Prepared by
Jeffrey M. Reutter

Prepared for
Toledo Edison Company
Toledo, Ohio

THE OHIO STATE UNIVERSITY
CENTER FOR LAKE ERIE LIREA RESEARCH
COLUMBUS, OHIO

3.1.2.a.1 Plankton Studies (Zooplankton and Phytoplankton)

Procedures

Plankton samples were collected approximately once every 30 days from Apri? through Nevember from 7 sampling stations in the vicinity of Locust Point (Figure 1). Four vertical tows, bottom to surface, were collected at each station with a Wisconsin plankton net (12 cm mouth; no. 20, 0.080 mm mesh). Each sample was concentrated to 50 ml . Two samples were preserved with lugol's and used for phytoplankton analysis. Soda water was added to the remaining 2 samples to relax the zooplankters prior to preservation with 5% formalin. The volume of water sampled was computed by multiplying the depth of the tow by the area of the net mouth. Three $1-\mathrm{ml}$ aliquots were withdrawn from each $50-\mathrm{ml}$ sample and placed in counting cells.

Whole organism counts of the phytoplankton were made from 25 random Whipple Disk fields in each of the three $1-\mathrm{ml}$ aliquots from 2 samples. When filamentous forms number 100 or more in 10 Whipple fields, they were not counted in the remaining 15 fields. Identification was carried as far as possible, usually to the genus or species level.

All zooplankters within each of the three $1-\mathrm{ml}$ aliquots from 2 samples were counted by scanning the entire counting cell with a microscope. Identification was carried as far as possible, usually to the genus or species level.

Zooplankton

Results. Zooplankters collected April through November 1978 were grouped in 61 taxa generally to the species level (Table 1). Thirty taxa were grouped under Rotifera, 17 under Copepoda, 11 under Cladocera, and 3 under Protozoa.

Monthly mean densities ranged from $55 / 1$ in November to $1,086 / 1$ in May. The mean density from all samples collected in 1977 was 401/1. Zooplankton densities at individual sampling stations ranged from $34 / 1$ at Station 8 in November to 1,474/1 at Station 1 in May (Table 2).

Monchly mean rotifer densities ranged from $15 / 1$ in November to $362 / 1$ in April (Table 1). The annual mean rotifer density for all samples collected in 1977 was $96 / 1$ or 24 percent of the entire zooplankton density. The dominant rotifer taxa during 1977 were Synchaeta spp. in April, July, and November; Keratella cochlear is in May; Polyarthra spp. in June, September, and October; and Trichocerca multicrinis in August. Synchaeta spp. had the largest annual mean density, 1971. Rotifera was the dominant zooplankton group during April and October composing 82 percent and 44 percent, respectively, of the entire zooplankton population. In contrast to this, rotifers constituted only 9 percent of the total zooplankton population in May.

Monthly mean copepod densities ranged from 25/1 in November to 851/1 in May (Table 1). The mean copepod density from all samples collected in 1977 was $177 / 1$ or 44 percent of the entire zooplankton population. Cyclopoid copepodids dominated every month but July when immature Cyclops vernalis was the dominant

