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TIME- AND VOLUME-AVERAGED CONSERVATION EQUATIONS
FOR MULTIPHASE FLOW
USING MASS-AVERAGED VELOCITY AND INTERNAL ENERCY

by

W. T. Sha, B, T. Chao, and 8. L. Soo

Conservition cquations of aass, momentum, and energy for multiphase flow,
formilated cn the basis of local volume averaging followed by time-averaging
for turbulent flows, are presented. Thev are differentiol equations of trans-
port with area integrals associated with interfacial transport., Because the
spatial averaging theorems used in the analysis are subject to certain lergth
scale restrictions, the resulting equations are best suited for dispersed

systems,

The local {nstantaneous variable {s decomposed as a linear combination of
its local {ntrinsic volume average and a spatial deviation. Use of the mass~
weighted, volume-averaged velocity and internal energy simplified certain
relationships batween the volume average of products and the product of volume
averages. Recognition of the fact that the spatial deviation component takes
on positive and negative values within the averaging volume makes further sim-
plifications feasible., Inasmich as information is always lost as a result of
averaging, be 1t volume-averaging or time-averaging or both, the lost informa-
tion mist somehow be replaced before the equations can be solved., This 1ia
commonly done by the development of appropriate constitutive relations, which,
however, {8 not treated in this report,

The difficulties of making direct comparisons of the volume-averaged and
time-averaged conservation equations for multiphase flow are discussed,
Nevertheless, an attempt was made to compare the time-averaged equations of
Ishil and the energy equation used in vhe TRAC code with the present set of
rigorously derived equations after considerable simplifications. Apparent
agreement 18 found {n all cases, although some differences remain,
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Area; A, 1is the total interfacial area associated with phase k
inside the local averaging volume v

Specific heat at constant volume

Characteristic length of a dispersed phase
Diffusivity

Total energy per unit mass, E = u + (1/2) Ut Y

t1<!:> is the time- and volume-averaged turbulent total energy
flux vector defined by equation (5.6.4)

1<E2> is the volume-averaged dispersive total energy flux
vector defined by equation (5.6.13)

ti(é:> is the time- and volume-averaged turbulent, dispersive
total energy flux vector defined by equation (5.6.17)

Field force per unit mass

Interfacial force per unit interfacial area
Gravitational acceleration

Mean curvature of interface between phases k and f
Unitary tensor

Internal heat source per unit volume

Heat flux vector

Kinetic energy per unit mass, Kk - % E& . E&

t‘<5::> is the time~ and volume-averaged turbulent kinetic energy

flux vector defined by equation (5.6.9)

1&d> {8 the volume-averaged disperaive kinetic energy flux vector

defined by equation (5.6.15)

t‘(!:> is the time- and volume-averaged turbulent, dispersive
kinetic energy flux vector defined by equation (5.6,19)

Characteristic length of local averaging volume v

iv



L Characteristic length of physical system

m Interfacial mass flux; ik is defined by equation (3.5)
M Interfacial momentum source per unit volume; tQl_k) is defined by
equation (5.5.16)
n Unit outward normal vector of interface as illustrated in Fig. 2
N Number of bubbles per unit volume
P Static pressure
o Interfacial heat transfer rate per unit volume; '<Q> is defined by
equation (5.6.27)
t Time
T Temperature; also averaging time interval
u Internal energy per unit mass
ti(g:> is the time- and volume-averaged turbulent internal energy
flux vector defined by equation (5.7.4)
1<§2> is the volume-averaged dispersive internal energy flux
vector defined by equation (5.7.5)
ti<§z> is the time- and volume-averaged turbulent, dispersive
internal energy flux vector defined by ec::tion (5.7.6)
U Velocity; U is velocity ir one-dimensirnal flow
v Local averaging volume
We Interface velocity
z Elevation
a Local volume fraction
r Interfacial mass source per unit volume, equation (6.2);t<rk> is
defined by equation (5.4.4)
£ Perturbation parameter as defined
E Interfacial total energy source per unit volume; t(‘i) is defined

by equation (5.6.35)



YPK

Yok

Interfacial {nternal energy source per unit volume; t6ﬂk> is
defined by equation (5.7.18)

Thermal conductivity; uT {8 turbulent conductivity
Bulk viscosity

Integral length scale

Dynamic viscosity

Density

Interfacial tension

Characteristic time

Viscous stress

ti<L:> i{s the time~ and volume-averaged Reynolds stress tensor
defined by equation (5.5.2)

1<ia> is the volume-averaged dispersive stress tensor defined by
equation (5.5.3)

n<i:> is the time~ and volume-averaged turbulent, dispersive
stress tensor defined by equation (5.5.4)

Dissipation function; ¢, = g VU,

Scalar total energy function defined by equation (5.6.2)

Scalar pressure work function defined by equation (5.7.8)

Scalar internal energy function defined by equation (5.7,2)
Scalar viscous dissipation function defined by equation (5.7.11)
Intensive property

Vector mass flux function defined by equation (5.4.3)

Vector pressure work function defined by equation (5.6.21)

Vector viscous stress work function defined by equation (5.6,23)

vi



Superscripts

viation

high~frequency fluctuation

rint
“‘(k‘\




v ()

(v ()],

(HTI)

(IETD)

(MT1)
(MMT1)
(PTI)
(PW1)

(pw1) (W)

(TETL)

(Yo1)

(VSTI)

(VW1)

All equations referred to in the above list are written for phase k.

Dyad

Conjugate of dyad

Acronyms

Interfacial heat transfer integral defined by equation (5.7.15)

Interfacial
£3.7.17)

Interfacial
Interfacial
Interfacial
Interfacial

Interfacial
production,

Interfacial
(5.6.33)

Interfacial
£5.7.:12)

Interfacial
(5.5.12)

Interfacial
(5.6,31)

internal energy transfer {ntegral defined by equation

mass transfer integral defined by equation (5.4.5)

momentum transfer integral defined by equation (5.5.14)

pressure transfer integral defined by equation (5.5.11)

pressure work integral defined by equation (5.6,30)

pressure work {integral associated with {nternal energy
defined by equation (5.7.9)

total

viecous

viscous stress transfer integral defined by

viscous

energy

dissipation

stress work

transfer

integral defined by

integral

integral

defined by

defined by

equation

equation

equation

equation

For

phase f, it Is necessary only to change subscript k to f for the entries that
appear in the equations,

vitdl



TIME- AND VOLUME-AVERAGED CONSERVAIION EQUATIONS
FOR MULTIPHASE FLOW
USING MASS-WEIGHTED VELOCITY AND INTERNAL ENERCY

by

W, T. Sha, B. T. Chao, and S. L. Soo

EXECUTIVE SUMMARY

Multiphase flows consist of interacting phases that are dispersed
randomly in space and in time. Although the intraphase conservation equations
for mass, momentum, and energy, and their initial and boundary conditions, can
in principle be written, the cost of detailed fluid flow and heat transfer
analysis is often prohibitive, if not impossible. In most engineering appli-
cations, all that i{s required is to capture the essential features of the
system and to express the flow and temperature field in terms of local, global
quantitic. while sacrificing some of the details. The present study is an
attempt to achieve this goal by applying time averaging after local volume
averaging.

Local volume averaging of conservation equations of mass, momentum, and
energy for a multiphase system yields equations in terms of local-volume-
averaged products of density. velocity, energy, stresses, and field forces
together with iunterfacial transfer integrals. These averaging relations are
subject to the following length scale restrictions:

d << <L 1L,

where d is a characteristic length of the pores of dispersed phases, i is a
characteristic length of the averaging volume, and L is a characteristic
length of the physical system,

Solutions of local-volume-averaged conservation equations call for
expressing these local volume-averaged products in terms of products of
averages, In nonturbulent flows, this may be achieved by expreising the
"point” variable as the sum of its intrinsic volume average and a spatial
deviation., In turbulent flows, the same can be achieved via subsequent time
averaging over a duration T such that

where tye 18 a characteristic time of high-frequency fluctation and 1 p 18 a
characteristic time of low-frequency fluctuation. 1In this case an instan-
taneous “point” variable y, of phase k is decomposed into a low-frequency
component {u, o and a high-frequency component wﬁ as in Reynolds analysis of
turbulent flow. The low-frequency component consists of the sum of the local
fntrinsic volume average tqk)LF and its local spatial deviation ;k' Time



averaging then reduces the volume-averaged products to products of averages
plus terms representing eddy and dispersive diffusivities of mass, Reynolds
and dispersive stresses, and eddy and dispersive conductivities of heat, etc,
These terms arise from both high-frequency fluctuations and local spatial
deviations, In either case, turbulent or nonturbulent, the procedure leads to
differential equations of conservation with area integrals representing inter-
facial transport, Tnasmich as information 1is always lost as a result of
averaging, be it volume-averaging or time-averaging or both, the lost {nforma-
tion mist somehow be replaced before the equations can be solved, This is
commonly done by the development of appropriate constitutive relations which,
however, {8 not treated in this report,

A point of departure from an earlier analysis on the same subject (Ref.
12, NUREG/CR-3989, ANL-84-66) 1s that mass-weighted fluid velocity aud
internal energy are used, This results in some simplification and facilitates
interpretation of certain terms in the averaged equations. Several errors in
Ref, 12 were also unearthed and corrected. Furthermore, the {nterfacial
balance equations for mass, momentum, and totel energy are examined in more
detail, It was shown that the so-called jump conditions are embodied in the
differential-integral equations of conservation, At the present stage of
development, the same cannot be demonstrated for the internal energy equation
owing to the presence of the two terms: <Py V + U and GtV U>e This
points to the need for developing volume-averaging theorems for the product of
Py and V « U, and for the scalar product of A and ¥ U

The difficulties of making direct comparisons of volume-averaged and
time-averaged conservation equations for multiprase flow are discussed,
Nevertheless, an attemp! was made to compare the time-averaged equations of
Ishil and the energy equation used in the TRAC code with the present set of
rigorously derived equations after considerable simplifications., Apparent
agreement is found in all cases, although some differences remainr,

l.  INTRODUCT LON

Multiphase flows consist of (interacting phases that are dispersed
randomly {n space and in time. Although the intraphase conservation equations
for mass, momentum, and energy and their associated initial and boundary con-
ditions can in principle be written, along with thelr interfacial conservation
relations, they are far too complicated to permit detailed solutions, In fact,
they are usvally not needed in engineering applications, An alternative is to
describe the essential dynamics and thermodynamics of 3uch a system in terms
of locally averaged quantities. This can be achieved by applying some form of
averaging process, such as time averaging [1-3|, space averaging [2-10], sta-
tistical averagiog [2,3], or space/time and time/space averaging [2,3]. The
present work begins with local volume averaging to be followed by time
averaging [11,12],



Local volume averaging has been successfully used in analyzing viscous
flow through porous media ([4,6,7,13). Volume averaging leads naturally to
volume fraction of phases while a priori time averaging ylelds their frac-
tional residence time. The thermodynamic properties of a mixture, such as
density and specific heat, are cumulative with volume fraction but not with
fractional residence time, which becomes identical to volume fraction only in
the special case of one-dimensional, uniform flow, The several disadvantages
associated with time averaging as the basis of analysis for multiphase flows
have been pointed out by Reynolds [14] in his review of Ishii's book [1] and
were also discussed in Ref, 11.

