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TIME- AND VOLiME-AVERAGED CONSERVATION EQUATIONS
FOR ltJLTIPHASE FLOW

USING MASS-AVERACED VELOCITY AND INTERNAL KNEHCY

by

W. T. Sha, B. T. Chao, and S. L. Soo

ABSTRACT

Conserntion quations of mas, momentum, and energy for multiphase flow,
f ornulated on the basis of local volume averaging followed by time-averaging
for turbulent flows, are presented. They are differentini equations of trans-
port with area integrals associated with interf acial transport. Because the
spatial averaging theorems used in the analysis are subject to certain leyth
scale restrictions, the resulting equations are best suited for dispersed
systems.

The local instantaneous variable is decomposed as a linear combination of
its local intrinsic volume average and a spatial deviation. Use of the mass-
weighted, volume-averaged velocity and internal energy simplified certain i

,

relationships between the volume average of products and the product of volume
averages. Recognition of the f act that the spatial deviation component takes
on positive and negative values within the averaging volume makes further sim- t

plifications feasibic. Inasmuch as information is always lost as a result of,

averaging, be it volume-averaging or time-averaging or both, the lost informa-
tion aust somehow be repinced before the equations can be solved. This is
commonly done by the development of appropriate constitutive relations, which,
however, is not treated in this report.

The dif ficulties of making direct couparisons of the volume-averaged and
time-averaged conservation equations for multiphase flow are dis cu s se d.
Nevertheless, an at temp t was made to compare the time-averaged equations of
Ishii and the energy equation used in the TRAC code with the present set of
rigorou sly derived equations after considerable simplifications. Apparent
agreement is found in all cases, although some dif ferences remain.
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$

A Area; Ak is the total interfacial area associated with phase k
inside the local averaging volume v

c Specific heat at constant volumey

d Characteristic length of a dispersed phase

D Diffusivity

E Total energy per unit mass, Ek ""k +(l/2) k * k
" I <(> is the time- and volume-averaged turbulent total energy

,

flux vector defined by equation (5.6.4)

i
> is the volume-averaged dispersive total energy flux

vector defined by equation (5.6.13)

ti< > is the time- and volume-averaged turbulent, dispersive

total energy flux vector defined by equation (5.6.17)

_f, Field force per unit mass

L Interf acial force per unit interf acial area

g Gravitational acceleration

li Mean curvature of interf ace between phases k and fkf

J, Unitary tensor

J Internal heat source per unit volume
E

g lleat flux vector;

i
K Kinetic energy per unit mass, Kk"7b*b

n

ti< > is the time- and volume-averaged turbulent kinetic energy
flux vector defined by equation (5.6.9) !

i > is the volume-averaged dispernive kinetic energy flux vector
defined by equation (5.6.15)

"I(> is the time- and volume-averaged turbulent, dispersive
kinetic energy flux vector defined by equation (5.6.19)

i Characteristic length of local averaging volume v

iv

_ _ _



L Characteristic length of physical system

Interfacialmassflux;(isdefinedbyequation(3.5)
'

m

1

M Interfacial momentum source per unit volume ; t<g> is defined by
equation (5.5.16)

.n_
Unit outward normal vector of interf ace as illustrated in Fig. 2

N Number of bubbles per unit volume

P Static pressure

D Interf acial heat transfer rate per unit volume; "<D> is defined by
equation (5.6.27)

t Time

T Temperature; also averaging time interval

u Internal energy per unit mass

ti<d> is the time- and volume-averaged turbulent internal energy
flux vector defined by equation (5.7.4)

Ij> is the volume-averaged dispersive internal energy fluxCu

vector defined by equation (5.7.5) j

ti f > is the time- and volume-averaged turbulent, dispersive
internal energy flux vector defined by emution (5.7.6)

.

U_ Velocity; U is velocity in one-dimensirnal flow

v Local averaging volume

L Interface velocity

z Elevation |

a Local volume fraction

T Interfacial mass source per unit volume, equation (4.2); t<p ) isk
defined by equation (5.4.4)

c Perturbation parameter as defined

g Interfacial total energy source per unit volume; t<f > is definedk
by equation (5.6.35)

4
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!

J Interfacial internal energy source per unit volume; 60 > isk
defined by equation (5.7.18) ,

i

< Thermal conductivity; e is turbulent conductivity I
, ,

A Bulk viscosity

'

A ' Integral length' scale
I.
j p Dynamic viscosity
1

p Density

o Interfacial tension

i t Characteristic time

q I, Viscous stress

"I<t > is the time- and volume-averaged Reynolds stress tensorT

defined by equation (5.5.2)

I C> is the volume-averaged dispersive stress tensor defined byI

equation (5.5.3)

T' (I > is the time- and volume-averaged turbulent, dispersivek
stress tensor defined by equation (5.5.A)'

4 Dissipation function; 4k " I :VUk3 k

; 4Ek Scalar total energy function defined by equation (5.6.2)

4 Scalar pressure work function defined by equation (5.7.8)Pk

ek Scalar internal energy function defined by equation (5.7.2)u
!
'

tk Scalar viscous dissipation function defined by equation (5.7.11)4

$ Intensive property

Q Vector mass flux function defined by equation (5.4.3)
9 :

!

Uk Vector pressure work function defined by equation (5.6.21)
; ,

ik Vector viscous stress work function defined by equation (5.6.23)i

t ,

3 ;

1

i, !

I

o

.
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Superscripts,

Local spatial deviation
*

' High-f requency fluctuation

D Dispersive transport

T Transport associated with high-frequency fluctuation

Subscripts

c Conjugate

f Phase f

HF High frequency

i Interface

k Phase k

LF Low frequency

m Mass; also mixture

Symbols

() Vector
_

(.) Tensor second order

<> Local volume average

i< > Intrinsic volume average
|

i< )* Mass-weighted intrinsic volume average

C< > Time average
i

.

0( ) Order of magnitude
!

Operators

V Gradient; V , denotes surface gradient operator

V. Divergence

vii
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____

V (. ) Dyad

:
[V (. )J Conjugate of dyad !

c

Acronyma_

(llTI) Interfacial heat transfer integral defined by equation (5.7.15)

(IETI) Interfacial internal energy transfer integral defined by equation |

(5.7.17)

(KrI) Interf acial mass transfer integral defined by equation (5.4.5)

(MMTI) Interf acial momentum transfer integral defined by equation (5.5.14)

(PTI) Interfacial pressure transfer integral defined by equation (5.5.11)

(PWI) Interfacial pressure work integral defined by equation (5.6.30)

(PWI)(") Interf acial pressure work integral associated with internal energy
production, defined by equation (5.7.9)

(TETI) Interfacial total energy transfer integral defined by equation
(5.6.33)

(VDI) Interfacial viscous dissipation integral defined by equation
(5.7.12)

,

(VSTI) Interfacial viscou s stress transfer integral defined by equation 1
'(5.5.12)
\

(VWI) Interfacial viscous stress work integral defined by equation !

(5.6.31)

All equations referred to in the above list are written for phase k. For
phase f, it is necessary only to change subscript k to f for the entries that
appear in the equations.

,
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TIME- AND VOLlME-AVERAGED CONSERVAYION EQUATIONS
FOR MILTIPHASE FLOW

USING MASS-WEIGHTED VELOClTY AND INTERNAL ENERGY

by

i W. T. Sha, B. T. Chao, and S. L. Soo
.

EXECUTIVE StMMARY

Multiphase flows consist of interacting phases that are dispersed

randomly in space and in time. Although the intraphase conservation equations
for mass, momentum, and energy, and their initial and boundary conditions, can ,

'

in principle be written, the cost of detailed fluid flow and heat transfer

analysis is often prohibitive, if not impossible. In most engineering appli-

cations, all that is required is to capture the essential features of the
system and to express the flow and temperature field in terms of local, global
quantitic; while sacrificing some of the details. The present study is an

attempt to achieve this goal by applying time averaging af ter local volume
averaging. >

*

1

Local volume averaging of conservation equations of mass, momentum, and
energy for a multiphase system yields equations in terms of local-volume-
averaged products of density, velocity, energy. stresses, and field forces
together with interf acial transfer integrals. These averaging relations are

subject to the following length scale restrictions:
,

-

d < < 1 << L ,
i

where d is a characteristic length of the pores of dispersed phases, I is a
characteristic length of the averaging volume, and L is a characteristic
length of the physical system.

Solu tions of local-volume-ave raged conservation equations call for

expressing these local volume-averaged products in terms of p: ) ducts of
averages. In nonturbulent flows, this may be achieved by expre ising the
"point" variable as the sum of its intrinsic volume average and a spatial
deviation. In turbulent flows, the same can be achieved via subsequent time

i averaging over a duration T such that

HF << T << tty,; T

where t is a characteristic time of high-f requency fluctation and i y is aHF t
characteristic time of low-frequency fluctuation. In this case, an instan- !

f phase k is decomposed into a low-frequency !taneous "point" variable 4k,

component fktF and a high-frequency component Q as in Reynolds analysis of j
turbulent flow. The low-f requency component consists of the sum of the local j;

i(+k}LF and its local spatial deviation i . Time lintrinsic volume average k,

i
'

!

:,
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averaging then reduces the volume-averaged products to products of averages
plus terma representing eddy and dispersive diffusivities of mass, Reynolds
and dispersive stresses, and eddy and dispersive conductivities of heat, etc.

These t e rms arise from both high-frequency fluctuations and local spatial
deviations. In either case, turhilent or nonturbulent, the procedure leads to

differential equations of conservation with area integrals representing inter-
facial transport. Inasmuch as information is always lost as a result of
averaging, be it volume-averaging or time-averaging or both, the lost informa-

tion cu s t somehow be replaced before the equations can be solved. This is
commonly done by the development of appropriate constitutive relations which,
however, is not treated in this report.

A point of departure f rom an earlier analysis on the same subject (Ref.
12, NUREG/CR-3989, AN L-84-66) is that mass-weighted fluid velocity atid
internal energy are used. This results in some simplification and facilitates

interpretation of certain terms in the averaged equations. Several errors in

Ref. 12 were also unearthed and corrected. Fu rthe rmore , the interfacial

balance equations for mass, momentum, and total energy are examined in more
detail. It was shown that the so-called jump conditions are embodied in the
differential-integral equations of conservation. At the present stage of
development, the same cannot be demonstrated for the internal energy equation
owing to the presence of the two terms: <P U> and <gk:V g >. Thisk Y * k
points to the need for developing volume-averaging theorems f or the product of
Pk and V . g and for the scalar product of Ik and V h.

The dif ficult ies of nwiki ng direct comparisons of volume-averaged and
time-averaged conservation equations for imilt iphas e flow are discussed.

Nevertheless, an attempt was made to compare the time-averaged equations of
Ishit and the energy equation used in the TRAC code with the present set of
rigo rou sly derived equations after considerable simplifications. Apparent
ag reeme n t is f ound in all cases, although some dif ferences remain.

1. INTRODUCTION

I
Multiphase flows consist of interacting phases that are dispersed

randomly in space and in time. Although the intraphase conservation equations
for mass, momentum, and energy and their associated initial and boundary con- ;
ditions can in principle be written, along with their interfacial conservation

I
relations, they are f ar too complicated to permit detailed solutions. In fact, j
they are usually not needed in engineering applications. An alternative is to 1

describe the essential dynamics and thermodynamics of auch a system in terms I

of locally averaged quantities. This can be achieved by applying some form of I

averaging process, such as time averaging [1-3), space averaging [2-10], sta-
tistical averaging (2,3], or space / time and time / space averaging [2,3]. The '

present work begins with local volume averaging to be followed by time I

averagtng i11,12),

i

|
1

i
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ -__--_-__-____a
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Local volume averaging has been successfully used in analyzing viscous
flow through porous media [4,6,7,13]. Volum averaging leads naturally to
volume fraction of phases while a priori time averaging yields their frac-
tional residence time. The thermodynamic properties of a mixture, such as
density and specific heat, are cumulative with volume f raction but not with

fractional residence time, which becomes identical to volume fraction only in
the special case of one-dimensional, unif orm flow. The several disadvantages

associated with time averaging as the basis of analysis for multiphase flows
have been pointed out by Reynolds [14] in his review of Ishii's book [1] and

were also discussed in Ref. 11.

The configuration of phases plays a major role in determining the dynam-
ics of multiphase flows and the concomitant heat and mass transport processes
when they occur. This is illustrated in Fig. I for the two extreme cases of

highly dispersed flow and ideally stratified flow, which, by definition, has a
plane interface. The figure is largely self-explanatory. Given the defining

relations (1.1) for the mixture density p and (1.2) for the mixture velocitym
2

and[aPU(areU, it is easy to show that p,U not the same. It is alsom kk
easy to demonstrate that if the Bernoulki relationship for an ideal mixture in
highly dispersed flow is written as equation (1.5), then that for the individ-

ual phase mu s t be given by equation (1.6). For the ideally stratified flow,

the Be rnoulli relationship for the individual phase is given by equation
(1.7). It follows that for the mixtu re it is given by equation (1.8).
Clearly, the form of the Bernoulli equation depends on the configuration of
the phases. The Bernoulli equation for other systems, such as bubbly flow,
annular wavy flow with dispersed liquid, intermittent flow, stratified wavy
flow, etc., are f ar more complex, representing cases intermediate between the
highly dispersed flow and ideally stratified flow.

