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ABSTRACT

Relaxation of the prima facie assumption of complete mixing of primary
containment and secondavy containment gases during postulated depressurization
accid~nts within gas cooled reactors has led to a study program designed to
icentify and selectively quantify the relevant gas dynamic processes which
are manifest during the depressurization event. Uncertainty in the degree
of gas mixedness naturally leads to uncertainty in containment vessel design
pressure and heat loads and possible combustion hazards therein. This report
details an analytical approach in the modeling of the exhaust-jet structure
during a penetration failure. A chemical kinetics model is also described
for the possibility of examining diffusive flame structure assuming the
exhaust jet is composed of combustibles as well.

The salient features of the mixing model and associated reaction
kinetics are embodied *he classical problem of a turbulent, chemically
reacting jet exhausting ir o a sta ionary ambient atmosphere capable of
supporting combustion. A so-called "two equation' turbulence model is linked
to a chemical kinetics code describing the production of CO, and H, O with

2 2
He and N2 considered as inert diluents. The usefulness of the model is
exemplified by experimental/numerical comparisons presented in the open
literature and within this report. The need for such a calculational tool

in HTGR safety research is stressed as well.
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SECTION I

INTRODUCTION

Analysis of high temperature gas-cooled reactor (HTCR) plant response

under normal, upset and accident conditions requires an overall simulation

of major plant components in which interaction between components and systems
are realistically taken into account. This is, for example, the basic premise
behind the TAP code(l). However, in order to hold the program to a manage-
able size necessitates the use of simplified submodels for some of the more
complex portions of the system. More detailed models of individual subsystems
have been derived to continuously check the overall reliability of this ap-

(2)

proach. For example, the OXIDE-3 code is a third generation computer code

developed for the purpose of analyzing the transient reactor core response
following accidental inleakage of steam and/or air to the primary coolant
system. The CONTEMP-C(3) computer program was developed to simulate contain-
ment atmospheric response to postulated penetration failures within the pre-
stressed concrete reactor vessel (PCRV) under the assumption of complete and
homogeneous mixing of PCRV coolant and containment vessel (CV) atmosphere. A

(4) (5)

refinement thereof is modelled with the HTGRF4 and HAZARD codes, wherein

the possibility for, and consequences of, primary coolat layering due to in-
complete, albeit pre-specified, mixing is examined. Spacifically, (a) the question

of the flammability hazards within the PCRV due to CV gas inleakage after
(4)

penetration failure , or (b) the question of the flammability within the

(5)

CV during a penetration failure are addressed under the assumptions of

homogeneous or partial PCRV/CV gas ''mixedness' and instantaneously fast chem=-

ical reaction kinetics.




Notwithstanding, the extreme remoteness of an occurrence resulting from
the question posed by statement (b) above, which presupposes that combustibles,
viz., H2/CO are generated within the PCRV due to water/steam leakage prior to
a penetration failure, the relative ease in extending a binary gas (He/Air)
containment response code into a multicomponent gas (He/Air/CO/HZ) response
code warranted its subsequent investigation.

Regardless, the presumption in knowing the degree of PCRV/CV gas 'mixedness"
(either fully mixed as in CONTEMP-C or partially mixed as in HAZARD), and the
assumption . chemical equilibrium amongst gas specie components requires further
investigation with codes which realistically model the subsequent turbulent
mixing of PCRV gas with CV gas and possible concomitant chemical reaction kinetics.
In particular, these two factors,

e turbulent, diffusive mixing

e finite~-rate chemical kinetics
are extremely relevant in the investigation of post-penetration failures, espec-
fally if gas layering is indeed prcbable. In this regard, it is quite likely
that fluid-mechanic flow times in turbulent, buoyant plumes are comparable to
chemical reaction times, necessitating investigations in diffusion-controlled
as well as chemically-controlled mixing processes. Furthermore, it is felt that
as a precursor in the investigation of detonability within large vessels,
experience accrued in turbulent, reactive mixing is of paramount importance.