The configuration of phases plays a major role in determining the dynam-
ics of multiphase flows and the concomitant heat and mass transport processes
when they occur. This {s illustrated in Fig. 1 for the two extreme cases of
highly dispersed flow and ideally stratified flow, which, by definition, has a
plane interface. The figure s largely self-explanatory. Given the defining
relations (l.1) for ths mixture density p, and (1.2) for the mixture velocity
Ups» it is easy to show that an; and E qkpkué are not the same. It is also

easy to demonstrate that (f the Bernoufii relationship for an ideal mixture in
highly dispersed flow is written as equation (1.5), then that for the individ-
ual phase must be given by equation (1.6). For the ideally stratified flow,
the Bernoulli relationship for the individual phase is given by equatlon
{1.7)s It follows that for the mixture it {s given by equation (1.8).
Clearly, the form of the Bernoulll equation depends on the configuration of
the phases, The Bernoulli equation for other systems, such as bubbly flow,
annular wavy flow with dispersed liquid, intermittent flow, stratified wavy
flow, etc., are far more complex, representing cases intermediate between the
highly dispersed flow and ideally stratified flow.

2. AVERAGING RELATIONS

The flow system under consideration is depicted in Fig. 2. The local
averaging wvolume v considered in this paper is invariant in both space and
time, and its orientation relative to the inertial frame of reference 1is
fixed. The region consists of a fluid mixture with dynamic phases k, f, and
£ Without loss of generality, attention is focused on phase k, which is
chosen arbitrarily. Phase k has a variable volume vy with total interfacial
area Ay Inside v, For convenience of discussion, all phases that form an
interface with phase k will be collectively represented by f. Thus, Ap = Ags
and Ags implies Ape + Akg' Here, Ay¢ and Akg are respectively the total
interfacial area between phases k/f and k/g inside v. The unit normal vector
ng of AL is always drawn outwardly and away from phase k, regardless of
whether it is associated with A¢ or Akg' as illustrated in Fig. 2. The local
velocity of phase k is U, and that of the interface between phases k and f is
Obviously, v = Vi and the volume fraction of phase k is

-

LA

X -

O = /v, (2.1)

which is a dependent variable, 1In general, it varies with time and location.



Highly Dispersed Flow Pure Stratified Flow

. °
e : e AU ’
ML L P
. . L |
¢ -4
. Gradient of volume fraction
Va = Y(conc,) Ya is of no significance

. FinltS. SEttumaviny. B Concept of diffusivity is

E Diffusion velocity, DVa irrelevant
- Wave propagation
Existence of speed of sound No common speed of sound
in the mixture
Common characteristics Individual characteristics of
phases
Transfer of inertia force Plane interface; no inertia
across interface force transferred across
interface
. Bernoulli relationships for steady, incompressible, inviscid, one-

dimensional flow

‘: - D)
p-'takpk. k i, 2, (1.1)

where ap, 1s the density of phase k based on mixture volume.

Clearly, p'Ui * § a0 % (1.3)
-3 :
P. ¢ akPk (1.4)
Ideal Mixture Individual Phase
(1/2)p & + P+ p g2 (1/2)p) UE + P, + oy 82
= Constant (1.5) = Constant (1.7)
Individual Phase Mixture
- ’ - -
(1/2) K& = (1/2)p (U, = U )? (1/2)p U2 + (1/2)& oy (U = Uy)?
+ Py *+ py82 = Constar: (1.6) + Py *+ pg¥z = Constant  (1.8)

Fig. 1. Significance of phase configurations in multiphase flows



LOCAL AVERAGING

VOLUME v WITH
ENVELOPING SURFACE A.

Fig., 2. Multiphsse flow system

2.1 Local and Intrinsic Volume Average

For any intensive property y, associated with phase k of the fluid
mixture--scalar, vector, or tensor--the local volume average of y, 1s defined
by

b dv =, =) 4 dv, (2.1.1)
i k Vi

SREES

which has also been called the phase average. The intrinsic volume average of
(g 1s defined by

(\ > -""" \ dV . (201.2)

(‘ / -<l 1( ) . (2.‘03)



In order that the volume average <y,> or ‘(wk> be physically meaningful
and amenable to the usual mathematical operations, certain length scale
restrictions need to be imposed. They were first recognized by Whitaker (7],
namely,

d <<t <L ., (2.1.4)

where d is a characteristic length of the dispersed phase, & 1s a character-
istic length of v, and L is that of the physical system. Therefore, the
averaging volume cannot be made arbitrarily small, We note that both Ch> and
1<*k> exist everywhere in space, not just in the regicn occupied by phase k.
To be sure, the basic equations and discussions presented in this report are
pertinent to dispersed systems.

{t is easy to demonstrate that

) { i q Lt L 5

<<yk>> (wk>. ‘( (wk>> (wk>. < <vk>> ay “’k) wk>

and Y¢qy o> = ‘<a lo >> . <> (2.1.9)
K K Yy x” t44

If we set , = 1 in equations (2.1.2) and (2.1.3), we obtain 141> = 1 and
1> = 4
k.

When density 1s not uniform, it 1{s physically meaningful to speak of
mass-weighted, volume-averaged velocities and internal energies. These mass~
welghted averages will be denoted by an asterisk., Accordingly, we define

*
1<g&> o[ o B v o, dv, (2.1.6a)
Vk Vk

or

Lep >" @ @ U/, = Yo U/ . > (2.1.6b)

U ek Pk a0y - ode

Likewise,

PR { {

W = /> = T w > > (2.1.7)

Equivalent relationships are



*
G U = b <u » w a, 1<ok> 1<gk> (2.1.8)

and a similar expression for internal energy. When P = constant, 1<1J_k>"' =
<u> and equation (2.1.8) leads to <Up> = a, <U,> as it mist. We shall soon
see that when the mass-weighted, volume-averaged velocity and internal energy
are used, the time- and volume-averaged conservation equations are simplified.

One may easily show that

i/ * i i/1

(<u>>- w,>", <<u>> . (2.1.9)
N

? similar relationships can be shown for the .calar U« Also,
*
1<i<u >" Lau> > Yt

*
< <U, > <u > > <uk> > {2.1.10)

2.2 local Volume Averaging Theorems

The local volume averages of the spatial and time derivatives of a fluid
proper.y y,, which may be a scalar, vector, or tensor, have been given by
Whitaker [4,7], Slattery (6], Anderson and Jackson (5], Gray and Lee [10], and
others. They relate the average of .he derivatives to the corresponding
derivatives of the average and an interfacial area integral according to the
following formulas:

b = y v-l f
<7 ¢k> v <¢k> L 2 Ve Oy dA , {2.:2:1)
v —x »’ |
<v-y_k>-.o<¢~‘>+v kalon‘dA. (2.2.2)
and
ay 3 W,
k k -1 ,
<aT>' e Y L wira a. b



As noted previously, A, denotes the sum of all interfacial areas associated
with phase k inside the local averaging volume v. A recent review of the
various approaches to derive the spatial averaging theorem can be found in
[15].

Upon setting ¢, = 1 in equations (2.2.1) and (2.2.3), one obtains,
respectively,

-1
- - 2.2.4
Va, v [ n dA (2.2.4)
Ak
and
3a %
a_t___-v w . E dA. (2-205)

For those elements of phase k that are completely inside v, f ny dA = 0.

Thus, equation (2.2.4) implies that the gradient of the volume fraction of

phase k depends only on those elements that are cut through by the bounding
surface A of v. A corollary of equation (2.2.4) is

dA =0 , (2.2.6)

since ) a, = 1.

The physical meaning of equation (2.2.5) can be seen by considering phase
k to be evaporating vapor bubbles in water. The right side of the equation
gives the rate of increase of the vapor volume per unit volume of the mixture,
which is obviously 3a,/at.

To conclude this section, we reiterate that the volume averaging theorems
given by equations (2.2.1), (2.2.2), and (2.2.3) are subject to the length
scale restrictions of equation (2.1.4).

3. PHASIC CONSERVATION EQUATIONS AND INTERFACE BALANCE EQUATIONS

The equations of conservation for single-phase flow are well known; they
are the foundations of continmuum mechanics. Although a "single” phase
commdinly refers to one physical phase, such as vapor, liquid, or solid, it may
include nonreactive mixtures, such as room air, an aqueous solution of
glycerine, or composite polymers. The identification of a multiphase system
is best made in terms of the dynamic behavior of its component phases [16],



despite the fact that they may be of the same material. Examples are air
bubbles of widely different sizes in a gas-liquid flow or solid particles of
identical size, shape, and density that carry widely different electric
charges in a gas-solid suspension.

For a phase k, the equations of continuity, momentum, total energy, and
internal energy are, resipectively,

(apk/ac) + 9 (pky_k) =0, (3.1)
(apkgk/a:) + 9 o (pkgk_qk) =-9P +V ey +p £, (3.2)
3pkEk
etV (U] =V e uR + T (U g ) ral c £ g Ty
(3.3)
where the total energy E, =u + % Ug * U» and the internal energy equation
is
3 L
+ 9 s (pkgkuk) - - Pk v . Ek -V o qu + JEk + Ik:v!k . (3.4)

The double dot in the last term of equation (3.4) denotes the scalar product
of two second~orde: tensors. In the literature, :k:v!k is commonly denoted by
Sk the dissipation rate per unit volume of phase k. The energy equation may
also be given in terms of enthalpy. It is given in [12] and will not be
repeated here.