2. AVERAGING RELATIONS i

|The flow system under consideration is depicted in Fig. 2. The local
averaging volume v considered in this paper is invariant in both space and
time, and its orientation relative to the inertial f ram of reference is

;

fixed. The region consists of a fluid mixture with dynamic phases k, f, and
g. Without loss of generality, attention is focused on phase k, which is
chosen arbitrarily. Phase k has a variable volume vk with total interfacial
area Ak inside v. For convenience of discussion, all phases that form an
interf ace with phase k will be collectively represented by f. Thus, Ak=Akf |
and Akf implies Akf + Akg. Here, Akf and A are respectively the totalkg
interf acial area between phases k/f and k/g inside v. The unit normal vector

nk f A is always drawn outwa rdly and away from phase k, regardless ofk
whether it is associated with Akf rAkg, as illustrated in Fig. 2. The local

,

velocity of phase k is U2 and that of the interface between phases k and f is |

3 Obviously,v={y and the volume fraction of phase k isk
k

k v, (2.1) )/ok " V
|

which is a dependent variable. In general, it varies with time and location.

4
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Highly Dispersed Flow Pure Stratified Flow
z

II
"

e; Case e,,
e e,

*
i ,*e es e * 8 3 3 .y _ _ _-- Li qu i d __

o A
-

1

e Gradient of volume fraction

Va = 7(conc. ) Va is of no significance

e Finite diffusivity, D
Concept of diffusivity is'

4

e Diffusion velocity, D7a I' irrelevant'

o Wave propagation
Existence of speed of sound No corunon speed of sound

in the mixture
Common characteristics Individual characteristics of

phases
Transfer of inertia force Plane interface; no inertia

] across interface force transferred across [
'

interface
,

e Bernoulli relationships for steady, incompressible, inviscid, one- i

dimensional flow j,

om" "# k, k = 1, 2 , . . . (1,1)

I :

| where a @ k is the density of phase k based on mixture volume, j

!

; p U, = af k k (1.2) !Um
,

1
,

I Clearly, p,@,*[akkk (I'3)P

k
i

j P, = [ a k k (1.4)P

i k
4

Ideal Mixture Individual Phase

; ( 1/ 2 )p ,@, + P, + p ,g z (1/2)pk U(+Pk * P E8k

| = Constant (1.5) = Constant (1.7)

; Individual Phase Mixture
,

{ (1/2)pk k# - (1/2)pk(Uk - U )2 (1/2)p,U,2+(1/2){akk(U -U)2P km m
1

+Pk + Pkgz = Constan (1.6) + P ,+ p ,gz = Constant (1.8)

!
Fig. 1. Significance of phase configurations in nultiphase flows

- . - . . . . . .
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Fig. 2. Multiphase flow system

2.1 Local and Intrinsic Volume Average

For any intensive property 4k associated with phase k of the fluid
mixture--scalar, vector, or tensor--the local volume average of (k is defined ;

by I

<t > " l *k dy = a i dv , (2.1.1)k k k
y kvk k

,

which has also been called the phase average. The intrinsic volume average of

; (k is defined by

'<t > " f i dv . (2.1.2)k kkv k

4

Clearly, the two averages are related according to

' (2.1.3)< k> " "k <@k) .

,

!
!
!
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In order that the volume average <tk> or i<tk> be physically meaningful
and amenable to the usual mathematical operations, certain length scale
restrictions need to be imposed. They were first recognized by Whitaker [7],
namely,

,

d << t << L (2.1.4),

where d is a characteristic length of the dispersed phase, i is a character-

istic length of v, and L is that of the physical system. Therefore, the

averaging volume cannot be made arbitrarily small. We note that both <vg> and
i<t > exist everywhere in space, not just in the region occupied by phase k.k
To be sure, the basic equations and discussions presented in this report are

pertinent to dispersed systems.

It is easy to demonstrate that

i
k k> <*k>' i< " % k) " k)<<t >> " <*k>' ( "

i <g>> == I I< == g > . (2.1.5) jand

i If we set tk = 1 in equctions (2.1.2) and (2.1.3), we obtain i<l> = 1 and
!

< 1> = ak'

When density is not uniform, it is physically meaningful to speak of
mass-weighted, volume-averaged velocities and internal energies. These mass-
weighted averages will be denoted by an asterisk. Accordingly, we define

!

<S) = f pk g dv | pk dv , (2.1.6a)
"k "k

1
)

or,

I <g> = <pkk>/ k > ~ ' <0 k> / ' <#k> . (2.1.6b)k
i,

Likewise,

i <u >* = 4 u W > = i i

4 "kN <P ) (2.1.7).g gg g k k
,

i Equivalent relationships are

i

I

)
:

. _ - . . - .- . .-_



.. _.

|

| 7

* *<p k%> " <Pk> iT"k i*k) ip (2.1.8)

and a similar expression for internal energy. When pk = constant, i <h> * =
i<h > and equation (2.1.8) leads to <h > = ak i<b> as it nus t. We shall soon

that when the mass-weighted, volume-averaged velocity and internal energysee
are used, the time- and volume-averaged conservation equations are simplified.

One may easily show that

ii )* ,i ) ) ,i ) (2.1.9)
* ii ** *

, ,

i similar relationships can be shown for the >calar uk. Also,

)* i<u )* "iii * *

k k) i<"k) '

ii * i<u >* * = ig> i<up* . (2.1.10)
*) k

2.2 Local Volume Averaging Theorems

The local volume averages of the spatial and time derivatives of a fluid

propercy 4 , which may be a scalar, vector, or tensor, have been given byk
Whitaker [4,7], Slattery [6], Anderson and Jackson (5), Gray and Lee [10], and
others. They relate the average of the derivatives to the corresponding
derivatives of the average and an interfacial area integral according to the
following fornulas:

<? t > " Y <I > + " ] k g dA , (2.2.1)k k
Ak

<v . g> = v . <h> + v ' I h * A ^ , (2.2.2)
~

d

^k

and

B& 0 <* k> -1k
!Ikk*h A. (2.2.3)" ~"

at at
k

. . . .
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As noted previously. A denotes the sum of all interfacial areas associatedk
with phase k inside the local averaging volume v. A recent review of the

various approaches to derive the spatial averaging theorem can be found in

(15].

1 in equations (2.2.1) and (2.2.3), one obtains,Upon setting tk =

respectively,

I f g dA (2.2.4)7a =-v
k

^k

and

Ba

! b * "k dA . (2.2.5)"

at
^k

For those elements of phase k that are completely inside v, f n dA = 0.k
Ak

Thus, equation (2.2.4) implies that the gradient of the volume fraction of

phase k depends only on those elements that are cut through by the bounding
surface A of v. A corollary of equation (2.2.4) is

{f n dA = 0 , (2.2.6)4
^k

since ok = 1.

The physical meaning of equation (2.2.5) can be seen by considering phase
k to be evaporating vapor bubbles in water. The right side of the equation
gives the rate of increase of the vapor voluue per unit volume of the mixture,
which is obviously Bak/3 t.

To conclude this section, we reiterate that the volume averaging theorems
given by equations (2.2.1), (2.2.2), and (2.2.3) are subject to the length
scale restrictions of equation (2.1.4).

3. PHASIC CONSERVATION EQUATIONS AND INTERFACE BALANCE EQUATIONS

The equations of conservation for single phase flow are well known; they
are the foundations of continuum mechanics. Although a "s ingle" phase
commanly refers to one physical phase, such as vapor, liquid, or solid, it may
include nonreactive mixtures, such as room air, an aqueous solu tion of
glycerine, or composite polymers. The identification of a cultiphase system
is best made in terms of the dynamic behavior of its component phases [16],

'
,
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despite the fact that they may be of the same material. Examples are air

bubbles of widely dif ferent sizes in a gas-liquid flow or solid particles of
identical size, shape, and density that carry widely different electric
charges in a gas-solid suspension.

For a phase k, the equations of continuity, mome ntum , total energy, and
internal energy are, respectively,

| (3p /Bt) + V * (p g ) = 0 , (3.1)
k

1

l

(Sp U !8') + 9 * (P g g ) = - V Pk+V*I+Pk f, (3.2)I

kk k k

ap E' + 7 *CaAE)--V *SPk + 9 * (k ' 3k) P k * 1 ~ * kk + Ek '
k

at k k k

(3.3)
Iwhere the total energy Ek " "k + Y g * S, and the internal energy equation

is

3 p "k + 7 *(pU"k)=-P V'k~V *h+JEk + Ik 9b * (3'4)k
gg kk k

The double dot in the last term of equation (3.4) denotes the scalar product

of two second-orde: tensors. In the literature, 3 :VU is commonly denoted byk 4
4 , the dissipation rate per unit volume of phase k. The energy equation mayk
also be given in terms of enthalpy. It is given in (12] and will not be

repeated here.

The mass, momentum, and internal energy balance equations for phase
interfaces have been given by Scriven (17], Standart (18], Slattery (19),
Delhaye (20], Ishii (1), Deemer and Slattery (21), Bour6 and Delhaye (22], and
more recently, Kataoka (23]. These balance equations are also known as inter-
f acial jump conditions in the literature. A simple case is an int.erf ace with
negligible thickness and mass. For the convenience of presentation, we
introduce an interfacial mass flux defined by

k=pk(U ~ b ) * "k . (3.5)
k

|

The interfacia' mass balance equation is then

)' (3.6)k,f(=0

, -._
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where the subscripts k and f refer to two adjacent fluids separated by the ,

denote the |interface whose velocity is W,. In equation (3.5), pk and Uk
_

density and velocity of phase k as the interface is approached. That is, pk "
pkie Sk=Uki, and nk " "ki, the unit vector normal to the interface and away
from phase k. Clearly nki " ~ Ef1 Thus, in equation (3.5) or (3.6), m k

,

For the sake of simplifying writing, the subscript i will beimplies mki.
dropped. Equation (3.6) states that at the interface the mass flux from phase
k and from phase f must add to zero since the interface is without mass.

The interfacial balance equation for linear momentum is

[ ( ( g + P "k ~Ik * "k) + L = 0 , (3.7)
k

k,f

where F_, is the incerfacial force per unit interfacial area. It may be

expressed in terms of interfacial tension o according to

F_, = V ,o - 2H " "k , (3.8)k

is the mean curvature,in which V is the surface gradient operator and Hks
being positive when the associated radius vector is pointing outward from
phase k. The existence of the surface gradient of a could be the result of

nonuniform temperature or nonuniform chemical composition or both.

The interfacial balance equation for the total energy is

),NEk+kk*"k+(kk~Ik * b} * ?k

(3.9)= - F.,. W, , .

It is of interest to note that the interfacial balance equation for the

internal energy is

. 1

}"k+kk*"k)+kf }
~

f

+ ( P "k ~kk g) (g-L) =0, (3.10)
k-

,

which is valid regardless of whether L exists or not. Equation (3.10) is
derived by forming the dot product of equation (3.7) and W,, followed by sub-

_

1
-.
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tracting the result from equation (3.9) and making use of the relation given
by equation (3.6). Equation (3.10) was previously given by Bourd and Delhaye
[22). An unexpected feature of equation (3.10) is that the balance of
internal energy and heat flux at the interface requires the inclusion of the

energyfmk (U ~w) and the work done by the pressure and viscouskinetic k s
stresses at the relative velocity (Ug - 3).

In principle, the coupled phasic equations might be solved for given ini-
tial and boundary conditions together with the interf acial balance relations.

| Because the configuration and location of the fluid-fluid interf aces are not

| known a priori, their detailed solutions are next to impossible. When the
length scale over which the point variables undergo significant changes isI

small compared with that over which the knowledge of these variables is of
practical interest, information on their volume averages is all th1t is
needed. To preserve the identity of the dynamic phases, local volume
averaging is performed first; this is done in the following chapter. Time

averaging of the volume-averaged equations is presented in Chapter 5.

4. LOCAL VOLUME-AVERAGED CONSERVATION EQUATIONS
AND INTERFACE BALANCE EQUATIONS

1

An application of the local volume averaging theorems (equations (2.2.1)
to (2.2.3)] to the phasic conservation equations givt n in Chapter 3 leads to
the following set of local volume-averaged conservation equations for multi-

phase flow. Since the derivation is quite straightforward, only the results

are listed here.

o Mass Conservation Equation

ho k<#U>"~V-l ] # (b ~ N ) * g dA . (4.1)k <# > + ?
*

kk k sk
^k

The integral on the right side of equation (4.1) denotes the rate of inter-

f acial mass generatioa of phase k per unit volume of v. Denoting it by T ' ""k
have

~I[ kdA . (4.2)-l f O (k ~ b) * kT dA = - vk"~V k
k k

We reiterate that for adjacent fluids k and f separated by a common interface,
h"~h*

For N bubbles per unit volume, each of mass mk and evaporating (ork
condensing) at the rate dmk/dt,

. __
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l'k = N ( dmk/dt) , (4.3)k
|

which is determined by the average relative velocity between the bubble and
its surrounding liquid, the system pressure and temperature, and the enthalpy
of evaporation or condensation. It is pertinent to note that the interfacial

mass source is not necessarily limited to phase change. It could also be the

result of chemical reaction at the interface.

o Linear Momentum Conservation Equation

'<l > + "k (P > f-ho <P k> + Y * " k <# M> " ~ Y "k <P > + Y *
k k k k k k

+ v ' / (-P k + I ) . gdA
-

k k
%

~I f pkU (g - g) g dA , (4.4)-v
K

Ak

in which the field force per unit mass f is taken to be constant. The first
integral on the right side of equation (4.4) accounts for the pressure and
viscous forces acting on the interface in a unit volume of the fluid mixture.