Accordingly, this report deals specifically in numerically nodeling free,
turbulent, reactive shear layers. As a subprogram, it has direct apu’ication
in extending existing codes specifically designed in penetration failure studies.
Also, the main thrust in the numerical approach has bearing in the study of

buoyant plumes and buoyant wall-jets, fission product release and accompanying




deposition. Accordingly, Section II deale wholly with the basic governing
differential equations generally used in describing turbulent, reactive shear
flows. Along with the basic conservation equatlions of mass, momentum and

energy, a well-tried turbulence model and turbulence modeling phenomenology

are also discussed. As a preface te the numerical technique, a mapping traus-
formation of the independent variables is described in Section IIT indicating,
from a numerical standpoint, its relevance in modeling flows with free bound-
aries. A hybrid implicit/explicit numerical technique is described in Section V.
The nr .d for such a mixed finite-difference approach when considering reactive
flows 1is also discussed in this section. A description of the chemical~kinetic
rate mechanism for a HZ/CO/O2 system with He and N2 considered as inert dilutants
is presented in Section VI. One major aspect of the overall approach, namely,
that the numerical code is not restricted to only this kinetics scheme, is also
emphasized. Section VII exhibits some numerical/experimental comparisons for
nonreactive, diffusive flows, indicating the efficacy in the turbulence model

and the numerical approaches used. Section VTII is devoted to a qualitative
interpretation of select numerical experiments in reactive flows; problem areas
are defined and means of code augmentation discussed throughout. Finally,
Section IX reemphasizes the need for such a mathematical tool in HTGR reactor

safety and elaborates further {ts possible use in other areas pertaining thereto.




SECTION II
GOVERNING EQUATIONS FOR TURBULENT REACTIVE SHEAR FLOWS

Conceptually, methods exist for solving the equations for unsteady, three-
dimensional flows, which are in principle capable of predicting the details of
any turbulent flow, by starting with the highly reliable Navier-Stokes equatioms.
However, the practical possibility of utilizing these numerical techniques is,
presently, very small because of the great disparity of scale between the size
of most practical flow domains and the sizes of the turbulent fluid eddy struc-
ture. To circumvent this scale disparity problem, which manifests itself by
the employment of an impractical fine grid network for numerical computation
of even the most simplest of turbulence flow phenomena, investigators, in the
consequences of turbulence in flows of practical engineering interest, have
resorted to the use of various '"turbulence models".

In general, these are sets of equations which attempt to describe the con-
vective transport, the diffusion, the generation and the decay of certain sta-

correlations”.

tistical properties of a turbulent fluid -- the so-called
Particularly, the subject of turbulence modeling of free shear layers has, in

recent years, received a considerable amount of attention.(6’7’8)

A major con-
sequence of these studies is the general agreement that turbulence models which
include within the describing set of partial differential equations a means for |
also determining the transport of turbulent kinetic energy yield results which
are superior to those relying on local eddy-viscosity assumptions (i.e.,

"algebraic'" models of turbulence). Although a hierarchy of such models has

been developed, ranked according to the number of additional differential equa-

tions solved simultaneously to describe the mean and fluctuating structure

within shear layers, most emphasis has been placed upon the '"two=-equation



turbulence models" which describe the approximate transport of turbulent kinetic
energy, k, and its dissipation rate, £. These are solved in conjunction with
the usual equations describing the transport of mean momentum, energy and mass.
The link between the "apparent" eddy transport coefficients, e.g., eddy vis-
cosity, appearing in the mean conservation equations as a recult of the usual
Eulerian time-averaging techniques applied to the Navier Stokes equations, is
made using algebraic, constitutive equations directly relating these turbulence
transport coefficients to the turbulent kinetic energy and dissipation rate.

In this regard, the problem under consideration, that is, the free turbulent
mixing of two chemically reacting, co-axial streams (Figure 1) involving N
chemical species made up from L elements and undergoing R chemical reactionms,
is addressed using a two-equation turbulence model that has been extensively

9
investigated by Spalding and his co-workers at the Imperial College(s”).