The mass, momentum, and internal energy balance equations for phase
interfaces have been given by Scriven [17), Standart [18], Slattery [19],
Delhaye [20], Ishii (1], Deemer and Slattery [21], Bouré and Delhaye {22], and
more recently, Kataoka (23], These balance equations are also known as inter-
facial jump conditions in the literature. A simple case is an interface with
negligible thickness and mass. For the convenience of presentation, we
introduce an interfacial mass flux defined by

= ol %) vy 3.5
The {nterfacia’ mass balance equation is then

Y & &0 (3.6)
e
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where the subscripts k and f refer to two adjacent fluids separated by the
interface whose velocity i1is W.. In equation (3.5), Pk and Uy denote the
density and velocity of phase k as the interface is approached. That is, p, =
ki Uk ™= Uki» and my = npy, the unit vector normal to the interface and away
from phﬁfe k. Clearly my = - ngq. Thus, in equation (3.5) or (3.6), mk
implies LR For the sake of simplifying writing, the subscript i will be
dropped. Equation (3.6) states that at the interface the mass flux from phase
k and from phase f mist add to zero since the interface is without mass.

The interfacial balance equation for linear momentum is

)} M - : -
Lo (B G YRy gy e ) vE 20, (3.7)

where F. 1is the incerfacial force per unit interfacial area. It may be
expressed in terms of interfacial tension ¢ according to

SRR A Zch 0y (3.8)

in which Va is the surface gradient operator and H, 1is the mean curvature,
being positive when the associated radius vector is pointing outward from
phase k. The existence of the surface gradient of o could be the result of
nonuniform temperature or nonuniform chemical composition or both.

The interfacial balance equation for the total energy is

[%H*J '&*(%&'xk'&)'&]

k f

. (3.9)

W
—_s

4=

1t 1is of interest to note that the interfacial balance equation for the
internal energy is

C . i v l.( B <.‘, a
(e Ok Yk dax ﬂkj"k'uf[’z"k@k LA RS

[N

o -ty n) ¢ (g w)] -0, (3,10

which is valid regardless of whether F, exists or not. Equation (3.10) 1is
derived by forming the dot product of equation (3.7) and Wg, followed by sub-
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tracting the result from equation (3.9) and making use of the relation given
by equation (3.6). Equation (3.10) was previously given by Bouré and Delhaye
[22]. An unexpected feature of equation (3,10) is that the balance of
internal energy and heat flux at the interface requires the inclusion of the
kinetic energy % Er (U - W )2 and the work done by the pressure and viscous
stresses at the relative velocity (U - ug).

In principle, the coupled phasic equations might be solved for given ini-
tial and boundary conditions together with the interfacial balance relations.
Because the configuration and location of the fluid-fluid interfaces are not
known a priori, their detailed solutions are next to impossible. When the
length scale over which the point variables undergo significant changes is
small compared with that over which the knowledge of these variables is of
practical interest, information on their volume averages is all that ie
needed. To preserve the identity of the dynamic phases, local volume
a'eraging is performed first; this {s done in the following chapter. Time
averaging of the volume-averaged equations is presented in Chapter 5.

4, LOCAL VOLUME-AVERAGED CONSERVATION EQUATIONS
AND INTERFACE BALANCE EQUATIONS

An application of the local volume averaging theorems [equations (2.2.1)
to (2.2.3)] to the phasic conservation equations given in Chapter 3 leads to
the following set of local volume-averaged conservation equations for multi-
phase flow. Since the derivation is quite straightforward, only the results
are listed here.

® Mass Conservation Equation
2 atco> v ealcou>m-vt o (U =W) en dA. (4.1)
3t Ok %k % “Pr ki T/ "X

A

The integral on the right side of equation (4.1) denotes the rate of inter-
facial mass generatioa of phase k per unit volume of v. Denoting it by Iy, we
have

= =v [ (Y - W) en dA=- vl aaa, (4.2)

We reiterate that for adjacent fluids k and f separated by a common interface,
By = = By

For N, bubbles per unit volume, each of mass m, and evaporating (or
condensing) at the rate dm,/dt,
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I = N[ dm/dt), (4.3)

which is determined by the average relative velocity between the bubble and
its surrounding liquid, the system pressure and temperature, and the enthalpy
of evaporation or condensation., It is pertinent to note that the interfacial
mass source is not necessarily limited to phase change., It could also be the
result of chemical reaction at the interface.

L] Linear Momentum Conservation Equation

i 1 i 1 Lo i
a DUtV oy QU = =T ay KR + T e a K> o o> f

c.ulq.'

t

pkyk(yk - !8) . 5( dA , (4.4)

in which the field force per unit mass f is taken to be constant. The first
integral on the right side of equation (4.4) accounts for the pressure and
viscous forces acting on the interface in a unit volume of the fluid mixture.
The second integral relates to the momentum transport at the interface., Both
are directly proportional to the so-called interfacial area concentration,
f.e., total interfacial area associated with phase k per unit volume of the
mixture.

3 Total Energy Conservation Equation

3 i i

- i T e = - . i .
3t %k <OkEk> + 7 ay <¢:>kU| Ek> 9 @y (U' Pk> + v ap (U‘ . ;k>
-7 a0 I >+a(1<J >+ 1o u>  £)+ b
k =gk k Fk k~K - k
_l (o g -1 f
¥t B PkU‘+Lk-U')-5dA v fokt-:k\ul-w)-&cu.(a.s)

A A

where bk denotes the rate of interfacial heat transfer to phase k per unit
volume of the fluid mixture., It is given by

Q == v [ gyt m WA (4.6)

A
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° Internal Energy Balance

Lo s+ 38y (g - )7

+ (P, =3, * ) (yk-y,)] dA = 0 (4411)

where (U - 8% = (4 - ¥y) * (4 - B).

5. TIME AVERAGING OF LOCAL VOLUME~-AVERAGED CONSERVATION EQUATIONS

5.1 Spatial and Time Decomposition of Dependent Variables

The local volume-averaged equations given in the preceding section are
differential-integral equations. Before they can be used either for further
analysis or for numerical computation, it is necessary (a) to express the
volume averages of the product of the dependent variables in terms of the
product of their volume averages and (b) to evaluate the interfacial transport
intej.als. For both cases, we need to relate the local values of the depend-
ent variables to their corresponding averages.

To this end, the local dependent variable p, is expressed as the sum of
its local intrinsic volume average 1(pk> and a spatial deviation Dk' Thus,

. i a
Py <pk> + P * £S5l )

fush a spatial decomposition scheme was first suggested by Gray [9]. Clearly,
<0k> = 0, For depe.dent variables such as velocity Uy and internal energy
Uy, we write

i * -

Ek <Ek> - Ek (5:1:.2)
Lew > + o

u u U (S5-1.3)

where i(gk>* is the mass-weighted, volume-averaged velocity defined by
equation (2.1.6a or b), and 1<uk>* is the mass-weighted, volume-averaged
internal energy defined by equation (2.1.7).

ﬂi.*- i~t- i. i.
While <Ek> 0 and <uk> 0, <Ek> and (uk> are not zero generally.
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If py is uniform within v, then Leos* w1y,

For turbulent flows, we postulate that both the volume-averaged term and
the spatial deviation term in equations (5.1.1), (5.1.2), and (5.1.3) would
have a low-frequency component, to be denoted by the subscript LF, and a high-
frequency component to be denoted by a prime. Thus, we write for py

i

B> = i<pk> + ‘<pk>' , (5.1.4a)

k LF

and

(S«1.4b)

in macroscopically steady flows, the low-frequency component is the temporal
mean,

The time that characterizes the low-frequency component is of the order

T p = L/(AU), = (characteristic dimension of the physical system)/
(characteristic low-frequency speed variation). (5.1.5a)

The characteristic time of the high-frequency component is of the order
typ = A/(rms U') = (integral length scale of high-frequency fluctuation)/
(root mean square of the fluctuating velocity or turbulence
intensity)

= 1/(characteristic spectral frequency). (5.1.5b)

In performing time averaging, the duration T over which the averaging is
made must satisfy the following inequalities:

THF KT TLF . (50106)

If the temporal decomposition is applied to p, from the outset, one
writes

P = Prr t ol'( ’ {5,531

which is the well-known Reynolds decomposition in turbulence analysis. For
macroscopically steady flows, py p becomes the temporal mean. When tie time
scale 1inequalities of equation (5.1.6) are satisfied, oy p and °ﬂ are
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separable in the time or frequency domain. Substituting equations (5.1.4a,b)
into (5.1.1) and comparing the result with equation (5.1.7) lead to

= i 5

and

' = 1 ' L

in view of the fact that the low- and high-frequency entities are separable.
Thus, we write

1 y '

We shall soon demonstrate that 1<°k>LF closely approximates 1<°kLF> when the
high-frequency fluctuations of the volume v, are negligible. We shall return
to this point in Section 5.2, When 1<pk>LF = 1<pku,>, equation (5.1.8a) shows
that

1<°kLF> =0. (5.1.10)

The pressure Pk is to be decomposed in the same manner as Pi» 1.9,

= i !
Pk (Pk>LF + PkLF * Pk . {3111

For velocity Qk and internal energy Uy, we write

Ug = Ure Y Yar t % (5.1.12)
and
R S S 5
k kK LF kLF k' (S.:1:13)

The appropriate decomposition for the total energy B will be given
later.

The local volume fraction a, is a volume-averaged quantity. Hence, it
should be decomposed simply as
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Gk'akLF'*aL . (5.1-14)

Intimately associated with equation (5.1.14) 1is the temporal
decomposition

Vi ® Vine T Ve (5.1.1%)
Obviously,
= ' = ' . .
VRLE = YLr Vo and Vi T Ve (5.1.16a,b)

Except for extreme conditions, high-frequency fluctuations in volume fraction
seldom occur., Thus, a, can often be assumed negligible and will be ignored in
the present analysis.

In multiphase flows, the fluid-fluid interface may not only translate,
but als» oscillate. Hence, in general, the interfacial area A, like ay and
vy, can be decomposecd as

Ay = Agrp * Ay (5.1.17)

However, as has been pointed out earlier, the present analysis is best suited
for dispersed systems for which interfacial tension would normally play a
prominent role and abrupt changes in surface curvature are not expected to
occur. The familiar smooth and gentle shapes of oscillating bubbles and drop-
lets are examples {24]. In such cases, Ay can be ignored. The analysis of
Ref. 12 also shows that {if a, is deleted, A; should also be set to zero.
Therefore, in this report, °i' vi, and Ai are all neglected for consistent
approximations.