The second integral relates to the momentum transport at the interface. Both
are directly proportional to the so-called interfacial area concentration,
i.e., total interf acial area associated with phase k per unit volume of the
mixture.

e Total Energy Conservation Equation

<gP > + Y * "k ' <b * I >k <P k k> + 7 . a <pgE>=-V aEo k k k

-V.ok ' <kk> + o I<JEk> + kk> ' 1 + k
~I ~If ( - Pg + g . Q . g dA - v f pk k(g - $) . g dA , (4.5)+v E

% %

where D denotes the rate of interfacial heat transfer to phase k per unitk
volume of the fluid mixture. It is given by

-lD"~V fh.4A. (4.6)dk
%

. .. - _ . .
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o Internal Energy Conservation Equation

a i .i<g q u > - g <P, v g >
i

x
<g u > + v

exga xx x x

-v g <4x>+ax(i<agx>+%+x@+4i '

x

~l[ p "k(k ~ b) * h dA (4.7)-v k
k

in which $k " I :vg, as has been noted previously.k

The volume-averaged interfacial balc1ce relations can be readily-obtained
f rom equations (3.6), (3.7), (3.9), and '3.10). They are:

e Mass Balance

[ T =0, (4.8)k
k,f

k,f ( = 0, and i[ is defined in equation (4.2).since k

e Linear Momentum Balance

~I [ f (kg + Pkk ~ k + g ) dA + v~I [ g dA = 0 (4.9)v
k,f A Ak k

* Total Energy Balance

~1 [ f (kEk + kk * k + (P k ~ I + g) * g) dAv
k k

k,f %

~I [ { * $ dA = 0 . (4.10)+v

^k

|

,

.

. . . . -
.
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* Internal Energy Balance

~I
m "k + kk *k+ (k ~ b)v *

k

+ g) * (g - () dA = 0 (4.11)+ ( P "4 ~Ikk

where ( g - ( )2 . [y _ ).( _ ), ;

5. TIME AVERAGING OF LOCAL VOLUME-AVERAGED CONSERVATION EQUATIONS

5.1 Spatial and Time Decomposition of Dependent Variables

The local volume-averaged equations given in the preceding section are
differential-integral equations. Before they can be used either for further

analysis or for numerical computation, it is necessary (a) to express the
volume averages of the product of the dependent variables in terms ~ of the
product of their volume averages and (b) to evaluate the interfacial transport
intepals. For both cases, we need to relate the local values of the depend-

ent variables to their corresponding averages.

To this end, the local dependent variable pk is expressed as the sum of
its local intrinsic volume average i<pk) and a spatial deviation p . Thus,k

* '<P > + P (5.1.1)p
k k k-

puchaspatialdecompositionschemewasfirstsuggestedbyGray[9]. Clearly,

<p > = 0. For dependent variables such as velocity Uy and internal energyk
uk, we write

*

i<S> + $ (5.1.2)
*

U =
k

'*
k" i<"k> + "k (5.1.3)u

g >* isi the mass-weighted, volume-averaged velocity defined bywhere

i<uk>*equation (2.1.6a or b), and is the mass-weighted, volume-averaged

internal energy defined by equation (2.1.7).

While i<U >* = 0 and i<u~k>
~ *

i<g~>and i < '.t > are not zero generally.= 0,
k

I

-

_ - ,-
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If pk is uniform within yk, then i<*>* = I<*>.

For turbulent flows, we postulate that both the volume-averaged term and
the spatial deviation term in equations (5.1.1), (5.1.2), and (5.1.3) would
have a low-frequency component, to be denoted by the subscript LF, and a high-
frequency component to be denoted by a prime. Thus, we write for pk

<P >LF + '<P >' (5.1.4a)<p > ~ ,k kk

and

l 3 " kLF + {. (5.1.4b)
k

In macroscopically steady flows, the low-f requency component is the temporal
mean.

The time that characterizes the low-frequency component is of the order-
l

ty = L/(AU)e = (characteristic dimension of the physical system)/
'

t

(characteristic low-frequency speed variation). (5.1.5a)
,

|
The characteristic time of the high-f requency component is of the order '

HF = A/(rms U') = (integral length scale of high-frequency fluctuation)/T

(root mean square of the fluctuating velocity or turbulence
intensity)

= 1/(characteristic spectral frequency). (5.1.5b)

In perf orming time averaging, the duration T over which the averaging is
made must satisfy the following inequalities:

(5.1.6)THF << T << Tty .

If the temporal decomposition is applied to pk from the outset, one
writes

pk"EkLF+p{, (5.1.7)

which is the well-known Reynolds decomposition in turbulence analysis. For

macroscopically steady flows, pkLF becomes the temporal mean. When the time
scale inequalities of equation (5.1.6) are satisfied, pktF andp{are

.. - - - . . . - - _ _ . - . - _ .



. . . . . . ~ .. . - . . . - , . . -. -. .- - - - -

16

separable in the time or frequency domain. Substituting equations (5.1.4a,b)
into (5.1.1) and comparing the result with equation (5.1.7) lead to

'<o >LF + P
(5.1.8a)=p k EF ,gy

and-

' ~

p( = <p k> ' + p { (5.1.8b)

in view of the fact that the -low- and high-f requency entities are separable.

Thus, we write

-l

l

p k " i<Pk>LF + PEF + p { . (5.1.9)

We shall soon demonstrate that i<pk}LF closely approximates i<pgp> when the .
high-f requency fluctuations of the volume vk are negligible. We shall return '

i<pk}U " i< PEF), equation (5.1.8a) showsto this point in Section 5.2. When

that ,

i<pgp>=0. (5.1.10)

The pressure Pk is to be decomposed in the same manner as pk' I''' *

= I<P >LF + PEF + P( . (5.1.11)
~

P k

For velocity S and internal energy uk, we write

*

g = i<S>gy + ggy + U{ (5.1.12)
-

and
|

-

*

k"1<"k>LF+"EF+u{. (5.1.13)
*

u

l
i

The appropriate decomposition for the total energy E will be given |k
'

later.

The local volume fraction ok is a volume-averaged quantity. Hence, it

should be decomposed simply as '

i

|

.

- - - - - - , y , , iw. 9- wi, s
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ok- kLF+a{. (5.1.14)"

Intimately associated with equation (5.1.14) is the temporal
decomposition

vk " VkLF + v . (5.1.15)
i

1

l
Obviously,

kLF ~ "kLF v, and v{=a(v. (5.1.16a,b)v

Except for extreme conditions, high-f requency fluctuations in volume f raction

seldom occur. Thus, a{ can of ten be assumed negligible and will be ignored in
the present analysis.

In multiphase flows, the fluid-fluid interf ace may not only translate,

but also oscillate. Hence, in general, the interfacial area A , like ok andk
vk, can be decomposed as '

(5.1.17)Ak=AkLF + A .

.

However, as has been pointed out earlier, the present analysis is best suited
for dispersed systems for which interfacial tension would normally play a
prominent role and abrupt changes in surface curvature are not expected to
o c cu r. The f amiliar smooth and gentle shapes of oscillating bubbles and drop-
lets are examples [24). In such cases, A{ can be ignored. The analysis of

Ref. 12 also shows that if p{ is deleted, A{ should also be set to zero.
Therefore, in this report, af, v{, and A{ are all neglected for consistent ;

approximations.

The interfacial velocity 16 is not associated with pk alone; it is
decomposed as

i

l

3, = <E,>tp + 3, + }[ . (5.1.18)
i

|
If the flow is such that the characteristic length of the dispersed phase

'

d is large compared to the integral length scale of turbulence A, and if there

is no vigorous interf acial mass transfer, then the high-f requency fluctuating

component of the interface velocity W' would not be significant and should be
deleted. On the other hand, if d << A , lQ may not be ignored even though A{ =

|

|

. - - -. ~_ . - . - ,. . .
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0. The case of turbulent flow of a suspension of small solid particles in a
gas or liquid is an example. Hence, W's is retained in the analysis that
follows.

5.2 Some Useful Observations

In deriving equation (5.1.10), we introduce the approximation that the
low-frequency component of the intrinsic volume ave rage of the density of
phase k, i<pk>LF, is equal to the intrinsic volume average of the low-
frequency component of the density, i<pkLF). We demonstrate in the following

that the approximation is consistent with the stipulation that v( = 0, or more
correctly, |v(/vkLFl=0. Denoting vf/vkLF by c, we can write

i<pk}LF = low-frequency component of

I (1 - c + c ....) f (pkLF+Ek)dV2
y

kLF(1+*)
y

o dy (5.2.1)[=
,

ktFy
kLF y

kLF

and

<pktF> " v (I~*+* -***) f P dVRF
gp(1+c)v

<

|
|

dvh(1+0(c)). (5.2.2)[ p=
kLFy

kLF vgp

Thus, i<pk}LF and I<pkLF) differ by a small fraction of order c.

Next, we proceed to examine 1(g >*gp and g >*.i It is straightforward i

to show that |
|

\ ] P dv (5.2.3)1<$>tp
* '

fo U d#= .kLFkLF -kLF l
VYkLF / EF

|Now,

1

I

-- - .- .
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I<Ug>* =( fpgp(1+c)ggpdv f pkLF +*)dy (5.2.4a),
pp

(vkU (I+* ) / "EF(I+8 }

where c p{/pkLF and |cp|<<1. Equation (5.2.4a) can be written as
p

fPkLF k LF d#

I<gp>*= [1+O(c)+0(*)]. (3.2.4b) '

dy g 2 p

"kLF

i <4> * i<h>* may dif fer, at most, by a small fgaction of ojder
|c l + |c | . p and

UThus,
In the present analysis, the approximation i<h >g = I<Ugp> is.

p
adopted and hence,

*iUg> =0. (5.2.5)z

Likewise,

*
I<~ gp > =0. (5.2.6)u

We also have occasion to use the following results.

Since

+# ] i<i > g dA
~

9 < k> " 9 "k < k>k <@ k>
"o k

^k

ik)~ib)9 %"% Y k)i=7o '-k

it follows that

V <(> =V <$ > . (5.2.7c)k

Likewise,

V. <g> =V+ ' <$ ) (5.2.7b).

k

_ . _ . - . . . .
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Also,

=V < k> and V. <g> = v I <g> .

*
V '<4 > (5.2.8a,b)

5.3 Volume Average of Products and Prodact of Volume Averages

From the definition of the mass-weighted, volume-averaged velocity, we
have

Qg>=IQ ) i(4)* (5.3.1)I
e ,k

which is pquation (2.1.6b). using the decompositions ok " P +Pk, andk
<g> + h, ne readily obtainsU =

k

i<oy g> = 19x>i<g>*+i<ot>i<;u>+14xx>. (5.3.2)u u

Comparing equation (5.3.1) with equation (5.3.2) gives

i ip ) , i<$ >=0. (5.3.3))

It may be of interest, to, note that equation (5.3.3) can also be obtained by
using the fact that (U > =0 .4

i<og y y> = ie >i<u u >* = i<o > (i<u,>* i<g>* +1<a g>*) . (5.3.4.)uu te. y yx x

Now,

i *
) .i g)i ) ,, i p ) + ip ) i< k> . (5.3.5)

Thus, an alternative f orm of equation (5.3.4a) is

i<o u u > = 19,> (i<u,>* i<u,>* + icu n >) + ic t ^ > .ou yg (5.3.4b)ymy yg

t i<g >* . i g >f g ,) . (i<,,>i<g > i<, g >J/i<,,) . o,ig

i<oN>ence, positive definite, the numerator of the third term mistSince is

one obtains equation (5.3.3).vanish.

. - . - . . - . - . . . _ , . - . . . . - _ .. - . - . . . - - . . - - .
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Corresponding relationships for internal energy are completely analogous:

i

i<p k"k) " i<Pk) i <, ) * (5.3.6)e ,

l

g g g> = ig >i < u,u > * = i <pg>(i<u>*i<u>*+i<ta>*)i<p uu (5.3.7.). g g y g _g g

=14) k)*i<"k)**ik~%) *ii D^k4"k> . (5.3.7b)Pk

Furthermore,
!

l

g) Cu ) i<$ ^"k> = 0 (5.3.8)l i i

k k

and

114 ~ )* ,i ~)+i y~) 4P> (5.3.9).k

For turbulent flows, the decomposition scheme of equation (5.1.9) for pk and
of equation (5.1.12) for Uk will be used. Accordingly,

i <p k > " ' k>LF + I <p {> (5.3.10)

and
,

* *

i<g >* = i<U >gy + 1<Uf> . (5.3.11)g

fp<ilows f rom the relation i(pkLF) = /vk +
0 andWe reiterate that equation (5.3.10)

Dg p> = 0. Both require that v{
The vanishing of ()Gfollpws from

equation (5.3.1that

4 F) also requires that p(/pk + 0.0.

For convenience in writing, we shall hereaf ter write pk 10f PkLF' 0 I*# Ik
D This will not result in any confusion if it is understood that any )g y, etc.
quantity with a tilde is of low frequency.