II.1 The Mean Flow Conservation Equations

For compressible turbulent flows, the equations describing the transport of
mean momentum, energy and mass are, in principle, derived in a similar fashion as
those for incompressible turbulent flows. The mean velocity field follows from
the Navier Stokes equations by the usual decomposition of the velocity vector,
Ujs into mean and fluctuating components, ug = Ei + ui' (1 =1,2,3), and applica-
tion of standard time-averaging techniques. The resulting equations for the mean
velocity field, Ui’ have, in general, the same form as the original Navier Stokes
equations except for the addition of the apparent turbulent stress terms
(Reynolds stresses) which, written in cartesian tenser notation, have the form
bGITE;T (pzdensity). To close this system, additional equations must be sought

for the second order correlation terms R = (ui uJ'), usually provided by the

1]



Newtoni.r constitutive relation R, = (2/3)(k?*)(8,,) - ZuTsij’ where S, ., is

13
/axi), k? is the

3

the usual strain rate tensor given by S

1]
14 - 1/2(3‘61/3)(j * 3ﬁj
turbulent kinetic energy defined by k? = 1/2 Rii’ and Mo is the turbulent

eddy viscosity. An equation describing the dynamics of the turbulence kinetic
energy can also be derived from the Navier-Stokes equations by the following

procedure: (1) multiplying the x, component of the Navier-Stokes equation by

i

u,', (2) multiplying the x, component of the Naver-Stokes equation by u

k| 3 .’
(3) adding the two resulting equations, (4) time-averaging, and finally (5) re-
sorting to tensor contraction. The resulting equation is quite complex, in-

cluding triple order (ui'u 'uQ') correlations, and means for making this equation
(10)

3

more tractable are discussed by Bradshaw and others .

For compressible flows, the situation is more complex in the sense that

fluctuations in density (p') and temperature (T') must also be considered for non-

(6)

reacting flows and, most recently y concentration fluctuations in multi-compounent,

reacting flows as well. The scope of this *udy does not lend itself to the
elaboration of these details; one interested in further clarification can resort
to the previously cited references. Accordingly, the equations to follow are
simply stated without further recourse to their origin. Suffice it to say

that they are considered by most investigators as the standard equations for
compressible turbulent flow.

Thus, for the subject problem under discussion, we assume the mean flow
to be (1) steady (or at least quasi-steady), (2) axisymmetric, and (3) well
approximated by che so-called boundary-layer assumptions where gradients in
the direction normal to the flow are considered much greater than those in the
axial (or flow) direction. Considering the simplifying assumption of a binary

Fickian diffusion law with the same diffusion coefficient for each of the



species, the resulting equations describing the transport of mean momentum,

energy, mass and speciles are:

Momentum: *

SR T R L S :
PY gl ® T % {pr(u+ut ar } dx " g(OE

Energy:

3H o -1 9 1P faw soe Ak
pua+ov—a—r' r ‘a—r'; L ( -1) + (Pr-1)——

Mass:

5% (pur) + %; (pvr) = 0

Species:

£ 8 1023, s Nl
Elements:
o 3 orU U a
s & s, G T 5 B gt B 2
P ax * oy ar . or 8 Ut ir
j- l, .. . L

)

+
For clarity, the bar over each mean flow variable has been omitted.

e

(1)

(2)

(3)

(4)

(5)



In these equations, u and v are the mean axial (x) and radial (r) com-
ponents of velocity, respectively; p is the mean gas density, p the pressure;

H the total enthalpy; u, the turbulent eddy viscosity coefficient; o, and &, the

i ]

the mass rate of pro-

t
mass fraction of species i and element j, respectively; &i
duction of species 1i; Prt and Sct the turbulent enthalpy and mass exchange
coefficients; Let the turbulent Lewis number.

The instantaneous mass rate of production* per unit volume is, through

the law of mass action, given by

R

g o n, N v

=y SRR TR R od m @™ g (6)

- i=]
i=1
where
y e i ¢ S
G_'] =] - pj Kc,j 191 (ai/wi)
nJ Ef: Vi'j (7)

i=1
N
m, z_; (i) = i)

The forward rate constant, kf ik and the equilibrium constant K are based upon
)

(%

the molar concentrations for the jth reaction expressed in the form

N f.] N
;vu M, _‘—' 2;‘)“ M, LG R | (8)
= k i,

bsd

In this formulation, the phe.omenological equations for the chemical kinetics
do not include the effects of fluctuations in concentration and temperature.



where vij' and vij" are the stoichiometric coefficients of the reaction. The

fluid is assumed to be comprised of a mixture of ideal gases; thus, the equation

of state is given by

N
p = .oROT ?:,1 ai/w1 = PR T/W (9)

where Ro is the universal gas constant. In practice, the temperature, T, is
determined by an iterative solution to the equation that defines the static
enthalpy, h, of the gas mixture, i.e.,