The interfacial velocity Es is not associated with Pk alone: it 1ia
decomposed as

= i '
59 <!s>LF+38 +y_s - (5.1.18)

If the flow is such that the characteristic length of the dispersed phase
d is large compared to the integral length scale of turbulence A, and if there
is no vigorous interfacial mass transfer, then the high-frequency fluctuating
component of the interface velocity W; would not be significant and should be
deleted. On the other hand, if d << A, W, may not be ignored even though Ay =
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0. The case of turbulent flow of a suspension of small solid particles in a
gas or liquid is an example. Hence, W's 1s retained in the analysis that
follows.

5.2 Some Useful Observations

In deriving equation (5.1.10), we introduce the approximation that the
low-frequency component of the intrinsic volume average of the density of
phase Kk, 1<pk>LF. i{s equal to the intrinsic volume average of the low-
frequency component of the density, i<°kLF>‘ We demonstrate in the following
that the approximation is consistent with the stipulation that vy = 0, or more

correctly, |vi/virpl * 0. Denoting vg/vypp By €, we can write

i<°k>LF = low-frequency component of

1
kLF

(l '€+52°"') j {‘DkLF+pl'() dv
(1+¢)

v
VKLF

1

v
kLF VKLF

PLLF dv , (5.2.1)

and
Lo > m—te (1 =€ +e2 =00s) | dv
30 SO PkLF
vkLF(1+e)
s (Ao .. dv\ [l +0e)] (5.2.2)
Ve LF ; kLF 5 Lt
VLF

Thus, i<pk>LF and 1<°kLF> differ by a small fraction of order €.
Next, we proceed to examine i<§k>:F and i<2kLF>*° It is straightforward

to show that

{ . '
Yo ~ ( ! okLFHkLFdV) [ perpdy (5.2.3)
VKLF /] YkLr

Now,
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*

0. o | eyl e o) U\ /] pqp L+ )av , (5.2.40)
v, p(1%e) v pp(1%e)

where € . = py/pyp and ]epl << 1. Equation (5.2.4a) can be written as

P
! [ oxLr Ykrr 4Y
i * kLF 4 - 5
U g D [1+0,Ce)+ 02~ep)] > (742,40
YKLF

Thus, and 1<y > may differ, at most, Yy a small f:acticn of otder
YL

g + I In the present analysis, the approximation <gk>hy <UkLF> ie

adopted and hence,

‘<§kLF>* =0 . (5.2.5)
Likewise,
~ *
i Qpp> =0 . (5.2.6)

We also have occasion to use the following results.

Since

R { { - ; 4
g \« (¢k%> = <§ <wk%> =7 ay <wk> + v f <wk> o, dA

A

& i ! _ - i
v a, <wl> <W‘> v o = oy v <w‘> $
it follows that

4 4 {
<v <ik>> =9 <¢k> . (5.2.72)

Likewise,

i { g
<7 . <&k>> = ‘7 . <wk> . (50207b)
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Also,

i i
i *\ i * i * 8 *
<v <¢k> / =9 <¢~k> and <v . <wI > > =T «y_k> . (5.2.8a,b)

5.3 Volume Average of Products and Product of Volume Averages

From the definition of the mass-weighted, volume-averaged velocity, we
have

o Lo U = 1o tapt (5.3.1)

which 1is gquation (2.1.6b). Using the decompositions P = 1<pk> + Bk' and

U = "> 4 yk‘ one readily obtains

i i 0> . (5.3.2)

PP =
<oy 2 L > (ok—k

Lot > = 20> Scu>™ +
k% K Y Yy

Comparing equation (5.3.1) with equation (5.3.2) gives

[%Q fapy + 16> 0. ‘ (5.3.3)

It may be of 1ntere?t_to*note that equation (5.3.3) can also be obtained by
using the fact that <§k> =0 ,

i P * 1 Lo * Loy ¥ o .
« G > = T 2K L <> (<uI > K>+, B> ) . (5.3.4a)
Now,

Lo w % o 1 /1 i i /1,

Q0> G U "> = TR + TG DD T, > (5.3.5)

Thus, an alternative torm of equation (5.3.4a) is

i i i * 4 LI ) i~ a
<pky_kgk> <¢k> ( <y_k> <gk> + <I_J_k_gk> + <, U U > ., (5.3.4b)

¥ 48 3% o Lo B o7 - (1 it t.7 5 i N

Since 1<p > is positive definite, the numerator of the third term must
vanish. ence, one obtains equation (5.3.3).
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Corvesponding relationships for internal energy are completely analogous:

*
. You = o Mg ™ (5.3.6)
i { i * 4, K i *)
. o Uu> = 1o ot st = e ( w>t Tt +1@E > (5.3.7a)
< $ o oW £ L8 LS L ) { ~
IR ( QU Tu> + TRG )+ TG DG . (5.3.7b)
Furthermore,
lo.> 1@ > + 160> = 0 (5.3.8)
k k Kk by
and
i~ % _ia s i ~ 1
\/_[:Ikuk> @-kuk> - kakuk/ (pk> » £5.3.9)

For turbulent flows, the decomposition scheme of equation (5.1.9) for p, and
of equation (5.1.12) for U, will be used. Accordingly,

i = i 1

and
<U,> = <UD .+ <UD ., £5.59:11)

We reiterate that equation (5.3.10) follows from the relation 1<SkLF> = 0 and
that equation (5.3. ll) follgws from <§kLF> = 0. Both require that vi/v, »
0. The vanishing of <U also requires that pyp/py + 0.

For convenience in writing, we shall hereafter write B, for By p, gk for
, ete. This will not result in any confusion if it is understood that any
quantity with a tilde is of low frequency.

Using the relations given by equations (5.3.10) and (5.3.11), equation
(5.3.1) becomes

i

o . U> =1 >+ i<p'>) by > + 4
kYL K “kLF

<°k> <9i> ‘ (5.3.12)

We shall be interested in evaluating the time average of equation (5.3:12),
Since <gk> Lp is, by definition, the low-frequency component of <gk>
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Y1 T

< g o <9k>u?> “ B
Now,

i i LA | - ¥ 4 i ' Lo v

G W2 @\ U2 QpLp U *+ Gﬁ) + ey« (5.3.13),

Therefore, its time average 1is

t<1<o > Loy = Bl (5.3.14)

k —&" / k="’ g

which is a turbulent mass flux. Consequently, the time-average of 1<pk2k> is

*
lep>T + ¢

I P
° © 0> e UlLr o Up> (5:3.15)

A second expression for 1<okgk> can be obtained by multiplying equation
(5.1.9) by equation (5.1.12), and then performing the indicated volume
averaging. The result is

i i % foxs 1 s ol
o0 = 1o 0 ((Ul gt T + Ly >) + 1G 0> + 16 u
+ R0 Ut <pktw‘ >+ Tpple> . (5.3.16)

Introducing equation (5.3.13) into equation (5.3.12) and comparing the result
with equation (5.3.16) lead to

1 1 1 - i o -
L Cx’LF @k'\*’ Gkgkw Gl =0 . (5.3.17a)

The first two terms of equation (5.3.17a) are of low frequency since v"‘/vkLF

is taken to be negligibly small, but the third term is of high frequency.
Hence, they must independently vanish, i.e.,

i i i '
O Ut N> =0, (5.3.17b)
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t
i i h TR + B
(fop '™y S
which is equation (5.3.14), and

t
L { ,*>_u e
<<°k> &, uy> LUl

Accordingly,

+2 "%;{g"‘gg + ti(piU'U') .

(5.3.194)

(5.3.19e)

(5.3.20)

Equation (5.3.20) can also be deduced by forming the product p U, U,, followed
by performing the intrinsic volume averaging, making use of the relation given

by equation (5.3.17a), and then time averaging.

Analogous expressions for internal energy are

1 1 1 i 1 ey -
<pk>LF G“k) + Qkuk> + <°kuk> 0,

i 11 i, - - 1, P
with "G > 0 Gk>+ <3kuk> 0, and "<ppu,> = 0 .
i i i *
» <°kuk> <pk> (uk>

i i

= 1 i \] i * 1] *
(“’\31.?* <°k>) e T Tupd

ti - i i * ti f.ah
* P> = T e Up T o2

ol { *
. 6 Lu> = > <Wu >

(5.3.21a)

(5:3.21h;¢)

(5.3.22)

(5.3.23)
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i Loy 5% Log 5% 4 g 3 g%, 4
o (‘uorstory + taAES" + tagup

P T e e R L e
+ taup>” teaa ot + A wnt + <_l£uk>) (5.3.24)

ti i e ook Tl TR 1 u.,)
s PRUu> = o> g (<!k>w udrp + <Gu> + FTuun>

+ Beountast o Hnunta st s 1.8 8>
ko’ Y ’up k%’ Y’ur Kok %K

ti » 5 G, RO - A5 TR By
+ <pkg£ui> + <Ukpkuk> + <ukp !k> + <pk!k“k> .
(5.3.25)
For the total energy, we may also write
E = 2E> . +E +E (5.3.26)
k B * R YR (%

*
However, the defining rela&ions‘for i<Ek>LF, Ek’ and Eg require careful con-
sideration., Specifically, "<E > _ is of low frequency and of lengah scale £,

k LF ~
Ek is also of low frequency an& must satisfy the condition <Ek>LF = (0, and

finally the time-average of Ey should vanish. Since Ep = u + 3 gk ¢ Hk' and

-i * ~ ' ]
?ZU :2in§ Dtﬁ: Uflreadi> iefined relations 9 <uk>LF + U, g W and Uy
k’LF “x _k,weotan

B, o» a4 +u 43wt sttt +ld o0 eluosu
k 7 Il Tl S Yl YN YR Y
sl b ety cune W (5.3.27)
Btr &t G0t Ut N 3
We define
i £ * I Eagk 1 . Td,s L oag* Ll o
e ® Yelr Y7 Ul Yl Y b g T B
(5.3.28)
-\ i * . 1 . —i . *
B = U * <UL ~D-k+'2'(.0<k O - < Eﬁ)’ (5.3.29)

(g"‘ o Uy - ey o U'>) . (5.3.30)
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It can be*readily verified that equation (5.3.26) with the defining relations
for "<E > e Ek' and E}, given respectively by equations (5.3.28). (5.3.29),
and (5.3.%5), is 1dent§Fal to equation (5.3.27). Furthermore, the constraints
éusc cited f?f <Ek1}r and E gte also satisfied. 1f we assume that

(!i ’ Ei > = (g& . —k>’ then <Ei) = 0. For the equations which follow,
this approximation is used. Accordingly,

i i~ .8 5 i -
<pk>LF <Ek> * (pkﬁk) + (DiEk> = 0 £5:3:31)

tl(QgEk>. i<pk2k >, and ti(DkE?§k> can be written down from

and i<okEk>.

equacioni (5.2.22 (5.3.23), (5.3.24), and }.25) by simply replacing uy by
E, with <Ek> B defined by equation (5.3.28), Ek by equation (5.3.29), and Ey
by equation (%.3.30). Finally, we note that the decomposition of E, given in

Ref. 12 was incorrect.