Using the relations given by equations (5.3.10) and (5.3.11), equation
(5.3.1) becomes

*

k> I<Uf> . (5.3.12)k k> " k>LF+'<Pk>i <p <U>F+ <PUe k

We shall be interested in evaluating the time average of equation (5.3.12).
i<h>*gp is, by definition, the low-f requency component of i<h>*,Since

1

|

|
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E

) i< > = 0.i

Now,

* i ),i ) )+14 ) + i <p g> . (5.3.13).ii )i ) ,

Therefore, its time average is

i i *
t i<p Uf> , (5.3.14)) ,

i<pk k> 18which is a turbulent mass flux. Consequently, the time-average of U

i i *'I<pk k) , gbk) , t i<p U(> . (5.3.15)Ue

I<pk k> can be obtained by nultiplying equationA second expression for U

(5.1.9) by equation (5.1.12), and then performing the indicated volume
averaging. The result is

,

k>LF(i<b>F+i >+i$k>) + iG D > + iqb)
*i

i <p k k> "U ## kk

+ 1(p(> <S > p + I<p(D > + <p(Uf> . (5.3.16)4

,

Introducing equation (5.3.13) into equation (5.3.12) and comparing the result

with equation (5.3.16) lead to
i

'
4 ^k> + '<P U > = 0 . (5.3.17a) )<p kkF >+ k A

The first two terms of equation (5.3.17a) are of low frequency since v{/vkLF
is taken to be negligibly small, but the third term is of high frequency.
Hence, they aust independently vanish, i.e. ,

<pk>LF >+ 4 >=0, (% 3.17b)k

- _ _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ - _ - _ - _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - - _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ _ _ _ _ _
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and

i< >=0. (5.3.17c)

The result that p{ and k are not spatially correlated is what one would
intuitively expect. Equation (5.3.17b) may be compared with the corresponding
result for the nonturbulent case, equation (5.3.3). It should be remembered,
however, that in equations (5.3.17a,b,c) pk implies pkLF andkimplieskgp.

= i<u,>*y i<g>*y+(Og+UfU;+2 i<U,> , 0, + 2 <u,> *, 3
* 1since gU4

+ 2 D U{ , one readily obtainsk

I<p kkk> " <#k> '<b> *e

e > (i<u,>*y i<U,> , + i<hg> * + i<U;U;>=t * *

x

I<U >*p g>*+2 I g >* . (5.3.18)
i+2

It may be of interest to note that equation (5.3.18) can also be deduced by
I<p g +

the product pg f rom the very b(eginning,+p{and g=
introjucing the decomposition relations pk =

<U,>p+g+Uj,into followed
by taking the volume average and making use of equation (5.3.17a).

The time averages of the various terms in equation (5.3.18) are

i i * i *\"i i * 1 * I

k k LF kLF/ k LF kLF kLF , . a).

1

|
!

*

> + ' <P<p k> < >
<#k>LF < >"

k

= i<pk>LF '(Uk>*p, (5.3.19b)4

I<44> p denotes the low-f requency component of I<kD )*Dtwhere .4

* I
I <pk>'<UfU{> Q >LF <UfU{>+ <p U{U{> + ''<p{U{Uf> , (5.3.19c)=

k

.
. .

.

.

.. . .
_ _ _ _ _ _ _
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UI<p {Uf> , (5.3.19d)<p k> (Uj> =

which is equation (5.3.14), and

'<p k) ' gU{> I<p{U{D ) (5.3.19e)= .k

Accordingly,

ti<px ,U,> = 15,>ty (i<g>*y i<g>*,+i<D,0>+'i<U;U;>)U. _4

q > i<g >* + Ikk'>+"Ikg>ti+2 g

tiQg> + ti<p UfUf> . (5.3.20)+2

Equation (5.3.20) can also be deduced by f orming the product pg, followed
by performing the intrinsic volume averaging, making use of the relation given

by equation (5.3.17a), and then time averaging.

Analogous expressions for internal energy are

<pk>LF ' C" k> + ' 4k k> + i<Pk k> = 0 , (5.3.21a)

with '<pk>LF G'k> + ' k*k> = 0, and i<p{E>=0. (5.3.21b,c)k

*

i<pk"k> " <#k> ' <" k>e

=(Ig>g + 14 {> i<u >* +1%>i<u(>* (5.3.22)k

Q> = 1%>g i<u )* + ti< u{> (5.3.23)'Ie k

i i *I<p k"k> " b) k"k)e k

l

.- - .. .. _ , - . .
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= i < p > (i <,u > *g <u > *x y + i<he >* + i<u;u;>* + i<g>*y <u;>*
i i

x x

+IQ>*ig >* + IM >* + iQd>*) (5.3.24).k

ti<p U u > = i<p >y (i<u >*, i<u /, + Wx> + Ngu;q.
x x x xt

* *
+ E <p{U{> (u >U + <Pk"k> <k>U + <P k>k k

<"k{Uf>+'I<p{Ufu{>.+ <p Ufu{> + <kk"k>+P p
k

(5.3.25)

For the total energy, we may also write

'<E >
*

k k k+E{. (5.3.26)E +=

However, the defining rela (E >U, E , and E{ require careful con-
Specifically, gions ,for k k

sideration. <E > is of low frequency and of leng h scale 1,
low frequency angFk

E is also of must satisfy the condition < = 0, andp

finally the time-average of E{ should vanish. Since Ek = uk + Y 4 * U , andU 4
=Ig >* + k + % and &by using ,the already defined relations u =

<g >g + g + Uf, we obtain

i<u >*, + d + u; + i<k)F i<U > , +L.O+ ug g
* *

E =
x x x g

<g >g * k + <g >*g* Ug + k * Uf . (5.3.27)
*

+

We define

i(E > LF " i<"k> U + Y <k>U
* * 1i *

i<k>U + Y <k * k> + Y1 ti(Uf Uf> ,
* 1i- - *

*

k

(5.3.28)

Ek " "k + ik)* *k+ *h i

* h>* , (5.3.29)
'

U

*

E{ = u{ + <g >g g + k * Uf + Uf + Uf - (Uf * Uf> . (5.3.30)
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equation (5.3.26) with the defining relations
cp<n be, rea,dily verified thatk, and Ed, given respectively by equatio.ns (5.3.28), (5.3.29),

It

E >LF' Bfor k
.and (5.3.30), is identi, cal to equation (5.3.27). Furthermore, the constraints

cited fo <E > and E are also satisfied. If we assume that

gust'U{ . g > = [<g g >, then '<E{> = 0. For
k the equations which follow,

this approximation is used. :Accordingly,

<p }LF k> + k k> + Ekk>=0 (5.3.31);
,

k I
1

P gE ), and k gE ) can be written down from
Pk k>'and <pk k>' k k k k

equations (5.{.22), (5.3.23), (5.3.24), and (5.,3.25) by simply replacing uk by
by equation '(5.3.29), and E{<E >LP defined by equation (5.3.28), EkE withk k

by equation (5.3.30). Finally, we note that the decomposition of Ek given in-
Ref. 12 was incorrect.

It is seen from the foregoing that our objective of expressing the . volume
average of products in terms of products of volume averages is only partially

,it ,is necessary to assess terms likeachieveg. For the nonturbulent case,

< > in the momentum equation, <kE > in the total energy equation, andk

<gu > in the internal energy equation. A number of additional terms appear
k

for the turbulent case. The assessment or modeling of these terms consti-
tutes, in part, the closura problem.

Simplifications

Except in extraordinary circumstances , p / <P >LF << 1, and, furthermore,k k
p changes sign within an averaging volume. Hence, une may usually assume,

k

<P >LF <
>, (5.3.32)<3 bk> kk

tig ) g gp ti< >, (5.3.33)i

(5.3.34)
<3 k *k> <P >LF < *k > ,kk

<p U{u(> G I <pg ti<gu{> , (5.3.35)
k

and similar inequalities for total energy.
*

Furthermore, if <p'g > <p > F <k >LF 1, which is of ten the case,

thenequations(5.3.15),f5.3.20),f5.3.23),and(5.3.25)canbesimplifiedtok

_, . _ . _ _ _ _ _ _ , ,
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'

ti<pa>=i<p>ty i<g >*u , (5.3.36). x

ti< pag > i<p >u (i<g>*y i<g>*u + i<th> + 'i<gg>) , ( 5. 3. 37). x

ti <p u > i <p >, i <u >*y , (5.3.38) :. xx x x

ti<p gg> - %p >ty bS./y N g (y + % Q + N g d . (5.3.3o. y x t

Likewise,

<# >U I ( E > *U ' (5.3.40)* <p E > "
k k ikk

,

Ci<pg> = i<pg g>* ig>* +i g)+ti< E{> . (5.3.41)i
.

Under the stronger restriction of constant pk, we have o = 0, pi = 0, and ;k
*

i<g >* = i<g >g , i<u >* i<"k> U , and i(E >U "i <p k}U Pk. Also, g kU" k"

i<E >M' |k

Finally, we note that from equation (2.2.5), we can write |
|

!3a
|] <b> U + *h dA""

at s
i
i

~I f $ . g da . (5.3.42)+v
^k

.,

1

Since ad is assumed to be negligible, the second area integral must~ vanish,
i.e.,

f$'n dA = 0 . (5.3.43)g
Ak

i

. _ , .-. .~ - -_- -. , , .- . . . . . _ - _ . . .-
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5.4 Time- and Volume-Averaged Mass Conserv& tion Equation and
Interfacial Mass Balance Equation

The local volume-averaged mass conservation equation is given by equation
(4.1). By introducing the decomposition scheme for pk defined by equation
(5.1.9), U by equation (5.1.12) and W, by equation (5.1.18), followed byk _

time-averaging,oneobtainsfornegligiblea{andA{,

'
<# >LF , (5.4.1)k <P > ""ka kk

'
<U > F + "k <p{Uf>, (5.4.2)k k> " "k <0 >LFk <D Ua kk

which is taken directly from equation (5.3.15). For convenience, the
t

turbulent mass flux <pfU{> will be denoted by g, i.e. , 1

g = ti<p >. (5.4.3)

The time-averaged interfacial mass generation rate of phase k within v is

t <r > = - v- / t<p x(g - g) > . g dAx ,

N

<k> F * V "k + (MTI)k (5.4.4)<pk>LF +=

where (MTI)k stands for the interfacial mass transfer integral defined by

-l i
( MTI) k " ~ V b)U f 4*h dA

%

-

(i<u>*y i<s>ty)
% x _g

-v' f^n dAx

- I ^x (t_x 'w )g dA-v

%
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~I tf <p ( - )>. dA . (5.4.5a)-v
Ak

In deriving equations (5.4.4) and (5.4.5a), use has been made of equations
(2.2.4), (5.3.42), and (5.3.43) as well as the fact that volume-averaged

<h>*ty
I}< }LF

can be taken outside of the areaandentities such as k
! 0 k> 1, which is usually the case, the two terms

in equation (bF <<integrals., When p k .4.5a) may be deleted. Accordingly,involving pk

(MTI)k -# <Pk>LF] * "k
%

- dA

~I / t< ( - )>* dA (5.4.5b)-v .

%
Performing the time averaging of equation (4.1), followed by introducing

the results given in equations (5.4.1), (5.4.2), (5.4.3), and (5.4.4), leads

to the desired time- and volume-averaged mass conservation equation:

i i *,i ) +7, ) ) ,7, ,t4p > . (5.4.6a)k

An equivalent form of equation (5.4.6a) is

i i *

k b)U Y * b)U i<k> + Y * "k h = (MTI)k . (5.4.6b)o

When pk = constant, simplification is seen in that g = 0, and (MTI)k becomes

(MTI) { = - v~ % ( . g dA ./ (5.4.7)pk

Accordingly, the time- and volume-averaged mass conservation equation for

constant ok 18

l f'.44 dA . (5.4.8)Y* <k>LF
=-y

ok
%

It is straightforward to demonstrate that equation (5.4.8) can also be deduced
by performing the time- and volume-averaging of V e g = 0.

. _ _. - - .. _ .- . - . - . . - . - .
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The local volume-averaged mass balance equation for the' interf ace is
given by equation (4.8). Performing the time-averaging gives

[ '<r > = 0 (5.4.9a)
k

k,f

or

'<T > + <r>=0, (5.4.9b)
k f

where t<T > is given by equation (5.4.4) with subscript k replaced by f.g

5.5 Time- and Volume-Averaged Linear Momentum Conservation Equation
and Interfacial Momentum Balance Equation

The local volume-averaged linear momentum conservation equation for
constant field force is given by equation (4.4). The time-average of the

several terms in the equation have already been given; others can be obtained
f rom a procedure similar to that used in the previous section. To conserve

space, we present only the results of those terms that require further
discussion.

