2

,

basis of the " stiffness" results from the importance of the hydroxyl radical in

the overall kinetics scheme. Usually, every reaction considered that generates
,

water requires an expenditure of OH radicals. Since the concentration of the

OH radical is always small, and since the rate of production of water in H / Air
2

systems can be very fast, the coefficients required for the calculation of OH

must be very large and intrinsically positive. Thus, the rate of production

of OH requires an equation involving differences of very large number <; which

mathematically can be shown to be a highly unstable situation when one resorts

to standard Runge-Kulta predictor / corrector techniques. As alluded to previously,

methods do exist to cope with this problem; the approach used here is discussed

by Moretti and Rubel. Following the uncoupling process of Moretti, for each

marching step 6x, the specie mass fraction, o , which are governed by theg

differential equation

aa m + (a M h m - H M eaa N + J hu (20g g g g

K = 1,2, ... N

is divided into two components o =a +a , respectively controlled byg

the equations j

aa % x + (a+ w a % u - a M caa / M (26a)g g g

and

Maa /ax = O Mu mg g

- 24 -
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The numerical solution of Equation (26a) is obtained according to the

integration process described above (Equations 20-22). By contrast, Equation

| (26b) is recast in the subdomain, 6x, with the form

da (c) da (c)
" ~ k ( '"i)"K + B G ,a ) (2Ddt x g j

*
K = 1,2,3, . . . N; j / K

upon substitution of the law of mass action (Equation (6)), where the coefficients

A and B are expressed as:g g

R N v

I ("d ~ "d ) { k1, , ,,i=1
H (pa /w ) - g ,, (g ,, - 1) *" '

A ~
1 1k

m=1
"N y

n (pa /w ) # }
1 1 k

} i=1
|

| W" R N v

k" I (v d ) {kf,m ( k,m ~ } (E i} ~ b,m b,m" '
B ~vd i

m=1 i=1
I N v

(pa /w ) d)'
n f 1i=1

!

where L = 1 if the molecularity of reaction m, for species k, i.e., if

" '(v ~ "d ) is negative or g = 0 if the molecularity is positive.d

( >

l

- 25 -
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Following the linearization technique of Rubel, the integral of Equation

(27), written in the form

a (O' " "K **P ~A +(K/A ) 1-exp (-A 6t) (29)
K K g g

*
K = 1,2, ... N

is determined subject to the requirements that i) the enthalpy h at the grid- ,

point (1,j) satisfy

N
'

i,) = (a N W W = W - U2uD ,) Wh g K g f

K=1

where H(1,j) and u(1,j) have already been determined f rom the implicit integration

of Equation (20), and 2) the conservation of chemical elements involved in the N

species is preserved (see footnote on page ).

The overall change in specie concentration and temperature at the grid point

(1,j) is obtained by iteratively solving Equation (29) subject to the constraints

imposed by the above two conditions. In particular, the elements of A and Bg

are initially (in the sense of the iteration loop) determined by considering

T( =T (D) and a = U2 (a ) + a (D) where the superscript connotes
f g g g

1-1,j 1,j

the iteration step. Substitution into Equation (29) allows for the predictor

calculation of the species a , i.e., a The corrector values are obtained.

by considering

i
(a )1,k("+l) = 1/2 a (0) + o* (")K K K 1,j

|

T("+I) = 1/2 T(0) + T* (")

- 26 -
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<

where the temperature, T, is determined using Equations (11) and (30). This

allows new values of A and B to be determined and the entire process is re-g g

peated until the relative change in temperature from one iteration step to the

next becomes less than a prescribed value.

[ Models of chemical kinetics generally undergo continual updating as ap-

plications are extended to newer regimes of chemical behavior. The modifica-
.

tions require the addition of reactions and/or species to the model. A practical

aspect of the numerical procedure expounded is the ease with which such changes

can be incorporated into the program. This characteristic is a consequence of

the uncoupling of the species interactions through Equation (27). Thus, simple

modification of coefficients A , B effect the desired changes in the chemicalg g

kinetics model.