It is seen from the foregoing that our objective of expressing the volume
average of products in terms of products of volume averages is only partially
?chieveg. For the nonturbulent case, it is necessary to assess terms like

~ i ~
<9k2k>* in the momentum equation, <§kEk> {n the total energy equation, and

i<gkka> in the internal energy equation. A number of additional terms appear
for the turbulent case., The assessment Or modeling of these terms consti-
tutes, in part, the closur2 problem.

Simplifications

Except in extraordinary circumstances, 5 /1<ok>LF << 1, and, furthermore,

5, changes sign within an averaging volume. hence. one may usually assume

'3
L 00> «¢ Yep >, P 0> (5.3.32)
K—K—K k“LF -yt o
| & G, i o P
<pkykgk> <L <pk>LF <Ek!k> p (5.3:33)
’_\s\ t i\\
(pkgkuk> <4 <°k>LF <gkuk> " (5:3:34)
ti s : i ti
<pk!éuk> L <°k>LF <g£ui> . (5:3.35)

and similar inequalities for total energy.

*
Furthermore, 1if c‘(p'E&) i<pk> v £<!k>L ¢< 1, which is often the case,
then equations (5.3.15), (5.3.20), 5.3.23), and (5.3.25) can be simplified to
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o Heud =t o (5.3.36)
N "o 00> = 1o (1<gk>:F ‘<gk>:F + L >+ “<ggg£§), (5.3.37)
o  Hud>=to0, oty o (5.3.38)
o  “puu>=too, (f<gk>:F beu e + KB G> + “(géui)) . (5.3.39)
Likewise,

o Hor> = tao, e, APy
. o U B> = 100, (f<gk>;F i<ak>;F + YRS 4+ “<g£sé>) . (5.3.41)

Under the stronger restriction of constant p,, we have Bk =0, pp = 0, and
i " i L i * =3 i .
PRPLF P+ Also, <§k>LF <Ek>LF " <uk>LF <uk>LF , and <Ek>LF

i

Finally, we note that from equation (2.2.5), we can write

3 a

k- “1( i ‘).
-y | ( Ve 5 T 8
v [ W oen A (5.3.42)
-3
A

Since aé is assumed to be negligible, the second area integral must vanish,
ieey,

W, *n dA=0., (5.3.43)

/
A
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5.4 Time- and Volume-Averaged Mass Conservation Equation and
Interfacial Mass Balance Equation

The local volume-averaged mass conservation equation is given by equation
(4.1). By introducing the decompusition scheme for p, defined by equation
(5.1.9), Uy by equation (5.1.12) and Wy by equation (5.1.18), followed by
time-averaging, one obtains for negligible a; and Ay,

© 1 i
<mk <pk>> = A <ok>LP 5 (S.4.1)
t< ‘s u>> o gt Y e Minn (5.4.2)
Ok Pk %% PxLtF =P T %k Pr=x" * e
which 1s taken directly from equation (5.3,15). For convenience, the

turbulent mass flux ti(pigi> will be denoted by y.., i.e.,

ti“’il’i’ . (5.4.3)

The time-averaged interfacial mass gencration rate of phase k within v is

t -1 t
T>==v [ "ol = W)>en d ,

A

-

oQa i

1<0> <——"+ <u>* ¢+ Va )+(n‘r1) (5.4.4)
kK'LF \'3t % LF k. k s

where (HTI)k stands for the interfacial mass transfer integral defined by

(MTI) = =v " ">/ Y en dA
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Pou(Uy - W)> e dA (5.4.5a)

[
A

In deriving equations (5.4.4) and (5.4.5a), use has been made of equations
(2.2.4), (5.3.42), and (5.3.43), as well as the fact that volume-averaged
entities such as I k’Lp and ng>*L, can be taken outside of the area
integrals,  When 0,/ @ p €< 1, which is usually the case, the two terms
involving Py in equation (5.4.533 may be deleted. Accordingly,

r ; = ‘l 1 f - %
(MTI), v e/ Uvon dA
A%
. o f t ' [ ' ’
v [ (U W.)> e+ n da . (5.4.5b)

A

Performing the time averaging of equation (4.,1), followed by introducing
the results given in equations (5.4.1), (5.4.2), (5.4.3), and (5.4.4), leads
to the desired time- and volume-averaged mass conservation equation:

d i
- 0y

: , A i * . s -
5t % ©k>LF +V e a, <pk>LF <gk>w + 7 o Yo <rk> o LR 6K)

An equivalent form of equation (5.4.6a) is

L 1 . 1 i * . =
o (J7 fee +7 0 oy <Ek>Lp) 90 oy = (MDD, . (5.4.6b)
When Pk = constant, simplification is seen in that Yok * 0, and (HTI)k becomes

(MTI)e = = v 1o, | .
MTI) v J E& n, dA . (5.4.7)

‘ A

Accordingly, the time- and volume-averaged mass conservation equation for
constant py is

7 e "<U

..l a
W =-Y /| Yoo d. (5.4.8)

A

It is straightforward to demonstrate that equation (5.4.8) can also be deduced
by performing the time- and volume-averaging of Vv + U, = 0.



ycal volume-averaged mass balance equation for the intert

juation (4.8). Performing the time-averaging gives

with subscript

5.5 Time- and Volume-Averaged Linear Momentum Conservation Equation
and Interfacial Momentum Balance Equation

volume-averaged linear momentum conservation
force 1is given by equation (4.4). The time-average
-al terms in the equation have already been given; others can be
{m{ that used in the previous i

results of those terms

censor
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<0 (5.5.3b)

1
PeLF rp '

and

(e) E?e,fime- and volume-averaged turbulent, dispersive stress tensor
<T > defined by

ti T ti s
<£k> == 2 (pi E£!k> (5.5.4a)

t i i ~ *
- - !
2 < <pk> (E&Ul> > . (SoSo“b)

Under the simplifying conditions listed near the end of Section 5.3,
= 0, and the three stress tensors defined in equations (5.5.2), (%.5.3), and
(5.5.4) become, respectively,

. £4..T s
(a ) <Ik> (Dk>LP (!&!£> N (SOS'ZC)
el 50, = . i
(b') “I<E> <pk 90>, (5.5.3¢)
(e g o, (5.5.4¢)
° <°k 1<;k%> where 1, 1is the viscous stress tensor.
For Newtonian fluids,
2
I, - (xk -3 “k) (veu)g+u (vy +(vy)] (5.5.5)

where A, is the bulk viscosity, V Uy is dyeg and the subscript ¢ denotes
conjugate. Using the decomposition Uy = <U Y’ ur Qk gk. equation (5.5.5)
becomes
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2
+ (Ak - I”k)(v e W) I+ [V + (7 u.) . (5.5.6)
Since
fon s¥ N aw o o ot «f ¢ 4 - I . Len s*
<v . <9k>r.r> Voea KUDpt {qu)u, ndA =a Ve KDL
i * 1) i -
R RENLE
Also, ¥

i . " i ¥ . i oy
<(v <gk>LP);> <V <§k>LF>% %k (v <2k>LP)c '

W.yk>.v'°ki(gk>+v-l£kgk.5k“'

Wl’ﬁ'v"ki@k)*"-li“y&&“'

etc, Thus, we have for uniform i, and M s

= a (x - % )v.‘<u>');+ v1<u>'+v‘<u>*)
k )Wk~ T ¥k “%’LF " ~xLF “k"LF/c

A A

+ terms which vanish upon time-averaging.

+ uk[v '+ (')t [ B ey mca]

It may be noted that qv yk)c> = <V §k>c' i.e., the volume average of the
conjugate 18 the same as the conjugate of the volume average.
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Accordingly, the desired result is
t
i
(o SR
i * i *
" % ‘(‘k “k) (- ) L+w [v Lowe * (v ‘%’ U)c]}

*(*u‘%@("'%‘@ew"f % 5&“)1

A
+ [V a >+ (v a 1<§k>)c PR {kﬁk_qk dA
¢ 5l {k (E‘ Ek)c dA] (5+5.7a)

]
e —
A
=
S
<3
=
- o*
£
p
=
+
=
x
<9
=
N
‘rc
N
T »
e ]
+
S
<3
-
\
*_c:
v
r»
)
p —
| S

2 i S i
* (Ak -3 uk) KV o U2 i+ ( v gk> + <V > )} (5.5.7b)

* -
When p, = constant, i<Ek>LP = 1<_L_lk>LF, 1<2k> = 0, and furthermore,

o 1 R -
a, v <Ek>LF + ) Ek o dA = 0 according to equation (5.4.8). Hence,

equation (5.5.7a,b) r:§uces for constant p, to

t< 7% v*<u>*+(vi<u>'
% -k> k "k “k’LF “k’LF Je

) v.1 £k [Ek o+ (Ek Ek)c] dA . (5.5.8)

For convenience in subsequent discussion, it is desirable to express lk
in the form

ler s +30+1

-k LLr I (5+5.9a)

1
k .

t
Since L<-T-x>LF B <i<‘l’ >> , it follows from equation (5.5.7b) that

i *
>F-()\k )(v-<u>);+uk[v U1 (v (U)LF)]
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’ 2 g o 1 Lo B Lo d
" - uk) <v -1‘> I + p‘ ( (V —qk> + (V &)c) . (5.509b)

Substitut ing equation (5.5.9b) into equation (5.5.9a), followed by comparing
the result with equation (5.5.6), leads to

~ 2 ’s_i .s
s (-3 “k) (Y L 9«?) :

* by [% gk - 1y §k> + (v gk)c -1 §k>c] , (5+5.9¢)
and
LT (Xk B % “k) (veup) by vy + ()l (5.5.94)

which és\not to be confused with the Reynolds stresses. Clearly, t(;i) = 0.
Also, <;k2 = 0, as it must., It is pertinent %o note that expressions for

<L ’Lp» 3Lk and I are incorrectly given in Ref. 12.