E
i * * 1 *

k <# k b > " "k i<P >U i<k}U i<k}U + 2 ak b <U >Ue o k k -k

(5.5.1)<1 > + <k>+ < k>-a ,kk

in which hk is given by equation (5.4.3). The last three terms are, e

respectively,

T
(a) the time- and volume-averaged Reynolds stress tensor <1 > definedk

by

<If>=-<p>U <kk> - <P U j ) 'I<pfU{$ > (5.5.2a)k k

t

(5.5.2b)<p> <$$>=- ,k

(b) the volume-averaged dispersive stress tensor i<jD)definedby

< >=- <p > p <h k ) '<p > (5.5.3a)k
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i<p g dk k >[p , (5.5.3b)i=-

and

(c) the ime- and volume-averaged turbulent, dispersive stress tensor

*<j>definedby

ti< >=-2"I<p{gk> (5.5.4a)

<p > '<g > (5.5.4b)=-2 .k

Under the simplifying condit. ions listed near the end of Section 5.3, kk
= 0, and the three stress tensors defined in equations (5.5.2), (5.5.3), and
(5.5.4) become, respectively,

EI<I > 1 i<p >U (gg> , (5.5.2c)(a') k

(b') "I< ( > A I<p g <k k > , (5.5.3c)i

(c') "I<jk>=0. (5.5.4c)

k <3k) where Ik is the viscous stress tt;nsor.e o

,or Newtonian fluids,

- (% - y u ) (v S) I + uk [v S + (v A)c) (3.5.5)Ik k

viscosity, v & is dya c denoteswhere A
decomposition h = g(U >g and the subscript-k M + k + $ equati n (5.5.5)

k is the bulk
conjugate. Using the

becomes

= (s - h) (v i<e;,) i + k :v i<e;,+(v i<v;,)c:ik

+ (s - h) (v . t) 1 + o t + <v i)a

. _ _ -. .
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+ (A - } uk)(v E) I + uk [v s + (v E)c) . (5.5.6)k

Since

-l]ik) *k " "k Y * i<k)*
** i *v.IQ>, =v.ak k) .V '

s

(v i<g>* ) = o i<g>*,.vg k

Also,

k (Y i(b)*)c'i * i *(v g> ) v g> =a=

G.h)=v.o k ) *-1 fb*k dA ,i

k
A

e g> = v ok ig>+y-1 / g3a,
A

etc. Thus, we have for uniform Ak and pke

<1 > " " k i <h''k

(A - I uk) (v - I<k)* ) I + ukv*<h>r+(v i<h>v)c
* *

'

ak k r
.

,

'k> + "" Afb *h
dA }k k 9 * "k+A ~

M

|\ ;

' '
[ (b "k)c+ uk Y "k k> + Y "k k> c + V fb% +V

,
k k

.

"

+ terms which vanish upon time-averaging.

Itmaybenotedthat<(vk}c "< k>c, i.e. , the volume average of the
conjugate is the same as the conjugate of the volume average.

_ , _ , _ . - - - - _ . .
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Accordingly, the desired result is

<1 >o kk

'
'

(g - u ) (v . i<u >*u) 1 + u, v<s>,+(v i<s>*u),i *
=a x xx

,
_

+(x - u)(vg<i>+v- / L _n
i dA I

x x g
% /

vg<i>+(vg<i>),+v- % x g dA
'

i i
/ c+ux

| .
,

f (g g), dA (5.5.7a)+y

%

(x - } u ) (v . i<u >*u) 1 + u,v <u >u + (v i<u,>*u),'
'

i *
= a

x x x x yx
,

+ (A - "k <k > I + "k <9 > ^ '<7 >c (5.5.7b)*
.

kU" * <k }W , I<k>=0,and furthermore,i<u >*When pk constant,=

7 * i<k>U + V-l ] * "k dA = 0 according to equation (5.4.8). Hence,o
k

equation (5.5.7a,b) r uces for constant pk to

*

<1 ) " "k Y 7 <3J > U + V <U >Wa
k Ak kk

. .

-l

%
k % + (Uk k )c, dA .f (5.5.8)+u V

k

For convenience in subsequent discussion, it is desirable to express Ik
in the form

<1 >U * k + 3{ . (5.5.9a)Ik" k
l

Since <1.>g = <1 > , it f 11 ws from equation (5.5.7b) that
k

~

* i *) \

u,){s.i<g>*y)1+u yty+{si<3x>ty = hx
2 i

y ty,, |vv v
x t x3

|
-.

.. ._ __ .-. -
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. 2. "k '<Y*b>I+"k <Yb)+i4Y k>c . (5.5.9b)'

Substitut ing equation (5.5.9b) into equation (5.5.9a), followed by comparing
the result with equation (5.5.6), leads to

(=A ~ Y 7* ~ <7 > I
k

+u V ~ '<7 >+(7 )c I<V > (5.5.9c),

k

and

k k b + "k k+ bc1( " Ak ~ # * *
'

to be confused with the Reynolds stresses. Clearly, <3{>=0.which p<s, not as it must. It is pertinent to note that expressions forAlso, 1 > = 0,k
<1k}LF' Ik, andI{areincorrectlygiveninRef. 12.

In highly turbulent flows, the viscous stresses are usually insignificant
relative to the turbulent stresses and so they can be ignored in the momentum
equation.

t
~l [ (-P I+I)*4 dA* v k k

Ak

1 + (PTI)k -(VSTI)k, (5.5.10)
k \ ~ <1 >LF *VV

<P >LF
=

k

<1 >LF is given by equation (5.5.9b),'(PTI)k stands for the interfacialwhere k
pressure tranJfer integral defined by

~I[ Pg dA , (5.5.11)(PTI)k =-v

^k

and (VSTI) stands for the interfacial viscous stress transfer integral defined
by

] * g dA , (5.5.12)(VSTI)k *~Y =k
^k
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inwhich!k is given by equation (5.5.9c). While equation (5.5.10) is rigor-

ously valid for a dispersed system for which the length scale inequality,
equation (2.1.4), is satisfied, the integral

f (- P I+I)*"k dA
k ks

may be prudently evaluated from the Lagrangian equation of motion for the
dispersed phase. More research is needed to assess the merit of this
approach.

|

(T>'<k> +(MMTI)k, (5.5.13)-I f p k(k - b) * h dAe -v =
kk

i

where t<T > is given by equation (5.4.4) and (MMTI)k stands for thek
interfacial momentum transfer integral defined by

(MMTI)k"~"l] i<P b + b+t<#b)
-

g. .

i *
_ i<W > g - dA) , *

|

<p >LF + p <g($ - g)> * g dA
~

f-v ks
-1 f k '<p{(g - g )> + g dA (5.5.14a)-v

Ak
|

It is seen from equations (5.5.13) and (5.5.14a) that the time- and volume-
averaged interf acial momentum transfer consists of two* parts: (1) transfer
associated with interf acial mass generation '<T > '<k>fluidLF, and (2) extraneousk
transfer due to spatial deviation of density and velocity at the

interface, as well as that due to time correlations of fluctuating velocities
and density.

As has been previously indicated, under usual circumstances p / <P >LF j
k k

<< l. Hence, a valid approximation for (MMTI)k is |

!

!
,

j

-- - .- - _ _ . - - .
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(MMTI)k ' ~ V [ SP }U k + <Pkk> ( k >*U + k ~ G > U ~ k) * "4dA
k %

s

% g (g - $)> * g dAf<<p >W-v k

-I f { t<p ( )>* dA . (5.5.14b)--v
Ak

A further approximation can be made if the correlation of density and velocity
fluctuations is insignificant. It is

<P >U f <k> F +
~ i"

m )U(MMTI)k 3 ~V
~

k %s

U<g($ - g)> * g dA . (5.5.14c)+

When pk = constant, (MMTI)k becomes

~'

L(i<g>*u + A i >y - () + t<g($ - g)> . gdAxf(MMTI); = -v- s,p
..

( 5. 5.1. 5 )

The time- and volume-averaged interfacial momentum source per unit
volume, t<M >, resulting from pressure and viscous stresses at the interfaceg
as well as that associated with interfacial mass generation, is

<1 > U * V "k + <r > i<k> F
*

E<M > = <P >U V "k - k kkg

(PTI)k -(VSTI)k+(MMTI)k. (5.5.16)+

It is recognized that equation (5.5.16) is the equivalent of

<g> = - v [ (kg + Pg - I~

(5.5.17)*

k
A !k

#
where the three terms of the integrand are precisely those of the first
integral in equation (4.9).
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Using the foregoing results, we obtain the time- and volume-averaged
momentum conservation equation:

* i * 1 *

i<#k>LF i<k>LF+Y*"k i<P >LF NLF kLF
3

gok k

3 i *

+gok g +2V=ak b <k >LF

<l >LF + V * "k '<1 > + I>+ < k>'<P >LF + V * "k=-7o k kk k

+a i <#k>LF f+ (g> , (5.5.18a)k -

I<I defined by equation (5.5.9b) and t<g > is given by
(5. f.>1Y) .is

in which
The r.h.s. of equation (5.5.18a) can be recast into theequation

following form:

I<P g + g 7 .Ig>g+V*ok ti )i h) + tiD
r.h.s. = a V g

k

+a <#k>LF
+ <r > i<U > + (PTI)k - (VSTI)k + (MMTI)k *fk k A

(5.5.19)
Multiplying equation (5.4.6a) by i<U >*Fand introducing the result intok

equation (5.5.18a), followed by combining t e rms , one obtains an alternative
form of the time- and volume-averaged momentum conservation equation:

i *
0 NLF i * i *i

bk k LF 3t kLF NLF|
*

3 i * *
+gok b + 9 * "k k <k >LF + "k b * 7 i <b>LF

I<P >LF + "k '<l >LF + V * "k
ti T) , ip D) 4 tipg=

ak V Y*k k

4a <p > f + (PTI)k - (VSTI)k + (MMTI)k . (5.5.18b)p_

If the tur ent mass flux g(= <p{Uj>) is negligible, which is usually the
case, then (I > 1s also negligible, and equation (5.5.18a) simplifies tok
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i <4>g 1<g>g*
*

i<P >U i <b>U + Y * i<P >U
*8 Ugak k k k

<1 >U + Y * "k '<1 > + '<
.

=
ak 7 '<P >U + "k >Y* k kk

i i *
+a NU Itq d <b >U + (PTI)k - (VSTI)k + (MMTI)k . (5.5.20a)k

Equivalently,

k F+i<b>U
0 **

1<b>Ui<Pk>U *Va k 3t

I <P >U + "k <l >U + Y * "k <I > + < k>Y*=a V kkk

i<P >U + (PTI)k - (VSTI)k + (MMTI)k . (5.5.20b)I+a kk

<1 >U < < '<1 > > and hence <3 >Uboth o Y*In highly turbulent flows, kk k
and (VSTI)k in equations (5.5.20s,b) can be dropped.

For a single phase system, ok = 1 and all interfacial integrals vanish.
Furthermore, the inequality condition, equation (2.1.4), should be dropped and

Consequently,
onecanchoosethe, averaging <volumevassmallasonepleases.
i<P k) <4>g + g , 1 >U * IkU and all spatial deviations vanish.* P

tq >k' (PTI)k, (VSTI)k, and (MMTI)k do not exist. We thus recover the
k

Also, k,
f amiliar form of the linear momentum conservation equation for single phase
turb21ent flow f rom either equation (5.5.20a) or (5.5.20b).

The time- and volume-averaged momentum equation for the special case of
constant pk can be readily obtained. It ,is of the same form as equation
(5.5.20b) with i<pk}U replaced by pk' <k}U replaced by i<g > g and (MMTI)k
replacedby(MMrl){,whichisgivenbyequation(5.5.15).

The local volume averaged linear momentum balance equation for the ,

interf ace between fluid phases k and f is given by equation (4.9). Upon time
averaging, it becomes

I t<g>-v-1 / t <n > a - y-1 / (v,o -2a ou _n ) a , (5.5.2i.) ,g xy g
k,f A Ak k
for which the relation given by equation (5.5.17) has been used. The last
integral on the r.h.s. of equation (5.5.21a) can be written as '

__
- -
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-I f (7, o n ) dA ,-2H ov g fg g f

since HkW=-Hfg ,_nk " h , and Ak=A. An equivalent form of equationf

(5.5.21a) is

.

[ i<e >y v og i<r.k>u v ak+t<r>i<g>Lx x
k,f .

.

/ <(>dA. (5.5.21b)+ (PTI)k - (VSTI)k + (MMTI)k =v
A-

k

That is, the group of terms in the square bracket of equation (5.5.21b), which
appears in the time-volume averaged equation for phase k, and the corre-
sponding group of terms in the time-volume averaged equation for phase f aust

add up to a value equal to v-1 j t< > dA. The evaluation or assessment of

these interfacial integrals cons tutes another part of the closure problem.

We consider a gas-liquid system at rest with uniform o. Equation
(5.5.21b) simplifies to

- .

[ I(P > Y "k + (PTI)k f2H 8%A. (5.5.22)d=-vk kk,f - g,

The 1.h.s. of equation (5.5.22) can be replaced by

/ -1 h
- [ / Pk4A |,dy

i

k,f ( Ak /

-1
k = i<P > + k and V o f g dA. In view of the fact that n_fsince P =-vk k

^k= - nk, a.d Af = A , equation (5.5.22) can be written ask

f (P -P -2H #)h A=0, (5.5.23a)dk g k
Ak

which is valid for any A . Accordingly,k

Pk-Pf=2Hko (5.5.23b).

. .

. .

__ _ _ _ _ _ _ _ .



.. -_ -

40

isIfphasekdenotesgapbubblesinaliquidorliquiddropletsinagas,Hk
positive and equals y, R being the local mean radius of curvature of hhe
interface. Hence, the pressure dif ference across the interface is

=f, (5.5.24)P -Pk g

which ic well known. Needless to say, Pk and Pg refer to the static pressure
in the bulk fluid as the interface is approached.

5.6 Time- and Volume-Averaged Total Energy Conservation Equation
and Interf acial Total Energy Balance Equation

The local volume-averaged total energy conservation equation is given by
equation (4.5) . Subsequent time-averaging requires the use of the following
results:

i

t

g< k F + "k Ek ,
1 g

(5.6.1)*
k kk "k k LFe o

i<E >*F is given by equation (5.3.28) and CEk is a scalar total energywhere k
function defined by

Ek (E{> (5.6.2)0 =

withe {givenbyequation(5.3.30).