N
hSH- 17202 +vh) = 2 (a, /W )b (T) (10)

i=1
where h:(T) is the sum of the sensible enthalpy and chemical energy of species i
at 0°K for the standard state and is presumed given by a polynomial expression

involving T, i.e.,

o (k=1)
hi(T) =§ ai,kT (11)

Once the chemical kinetic mechanism, i.e., Equation (8), are defined and

the condition that the backward rate constants kb § are related to the forward
A

rates,

, and the equilibrium constant KC , the above system of equations is

%1 3
closed once expressions for the turbulent exchange coefficients, Ut’ Prt, Sct,
Let and turbulent kinetic energy are derived., 1In practice, one usually pre-

supposes that the turbulent exchange coefficient for heat (Prt) and mass (Sct)
in gas-dynamic flows are constants and of order of unity. As such, phenomeno-

logical laws and/or equations are required to evaluate the turbulent momentum

exchange coefficient, ut, and the turbulent kinetic energy.



In zero-equation models, Mo is related directly to the mean velocity field
u, that is, e A (Au) (Ar) where (Au) is some appropriate velocity difference
associated with the flow (e.g., the difference between jet center line velocity
and the external flow velocity), and (Ar) is a length scale characterizing the
width of the jet. Also, in zero-order modeling the turbulent kinetic energy is
not congidered. 1In one-equation turbulence models, a turbulent kinetic energy
equation forms the basis for a model equation for the turbulence velocity scale
with the eddy viscosity given by My 3 th. The turbulent length scale, Qt’ is
prescribed much as in the zero-equation approach. For the two-equatlon approach,
the phenomenology is much the same as in the one-equation model, except for the
fact that a differential equation is used to describe the x,r,-dependency for

the length scale, Rt (or equivalently the kinetic energy dissipation rate, E(lO)).

I1.2 The Two-Equation Turbulence Model

One of the more widely accepted two-equation turbulence models is based upon

the so-called "k-€2" model described by Launder(s). In this approach*, the turbu-

lent eddy viscosity is modelled using the equation
u, o= CL pL k (12)

where CL is a function of the local axial velocity gradient.

y A refinement to the k-£2 model is that proposed and subsequently used by
Spalding (see "Concentration Fluctuations in a Round Turbulent Jet", Chem. Engr.
Sci., 1971, Vol. 26). This method has found marked success !n turbulent buoyant
pilumes, and its implementation into the present analysis is subsequently under
investigation,

o 10 =



The turbulent length scale is shown by dimensional considerations to be
related to the turbulent kinetic energy and turbulence dissipatior rate, €,
via the expression

3/2

£ = CE k /9.t (13)

thus requiring the turbulent viscosity to be dependent upon two properties of

the fluid turbulence, namely k and €, viz.,

W = C pk’/e (14)
t U

Transport equations for the turbulent kinetic energy and turbulent dissipaticn
rate may be derived from the Navier-Stokes equations, employing the usual Eulerian
time-average techniques used in deriving the above noted mean conservation equa~-
tions. The resulting two equations require considerable modeling, however, to
reduce the higher-order turbulence correlation terms that accrue due to the
averaging technique to more tractable forms. Based upon heuristic, dimensional

arguments, Launder shows that the two transport equations for k and € are given

by
é
A R B -1 3k (3_.)
Py Ix - o ar [%uTok r] " He \3r e (13)
and
e de -1 3 -1 3¢ £ Ju 2 pez
chat Qi) B _B_F[r“’l"e ‘5?]”51:“:(5?) e g o

Equations (14), (15) and (16) form the foundation of the '"two-equation model' of

Launder. Refinements in the five constants, viz., Cu' Cel’ CeZ’ 9y and o

originally deduced by Launder, have been investigated by Rodi(ll). These are

€’



incorporated herein and listed in Table I. In particular, the quantity, f,
in Table 1 embodies an axisymmetric correction to the basic values of 0.09 and

1.94 for CU and Ce?’ respectively, where

in which Ar and Au reflect the width and velocity change across the mixing layer.
A further correction to the '"constant' C11 takes into account the fact that in
weak shear flows the rate of turbulence energy production is appreciably less
than the dissipation rate. In such circumstances, the value of Cu increases, and
Rodi has provided a correction for the variation in CLl with the average value of
the ratio of turbulence energy production to dissipation at any cross-section,
These empirical corrections have also been included in this analysis.