In highly turbulent flows, the viscous stresses are usually insignificant
relative to the turbulent stresses and so they can be ignored in the momentum
equation,

el -
" v1<.{k[-9yl+1k)-&‘d>

i i
it RN W R AN (pn)k - (vsu)k ; (5.5.10)

where i<;k>LF is given by equation (5.5.9b), (PTI), stands for the interfacial
pressure transfer integral defined by

(p11), = - vi[ Ba da, (5.5.11)

A

and (VST1) stands for the interfacial viscous stress transfer integral defined
by

(vsT1), = - v}

Kk I, * 0 dA, (5.5.12)

[
A
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in which ik is given by equation (5.5.9¢c). While equation (5.5.10) is rigor=-
ously valid for a dispersed system for which the length scale inequality,
equation (2.1.4), is satisfied, the integral

- g Ik) * 0, dA

;%

may be prudently evaluate! from the Lagrangian equation of motion for the
dispersed phase. More research 1is needed to assess the merit of this
approach.

t
o | t i .
- <f ol (U, = W) *n, <u> - S Yol ¢ (r1), L (5.5013)

where U<I\> 1is given by equation (5.4.4) and (MMTI), stands for the
interfacial momentum transfer integral defined by

() IS (1 s t '
(1), v ' [ P * pk)l_)_k + “\J-JR]

A%

Bostint & 2t1% » )
op(ly = W)> o n dA . (5.5.14a)

1t is seen from equations (5.5.13) and (5.5.14a) that the time- and volume-
averaged interfacial momentum transfer consists of two parts: (1) transfer
associated with interfacial mass generation <P > <U > 'L and (2) extraneous
transfer due to spatial deviation of density and f& :id velocity at the
{nterface, as well as that due to time correlations of fluctuating velocities
and density.

As has been previously indicated, under usual circumstances Bk/i@k)LF
<< 1. Hence, a valid approximation for (MMTI), is
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at -1 { t " * o s .
(MMTI), 2 = v I(<9k>u,g¥# <9&_q"‘>)( (p_k>u+_0_k <V_d_.>u Q‘) r_l*dA
A
vt o B (U - W')> e o dA
kLFAk—-k L LY
-l t '
-V {kgk <pk($-y")>-5&u. (5.5, 14b)

A further approximation can be made {f the correlation of density and velocity
fluctuations is insignificant, It is

-1 4 GicEuh i .
(MTDy = v Koy [—‘)-k ( Gore * Y - Uy !o)

A

* t(gk.(&' e __w;))] . -ﬂ* dA . (SoScl“C)

When p, = constant, (HHTI)k becomes

(M) - -l by {k[g-k(iw*):—’ + 1]_& N 1(\_{‘)u - 9.) + t(}!"‘(_‘l& - F")>] ¢ n, dA
(5:.5.15)

The time- and volume-averaged interfacial momentum source per wunit

volume, t<!k)' resulting from pressure and viscous stresses at the ‘nterface
as well as that associated with interfacial mass generation, is

{ { . t bai ¥
M> = KB e Va = KLt Ve KT KU

t
+ (1), - (vst1), + [MMTI), . (5.5.186)
It is recognized that equation (5.5.16) is the equivalent of

t o= . . ”
M > <‘{k (m U +Pn -1 °n v (5.5417)

where the three terms of the {ntegrand are precisely those of the first
integral in equation (4.9).
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Using the foregoing results, we obtain the time- and volume-averaged
momentum conservation equation:

S n 1o 5ty v v 2oL b *
it “k k’LF “=k’LF k. 2 S R

a .
it ok ek 2V oy g U
o i \ 1 Lo (e, T, 14D z1~r)
Vap Bopp vV oy Kt Voo UGt G Gy
g ¢
ta, o p £, (5.5.18a)

in which 1<; >L is defined by equation (5.5.9b) and t(!k> is given by
aquation (5. .183. The r.h.s. of equation (5.5.18a) can be recast into the
following form:

i i
V(P)F*’a V-(;k)Lpﬁ'V'a

r.hes, = - ay KL K

t1, T, , 1 ti AT
(D + 1gD> + <;k>)

i *
> <O+ (PTI)k (VS'!'I)k + (Pﬂﬂ'l)k .

~« LF
(5.5.19)
*

Multiplying equation (5.4.6a) by 1<y_k>LF and introducing the result into
equation (5.5.18a), followed by combining terms, one obtains an alternative
form of the time- and volume-averaged momentum conservation equation:

{ ¢
ta, it T,

i *
s 1<
1 LT BRI 1, .
o <°k>LF(— B St <94:>Lr>
+.a__.a v +9V ¢ a, ¥ 1<U>. +a v ov1<U)
5t %k Yok k Yok Ylur t % Yok ’LE

. t ti, Ty , 1 tinT
ay V KR pta, Ve KotV ea Gt Gt qk>)

k" LF k k

i
Ya <Ok>LF f+ (PTI)k (VSTI)k + (P(N'I'I)k . (5.5.18b)

If the tutbu}en mass flux Q‘(' ti(oftﬂ)) is negligible, which is usually the
case, then . (ik> is also negligible, and equation (5.5.18a) simplifies to
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i i

3

i i * i *
T % e Ulwr TVt oo Ly >

)a
LF

Uorr ¢

Y
i i - 1 P o)
=t ¥ BOpta Ve oyt oy ( @G+ <

*a, <pk w £ g * <Tk> <2k>LF » (PTI)k = (VSTI)k + (HHTI)k . (5.5.20a)

Equivalently,

2 >t
i Y * i
©LE (“_‘a e+ MU+ 7 u)

. i 1 l ti, T )
ay v <Pk>LF +a, Ve <xk>LF * ¥ e (;k> + (;k

i -
ta, <pk>LF f+ (PTI) (VSTI)k + (HMTI)k . (5.5.20b)

In highly turbulent flows, 1<;k>Lp 144 ti(;:>, and hence both ay Ve i<;k>LF
and (VSTI), in equations (5.5.20a,b) can be dropped.

For a single-phase system, a, = | and all iiterfacial integrals vanish.
Furthermore, the inequality condition, equation (2.1.4), should be dropped and
one can choose the averagin% volune v as small as one pleases. Consequently,

D> * Pk > * and all spatial deviations vanish.
Also, t<4k> (Pfﬂsk. (VSTI)k. and (HHTI)k do not exist., We thus recover the
familiar form of the linear momentum conservation equation for single phase
turhilent flow from either equation (5.5.20a) or (5.5.20b).

The time- and volume-averaged momentum equation for the special case of
constant p can be readily obtained.‘ It 18 of the same form as equation
(5.5.20b) with <p k’LF replaced by py, <gk>LP replaced by 1<!k>LF and (HHTI)k
replaced by (HHTI)k, which is given by equation (5.5.15).

The local volume-averaged linear momentum balance equation for the
interface between fluid phases k and f is given by equation (4.9). Upon time
averaging, it becomes

t I | t - v ) ( _ \
kf M> =V / <F > dA = v [ (Vg Opp = 2 Hyp opp ) dA, (5.5.21a)

for which the relation given by equation (5.5.17) has been used. The last
integral on the r.h.s. of equation (5.5.2l1a) can be written as
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If phase k denotes gag bubbles in a liquid or liquid droplets in a gas, H, is
positive and equals R R being the local mean radius of curvature of “he
interface, Hence, the pressure difference across the interface is

- - X
P P T (5.5.24)

which i¢ well known. Needless to say, P, and Pg refer to the static pressure
in the bulk fluid as the interface is approached.

5.6 Time- and Volume-Averaged Total Energy Conservation Equation
and Interfacial Total Energy Balance Equation

The local volume-averaged total energy conservation equation is given by
equation (4.5). Subsequent time-averaging requires the use of the following
results:

t
i i i *

*
where 1<Ek>LF is given by equation (5.3.28) and ¢g, 1is a scalar total energy
function defined by

.t

£k QB> (5.6.2)

¢ kEx

with E; given by equation (5.3.30).

o t< 1<cun~:>>- b > Lt gt o Leg >*
o O B O 9tk Slr B T % Yak “(’ur

i " 3, . iaD, . ti T)
+a, <y-k>LF°Ek+°k( B>+ B+ TIED) , (5.6.3)

in which yo. 1s given by equation (5.4.3). The last three terms are,
respectively,

(a) the time- and volume-averaged turbulent total energy flux ti<_E-_z>

defined by

ti<g‘7‘> . ‘@k>w “%ap + u(?’kl’iﬁi’ + ti(pk"l_léﬂi) (5.6.4a)



we may write

juency

lume-averaged turbulent inter:




(b)
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ti, Ty o _ 1 2 DS o8
<up > © o Pk ¥ O (5.6.10a)

Also, one may define a volume-averaged specific heat at constant
volume c.,  such that

i e P i
v <“k>LF €k v (Tk>LF . (5.6.11)
It follows, then, that
T

TR, A T
<2k> k¥ (T‘ LF ° (5.6.10b)

where the turbulent conductivity ‘E is related to ka according to

T 1 T
Ky ® "Qudg ey Dy o (5.6.12)

the volume-averaged dispersive total energy flux i<22> defined by
M = to 0 MR + 1G> (5.6.13a)
- 1ad> + tad> (5.6.13b)

where 1<§2> is the volume-averaged dispersive internal energy flux
given by

tad> = Yoo 'au0 + 1605 (5.6.14a)

and 1<E:> is the volume-averaged dispersive kinetic energy flux
given by

L&D = 1o 00 Lk + 1(5&1“) L (5.6.15a)

. Kam ¥ 1 Joi *
tn which K Wp B +3 @ B -7<AW V>),  (5.6.16)
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as is obvious from equation (5.3.29).

the %Qpe% and volume-averaged turbulent, dispersive total energy
£ lux <Ek> defined by

tiant, o i e ' '
&> © Rk + o D ELD (5.6.17a)
o tiaT, 4 tineT
Q> + FIRD (5.6.17b)

where t1<UT> is the time- and volume-averaged turbulent, dispersive
internal energy flux given by

CLAT, o ki 4 R

and t1<E:> is the time- and volume-averaged turbulent, dispersive

kinetic energy flux defined by

Fl> = Hlor w R 4ol B KD (5.6.19)

Under the usual circumstance, Bk/1<pk>Lr << 1, the triple correla-
tions finvolving py may be neglected, the !pnttal deviations Gk and

have little correlation with piga, and U, has little correlation
with ogu' and pyKy. Accordingly, aquations—?5.6.81), (5.6.14a), and

(5.6.18a) can be approximated by

(a") Flaud> =t ot (5.6.8¢)
(b) > = o> Lt o, (5.6.14b)
(e") @ =0, (5.6.18b)

and equations (5.6.9a), (5.6.15a), and (5.6.19a) reduce to

(@) Htad = fo o ks, (5.6.9¢)



<v- ‘<pu>>-v- i > st +v.
¢ % ek % .