V.5 Step Size controls

For non-reacting turbulent nixing, i.e., 4 =0, the numerical finite differ-
f

| ence formulation is implicit since there is no need for the uncoupling procedure

described in the previous section. Accordingly, stability is insured even for

large numerical steps; however, reasonably small step sizes are desired for good

accuracy. One procedure is to make the step length proportional to the thick-

ness of the mixing layer. A variant to this approach is to make the step length

equal to the minimum physical spacing between grid points, i.e.,

Ax( min r -r (31)= g

I

' For reacting, turbulent flows, the chemical production terms are near-zero

and the uncoupling procedure and solution technique renders the system into a

hybrid implicit / explicit scheme. The explicit nature for the calculation of

. 27 -
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a (C) poses an additional step-size constraint on numerical stability and ac-g

Under these conditions, one can show that stability is dictated by thecuracy.

= N Ma .maximum eigenvalue,A, for the Jacobian matrix J = (ygg} where Ygg g g

Difficulties in determining this eigenvalue are reduced if it is assumed that

the chemical rates are such that the diagonal element of the Jacobian matrix, j

is dominant. Accordingly, the allowabic step size can be shown to beygg ,

| (da (C)) 1
-

|

Ax(C) = u
I r

(jet"i"["K dt j g, ,

where da ( /dt is readily evaluated using Equation (27). In practice, the
g

actual step size taken is determined by combining Equations (31' and (32) ac -

cording to

1 1
( )(6x)

Ax(D) + Ax(C)1
=

Ii

which implies that under diffusion-controlled situations, Ax(D) 1.s the predominant

factor, while under kinetically-controlled mixing ox( ) determines the marching

step.

i

1

-28-



SECTION VI

KINETIC MECHANISM AND RATE DATA ,

I

In starting this section it seems appropriate to discuss first the role

of chemical kinetics of the fundamental level in turbulent reacting flows.*

In complex chemical systems many individual reactions of the type given by
.

Eq. (8) may be involved so that the volumetric role of production, 4 , given1

by Eq. (6) and required in the specie conservation equation will contain a

large number of terms. For example, for a typical elementary reaction

f

vMy y + v "2 "3"3 "4"42

b
implementation of Eq. (6) yields

("3 + "4 "3 "4(v1 + "2) "1
"2 + b P/v W =-k p y Y T T

,

f3"W1 g1 g 1 2 3 4

where y = a /W . Thus, because it is frequently not possible to take into
1

| account all individual reactions and their related rate constants, it is
!

usual in the analysis of complex chemical systems to consider only a few

reaction steps, which possibly do not correspond to the proper mechanism of

reaction on a molecular scale but which in a gross sense do describe the

overall process.

However, there is increased concern in the applicability of overall

reaction mechanisms and rates to turbulent flows.(6) Since this global

f I

approach does not correspond to chemical behavior at the molecular level,'

I their utilization in turbulent flows with heterogeneities in composition is a

subject of continuing investigation in the open literature. To see some of the

difficulties arising from the creation term in turbulent flows, consider a

simple one step unidirectional reaction

- 29 -
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hHMy+M2 3

which, in this case

k =-p kyTy 12

where the reaction rate, k, is considered to be a function of temperature. Now
a

- *decomposing each of the elements into a mean ( ) and fluctuating term ( )' gives
1

& = (0 + 4') = - (p + p ') k(Y + T') (iy + y ') (V + T2)
'

y 2

and applying the Eulerian time mean averages yields
,

|

2
G =-p k (Y) il 2 {1 + [second order and higher correlations]}.y

It has been shown(6,23) that the terms within the square bracket are not

necessarily small; and, to model these correlations presently imposes undo

restrictions on the assumed kinetics (like the simple one-way reaction posed

above). Accordingly, due to this formidable complexity, it will be assumed

that for engineering purposes, chemical reactions in turbulent flow occur

according to the classical, laminar, kinetic behavior and to depend only upon

mean values of species concentration, temperature and density which is tanta-

mount in neglecting the terms in the above square bracket. In this connection,

the reaction system and rates, largely extracted from Ref. 24 and listed in

Table III are adopted here.

|

|
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SECTION VII

NUMERICAL /EXPERDENTAL COMPARISONS - NONREACTIVE TURBULENT MIXING

Substantive progress in modeling turbulent, nonceactive shear flows has

been achieved in recent years as indicated in the Proceedings of the 1972
,

NASA-Langley Conference on Free Turbulent Shear Flows,( } wherein the state-of-*

*
the-art in understanding and describing the basic fluid dynamic aspects of the

problem was thoroughly examined. Specifically, for nonreactive flows the

Conference Evaluation Committee concluded that differential mean turbulent

field methods, like the one just described in this report, represent an approach

which promises systematic development toward a practical degree of generality.