MONTHLY MiAN POPULATIONS* OF
INDIVIDUAL ZOOPLANKTON TAXA AT LOCUST POINT-1977

taxa	$\begin{gathered} \text { Apr11 } \\ 26 \\ \hline \end{gathered}$	$\begin{array}{r}\text { May } \\ 24 \\ \hline\end{array}$	June	July 13	${ }^{\text {August }} 3$	${ }_{12} \mathrm{Sept}$	Oct. 26.	Now. 22	Grand Mean
ROT1FERA Anurseops is sp.									
Anuraegpsis SD. Ascomorphe sp	0.2								0.02
Asplanchne priodonte	0.1	3.0	0.2						0.04
Brachionus ongularls	0.1	0.3	17.2	7.6	4.5	0.7 0.2	0.8		1.17 3.18
B. $\frac{\text { colyciliorus }}{\text { caudatus }}$	16.5	1.3	0.4	0.1 0.1					2.09
8. novanuens is					1.9	10.5	0.1		0.01
Ehromogaster ovelis	14.0	0.2	0.1	0.2		10.5	0.1		1.62 1.62
Chromogaster $\frac{\text { ovelis }}{\text { finiole }}$	0.4			0.2					0.06
kellicotild longispina	14.8 0.7	4.15	0.6	0.1	0.1	0.1			1.81
$\frac{\text { kerstella }}{\text { K. }}$ Quadrotachlearis	73.9	44.5	2.2	0.8	1.2	0.3	22.4	1.2	17.69
	28.5 3.5	1.3	3.7	0.7	0.2	0.1	0.8	0.2	+1.14
Tecane lund	0.2								0.39
eecane sp.	0.2								0.02 0.02
Monostyle $\frac{\text { ende }}{\text { SPD }}$	1.1 0.2								0.12
motholce acuminata	2.4	0.2							0.02
	17.1								0.30 1.91
	5.0								0.57
Fleosoma sp.		0.1					1.2	1.3	0.32 0.02
Polyerthre spp.	86.5	28.4	-..	4.4	4.6	38.8	35.3	0.9	29.36
Syncheeta spp	93.0	7.6	16.5	10.8		1.3	5.2 3.5	0.1 10.8	0.90
Trichocerce cylindrica				0.7			3.5	10.8	16.83 0.08
Unknomitals	2.8	2.3	27.6	8.0	10.4	29.8	1.1		10.10
${ }_{\text {Sub }}^{\text {Unknown }}$ B	0.2								- 0.31
Subtotal	362.1	94.2	107.2	35.3	23.1	81.8	70.3	14.5	95.50
COPEPODA									
Calanold Copepods Diaptomus ashlandif									
0. minutus	1.8	1.4 0.8	0.1 0.2						0.40 0.27
D. ${ }^{\text {d. }}$. $\frac{\text { oregonensis }}{\text { sictis }}$	0.5								0.06
D. sicitoles	0.3	3.1	1.0	5.1	7.7	2.3	4.3		0.10
Epischurd $\frac{\text { lacustris }}{\text { inetemore }}$	0.1					2.3	4.3	1.4	3.11
impocdanus macrurus		0.1						.	0.02
Skistodiaptomus oregonensis	0.5	8.4							0.03
Copepodios, catanote	5.4	12.6	5.2	9.0				2.0 0.3	1.88
Neuplif, calanoid	6.8	89.3	0.6	0.9	5.6	2.4	7.8		14.72
Cyclopoid Copepods									
Cyclops bicuspidatus thomes 1	1.0	24.2	2.7		2.4	5.1	1.3	7.2	5.71
	4.2	33.5	38.6 12.4		2.2	9.1	4.2	3.2	12.51
c. ${ }_{\text {c. }}$ verna is vernalis (imature)		13.5 6.7	12.4 12.5	13.7 19.6				0.3	5.04
¿operodids, cyclopoid	21.5	656.7	155.0	19.3		26.4			4.71
Nauplii, cyclopoid	2.0				0.6	26.4	35.8	9.2	123.03 0.39
Subtotal	45.8	851.1	231.1	62.1	50.5	46.6	59.3	24.9	176.94
cladocera									
Alons SP.	0.1					0.1			
Bosming longirostris	1.1	29.1	0.1				0.5	2.5	4.33
Ceriooaphnit sp.					0.1 4.3	0.1			0.02
Daprnid 0 galedete mendote	1.3	18.1	1.9	1.8	4.3	3.1	6.9	7.9	5.88
b. $\frac{\text { mogna }}{\text { pulex }}$	0.2								5.74 0.03
$\frac{0}{0}$ D. - ${ }^{\text {rectrocurve }}$	0.1 3.9	0.9 65.6							0.13
Diaphanosome leuchtenbergian	0.1	65.6 3.7	52.9 0.3	74.8 1.5	5.6	7.6	0.5		26.03
Eubosmind $\frac{\text { coregan }}{\text { Eeptodore }}$ kindtit	1.7	10.8	123.8	30.7	16.3	14.0	19.1	0.1 3.6	1.89 28.03
Subtotal	10.9	129.8	0.8	1.0	0.4	1.0	0.1		0.40
	10.9	129.8	180.1	110.4	31.2	30.1	27.2	15.6	67.49
Protozon									
	0.1								0.01
Ditilugia sp.	20.3	10.6	225.1	98.3					61.02
Subtotal	20.4	10.6	226.3	98.3	39.5	92.3	1.8	0.2 0.2	61.41 61.44
TOTAL	439.1	1085.7	744.7	306.0	144.4	250.7	158.6	55.2	401.36