U * * i *

i<P U E >\ i<#k>LF i<b>LF 1<E > p + akg (E>p/

(ak kk / k
= ae

i * ti )+1 ) , ti )),(5.6.3)+ak<b>FEk+ k g

in which h k is given by equation (5.4.3). The last three terms are,

respectively,

' <(>(a) the time- and volume-averaged turbulent total energy flux

defined by

ti ),i ) ) + tip )+ti<pU{E{> (5.6.4a)ti p
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<pk> i<gE{' ) . (5.6.4b)=

Referring to equation (5.3.30), we may write

E{=u{+K{, (5.6.5)

where K{ denotes the high-f requency fluctuating component of the
kinetic energy, defined by

K{ = i<g >* . g + g . g + f .g- ti< > (5.6.6)* .

Accordingly,

EI< > = UI< > + ti > (5.6.7)

in which the time- and volume-ave raged turbulent internal energy
flux <u > is defined by

ti ),i ) ) , ti ) ,ti<
u{> (5.6.8a)

ti

*

<p k) <gu{> (5.6.8b)=
,

and the time- and volume-ave raged turbulent kinetic energy flux
ti< > is defined by

ti i ti ) , tic )), )

+ Ui<p{ g K{> (5.6.9a)

<p k) <g K{> (5.6.9b)=
.

Di<u)canThe turbulent internal energy flux be conveniently
expressed in terms of eddy diffusivity for internal energy transfer

TD9k according to

. .
.

- - - - - - -
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D y i<u >* :(5.6.10a)T) ,, _ i <P > U
Tti g

k kW.

Also, one may define a volume-averaged specific heat at constant
volume e k such that.v

i <u >*U
" i <T > W . (5.6.11)VV kk vk

It follows, then, that

i<T ' g , (5.6.10b)ti Tg ) ,, _ g y

Twhere the turbulent conductivity <[ is related to D k according to

ef = I<p k>U "vk D (5.6.12)k.

(b) the volume-averaged dispersive total energy flux d > defined by

I 1(>=ig>g I(Q)+1(pk((> (5.6.13a)

A[>+i(>, (5.6.13b)C=

iwhere f > is the volume-averaged dispersive internal energy flux
given by

I(d> = I<pk>M 4"k> +
' Ok'"k>, (5.6.14a)

^

k

and > is the volume-averaged dispersive kinetic energy flux

given by

>=I%>g 1(Q)+1(p M>, (5.6.15a)

*
in which '( = i<g > . ( + f (( . ( 104.(>), (5.6.16)

.- -
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as is obvious f rom equation (5.3.29).

(c) the t - and volume-averaged turbulent, dispersive total energy
flux.' >-defined by

> = 'i<pfUf + p{(E{> (5.6.17a)*

='Id>+tiC > (5.6.17b)

where '((I > is the time- and volume-averaged turbulent, dispersive
internal energy flux given by

.

t ip T) , tiQ l' +p u{> (5.6.18a)

and ' > is the time- and volume-ave raged turbulent, dispersive
kinetic energy flux defined by

> = t i<p Uf ( + p{ g K{> . (5.6.19a)
U

I
Under the usual circumstance, k/ <pk>LF << 1, the triple correla-

tions involving p{ may be neglected, the spatial deviations ( and
k have little correlation with p(Uf, and U has little correlationq

with p{uk and pfK{. Accordingly, equations (5.6.8a), (5.6.14a), and
(5.6.18a) can be approximated by

(a') 'I(>=14 )U 'I<Uju{> , (5.6.8c)k

(b') '([> = I
I

Q >LF Q >, (5.6.14b)k

'I[>=0, (5.6.18b)f(c')

:

and equations (5.6.9a), (5.6.15a), and (5.6.19a) reduce to

'i(>=ig > g 'I(U{K{> , (5.6.9c); (a")

. _ -_-
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i<44) (5.6.15b)D i Dt(b") Q), g >LF <k> F *
,k

U(c") >=0. (5.6.19b)

(5.6.20)<P >LF <b> F * Y * " k $Pke V.o < P k> " V * " k kk k

where D k is a vector pressure work function defined by

tpg i<P >LF 4) + i ) ,ti<P >. (5.6.21)k

V.ak ' <I k * k> ~ Y * " k '<l >LF (5.6.22)k <b> F * Y * "k Itk*e

where k k is a vector viscous stress work function defined by j

4> + 'C
'

Lk * TJ > + <1{ . $> (5.6.23)(I >LFkk" *

k 4 ,

where is defined by equation (5.5.9c) and I{ is defined by equationk
(5.5.9d).

i<Jggh o h >ty (5.6.20e o g g gg

<kk> "Y*"k '<h>LF (5.6.25)e Va k

ok k k> * f " "k <Pk>LF ' <k > F
'

- f + "k kk * f (5.6.26)e *
-

t

'<0>--v-l / 4g. n dA. g x
^k

< k>LF * V "k + (llTI) k (5.6.27)=

where (llTI)k stands for the heat transfer integral defined by
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( HTI)k
~

f 4A. (5.6.28)d=-v

%
,

It may be noted that I<Jqk>LF * Y "k
inequation(5.6.27{<kk>LF*

may be combined with

<kk>LF of equation (5.6.25) to give a-V.o Y*k k
i
'

t
~

f (- P k + Ik . g) g dAe- v
k

A

I<P >LF <b>F*Y k <1 >LF <b> F * V "k= ~ *

k k

+ ( PWI) k ~ ( WI) k , (5.6.29) !

e

in which the interf acial pressure work integral is

(PWI)k"~Y-l i<p )U k*kgk
% '

~II<g>p.f % 4 dA-v

^k i

l
i

~I f Q + E<PQ{> . g dA (5.6.30)-v
Ak

and the interfacial viscous stress work integral is

(WI)k"~V-l [ k}U * k * h Oi

% 4

1

~ [ @>p . g dA-v .

s
1

~I f ik * TJ4+ <I{ . $> . g dA . (5.6.31)-v

%
Finally,

i

l
i

i

, . - . - , . -,-__ _.,--e,y , ., ,-ry v-
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-1 * f o E (g - g) . n a t<r > i<e >*, + (TErl)x (5.6.32)-v _x x x%xx
i<E > F is defined in equation (5.3.28) and the interfacial total energywhere k

transfer integral is

. .

g .(i<og>1,y + 3x) q + t<oiEi>
-t( rErl) , - - v /

.

1.

(1<gx>*y + 3x i<5 >ty -3).ga

% (i<o,>ty + 3 ) t<e;(y; - g;)> . 3 (d
-t / dr-v x 3

-1 / g t<o;(y; - y;)> . ga. (5.6.33e-v

' ).

The derivation of equation (5.6.32) parallels that of equat'an (5.2,43),
although they dif fer in details. The time- and volvat-4')araged interfacial (

of (a) 1<E >LF
total energy transfer is seen to consist a trepsfer the,: is ,Jirectly

t<T > and (t; ext J t|aeou s -

.
related to interfacial mass generation k g,

transfer to account for various
spatial deviations And p<isa estrelccioes of
fluctuations. When *k/ i''a>LF << l* #' 18density, energy, and velocity

usually the case, equation (5.6.33a) reduces to

L

-"l f b>U k , t< E{> <g> F + ~ <b>LF ~ k / . g dA
i *-

(TETI)k 2 9

b 'e
:

-I I<ok>LF f <E{ (g - $)> . g dA #-v

%
G

-l f g t<o ( - )>. dA . (5.6.33b)-v -

%

If , furthermore, all time correlations with p( are small, then

g . x (i<g>*, + g i<g>ty -3,)
.

-1 %x>ty f t(rErl>x s-v

.
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<E{{ g - g )> 4A. (5.6.33c)d+

An examination of the foregoing results shows that the time- and volume-

t<d > consists of interfacial heat transferaveraged total energy source k
<Q > w rk done by pressure and viscous forces at the interf ace and transportk ,

associated with interfacial mass generation m . Thus,k

t<t x> t<h,> + % ,>ty Ng(y.ve -h,>ty.Ng(y).vex x

*

+ E <r > '<k> F + ( PWI)k ~ (WI)k + (TETI)k . (5.6.34)k

It is recognized that
,

T

< fk> " - V f <"k k + kk 4 + ( P k " =Ik * k) * k > dA (5.6.35)E k
^k

i

wherein all terms of the integrand are precisely those in the first integral
of equation (4.10). Hence,

[ E<f k) , y 7 t< > dA . (5.6.36) |-1
.

k,f g

Using the foregoing results, we obtain the desired time- and volume-averaged
total energy equation.

* i

' <#k>LF<E > F + 7 * "k i<p g g >* i<E > Fo k k k

1

3 i * 1 *
+gok Ek + * "k Ek MLF + "k h <Ek LF

# *

* * ''
=-V.g i(P >LF N>LF ~ ? * "k h

*

i<U >Mk k <k>LF7* *

4

> + '< >+ '< >'
rV.ok1 k''7 *"k ' T'

i<d >{# + Uqk k 'Ek LF + "E i<P
i *

<' T k LF N LF * 1~7 'g

, ... . . ..-v _. - . ... - - --. - - .
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k Imk *I+ k> * (5.6.37a)+
-

of equation (5.6.37a) can be obtaind by multiplying
forg(E>U

An alternative
by and introducing the result into equationequation (5.4.6a) k

(5.6.37a), followed by combining terms. The result is

*
3 i(E > *h

<P >U Bt (g> * V '<E > p+o kk

1 * 1 *
+ g& k Ek + * \ Ek k LF + \ b * k LFa

*

V * i<P >U i<k>U ~ V * "k IPk + "k V * i<1 >LF ' i<k>U=-a k kk

+7*ak 1 n ~ 7 * "k )# ) + tiCi i

*
i<kk>W + "k i<Jg>g+a i(p >* i<k>U * I + "k b * f--V e o kU -k

<h>+(PW1)k ~ (VwI)k + (TETI)k . (5.6.37b)+j k

Ei<p ' 3) the scalar total energy functionThe turbulent mass flux $ =
,

k@" k kF+ *g , the vector pressure work# P"#"
Ek are usuallyfunction i nfunct' ion iPk, and the vector viscous stress worc
small and can be ignored. Furthermore, the stated approximations following
equation (5.6.19a) of ten hold. Under these conditions, equations (5.6.37a)
and (5.6.37b) simplify, respectively, to

* i i * *3
i<P i< k LF + * h <Pk LF MLF i< k LFIt "k k LF

:

*

<1 >U <k>U= - V * g (P > U <k> U + V ' ki
kk

* a < >+ < > < >-V
] k

'<kk>U+"k <JEk>LF + k k LF N LF *1+ k*-V*a Pk,

(5.6.38a)
and

!

f

-, -- -- 1-
- - _ ~-
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'<# >LF-
-- +ig> *

i<Eo *

k k

*
i<P >LF i<b>LF+"k Y * i<I >LF

*

i<b>LF=a V. *

k kk

-V.o g )y D) + ti )ti i

k

i i *
V.. ak i(kk> + "k i <dEk LF * "kEk LF N LF * 1

,

+U<k)+(PWI)k ~ (VwI)k + (TETI)k . (5.6.38b)

In these equations, the following approximations should be used:

ti<g> = i<px>ty ti<gu;> + i<px>ty (i<u >*y+ p ) . ti<u;u;> , ,x g

1((> = i<p k>LF i<4 "k> + i<Pk>LF i<u>*F0^ <4 h> , (5.6.38d)0*

k

C I((> = 0 , (5.6.38e)

and (TETI)k is given by equation (5.6.33c). '

The time- and volume-averaged interfacial balance equation for total -

energy is given by equation (5.6.36) .
I

5.7 Time- and Volume-Averaged Internal Energy Conservation ' Equation and
Interfacial Internal Energy Balance Equation

I The local volume-averaged internal energy conservation equation is given
,

by equation (4.7). Subsequent time averaging can be made by following the j
procedure used in Sections 5.4, 5.5, and 5.6, and the following results are
readily obtained. However, the presence of (1) <P V . g> and (2) <4 ); *

k k
<1 :Vg> in equation (4.7) renders the analysis incomplete. This will bek
made clear later,

j
>

'(a i <p k"k>) " "k i <Pk}LF i<"k>LF +
*

# (5.7.1)e g k uk

where o is a scalar internal energy function defined byk

|

>

- . , - - - - , - - . . , - - - , - , - - ,,,
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@ g = 'I<p{u{> . (5.7.2)

* * 1 *

i<Pb"k " "k i<P >LF i<b> LF i<"k>LF + k b <"'s>LF
te o kk

' <k > uk + "k <"K) + < >+ i< > (5.7.3)+a k

where ' is defined by equation (5.4.3). The last three terms are,

respec ely,

(a) the time- and volume-averaged turbulent internal energy flux ' <u >-k
defined by

'I<g > = <p >LF <Ufu{> + ''<kUju{> + 'I<p{Ufu{> (5.7.4a)
k

< p > ' <k"k> (5.7.4b)
*

= 'k

which have been given previously as equations (5. .da) and (5.6.8b);

I<(> defined(b) the volume-averaged dispersive internal energy flux
by

<(>=<p>LF < >+ <# >, (5.7.5a)k k

which is equation (5.6.14a); and

the ti e- and volume-averaged turbulent , dispersive internal energy(c)
flux'p<k)definedby

'l<(>='i<p{Ufk+p{u{k>, (5.7.6r)

which is equation (5.6.18a).