Rodi( and Launder, et al.(9) have presented the results of many

comparisons of numerical predictions based upon the "two-equation model"

with experimental data culled from the world's literature. These data are

related to steady two-dimensional " parabolic" flows such as plane jets, wakes

and mixing layers, wall jets, boundary layers of various kinds, and flows in

pipes and annuli. Agreement with experiment varies from good to very good.

Several of these comparisons between theory and experiment are shown in

Figures 4a through 4f. These figures, largely extracted from Ref. 9, and succinctly

summarized in Table IV, favorably compare the numerical predictions in axial

velocity decay with various experimental measurements in turbulent axisymmetric

| jet flows. In particular, Figures 4a and 4b depict comparisons with air / air
1

turbulent nonreactive jets while Figures 4c and 4d display comparative

numerical / experimental trends in H / air (jet / ambient) turbulent nonreactive
2

jets. Although these latter two figures show reasonable agreement between theory

and experiment, Launder, et al. point out that increased disparity between the

k-c2 predictions and measurements arise in flows that have appreciable density

gradients.

- 31 -
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In cases involving large compressibility effects manifested either by

the high speed characteristics of the jet or the marked variation in density

between the jet fluid and the surrounding environs, Dash, et al. (25) shows

that some improvement in numerical predictions can be achieved if one incorporates

ka modification to the k-c2 model. Basically, the modification resides in the

fact that the effect of compressibility can be phenomenologically related to ,

a reduction in the turbulence scale and hence in the effective turbulent vis-

cosity p ' Based upon heuristic arguments, this effect depends mainly on the.

Mach number fluctuation M E (k /a), where a is the local sound speed (in free

jet flows "a" is mainly a function of density) and, in place of Eq. (14) one

should use

p =C1 (M ) C p k /G (34)

where the function C1 (M ), as presented in Ref. 25, being determined by a

systematic comparison of select theoretical calculations and available shear

layer experiments. Figures 4e and 4f, taken directly from Ref. 25, show

the relative improvement when the aforenoted modification is implemented into

the k-c2 model. Indeed, further clarification in compressibility effects and

the generality in the above modification is deemed warranted, albeit, its

direct implementation in this analysis is otherwise noted.

.

I
,

|
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SECTION VIII

NUMERICAL PREDICTIONS: REACTIVE TURBULENT MIXING

As a possible prelude to direct application in containment vessel response,

several select numerical experiments were performed to check the qualitative*

behavior of the numerical prediction. Specifically, initial PCRV inventory was

a
presumed composed of 100 moles of CO and H and 5246 moles of He. A j et-to-f ree-

2

stream temperature ratio of 3.3 was considered with a jet-to-f ree-stream

velocity ratio being either 100 (Test Case No. 1) or 10 (Test Case No. 2);

the former approximating the early stages of a nonmechanistically postulated pene-

tration failure; the latter, approximating the final stages of such a failure.

Computer generated plots of the spatial variation of temperature, and

mole fraction of C0 and H f r these two cases are presented in Figures 5, 6,
2

and 7.

A cursory examination of the results portrayed by these figures indicates

the following:

(1) For both test cases the initial conditions are such to support

a turbulent diffusion flame.

(2) Mixing is more rapid under Test Case 1 conditions (u /u = 100 @ X=0)
E

then under Test Case 2 conditions (u /u = 10 @ X= 0) .
E

(3) Depletion of C0 and H2 ( r production of CO2 2
and H O) occurs sooner

under Test Case 2 conditions where rather sudden changes in the axial

temperature gradients occur within the mixing layer about two j et

| radii downstream as compared to Test Case 1 where large variations in

axial temperature are apparent approximately seven jet radii downstream.

(4) The spatial variation of temperature and other variables precludes to

some extent the use of analytical similarity distributions which have

- 33 -
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been used in the " layering" models found in Ref. 5.

Although these results are highly preliminary, they do tend to indicate that

the phenomena of turbulent mixing should be investigated with more recent

state-of-the-art models than those which have heretofore been applied to con-

tainment atmospheric response studies. In addition, the possibility of diffu-

sive burning of combustibles released either during a depressurization failure .

or as a direct consequence thereof must be examined with mixing codes directly

linked to a chemical kinetics analysis.