* Expressed as no. $/ 1$ and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cm diameter; 0.080 mm mesh) from 7 sampling stations on the dates indicated.

TABLE 2

MONTHLY MEAN ZOOPLANKTON POPULATIONS* FROM SAMPLING STATIONS AT LOCUST POINT, LAKE ERIE - 1977

Date	April 26	May 24	June 22	July	August 30	Sept. 12	0ct. 26	Nov. 22	Grand Mean
Station									
1	510	1474	1066	533	85	315	268	63	539
3	323	879	783	265	223	230	112	42	357
6	330	1012	498	249	113	202	128	50	323
8	318	812	504	216	100	263	154	34	300
13	482	1421	875	**	136	249	176	80	489
14	468	929	585	222	156	288	119	67	354
18	528	1073	902	352	167	208	154	50	429
Grand Mean	439	1086	745	306	144	251	159	55	401

* Data presented as no. of organisms/l and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cm diameter, 0.080 mm mesh) at each stat uni.
** Insufficient preservation.
group. Copepoda was the dominant zooplankton group in May, June, August, and November representing 78 percent, 31 percent, 35 percent, and 45 percent, respectively, of the total zooplankton population. The abrupt pulse in May was due primarily to immature cyclopoid forms although calanoid nauplii also increased from 7/1 in April to 89/1 in May.

Monthly mean cladoceran densities ranged from 11/1 in April to 180/1 in June (Table 1). The mean cladoceran density from all samples collected in 1977 was $67 / 1$ or 17 percent of the total zooplankton population. Cladoceran populations were dominated by Daphnia retrocurva in April, May, and July; Eubosmina coregoni in June, August, September, and October; and Chydorus sphaericus in November. Eubosmina coregoni had the largest annual mean density, 28/1. Cladocera was the dominant zooplankton group only in July when it constituted 36 percent of the total zooplankton density.

Monthly mean protozoan densities ranged from $0.2 / 1$ in November to $226 / 1$ in June (Table 1). The annual mean density of $61 / 1$ was 15 percent of the total zooplankton population. Difflugia sp. was always the dominant protozoa taxon. Protozoa was the dominant zooplanton group in September constituting 37% of the entire zooplankton population.

All raw data were keypunched and are stored in Columbus, Ohio at the offices of the Center for Lake Erie Area Research on the campus of The Ohio State University.

Analysis. Zooplankton populations at Locust Point have been monitored monthly during ice-free periods since 1972. In 1977, 2 new monthly highs and 3 new monthly lows were established (Figure 2). Zooplankton densities in April and May were the highest observed during those months since sampling was initiated in 1972, while densities observed in July, August, and November were the lowest observed for those months. Results from other months fell within the ranges established from 1972-1976.

In general, densities observed at Locust Point in 1974 and 1975 were higher than those observed in 1972 and 1973. Densities in 1976 were intermediate between the 2 groupings while densities from April - June 1977 were similar to those observed in 1974 and 1975 and those from the remainder of 1977 were similar to those observed in 1972 and 1973.