Thue, the partial differential equations describing the transport of mean
mass, mementum and energy, i.e., Equations (1) through (5), together with Equa-
tions (15) and (16), which approximate the transport of turbulent kinetic energy
and 1its dissipation rate, plus the aforenoted constitutive algebraic equations
form a complete set of equations for the investigation of turbulent, reactive
flows. These partial differential equations are solved subject to the following
initial and boundary conditions:

x = 0: u=u(r), H=H), k=k(), €=e(r),a =a/l(r, a, =a,(r)

B ]

r =0 du/dr = 3H/dr = 3k/dr = 3¢/dr = da,/3r = aaa/ar =0 (17)

~

SRS 5o 5 H-’rlE,kﬂe-O,a* a

E’ ST i B
Pressure p is allowed to vary in the axial direction, according to an a priori

prescribed function
R



SECTION III
TRANSFORMATION TO MAPPED STREAM FUNCTION COORDINATES

For convenience in numerical computations, the conservation equations of
mass, momentum and energy, and the second-order closure energy-dissipation
model equatiomsare recast from the physical (x,r) plane to a mapped streamline

(12)

coordinate plane (x,u) along the lines of Patankar The mapping variable,

w, is defined by

w sz Y- wI(x)]/[wE(x) - wI(x)l

where E and I, respectively, represent the external and inner boundaries of the
mixing zone (see Figure 1). The term (wg - wI) is a measure of the mass flow

in the mixing layer at a given x-station, i.e.,

By this process global continuity, i.e., Equation (3), is automatically satisfied,

and by definition of the stream function, ¥, namely
Y/3r = pur ; W/9Ix = =pvr

the dependent variable, v, is automatically eliminated from the governing system
of equations.
Thus, by first introducing the von Mises coordinate transformation

(x,r) * (x,¥)

into the governing differential equations, noting that

13 -



o A s . N S o
ox oOx o 9z A= o Y
-—a---—-a—aj-. —a-
il Tl TRl

and thence introducing the mapped stream function coordinates

(x,) » (x,w) :

into the resulting transformed equations, further noting that

dv dv, dy
3 ) -1 I E I )
-t R Tl [7;“(3?7&)]53

i

= -82
W

~1 ‘
aw - (wE e W;)

&l
o>

yield a set of differential equations which can symbolically be represented by

the vector equations:

o’
3 5 » 9/ 3 A
x ¢ + (a + bw) 5a'¢ o Y (c¢ aw) + d¢ (18a)
0 = (uH,k,e,0,,a Oy oy By, & &, (18b)
¢ U H Ky €000 300y wue Oy 1y Gy Ty vue
d = (d,dy,d, ,d 4, d i (18¢)
k’ E’ e ip CN BB G T aﬂj 'Y c

where now the dependent variables u, H, k and € have been non-dimensionalized

respectively by uj, Hj’ ujz, uja/rj; the pressure by pj; the density by Oj; ' |

the eddy viscosity by pj j j Equation (18a) symbolizes a set of N+4 partial

-

differential equations; the components of the source vector, d¢, for a turbulent



Lewis number, Let, of unity, is provided in Table II. The coefficients a,b,cw

which result from the mapping laws are defined by:

as= -(dwl/dx)/(wE - WI) = rImI/(wE - WI) (19a)
b = d/dx [ln(wE - wI)] = (rEmE - rImI)/(wE - WI) (19b)
Cy® OUl‘zlJT/O‘,/(WE - wI)2 (19¢)

where my and mp represent the mass flux per unit area entrained into the rixing

layer through the I-bcunda-y and E-boundary, respectively. Methods for eval-

uating the expressions, r

I
Harsha(IJ). For the present study, the approach taken by Patankar is used.

L rEmE, and AV are described by Patankar and

- 15 -



SECTION IV

ENTRAINMENT OF FLUID AT A FREE BOUNDARY

The normalized stream-function coordinate has the advantage that it allows the
numerical grid to automatically expand with the mixing layer, thereby always con-
taining the relevant portion of the flow (Fig. 2). However, in order to prc-
ceed numerically, it is necessary to es%timate the amount of fluid entrained into
the mixing layer, both through the E-boundary (outer), and, until the lower edge
of the mixing layer reaches the axis, through the I-boundary (inner) as well.