In this connection, these general comments and modeling technique have

also been substantiated by the recent work of Landoni( 6,27) of General

Atomic dealing with their containment atmospheric response study program.

1

|

|

1
1
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SECTION IX

llTCR SAFETY: T;lE NEED FOR A T"RBULENT REACTIVE MIXING ANALYSIS

!

During the time this report <as being written, the author became aware
l ~

.
of the containment atmospheric r espoase study pogram of General Atomic as

described by the work of Landoni, et al.( In the former reference empha-'

e

sis was placed mainly on the study of turbulent jet structure during a DBDA and

its effects on CV pressure and heat loads. The latter work stressed the long

term survivability of the secondary containment under conditions of unrestricted

core heatup resulting from loss of forced circulation with concomitant production

of combustible gases due to concrete decomposition.

The author concurs with the unit problem approach alluded to in these

references but wishes to add thar; contrary to the conclusions drawn therein,

turbulent reactive mixing codes employing a so-called "two-equation" turbulence

model can provide the necessary groundwork in modeling turbulent jets. In

addition, with some modifications, these models can be extended to include

buoyant plumes as well -- restricted, of course, to the parabolicity of the

flow. Methods do exist in linking these analytical models with classical

phenomenological chemical kinetics codes as is described herein. Of course,

these comments must be tempered by the need of additional experimental work of

multicompcnent gas mixing at conditions closely akin to a DBDA.
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TABLE I

The Energy Dissipation Turbulence Model (kc2)

~pTW * p
3

2p, - c pk fg
,

k E turbulence kinetic energy = 1/2(u u )

c E turbulence dissipation = p [(au/3x))

p E effective turbulent viscosity

#
p c2 cl K c

* ** 1.40 1.0 1.3

* C = 0.09 g(PTc') - 0.0534
r T

E E

(P/c) = p5 (P/c)rdr/ p3 rdr

TI ry
turbulence energy production - u (3u/3y)2PE

g(P/c) ~ 1/(P/c)

** C = 1.94 - 0.134f
c2

0.2
du du

(0.5) @ r) CL , CL
g,

au dx dx

}
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TABLE II

Sour,ce Terms in Transform Equations,

.

L *+ 0+

(1/pu) (8r /u)2(,, p) _ (, f, , 2) dp/dx)u 1
3

_

("j /H ) 3/0w ([pur u /a$ ](1 - 1/Pr) 3/3w (u /2))H Pr
j gt

k o (1/P") {IP " # "t/Of I (0"/0") - PCIk

o, (1/pu) ([p ,2,22 p /a+2) (c/k) (au/aw)2 2

- c,, oc fg)ce
e

o Se ( P"} i} i = 1,2, ... N-Lg t

5 Se 0 (see note below)
3 t

Note: The L differential equations for aj can be replaced by L algebraic
equations by invoking the conservation of elements, i.e.,

a =Ep ! '" ' ' *** bg k,1 k 1 k

where y defines the number of atoms of element, 1, in species, k.k
The diffe,1rential equations for og have relevance in chemical equilib-
rium flows where the vt in the specie conservation equations are
mathematically undefined.
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|
TABLE 111 1

Chemical System (He/H/C/0/N)

<

Forward Rates A

k = ATN (-E/RT)exp
Reaction Number / Chemical Reaction g

*

A N E/R

6.1E-33 0 1872
1. CO + 0 + M ; CO2+M

CO 1. 4 E-18 0 1308
2. CO + 0 +

2

2.5E-17 1.3 -388
CO2+H3. CO + OH ;

H+HO 3.6E-11 0 2607
4. H2 + OH ; 2

5. H+O OH+0 3.7E-10 0 8505
2

HO+0 1.0E-11 0 554
6. OH + OH ; 2

7. 0+H OH+H 3.0E-14 1 4509
2

1.8 -30 -1 0
H2+H8. H+H+M g

3.8 E-30 -1 171
02+M9. 0+0+M g

OH + M 2.0E-32 0 0
10. 0+H+M ;

11. OH+H+M; HO+M 6.1E-26 -2 0

2

(1) Species order: H , CO, CO , H 0, H, N , 0 , 0, OH, He
2 2 2 2 2

(2) [A] = cm "/ (particles)"/see
= 1 for second-order reactionsn
= 2 for third-order reactions

(3) M = third body or collision partner

i
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