There are several plausible explanations for the variation which has occurred. Samples in 1972 were collected with a 3-1 Kemmerer water bottle at the surface. From 1973-1976 samples were collected by a vertical tow, bottom to surface, with a Wisconsin plankton net. A brief comparison study in 1973 showed that the vertical tow captured approximately 50 percent more taxa than a 3-1 grab (Reutter and Herdendorf, 1974). The actual stations sampled have varied from year to year. In 1973 the intake and discharge pipelines were being dredged, and in 1972 tropical storm Agnes affected the weather. Due to the weather, samples were neither collected on the same day of the month each year nor spaced exactly one month apart. Hubschman (1960) pointed out the tremendous differences which occurred between daily samples, and these samples were taken monthly, while Wieber and Holland (1968) showed that even with replication, wide variation can occur due to patchiness in population densities. The high spring populations from 1975 were undoubtedly largely due to early warming and lower turbidity as the total zooplankton population was

FIGURE 2. MONTHLY MEAN ZOOPLAIKTON POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1977.

FIGURE 3. MONTHLY MEAN ROTIFER POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1977.

FIGURE 5. MONTHLY MEAN CLADOCERAN POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1972 - 1977.

significantly correlated with both temperature and turbidity ($r=0.587$ and -0.328 , respectively) (Reutter, 1976). Finally, operation of station circulating pumps was common in 1976 and 1977.

Rotifer populations in 1977 were the highest observed during the 6 years of the study in April and they were slightly lower than previous years for the remaining months (Figure 3). With the exception of the month of May, copepod populations were similar to those observed in the past (Figure 4). Each year a large copepod pulse is observed during May, June, and sometimes July. In 1977, the May pulse was approximately twice as large as previous pulses. Cladoceran populations during 1977 were very similar to previous years except that the normal fall pulse was not as prominant (Figure 5).

In summary, due to the large variability observed in previous years, zooplankton populations observed in 1377 should be considered typical for the south shore of the Western Basin of Lake Erie.

Phytoplankton

Results. Phytoplankters collected April to November 1977 were divided into $\overline{97}$ taxa, generally to the genus level (Table 3). Twenty-six taxa were grouped in Bacillariophyceae, 46 in Chlorophyceae, 1 in Chrysophyceae, 1 in Cryptophyceae, 3 in Dinophyceae, 2 in Euglenophyceae, 16 in Myxophyceae, and 2 in Protozoa.

Monthly mean phytoplankton populations ranged from 9,914/1 in June to $224,075 / 1$ in April (Table 4). The mean density from all samples collected in 1977 was $100,922 / 1$. Phytoplankton densities at individual sampling stations ranged from 3,176/1 at Station 3 in June to $400,135 / 1$ at Station 1 in November. Population pulses were observed in the spring and the fall (Figure 6). These pulses were caused by diatoms (Figure 7).

Monthly mean bacillariophycean densities ranged from $771 / 1$ in June to 216,609/1 in April (Table 3). The annual mean bacillariophycean density from all samples collected during 1977 was $77,526 / 1$ or 77 percent of the entire phytoplankton density. The dominant diatom taxa were Stephanodiscus binderanus in April, May, and October; Melosira islandica in June and July; Fragilaria spp. in August and September; and Melosira ambigua in November. Stephanodiscus binderanus had the largest annual mean population, 39,219/1. Diatoms were the dominant phytoplankton group during April, May, August, October, and November constituting 97 percent, 99 percent, 58 percent, 71 percent, and 65 percent, respectively, of the entire phytoplankton population. In contrast to this, diatoms represented only 8 percent of the June phytoplankton density. As mentioned above, large pulses were observed in the fall and spring (Figure 7).

Monthly mean chlorophycean densities ranged from $852 / 1$ in May to 27,141/1 in November with an annual mean population from all samples collected during 1977 of $8,554 / 1$ or 8 percent of the total phytoplankton population (Table 3). The dominant green algae taxa wers Binuclearia sp. in April and June; Pediastrum duplex in May; \underline{P}. simplex in July; Mugeotia sp. in August, October, and November; and Ulothrix $s p$. in September. Binuclearia $s p$. had the largest annual mean population, $2,212 / 1$. Chlorophyceae was the dominant phytoplankton