KLF  k’LF¥ k ¥rk

where yp, 18 a vector pressure work function defined by

s 3 i i 3
Yo = POy G+ TR + TIRLUL

i i

i *
R GRS SE 02) =¥+ ay pup U+ v ay by

where . 18 a vector viscous stress work function defined by

. o k& . Ve = 4
by * Wt W TR R TR R

where 1 i{s defined by equation (5.5.9¢) and ;i is defined by

(5.5.9d) .
t< ly >> ea. 3 >
. % ek “% “EX'LF
. { {
° <V * oy <iqk>> "V ey, Yadw
. ‘<a % u>>-f-a b, Must ct4va g o8
kK Px X R O e Help tLTop Nl

o t<6k) .-y 2<j Jok * N d€>
A"

- 1 .
<:qu>ur v a, +(HTI),

where (HTI), stands for the heat transfer integral defined by

(5.6.15b)

(5.6.19b)

(5.6.20)

(5.6.21)

(5.6.22)

(5.6,23)

equation

(5.6.24)

(5.6.25)

(5.6.26)

(5.6,27)
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e

{ = - -l .
Um)k v ._qu o da . (5.6.28)

It may be noted that iey k’LF * Y ag in equation (5.6.27) may be combined with

=¥ ay <£qk>LF of equation (5.6.25) to give = a, V » <£qk)LP°

- v 2<£ (= PU *1,° EkJ . n d€>

= 1 1 . - - 1 . 1 . .
P Op MU T ay (‘h’u R I

+ (PWI), - (WD), , (5.6.29)
in which the interfacial pressure work integral is
(1), = - v ! iep > (i
(ki ® Y e {k—k‘l‘k“
-1 1 *
v oo {k}k-'&d*
-V R 4 SeRlu> o om A (5.6.30)
and the interfacial viscous stress work integral is
(Wit = = v *;k(1<1k>1.r ' yk) L
L 2R | | * .
¥ Lk( K @k>LF) By A
-vly (‘;k c o+ g gp) 'y dA (5.6.31)

Finally,
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+ femi(uy - g;))] + n, dA . (5.6.33¢)

An examination of the foregoing results shows that the time-~ and volume-
veraged total energy source < k> consists of interfacial heat transfer
<Q >, work done by pressure and viscous forces at the interface and transport

associated with interfacial mass generation m . Thus,

i

t .t i . <t e » ) ’
<k ="+ e RS N (<,;k>LF Worp) * 7 oa

Kk LF
t i * .
+ Q> KBS o+ (WD), - (vwn), + (TETI), . (5.6.34)

It is recognized that

t<:§k> .-y} };k ‘dnkak *d t Bt (Pl = 2 * B ) » > dA (5.6.35)

wherein all terms of the integrand are precisely those in the first integral
of equation (4.10), Hence

t t - -1
<= vl fE e Wo a (5.6.36)

Using the foregoing results, we obtain the desired time- and volume-averaged
total energy equation,

3o te s gt 4 v a Yo ot st
3t %k e By’ kK P’tr Ylrr Blur
bela 0. +0 s o 8. U +7 4 a by dmd
5t %% ek k *ex  Yuwr T
T TR T T B My I *9 “toe > o Yy ot
LR S T ko TV % Skeur X0
r? e a, ¢ s n (t':"'"l + i"‘éu/ + ti(ﬂT))
yla T sy i Ey



48

va vy LB (5.6.37a)

An alternative forT of gquation (5.6.37a) can be obtaind by multiplying
equation (5.4.6a) by <E > . and introducing the result into equation
(5.6.37a), followed by conginhng terms. The result {is

3 <Ek>
{ LF {
a, oip ( et L >LF . 9 <Ek)LF>
R TR RN R B B
3t %k VEk % *mc Uelur t % Y BLF

i * i - *
s TR MU T ey by e T GO GO

Uty byt Ty (t1<§:> R ti<§:>)

- . i 1 . i ‘ .
vy <1qk>Lp O Vgl * % POy Goup T Lty By

+

t<ék> + (PWL), = (WI)_ + (TETI), . (5.6.37b)

The turbflent mass Elux i <p' E&)\, the scalar total energy function
OEk [} » <p£ Ei) = -gk§ <gk> + U . 2“‘1: the vector pressure work
function , and the vectot viscous stro-s work function y_. are usually
small and can be ignored. Furthermore, the stated approximations following
equation (5.6.19a) often hold, Under these conditions, equations (5.6437a)

and (5.6.37b) simplify, respectively, to

Dt tas o9 e tinn. Seur, S
3t % Pelir Be’ur a Pt YBlur Belur

«-9ea Yp>tawst e vea ey ol
" K’LF LF k “=k’LF “x’LF

-7 (‘i<§I> + L) ti<§:>)

t. t )
0 e Yot £ E

(5.6.38a)

- ¥ 4 i
v a, <£qk)LF +ta, <JEk>LF + a

and
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{
L4 <9k>L? S Lr)

i i { et
Voeay g tay Updp o oy Bopc £

t
<bk> + (wx)k - (vwx)k + (Ts'rl)k % (5.6.38b)

In these equations, the following approximations should be used:

th, Ty _ 1 7 LY | 0, J* ) iy Wy
B2 o Gt ey ( Worp + Y Uely?

(5.6.38¢)
M) = top, ML o, Mt - 1 B, (5.6.38d)
M -0, (5.6.38e)

and (TETI), is given by equation (5.6.33¢c).

The time- and volume-averaged interfacial balance equation for total
energy is given by equation (5.6.36).

5.7 Time- and Volume-Averaged Internal Energy Conservation Equation and
Interfacial Internal Energy Balance Equation

The local volume-averaged internal energy conservation equation is given
by equation (4.7). Subsequent time averaging can be made by following the
procedure used in Sections 5.4, 5.5, and 5.6, and the following results are
readily obtained. However, the presence of (1) <P ¥ ¢ U,> and (2) 4> =
<;k:vgk> in equation (4.7) renders the analysis incomplete. This will be
made clear later,

¢/ i _od o
¢ <“k <°k“k%> LT A% (5.7.1)

where euk is a scalar internal energy function defined by
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» o ti

" (pk k) . (5.7.2)

. ‘(a Lot u %) oa Yoy bew st Tt v a0 Yeu v
K Pr=kYk O e S e T ek WP

> tl Ty , L3l 4 theaT
v o oty o + o (b o tad> « HaD) (5.7.9)

where yrk is defined by equation (5.4.3). The last three terms are,
respectively,

(a) the time- and volume-averaged turbulent internal energy flux tt(g:>

defined by
e, T, _ i L onicns s SheX iaiy 4 Shitel
<Ek> (°k>LF (U| uk) + <°k!kuk> - l“kuk> (5.7.4a)
- Z Leo > taurut>” (5.7.4b)
k &k .

which have been given previously as equations (5...d4a) and (5.6.8b);
(b) the volume-averaged dispersive internal energy flux 1(22) defined
by

{0, i i, = {x &~
u> = <o > p (Qkuk> + g 0>, (5.7.5a)

which is equation (5.6.14a); and

(¢) the tire- and volume-averaged turbulent, dispersive internal energy
flux (u > defined by

el T ' Yot
<u > = <°k9u ot kukgk> X (5.7.6¢)

which is equation (5.6.18a).

Again, under the usual circumstances, D > LF ¢ 1, the triple correla-
tions finvolving p nny be neglected, khe opltial deviation U, has little
correlation with p , and U has little correlation with péuk. Accordingly,
equations (5.7.4a), —?5 £ 51), and (5.7.6a) reduce, respectively, to
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ei, T, 1 ti
(a') <5‘> <pk>LP <y_"tu|"> v (5.7.4c)
{0, 4 Loy s
(B') “ku> = a2 <Uu> (547.5b)
(e a0, (5.7.6b)

These approximate relations have also been given previously. In addition, !nk
and ®, in equation (5.7.3) can ordinarily be ignored.

t i . . i e - * . (u)
r <°‘k o T 9&3) Qe POp Tt WD p tay 0 - (DT '
(5.7.7)
where ’Pk is a scalar pressure work function defined by
o, = B 7 o U> o+ Fiepr voe U (5:7.8)
Pk k Ek k K <y

and (PHI)(:). the interfacial reversible pressure work integral assoclated
with internal energy, is defined by

Lieps  r D en dA, (5.7.9)

() , -
(ML), v e A St &

which is the first term on the r.h.s. of equation (5,6,30). The appearance of
o (which is "<P, Vo U2 %1 s the time average of "<P! V =« g&)) in equation
(§.7.8) suggests that (PWI) %7 does not fully account for the reversible work

done on the fluid phase k at all interfaces within the averaging volume wv,.
‘< i t * 1t
B a 0 = @ ot ¥ O ¢ ey 0 ¢ (YO0, (5.7.10)

whera i<;k> is defined by equation (5.5.9b) and &, 1is a gcalar viscous
dissipattonLFunction defined by

¢ =1 9l et

% h ' % SOELEUN AR (5.7.11)

X

t;A derivation of equation (5.7.7) is presented in Appendix A.
Appendix B presents some details of the derivation of equation (5.7.10).
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in which ; and ; are given by equations (5.5 9¢) and (5.5.9d), respectively.
The tntertacial vi.cous dissipation integral (VDI)), 1is defined by

-1
(vo1), = v 1<LK>LF:£k'U15 dA . (5.7.12)

For the reason analogous to that for (PHI)(:) , the integral (VDI), defined
in equation (5.7.12) does not fully account for the irreversible conversion to
thermal energy of the mechanical work done by the viscous stresses at the
interfaces. These difficulties prevent us from formulating an expression for
the interfacial internal energy source that is in complete agreement with all
the terms in the square bracket of equation (4.11). Research is in progress
to resolve this difficulty.