Again, under the usual circumstances, p/i<P >LF << 1, the triple correla-
k k

tions involving p' may be neglected, the spatial deviation u han littlek
correlation with p U',

and k), and (5.7.6a) reduce, correlation with pfu{.
Accordingly,has little

equations (5.7.4a), (5.7.5a res pe ct ively , to
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4p ti< u{>, (5.7.4c)(a') g) ,,1ti T

(5.7.5b)(b') < >= <p >LF < k *k) ,k

(c') <(> ; O . (5.7.6b)

These approximate relations have also been given previously. In addition, k k
and t in equation (5.7.3) can ordinarily be ignored.uk

l

- (PW1)("}D(a (P V * g> = a (P > F V* <k> k A
+e

k

where $Pk is a scalar pressure work function defined by

>+ <P{V g> (5.7.8)V$ *

Pk " k

and (PWI)("}, the interfacial reversible pressure work integral associated
k

with internal energy, is defined by

(PWI)(") = - v'I I<P >LFk % *h dA , (5.7.9)$

i

I

term on the r.h.s. of equation (5 6.30). The appearance of )
which is the f{<rst
(Pk (which is

7 * g > pl s the time average of g<P{V g>) in equationP,i

5.7.8) suggests that (PWL) k does not fully account for the reversible work
done on the fluid phase k at all interf aces within the averaging volume vk' |

I
!

k <@k> "k <Ik>LF
7 <k> F + "k n + (VD1)k (5.7.10)iiO a "

i <Ja k> LFis defined by equation (5.5.9b) and t is a scalar viscouswhere g
dissipation function defined by

(5.7.11)d" < k '7 k) + q{:7 g)t ,

I A derivation of equation (5.7.7) is presented in Appendix A.
ii Appendix B presents some details of the derivation of equation (5.7.10).
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L{ are given by equations (5.5 9c) and (5.5.9d), respectively.inwhichi andkThe interf acial viscous dissipation integral (VDI)k is defined by

(VDI)k " " l i<1 >LF'f pk"k
-

dA (5.7.12).

k
^k

( PWI)("k the integral (VDI)k d"fI""U}
For the reason analogous to that for '

in equation (5.7.12) does not fully account for the irreversible conversion t<>

thermal energy of the mechanical work done by the viscous stresses at the
interfaces. These dif ficulties prevent us f rom forculating an expression for
the interf acial internal energy source that is in complete agreement with all
the terms in the square bracke t of equation (4.11). Research is in progress

to resolve this difficulty.

'<kk>LF''<kk> f rmally leads to ,V * ak ATime-averaging of V * ak
I(u2>gy for an isotropicuseful constitutive relation between <kk}LF and

medium is
|
.

I<g>g = - ( kjcvk)Y "k F, (5.7.13)

where k is the volume-averaged thermal conductivity of the fluid. The inter-kfacial heat transfer rate per unit volume of the mixture D and particularlyk
its time-average '<D ) can best be correlated by experimental data. However,

k
the relation given by equation (5.6.27) may be useful. It is

'<D > ~ '<kk>U * 7 "k + (HTI)k , (5.7.14)e k

where (HTI)k stands f or the heat transf er integral defined by

-l
(HTo - - v J 4x n dA . (5.7.15)g g

^k

Finally, the time-average of the last term in equation (4.7) is
I
|

v' f p k"k(b ~ b) * h dA <r > <u > p + (IETI) (5.7.16)* =

b
where (IETI)k stands for the interfacial internal energy transfer integral
defined by
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~

(IETI)k " ~ " l ] b)U . qk,t- i )
A - -k

(i<U>y+t,i<W>ty -9,).3a*

g ,

~l [ %>g + t<u((g - g )> g dAi-v

A
~I Uf 'g <p(($ - W ' )> _n dA .. (5.7.17a)-v k

Ak

The time- and volume-averaged interf acial internal energy transf er is seen to

(1) a transfer associated with interfacial mass genera-
consist of gw("o pgrts:ttion 4p > k>LF and (2) ext raneou s transfer to account far the spatialk
deviation of density, velocity, and internal energy at the interface as well

as that due to the time correlations of their fluctuations.

i
When pkf <0k>LF << 1, which is usually the case, equation (5.7.17a)

reduces to
i

-l if h>U q+t i * ,i
(IETI)k 9 ) , ) g3 -V _ ,

k
^k

,

~ I i <pg> f E<uf ($ - g )> . g dAv-

% !
1

~I f ir E <p f (Uf - g)> g dA , (5.7.17b)- v

%g
which can be further simplified as follows if all time correlations with
fluctuating density are insignificant:

1
1

-l i i *

b)U f g k) * k i

)U(IETI)k k k3 ~V ~

|

% I
.

+ E <u ' ( U ' - W ' ) > + g dA . (5.7.17c)
k-k --8

,

An examination of the foregoing results shows that the time- and volume-

Ed ) c naistsaveraged interfacia internal energy source of inte
transfer { facialk

<0>'pressure work (PWI) k , viscous dissipation (VDI)k, heat k
I

v - -m - ,
- , ~
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<

*

generation '<T > i<"k>LF, and extraneoustransfer associated with -nass k
transf er (IETI)k. Thus,

t< y,t<g>+ k> '<"k>*U+ (PWI)( + (VDI)k + (IETI)k . (5.7.18)k

As pointed .out earlier, (PWI)f"} as given by equation -(5.7.9) does not account
completely for the reversibic work done at the interface, nor does (VDI)k an
given by equat19p (5.7.12) account -completely for the viscous dissipation.
Consequently , '4W > dif f ers f romk

k*"k).(g-4))dA',f "(* ug k * kk * k + "k(k ~ b) * ( P "k ~3~I-v k
A
k

which can be inf erred f rom equation (4.11). Ilowever, it is recognized that

J g )g,t ) i<u >*F+ (IETI)k (S*7'I9)~I t.-v kL
Ak

and

~I f E< g > . g dA = t<D > . (5.7.20) {-v

^k

By using the preceding results, the time- and volume-averaged internal
energy conservation equation can be obtained. The result is

4

<P >LF <b> F <"k>*F
*

o <#k>LF '<"k> F + 7 * "k k 'k

* 1
*

+gak uk+ Y * "k 'uk i<b >LF + Y * "k M <"k>LF
3

|
* '

1<b>LF1<P >LF 4V*=- a ~

k Pkk k .

t

" *

i<1 >LF Y i <k>U + " k ' d |+a k; k
,

'Ch>-V=ak ' < " > + " +

,
*

i

|
-

.

- _ . , - , . - - - - _ _ - . , - - , , - - - - . c , , , - , , , , - - - - , , _,r, . , , , , , , - , . - , - - - - _ - , , , - ,a,,



55

- v . ok '<kk>LF+"k '<JEk LF + k> . (5.7.21a)

The third and f ourth terms on the r.h.s. , taken together, denote the time- and

volume-averaged viscous dissipation per unit volume of phase k. They are
written in the indicated form to bring out their similarity to the reversible

pressure work terms.

An alternative form of equation (5.7.21a) can be obtained by using
equation (5.4.6a) to eliminate t<p > in the expression for tg ). The resultk k
is

I <u > * i

(3 <k>F*Y'<"k>Fo <#k>LF
+

k 3

* *
i<k>LF+ kb*V i<"k>LF

3+gok uk + 9 * "k uk

* i i<g>ty+a| i<e >ty viptyx x px + ax <x >tya ea e=a x ,xx x

x(ti<f>+icg>+ticg>)-9.a i<4,>ty+o i<ayx>ty-v.e x g

+ "<D +( } +( k + ( ETI)k . (5.7.21b) )
k

The turbulent mass flux Q and the scalar internal energy function e ku
(= <p{u{>) are often small and can be ignored. So is the viscous dissi-
pation. Under these conditions, equations (5.7.21a) and (5.7.21b) become, ,

respectively, |
|

i * i i * *

ho b)U i <"k)k * % <%) k) i<" k).

=
ak '<P >LF ' <k> F ~ "k Pk k# ~7* ( >+ < >Y*k

'<kk LF +
k Ek LF + k k k F-v.o k

,

+ ( PWI) f" } + ( IETI) k , (5.7.22a)

and
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<u >LF + i<g >*,v 1<u>tgj
k *

i<p >ty go g -g 1 gg

i<e >ty v . i<g>|y g e - v g (ti<d > + i g y--o g ggg

g<3g>tp+ag <Jgg>tp + '<0 > + (PWI)[") + (IETI)k.i i (5.7.22b)-V a g
;

In equations (5.7.22a,b), tig), i< >, and (IETI)k are given by equationsT

(5.7.4c), (5.7.5b), and (5.7.17c).

The time- and volume-averaged interfacial balance equation for internal
energy can be obtained by performing the time averaging of equation (4.11).
Ilowever, additional work is necessary to resolve the dif ference between the
time- and volume-averaged interfacial internal energy source '< k> as defin d
in equation (5.7.18) and that based on equation (3.10), i.e.,

1

~I [ *kuk+h*h* k (k ~ b ) * (b ~ b )-v

+ (P g - ( * 4 ) - (g - 4 ) dA=0.

(5.7.23)

6. SIMPLIFICATIONS AND COMPARISONS WITH OTHER "ACCEPTED" ,

TWO-FHASE FLOW 00VERNING F40ATIONS

A number of two-phase flow equations are available in the literature. It

is instructive to compare them with the set of equations given in Chapter 5 of
this report. Ishil's monograph (1) considers time averaging only; hence, the

'

P ase kresults cannot be compared directly. The local volume fraction ok f h

that appears in the present set of equations is generally not the same as the
local time fraction in Ishii's equations. Nevertheless, the corresponding

conservation equations and interfacial balance relations bear a striking
resemblance.

6.1 Comparison with Ishil's Two-Fluid Equations ;

i

Since Ishii's analysis was based on time averaging only, comparison with
the present, results ray be made by ignoring all contributions due to spatial
deviations $ . Ilowever, the averaging volume would remain fintte, containing

k,

dispersed interfaces and satisf{ing length scale restrictions. We are mindful'

that the arbitrary deletion of $ cannot be justified in general. r

k

I<$ >LF by k,i<$
*

intrfn>Ne volume avcrage of
For convenience, in this chapter we denote or k

implying low frequency or a temporal mean of the

f

5

_ - - - -- -- - .- _. ,
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$k with or without weighting by mass. - Furthermore, for the purpose of com- |

p a ris'on, we assume that all correlations involving p{ are negligible. With
,

the foregoing simplifications, the time- and volume-averaged conservation
,

equations for mass and momentum. and their interfacial balance relations. ,

reduce to the following: !

e Mass Conservation Equation. From equation (5.4.6a), one obtains
,

'
,

ho kk" k> (6.1.1)#k+ k-
*

,k

since Q = 0. In addition, since (MTI)k = 0, the interfacial mass generation
_

,

rate becomes

f 0 *k + ht s -

k k \' B t "k/ (6.1.2)"P *

!

where the superscript s denotes simplification. For a two-fluid system, k = 1 .

' or 2 Ishii gave the following equation for void propagation (Eq. VII 3.15 in

Ref. 1):

i
'

I \ |= =

P P 0
I | :I 1 2

k + k * Y "k/ ,|
T (6.1.3) Ik 2 at

e I=

k=1
- pkL a,

,

:

i
'

in which superscript (I) refers to Ishii agd superscript (=) denotes Ishii's
phase average. The local time fraction, ak, relates the phase ' average p to

the Eulerian time average pk according to

I= -

(6.1.4)a Pk"Pk.k

is Ishii's kinematic wave velocity and T( is the rateIn equation (6.1.3),,Ck
of production of phase k at the interface, for which Ishii wrote (Eq. V 2.1 in

Ref. 1)
|
|

1 pk(k ~ E ) * h , (6.1.5)T =-

3 s
j sn ;

i

i

where at is a fixed time interval for averaging, W is the magnitude of the !sn
normal component of the interfacial velocity, and index j refers to the number I

I

. - - - _. - = _ ~ - .. - , _ _ _ _ , - - - . . . - - , _ _ -.. __ _ _ _ -.-_ . _- _, _,.,-_ _ -.
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of times the interface passes through a fixed observation point during At.
Ishii's time-averaged mass conservation equation (Eq. IX 1.1 in Ref. 1) is

~

k+ P =T (6.1.6)'
,k

wherekis the mass-weighted mean velocity. Although the similarities

between equations (6.1.1) and (6.1.6) and those between equations (6.1.2) and
(6.1.3) are apparent, precise comparison is difficult owing to differences in
the definitions used for the various terms involved.

The time- and volume-averaged interfacial mass balance equation can be
written down from equation (5.4.9a). It is

[ ' <P >8 -0. (6.1.7)
k.f |

In conjunction with equation (6.1.6), Ishii gave

,

[Tf=0. (6.1.8)
k=1

2

We note that our [ is equivalent to Ishit's [. Both equations (6.1.7) and
k,f k=1

(6.1.8) express the conservation of mass at the interface.

* Linear Momentum _ Equation. Under the stated simplifying assumptions,

equation (5. 5.18a) becomes , for f = 1,

a ~ kk* *%Pkbk
_ _ _ __

Tt "k P

.gj+j + gk g + '<g>8 (6.1.9)=-VgE &V
,

,

in which '<g>8 denotes the simplified time- and volume-averaged interfacial
momentum source. It can be written down f rom equation (5.5.16). Thus,

'<r > b * P %~!*V % + ( & fT L ) "k , (6.1.10)' <g >8 Y-
kk k

where t<p ys is defined by equation (6.1.2) and
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-I ( kf '<g(g - g)> * g dA . (6.1.11)(MMTI)8 =-v

It is seen that (MMTI)s represents a "modified" Reynolds stress due to inter-
k

facial turbulence.