TABLE 3
MONTHLY MEAN POPULATIONS* OF INDIVIDUAL
PHYTOPLANKTON TAXA AT LOCUST POINT - 1977

TABLE 3 (CON'T.)
MONTHLY MEAN POPULATIONS* OF INDIVIDUAL
phytoplankton taxa at locust point - 1977

[^0]TABLE 4
MONTHLY MEAN PHYTOPLANKTON POPULATIONS*
FROM SAMPLING STATIONS AT LOCUST POINT, LAKE ERIE - 1977

	Apr 11 26	May 24	June 22	July 13	August 30	September 12	October 26	Movember 22	GRETD MEA
1	314406	206334	20205	27636	24242				
3	188717	201735		30451	24242	71216	62534	400135	140839
	(887)	201735	3176	30451	26514	40281	152681	149954	99201
6	302004	171276	15272	34736	19381	48313	83864	172664	105939
8	142686	124782	3598	34028	22641	36743	116363	93383	105939
13	193221	191170	9919	35046	29499	46421	116363	93383	11778
14	205610	167678	265			46421	136376	111081	98091
			6265	33071	35838	43416	150130	80593	90325
18	221878	119257	7801	32535	88200	52222	185656	122409	
Grand		-						122409	103745
	224075	168892	9913	32658	35202	48374	126800	16146	100922

* Data presented as no. of whole organisms/1 and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cin diameter, 0.080 mm mesh) at each station.

FIGURE 6. MONTHLY MEAN PHYTOPLANKTON POPULATIONS
FOR LAKE ERIE AT LOCUST POINT, 1974-1977

FIGURE 7
MONTHLY MEAN BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST POINT, 1977.

class in June, represerting 77 percent of the total phytoplankton population. However, chlorophyceans reached their greatest densities in November, $27,141 / 1$, but constituted only 17 percent of the total phytoplankton population due to a large diatom pulse.

Chrysophycean was a rare class represented only by Dinobryon sp. Which occurred only in November, $366 / 1$ (Table 3).

Cryptophyceae was another relatively rare class represented only by Cryptomonas erosa which occurred at low densities from August through November (Table 3).

Dinophyceae, grouped here with the phytoplankton, was represented by 3 taxa of which Ceratium hirundinella was the most abundant (Table 3).

Euglenophyceae was represented by Euglena Sp. which occurred in November and Trachelomonas Sp. which occurred in July.

Monthly mean myxophycean densities ranged from $94 / 1$ in May to 29,166 i 1 in July with an annual mean density from all samples collected in 1977 of $13,998 / 1,14$ percent of the total phytoplankton mean (Table 3). The dominant myxophycean taxa were Oscillatoria sp. in April, May, October, and November and Aphanizomenon sp. from June through September. Aphanizomenon sp. exhibited the largest annual mean density, $8,187 / 1$. Myxophyceae was the dominant algal class in July and September constituting 89 percent and 41 percent, respectively, of the total phytoplankton density. In contrast to this, myxophyceans represented only 0.05 percent of the phytoplankton population in May.

Protozoa, grouped here with the phytoplankton, was represented by only two taxa, Acineta $S p$. and Saccate protozoan, neither of which represented a significant portion of the total phytoplankton density (Table 3).

All raw data were keypunched and are stored in Columbus, Ohio at the offices of the Center for Lake Erie Area Research on the campus of The Ohio State University.

Analysis. The Center for Lake Erie Area Research has monitored phytoplankton populations at Locust Point since 1974 (Figure 6). Radical differences were noted between populations in 1974 and 1975 , but 77 percent of the variation was explainable by variation in physical and chemical parameters of water quality (Reutter, 1976). Bacillariophycean and Chlorophycean populations observed in 1974 and 1975 were quite comparable (Figures 8 and 9). The Myxophycean component of the populations accounted for the difterences between the 2 years. No My\%ophycean bloom occurred in 1974, whereas a huge Aphanizomenon sp. bloom occurred in August 1975. This bloom was highly correlated with increased transparency (80 percent greater than in 1974) and decreased turbidity (20 percent of that observed in 1974) (Reutter, 1976). A correlation of this type was first hypothesized by Chandler and Weeks (1945).