To determine the amount of mass entraired and the subsequent growth of the

stream function (wE~¢I), consider Equation (18a) for ¢ =u, which written ouf in

i
full is:
(r -r ) w rpuu
3u E"E IHI du 9 T 3u 1 dp
3x+%r1m1 *[ v, = ¥ W W L xl-adx+ 8(pE-P)
£ % , wyv)? %}

In the case of free mixing, the conditions at the ecdges of the boundary must be
such that

u,_Ldp
ax pu dx + s(op=0)

since by definition the cuter and inner regions are inviscid. Accordingly, in the

limit w =+ 0, we have

2
LLiatee d e pul,. e (
TT w0 )| -v) ’S'I,

3
lim 3°u Ju
ror ; 3 (ruT) + (rhT) ::7 Py :



which Patankar reduces further to

. lm) 3

rImI r»rI( ar (ruT)

)

and, likewise, for the outer edge

4 . = —é-(r )(
ETE g ar He \

Thus, with the above two expressions, Equation (19b) can, in principle, be used

to evaluate (WE - WI).

39 e



SECTION V
THE NUMERICAL INTEGRATION PROCEDURE

Resorting to the mapping laws previously described, the lateral domain
of the mixing region, defined by 0 < w < | rather than by r, < r < rp, results
in a system of equations having advantages both in conceptual simplicity and

computational efficiency. In particular, for cases involving frozen mixing

(Qi = 0) or mixing with chemical equilibrium, the choice of implicit(la) or

(15)

explicit finite difference techniques becomes a matter of personal prefer-

ence. However, in the case of chemical non-equilibrium, the potential for a

(16,17)

system of "stiff'" differential equations due to the possibility of one

or more of the chemical reactions being at o: near chemical equilibrium requires

one to resort to various hybrid implicit/explicit techniques(la’lg).

(18) (11)

Thomas employs the MacCormack predictor-corrector scheme which is
second order accurate in both Ax,Aw for all the governing equations other than
the specie conservation equation. For the specie conservation equation, Thomas

uses a modified predictor-corrector scheme whereby the predictor step is fully

explicit, while treating the species, Ay, as chemically inert (Qi = 0). The chem-~

ical production rate term, &i’ is differenced in implicit fashion in the
corrector, albeit the convection and turbulent diffusion terms are again differ-
enced in an explicit fashion.

(19) on the other hand, utilizes the implicit technique of Patankar

Boccio,
where the governing differential equations are integrated over a small control
volume associated with individual grid joints in the (x,w) plane. The resulting

finite difference equations with the production terms, Qi’ considered for the

moment zero (i.e., frozen flow) are formulated in an implicit manner and solved

T
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e ¢ varies in a stepwise manner between adjacent stream-

wise steps, 1i.e,

{ T | } }
The micro-integral of Equation (18a), using the above assunm ns, has the
following components
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The final component of the micro-integral equation, that

requires special cons on an detai
treatment

L

term




' -1 Sl g
J [(z)(rj -y (ruT/c¢)1_%] i [(&E v (a + buj_%)] A

- [arm g - wamen e, - o p] .,

' N T -1 \ - & \ -
c," = {(I/A)(uE b 0™ (30,6 =0y )+ b 0D g
O “j-l)]}i-l +28,

D w A B Gy - ey ) [(wE . WI)/Ax] L

with
» : Sy L ko ! -+ - j‘P 1

Sij = (1/8) (LE p[) (wj uj_l) {dj+l + dj-l + 6 dj i-1

and Aj = Aj /Dj : Bj = 81 /Dj . Cj = Cj /Dj

V.2 Finite Difference Equations: Boundary Points

Values at the end points of the grid network (N2, Nl1) are prescribed from
boundary conditions in the inviscid external stream (w=1, J=N2, r-rE) and from
either boundary conditions within the unmixed portions of the jet (w=0, j=1, rI>O)
or symmetry conditions on the axis once the jet becomes fully mixed (w=0, j=N1+l,
rI=0). For the latter situation Equation (20) is modified by the symmetry

statement ¢ where the grid point (i, Nl+l1) defines the jet axis;