The time-averaged linear momentum equation given by Ishii (Eq. IX 1.14 in
Ref. 1) is

h a' 3 d + v a' 3 d 0]x x

=-7 E+9 (6.1.12)k dk+Ik* + #kg+ ,

in which Ik and Ik are the viscous and turbulent stress tensors and is the
interf acial momentum source given by

g-r(+E v(3 .vd+d, (6.1.13)
l

g1 1

and [ iswhere subscript i refers to interface the total drag force. In
eguation(6.1.13), the last term was added in accordance with Refs. 25 and 26.
g consists of a tangential component giving rise to the skin f riction drag
and a normal component which gives rise to the form drag.

Ishii'saf,itDespite the difference between our a and is instructivek
to compa re the simplified momentum equation (I6.1.9) with Is hii 's result,

equatiyn (6.1.12). If we as sume that '<r ) -T ,pk" k, P = P , etc., andk k k
k " "k, then equation (6.1.9) becomes forma ly identical to equationa

(6.1.12), provided that

'<M >k (6.1.14a)" '

1

or, equivalently,

d + (F - E ) V "k + t<r >$ (c -U)u k x u k

- (I -{k)*? =(MMTI)". (6.1.14b)t k

* Interf acial Momentum Balance Equation. Equation (5.5.21a), when simpli-
fled for conditions consistent with those used in deriving equation (6.1.9),
becomes

;

i

i
4
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-l] (9 - 23 Itk h ) dA !! V, o + 2 3 Ilk 'k , (6.1.15a)V[ (H > "#
k s

k,f Ak

where V is the interf acial surf ace gradient operator, 8 is the temporal mean
s

interfacial tension, H is the temporal mean of the average principal curva-kture of the interface, and subscript k can be either 1 or 2, referring to

fluids on either side of the interface. The first te rm on the right side

accounts for the variation of surface tension along the interface, which is
probably small in dispersed systems owing to the random nature of its distri-
bution over the particles. The second term accounts for the oman curvature
effect. When both contributions are small, equation (6.1.15a) becomes

=0. (6.1.15b)[ <g>8
k,f

The interfacial transfer equation associated with equation (6.1.12) has
been given by Ishii (Eqs. IX 1.12,1X 1.13, and V111 2.7 in Ref. 1). It is

|

Va + f rce due to V 5 , (6.1.16a)31 + 25Il"[ 2(H I-

21 g21 21
k=1 j j

~I
where Lj denotes the area concentration per unit volume. The first term on

the right side of equation (6.1.16a) accounts for the effect of the change in
mean curvature, which is not included in equation (6.1.15a). When the terms
on the right side of equation (6.1.16a), taken collectively, are small, one
can write

n

[ =0. (6.1.16b)
k=1

When the assumptions used in establishing equations (6.1.14a) and (6.1.16a)
are valid, equations (6.1.15b) and (6.1.16b) become identical.

In two recent publications, Ishit and Mishima (25] and Ishii and
Kocamustafaogu11ari [26] gave the following "simplified" form of the time-

2

averaged momentum equation (Eq. 2 in Re f s. 25 and 26):

1= - -

3 ~ 1= -

kk*7 k Ak k 3Jk
*It "k P

- - 4 v s + v 4 (a + d)k

:
)
i

- . _ _ . _ . , _ _,__ - _ _ ~._, , _ _ .
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1
7 a[ + gg ,+afE g+r[(1 (6.1.17)g 1

in which .i is the interfacial shear stress and gk is the "generalized"T

interfacial drag. By comparing equation (6.1.12) with equation (6.1.17), one
d + (E ~ P ) Y "'t hk. The authors of Refs. 25 and 26sees that "

k1 k
suggested that for the dispersed phase,

U k = sum of standard drag force, virtual mass force, and Basset
f orce, all computed on the basis of a unit volume. (6.1.18)*

Equation (6.1.18) is not a derived result. While it is physically meaningful,
there is no assurance that it is complete, nor there is agreement among
researchers how the three forces should be mathematically represented.

The interfacial mome ntum balance equation associated with equation
(6.1.17) as given in Ref. 26 is

2

[ kk =0. (6.1.19)
k=1

Again, if we assume that <T >' " I , etc., we can=k"Pk' "k'k
readily demonstrate that equations (6.1.9) and (6.1.17) become formally

identical if

- <T > (ki ~ k) + (1 ~ k)*7 k + (MNrI)s (6.1.20)=
,k 1

i
j

which is equivalent to equation (6.1.14b) since U k = + (P - P ) v "k *ki k ,

1
1

6.2 Comparison with Energy Conservation Equation Used in TRAC Computer Code )
The field equations describing the two phase, two-fluid flow used in the

Tratisient Reactor Analysis Code (TRAC) were based on the mixture mass equa-
tion, vapor mass equation, vapor equation of motion, liquid equation of
motion, mixtu re energy equation, and vapor energy equation [27]. Since the

energy equation is written in te rms of internal energy, it is selected for
comparison.

*The "generalized" drag force was represented by E d in equation (6) of Ref. 1

25 and in equation (9) of Ref. 26 instead of U k. Presumably the subscript d
refers to the dispersed phase,

i

I
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When the simplifications introduced in the beginning of this chapter are
used, equation (5.7.21a) reduces to

3 . _ _ _ -

Ek "k + *"k Ek k "kgak

=a P 9* ' Y * "k k+ k + "k Ekk k

+ U<D> + # > "k + ( IETI)" , (6.2.1)k k

in which cont ribu tions du e to reversible mechanical work associated with
fluctuating pressure and velocity and those due to irreversible viscous
dissipation are neglected. The time- and volume-averaged turtulent internal

energy flux ( is given by
,

(=p <$u(> (6.2.2)k

according to equation (5.7.4c), and the time-averaged interfacial heat
transfer rate per unit volume may be expressed as

(

*<D > " ~ ~ [ <h> * h Adk

^k
=7 9 (6.2.3)k1 ,

a

where the scalar qki is the area-averaged temporal mean interfacial heat flux
entering phase k. By deleting the term involving u in equation (5.7.17c), wek
obtain

-l '
/ U <u{( g - $ ) > * g dA , (6.2.4)( IETI)" = - v p
A

k

which denotes the internal energy transfer due to interf acial turtulence.

Using the expression for 'C >" given in equation (6.1.2), one finds that
|
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sf_'<r >s ,t4p, y
E/k k

k(3a
)

'<T > h -P
at "k / . (6.2.5)+=

k k

Substituting equation (6.2.5) into equation (6.2.1), followed by combining and
rearranging terms, yields the internal energy equation:

a . _ _ _ _

E "k Sk "k + * "k Pk b "k

=-P-
3U g -

7+a
_

* _1..

k 4 g-V+m-P +

+ '<h > + <I > hk + "k 3Ek+( (6.2.6).k k

The molecular and turbulent conduction fluxes can be expressed in terms of
Tmolecular and eddy dif fusivities for internal energy transfer, Duk and Duk'

Thus,

- v s (a + s) = vs k (s + oL) % .s <e.2.7) .

The vapor internal energy equation used in the TRAC code (equation (65) in
Ref. 27), written in the present notation, is (with subscript g replaced by k)

a - _ _ _ _

Ek Pk "k * * "k Ek b "k

3a
=-P ~ 7* + <9 > + <r > i+ (6.2.8),k 3 k k k

whereh denotes the wall heat transfer rate per unit volume. Equation
(6.2.6)wkbecomes identical to equation (6.2.8) when the following assumptions
are made:

_ _ .
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a. Molecular and turbulent conduction are negligible,

3Ek " bwk , andb. a k

<r > ( ki ~ k) - (IETI) s = 0 .| c. k
o

in boilind water reactor applications, the first condition is probably quite
reasonable. The second is merely a statement that the wall heat transfer

(such as that from fuel rods) is treated as a distributed heat source. The
third states that in the presence of interf acial mass generation, the trans-

port of enthalpy from the interface to the bulk of phase k is via interfacial
turbulence. The validity of this conclusion requires confirmation.

We have demonstrated in this section that when the contributions due to
spatial deviations of the dependent variables are dropped, and when several
additional simplifications are introduced, the set of rigorously derived
conservation equations presented in Chapter 5 reduces to various forms that

compare reasonably well with those given in Refs. 1, 25, 26, and 27. Perhaps
the agreement found by this comparison represents a less important finding
then the differences that are revealed.

7. DISCUSSION AND CONCLUDING REMARKS

This report presents a set of rigorously derived time- and volume-
averaged conservation equations for dispersed nultiphase flow. The starting
point of the analysis is the well-established phasic conservation equations of
mass, momentum, and energy, and their interfacial balance relatians. The
local volume averaging is performed first, followed by time averaging. In

this way, the identity of the dynamic phases is preserved. The result is a
set of differential equations involving area integrals. An examination of
these equations reveals immediately that they are incomplete in that (1) the
need of expressing the volume average of products in terms of product of
volume averages is only partially met and (2) constitutive relations for the
diffusive, dispersive, tu r bule n t , and interf acial transport also need to be
developed. Co llectively , this constitutes the closure problem, which is not
unlike that in the analysis of turbulent flow, bu t with additional complica-
tions. In the absence of tu rbu lence, a closure scheme for the determination
of the spatial deviation of the dependent variable for systems involving only
dif fusion and first-order chemical reaction was given recently by Crapiste,
Rotstein, and Whitaker [28]. A rigorous approach to treat the general closure
problem, including convective transport and turbulence, will no doubt remain a
challenge for some time to come.

If the flow and thermodynamic conditions are such that the spatial devia-
tions of the dependent variables, denoted by (~), are snall and can be
deleted, and if, in addition, all time correlationsinvolvingp{andP{are
negligible, then the resulting set of simplified equations reduces to a form
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closely aesembling Ishii's time-averaged equations, although differences
rema11 These differences are not unexpected since Ishii's local time
fraction is not identical to the local volume fraction. The internal energy
equation used in the TRAC code [27] has also been demonstrated to be in

reasonable agreement with the internal energy equation obtained in the present
study following simplifications suitable for applications to nuclear reactor
systems.

At present, the evaluation of the interfacial transfer integrals in the

time- and volume-averaged conservation equations is not generally known. One
of the fundamental problems in the analysis of multiphase flow is the lack of
knowledge of mass, momentum, and energy transfer at the interface. The quan-
tification of transport properties such as eddy and dispersive diffusivities

of mass, heat, and momentum transfer is also urgently needed. It is hoped
that the present study may provide some guidance for the development of the
constitutive equations as well as correlatiens for interfacial transport.
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APPENDIX A

'<P
k k Y * k>DERIVATION OF a

* i<p ) U + p + P{ and h = i<Uy>*y 4Beginning with the decomposition Pk k k ,

+ g , we obtain

<k> F + '<P >LF (P >LF Y*kP V . g = <P >LF Y* V- + kkk k

i<g>* + P Y * b + E Y * $+ )g y.
k k

I

+ P{ V I<g>* + P{ V ( + P{ V g . (A.1)
|

Since we are interested in evaluating the time average of i<P 9 * k>' th*k

following terms in eguation (A.1) require no consideration ,since they vanish
<P >LF V Uf,}k V . g, P{ V . i<U >LF andP{V.k.upon time-averaging: k k

Now

<P >LF Y* <b> F = <Pk k LF bF k LF Y * "k kF* ~a k

+ i<P >LF " ] '<k> F * h dAk
%

k <P > p V . i <g>* p . (A.2)=a

i

ak I<Pg V . ' I<P g <V e k>=

= I<P )W *%
i )k

+ v"I i<P >LF [ k . g dA . (A.3)k
%

'
x (h v . i<u >*y)- ox (A.4)a

- -
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' Y * % ) and'aUnfortunately , ak k 4 k <P{ V e g> cannot be- reduced further.

Strictly speaking, '<D > vanishes only if pk is uniforg<in t,he averagingk
v olume. Nevertheless, it is usually small j! >LP under thecompared to kordinary circums tance. Thus, it appears reasonable to ignore the first term
on the r.h.s. of equation (A 3). Consequently, we write

'<Pk k Y * k> " "k '<P >LF V* - (PWI) " (A.5)k <b> F + " k Pka

where the scalar pressure work function 4 Pk is defined by

4Pk " OY*t>+ '<P( V e f> (A.6)k 4

and the interfacial pressure work integral (PWIh{} is

(PWIh = - v~l I<Pg / k . 4 &. Q.7)
b

One may stipulate that a portion of OPk also contributes to the interf acial
work.

_ - - _ - - - -
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APPENDIX B

'< k>DERIVATION OF ak

k " I :Vg. Using the decompositionWe recall that 4 k

k " '<1 >LF + Lk k = I{ (B.1)I

I<1 >L is defined by equation (5.5.9b), }k byequation(5.5.9c),andg{where k
by equation (5.5.9d), and carrying out the indicated scalar asitiplication of

the tensor ik and the dyad V h, one obtains

I Y k " (I > LF *Y '<k> F + '<1 >LF Y b + '<1 >LF Y bk k k k

+i 9 ' <b > F + kYk+kVNk

I <g> p + I{ :V g + I{:V$. (B.2)+ I{:V

Following a procedure completely analogous to that detailed in-Appendix A, we
obtain

'

' <l > LF v'<k> F + " kk <* k> k otk + (VDI) (B.3)~a k

where

'C Yt)+ <I{ :V $> (B.4)4 * lk 4k

,

and

(VDI)k""li<l>LF:/ g dA . (B.5)
-

k
Ak

Note that the integrand D4 4 is a dyad.

.
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