Bacillariophyceae and Chlorophyceae populations in 1976 were similar in size and composition to those observed in 1974 and 1975 (Figures 8, 9, and 10). The diatom population, especially, was strikingly similar from year to year, with 1976 most resembling 1974. Populations were always greatest in spring and fall, and pulses which begin and end abruptly were commonplace. Chlorophycean

FIGURE 8. MONTHLY MEAN BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST POINT - 1974.

FIGURE 9. MONTHLY MEAN BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND MYXOPHYCEAE POPULATIONS FOR LAKE ERIE AT LOCUST POINT - 1975.

FIGURE 10 . MONTHLY MEAN BACILLARIOPHYCEAE, CHLOROPHYCEAE, AND

populations tended to increase in the fall. A very small pulse was observed in June 1975 which was not observed in 1974 or 1976.

The 1976 Myxophycean population was between the extremes set forth in 1974 and 1975. A bloom of Aphailizomenon sp. occurred in July and August which corresponded well in time of occurrence with the 1975 August bloom, but, though it was slightly longer in peak duration, it was only one third the magnitude of the 1975 bloom and started and ended much more abruptly. Again, these pulses appear to be explainable by variation in transparency and turbidity. Transparency in 1976 was similar to 1975 and much greater than 1974, while turbidity, though more variable than in 1974 or 1975, reached a low in July similar to that observed in 1975 and below that of 1974 (Reutter and Herdendorf, 1977).

The 1977 phytoplankton population exhibited diatom blooms in fall and spring as in preceding years, however, the spring bloom was approximately twice as large as those observed from 1974-1976. The myxophycean population showed pulses in summer as in 1975 and 1976, but blue-greens also increased in the fall which was only hinted at in previous years. Chlorophycean populations were generally low and were very similar to those observed in 1974 and 1976.

In summary, it is obvious from Figures 7-10, that the major differences between 1977 and previous years were in the size of the spring and fall diatom pulses and the summer myxophycean pulse. However, lack of a large summer bluegreen bloom is not unusual (1974) and the unusually long and cold winters of 1976-1977 and 1977-1978 undoubtedly had a large influence on diatom densities as they are cold water forms. Furthermore, the increase in the myxophycean densities in the fall of 1977 was due to Oscillatoria sp. which is also a cold water form. Consequently, phytoplankton populations observed at Locust Point during 1977 should not be considered unusual for the southwest shore of Lake Erie during 1977.

LITERATURE CITED

Chandler, D.C., and O.B. Weeks. 1945. Limnological studies of western Lake Erie V: relation of limnological and meteorological conditions to the production of phytoplankton in 1942. Ecol. Monogr. 15:435-456.

Hubschman, J.H. 1960. Relative daily abundance of planktonic crustacea in the island region of western Lake Erie. Ohio J. Sci. 60:335-340.

Reutter, J.M. and C.E. Herdendori. 1977. Pre-operational aquatic ecology monitoring program for the Davis-Besse Nuclear Power Station, Unit 1. The Ohio State University, CLEAR, Columbus, Ohio. 205 pp .

Reutter, J.M. 1976. An Environmental Evaluation of a Nuclear Power Plant on Lake Erie; Some Aquatic Effects. Ph.D. Dissertation, The Ohio State University, Columbus, Ohio. 242 pp.

Reutter, J.M. and C.E. Herdendorf. 1974. Environmental evaluation of a nuclear power plant on Lake Erie. Ohio State Univ., Columb , Ohio. Project F-41-R-5, Study I and II. U.S. Fish and Wildife Serv, ce Rept. 145 pp .

Wieber, P.H. and W.R. Holland. 1968. Plankton patchiness: effects on repeated nt tows. Limnol. Oceanogr. 13:315-321.

[^0]: * Expressed an no. of whole organisms/1 and computed from duplicate vertical tows (bottom to surface) with a Wisconsin plankton net (12 cm diameter, 0.080 mm mesh) from 7 sampling stations on dates indicated.