=d
i,N1 "1,N1+2

thus, Equation (20) yields

¢ (A¥.) + C

= A
1,N141 ~ *1,N142 470y i (22)
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V.4 Finite Difference Equations: Chemical Production Term

We have tacitly indicated that the introduction of finite-rate kinetics
into the investigation of fluid-flow phenomena can lead to a mathematically
"stiff" system of equations. For HZ/Air reactions, for example, the physical
basis of the "stiffness” results from the importance of the hydroxyl radical in
the overall kinetics scheme. Usually, everv reaction considered that generates
water requires an expenditure of OH radicals. Since the concentration of the
OH radical is always small, and since the rate of production of water in HZ/Air
systems can be very fast, the coefficients required for the calculation of OH
must be very large and intrinsically positive. Thus, the rate of production
of OH requires an equation involving differences of very large numbers which
mathematically can be shown to be a highly unstable situation when one resorts
to standard Runge-Kulta predictor/corrector techniques. As alluded to previously,
methods do exist to cope with this problem; the approach used here is discussed
by Moretti and Rubel. Following the uncoupling process of Moretti, for each
marching step Ax, the specie mass fraction, Ty which are governed by the

ditferential equation
da, /3x + (a+bw)da, /3w = 3/3w(cda, /dw) + :K/OU (26)

w12 an B

is divided into two components QK = uK(D) + QY(C), respectively controlled by

the equations
(D) , (D) ) . s(e da
aaK /3x + (a+bu.)30.K /W = B/Bu(caaklam) (26a)

and

3QK(C)/3x = & /0u (26b)

- 3 &




—

he numerical solution of Equation (26a) is obtained according to the

; integration process described above (Equations 20-22). By contrast, Equation
pl
(26b) 1is recast in the subdomain, Ax, with the form
(C) (C)
{ (]
’ K Wby
———— - —— e - n | ) ( '“t,
it 1 1% K ’ k 4
- 1 1 A\ ' L
W L. 435 a0 NS # K
upon substitution of the law of mass action (Equation (6)), where the coefficients
p
A, and B, are expressed as:

] - v B . P 1 {
where L, = 1 1if the molecularit f reaction m, for species k, 1.e., 1if
Kyl
" 1 ]
T ! 1
(v - ) is negative or L, if the molecularity i sitive
Mk 'l‘ K,0
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V.5 Step Size Controle
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qK(C) poses an additional step-size constraint on numerical stability and ac-
curacy. Under these conditions, one can show that stability is dictated by the
= } v = ” s
maximum eigenvalue,), for the Jacobian matrix J {YQK' where vy, awg/84x.
Difficulties in determining this eigenvalue are reduced if it is assumed that

the chemical rates are such that the diagonal element of the Jacobian matrix,

i{s dominant. Accordingly, the allowable step size can be shown to be
-1

(C)
Ax(c) =y min | a iﬁﬁ (32)
jet %Y a4t got =

YKK

where ddK<C)/dt is readily evaluated using Equation (27). In practice, the
actual step size taken is determined by combining Equations (31) and (32) ac-

cording to

1 W i
(Ax) = * (33)
act &x(D) Ax(C)
which implies that under diffusion-controlled situations, Ax(D) is the predominant
(C)

factor, while under kinetically-controlled mixing Ax determines the marching

step.
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which, in this case

4 2

o Sactlnet L
where the reaction rate, k, is considered to be a function of temperature. Now
decomposing each of the elements into a mean () and fluctuating term ( )' gives

. - .1 B |2 T ' jasi ' 7 '
wi-(w+w)=-(c+o) k(T+T)(Y1+Y1)(\2+Y2)

and applying the Eulerian time mean averages yields

51 = - 52 k (T) 71;2 {1 + [second order and higher correlations]}.

It has been shown(6’23)

that the terms within the square bracket are not
necessarily small; and, to model these correlations presently imposes undo
restrictions on the assumed kinetics (like the simple one-way reaction posed
above). Accordingly, due to this formidable complexity, it will be assumed
that for engineering purposes, chemical reactions in turbulent flow occur
according to the classical, laminar, kinetic behavior aﬁd to depend only upon
mean values of species concentration, temperature and density which is tanta-
mount in neglecting the terms in the above square bracket. In this connection,

the reaction system and rates, largely extracted from Ref. 24 and listed in

Table III are adopted here.
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As a possible prelude to direct application in containment vessel response,
. several select numeri l experiments were erformed t eck the qualitative
behavior of the numerical prediction. Specifically, initial PCRV inventory was
»
presu ed « ymj 100 moles of C ind ' ind 246 moles f He. A ]et=Co=1Tée~
stream temperature ratio of 3.3 was nsidered with a jet-to-free-strean
D: velocity ratio being either 100 (Test Case No. 1) or 10 (Test Case No. 2);
the former approximating the early stages of a nonmechanistically postulated pene-
tration failure; the latter, approximat the final stages of such a failure.
Computer generated plots of the spatial variation of temperature, and
mole fraction of CO and H, for these two cases are presented in Figures 5, 6,
and 7,
A cursory examination of the results portrayed by these figures indicates
the following:
(1) For both test cases the initial itions are such t ipport
1 turbulent diffusion flame.
(2) Mixing is more rapid under Test Case 1 nditions (u, 100 X=0)
then under Test ( u 1 X=0).
}) Depletion of CO and H, (or production of Cf ind H,0) occurs sooner
under Test Case ? nditions where rather sudden changes in the axial
temperature gradients occur within the mixing layer about two jet

radii downstream as compared t [est Case 1 where large variations in
ixial temperature are apparent approximately seven jet radii downstream.

(4) The spatial variation of temperature and other variables precludes to
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TABLE 1

= C,okz/e

The Energy Dissipation Turbulence Model (ke2)

k = turbulence kinetic energy = l/2(uiui)

o S
¢ = turbulence dissipation = My Z,(aui/axj)‘

u[ : effective turbulent viscosity
;r C‘_. Cf:' Crl 7i( 7&
* hk 1.40 1.0 1.3

C,

C

%)

E’\

« 0.09 g(P/e) - 0.0534

rE TE
(P/g) = “/‘ puv (P/€)rdr/ J/. puv rdr

*1 s
P = turbulence energy production =

g(P/e) = 1/(P/£)

= 1,94 - 0.134f

- 38 =

97
u (3u/3y)”
t )




TABLE I1

Source Terms in Transform

4

(1/pu) {8r,/u 2(0 p) - (¢
3 e

/pjnjz) dp/dx}

j

(u$2/uj> 3/ f[,‘.lr%t/x-,zlu - 1/Pr) 3/3w (42/2))

(1/pu) ([ozqzrz ut/ﬂwzl (T:U/Zu)2 - pe)
(1/pu) ({pzu2r2 C. uc/szl (e/k) (Gu/au)z - Cf ccz/k}
N '

(1/pu) {Qi) £ 1.8, ... 0

(‘;l’n‘ note be !*"W)

The L differential equations for r‘.J can be replaced by L algebraic
equations by invoking the conservatioa of elements, 1i.e.,

where y defines the number of ator

The differential equations for 8, have

rium flows where the ':/1 in the specie
ithematically undefined.




TABLE III

Chemical System (He/H/C/O/N)

Rea. tion Number/Chemical Reaction

Forward Rates

k, = ATN exp (-E/RT)

.

A N E/R
1. CO+0+M 2 CO2 + M 6.1E-33 0 1872
2. SO4+0 + CO2 1.4E-18 0 1308
3. CO+ 08 2 CO2 + H 2.5E-17 1.3 -388
4., H,L + OH +« H+ 80 3.6E-11 0 2607
2 . 2
5. H+ 02 b OH + O 3.7E-10 0 8505
6., OH + OH 2 HZO + 0 1.0E-11 0 554
1y A» Hz 2 OH + H 3.0E~14 1 4509
. B4+ » H2 + M 1.8E-30 -1 0
9. 0O+0+ M ® o2 + M 3.8E-30 -1 171
10. O+ H+M b OH + M 2.0E-32 o} 0
11. OH+ H+ M 2 HZO + M 6.1E~26 -2 0
(1) Species order: Hz, co, LOz, HZO, H, NZ' 02, 0, OH, He
(2) [A)] = cm3n/(particles)n/sec
n = 1 for second-order reactions
= 2 for third-order reactions
(3) M = third body or collision partner
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