Time-averaging of V * a, ta k> fornally leada to V * A 1<;J_qk>LF A

useful constitutive relation beE:Len <iqk>LF and <Ek>LF for an isotropic
medium is

1<J D - (R ley) L " (5.7.13)

k°LF °’

where k, is the volume-averaged thermal conductivity of the fluid. The inter-
facial hent tranafer rate per unit volume of the mixture &, and particularly
its time-average <Qk> can best be correlated by experimental data. However,
the relation given by equation (5.6.27) may be useful, It is

t L3 i . ~
° <bk> <qu>LF 7 oay + (H‘rl)k : (5.7.14)

where (HTI)k stands for the heat transfer integral defined by

(HTD), = - vl ¢ om A (5.7.15)

b
Finally, the time-average of the last term in equation (4.7) is

-1 ( t 1 * {
o v Z:J o (U - We) * oy d;> = I et LIZTI}k (5.7.16)

A

where (IETI), stands for the interfacial {nternal energy transfer integral
defined by
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(1811), = - v {‘1 [(1<°k>w 3 sk) uy + t“’fz“ﬂ’]

i * oy ol Ve :
(<yk>LF+?-k WeoLr Ec) By dA

~

"l 1 t ' ¥ ' ~
- v £k (\<°k>LF + Ok) (uk(l_.lk !.)) n, dA

1 e (T ] 1
=l B - W e n dA (5.7.17a)

The time- and volume-averaged interfacial internal energy transfer is seen to
consist of iwo pgrts: (1) a transfer associated with interfacial mass genera-
tion <Fk> <u >LF and (2) extraneous transfer to account far the spatial
deviation of J:neity. velocity, and internal energy at the interface as well
as that due to the time correlations of their fluctuations.

When Bk/1Q>k>LF << 1, which 1s wusually the case, equation (5.7.17a)

reduces to

R ¥ (1 - t,.)(i ’ . _ .
(IETI)) = = v Ak o Yt e )UTUD e+ D - T e - B ) o0, dA

A

s (G - N>« dA

w O U - W)> e dA, (5.7.17b)

which can be further simplified as follows if all time correlations with
fluctuating density are insignificant:

.« - o) 8 t 5 (Len 5* i B
(IETL), = = v ©Lr | [uk(<y~k>LF+gk W e 9_.)

A

t ' = ' &
+ <uk(Uk !‘)>] o dA . (S.7.17¢)

An examination of the foregoing results shows that the time- and volume-
averaged lnterfacil% )1nternal energy source . > consists of {interfacial
pressure work (PWI) t y viscous dissipation (VD{Sk, heat transfer <6k)‘



-
transfer associated with mass generation t<rk> 1<“k>L?‘ and extraneous
transfer (LETI) . Thus,

t .t t i . (u)
<Jk> Q>+ Fa 0 T+ (WD 4 (VDD 4 (IETD, o (5.7.18)

As pointed out earlier, (PHl)éu) as given by equation (5.7,9) does not account
completely for the reversible work done at the {nterface, nor does (VDI)k as
given by equati (5.7.12) account completely for the viscous dissipation.
Consequently, k) differs from

'll(t.

*u<'.\“k+4qk' RS I VUNECALES L CNEFAER SIERCRE A LY

- N

which can be inferred from equation (4.11). However, it is recognized that

- o™} () 5 . - i *
v {\ Gnow> dA = T a4 (TETD, (5.7.19)
and
o t t
=V T dAe Q> . (5.7.20)

By using the preceding results, the time~ and volume-averaged internal
energy conservation equation can be obtained., The result is

3 { i * | { * { *
- > <y 2> + . >
o 90w Yo e Yrr W
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A { t

The third and fourth terms on the r.h.s,, taken together, denote the time- and
volume-averaged viscous dissipation per unit volume of phase k. They are
written in the indicated form to bring out their similarity to the reversible

pressure work terms.

An alternative form of equation (5.7.2la) can be obtained by using
equation (5.4.6a) to eliminate t(rk> in the expression for © k’+ The result
is

i *
3 "u.>
g KLE 1, o* L, o
% “p’ur ( it T wt’ <uk>LF)

3 1, P
Pt % ke YT o e Ul o b Y O

{ i, { o
O P Y e T ek o Bt U ook i

PR PR N 17 e S R g
N e R ) LR To’tr * % YL

+ > + (1) W 4 (v1), + (1ETI) (5.7.21b)

k k iy

The turbulent mass flux Yak and the scalar internal energy function Puk
(=t <p£ué>; are often small and can be ignored. So is the viscous dissi-
pation, Under these conditions, equations (5.7.21a) and (5.7.21b) become,

respectively,

* -
o oot v e Yoo tat tao

it "k Pk’wr NLe k o Yl ““Wur
. - ay BT 1<Ek>:F Sy btV oy (t1<22> b 1<§2>)

"V 1<£qk>Lr ‘e, 1<"zk>1.r + S+ farp 1<°k>:r

+ (Pwljéu) + [1ETI), , (5.7.22a)

and
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g
3 "uy>
L 1, (b P
v P’ ( -t Ru " <“u>L;)

v ! - % ea f81aTy 120 )
a te o, ¥ UL e b Tt ( >+t
-9 vataa > va b+ SQ (pw1)™) & (1ET1),. (5.7.22b)
% “ak’LF T %% “VEkLr K X

In equations (5.7.22a,b), tt(g&). l@2). and (IETL)k are given by equations
(5.706C)' (50705b). and (507017C)0

The time- and volume-averaged interfacial balance equation for Internal
energy can be obtained by performing the time averaging of equation (4.11).
However, additional work {s necessary to resolve the difference between the
time- and volume-averaged interfaclal internal energy source ¢ k) as defined
in equation (5.7.18) and that based on equation (3.10), i.e.,

-1 ¢/ 1 &
R R A A R L L

$Rn mh tn) (G M) A= 0.
(5.7.23)

6. SIMPLIFICATIONS AND COMPARISONS WITH OTHER "ACCEPTED"
TWO-PHASE FLOW GOVERNING EQUATIONS

A number of two-phase flow equations are available in the literature, It
{s {nstructive to compare them with the set of equations given in Chapter 5 of
this report. Ishil's monograph (1] considers time averaging only; hence, the
results cannot be compared directly. The local volume fraction a, of phase k
that appears in the present set of equations {s generally not the same as the
local time fraction in Ishii's equations. Nevertheless, the corresponding
conservation equations and interfaclal balance relations bear = striking

resemblance,

6.1 Comparison with Ishii's Two-Fluid Equations

Since Ishii's analysis was based on time averaging only, comparison with
the present results may be made by {gnoring all contributions due to spatial
deviations ik' However, the averaging volume would remain finite, containing
dispersed interfaces and satisfying length scale restrictions. We are mindful
that the arbitrary deletlion of Ek cannot be justified in general.

- -
For convenience, 1in this chapter we denote 1(* >L or t<0k>L' by *k'
implying low frequency or a temporal mean of the 1ntrtn| ¢ volume average of
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vy with or without weighting by mass. Furthermore, for the purpose of com-
parison, we assume that all correlations involving p* are negligible. With
the foregoing simplifications, the time- and volume-averaged conservation
equations for mass and momentum, and their interfacial balance relations,
reduce to the following:

° Mass Conservation Equation. From equation (5.4.6a), one obtains
3 - -1 . -

since Yok * 0. 1In addition, since (HTl)k = 0, the interfacial mass generation
rate becomes

{8 O -
\ e ¥ 1. @ qu (6.1.2)

where the superscript s denotes simplification. For a two-fluid system, k = |
or z, Ishii gave the following equation for void propagation (Eq. VII 3,15 in
Ref. 1):

= = 1
Py, P ? a
r‘I - ._..l_ .-.2 s <-—--—k-+ - « V Qi) ’ (6.1.3)

in which superscript (I) refers to Ishii apd superscript (=) aenotes Ishii's
phase average. The local time fraction, s relates the phase average Pk to
the Eulerian time average ’k according to

Soo= L. (6.1.4)

In equation (6.1.3), Cy 1s Ishiil's kinematic wave velocity and PI is the rate
of production of phase k at the interface, for which Ishii wrote %Eq. V2.1 in
Ref. 1)

SO N ST
"y :At?juan"k!k LI $6:1.5)

where At is a fized time interval for averaging, "cn is the magnitude of the
normal component of the interfacial velocity, and index j refers to the number
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of times the {nterface passes through a fixed observation point durlng At,
Ishii's time-averaged mass conservatlion equation (Eq. IX 1.1 in Ref. 1) is

3 [ = I = =1 1
Tt“'k"k*v"\&okgk'rk' (6.1.6)

where gl is the mass-weighted mean velocity. Although the similarities
between equations (6.1.1) and (6.1.6) and those between equations (6.1.2) and
(6.1,3) are apparent, precise comparison {s difficult owing to differences in
the definitions used for the various terms involved.

The time- and volume-averaged interfacial mass balance equation can be
written down from equation (5,4,9a). 1t 1is

I St =0 (6.1.7)
K, f

In conjunction with equation (6.1.6), Ishii gave

£ .1
] =0, (6.1.8)
k=]
. 2
We note that our | is equivalent to Ishil's ) . Both equations (6.1.7) and
K,f k=1

(6.1.8) express the conservation of mass at the interface.

. Linear Momentum Equatlon. Under the stated simplifying assumptions,
equation (5.5.18a) becomes, for f = g,

3 - i, aa
ek %ty BY
c-Ta b+ '%(iﬂif)ﬂ\&.‘g“\'y'. (641.9)

in which t<!k)n denotes the simplified time- and volume-averaged interfaclal
momentum source, It can be written down from equation (5.5.16). Thus,

t s _t 8 i
<§k> <Fk> U

- -. ‘
U+ B Ve -3 *Va +0m , (641.10)

where ‘(Pk)' {s defined by equation (6.1.,2) and
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(Mwr1)? = - vl o | t<wly - W)> e n da. (6.1.11)

A

It is seen that (MMTI): represents a "modified" Reynolds stress due to inter-
facial turbulence.

The time-averaged linear momentum equation given by Ishii (Eq. IX 1.14 in
Ref. 1) is

!o

1 = 1 % 1 = ) Q) §
t O P G v Va5 0 0

g

=-7al B + v-q:(;k+;:)+q{3k§+5f, (6.1.12)

in which g  and ;: are the viscous and turbulent stress tensors and 5: is the
interfacial momentum source given by

ﬁ-rﬁgﬁl+ﬁkiv{-;1.v{+gz, (6.1.13)

where subscript { refers to interface and ﬁﬂ is the total drag force. In
equation (6.1.,13), the last term was added in accordance with Refs. 25 and 26,
!k consists of a tangential component giving rise to the skin friction drag
and a normal component which gives rise to the form drag.

Despite the difference between our and Ishii's l, it 1s instructive
to compare the simplified momentum equation (?.1.9) with 1Ishii's result,
equatign (6,1,12). 1If we assume that ‘<I,>° =T, 5 = Pr P= B, ete., and
@ = a., then equation (6.1.9) becomes formaﬁly identical to equation
(6¢1.12), provided that

tor >® = 3{ : (6.1.14a)

or, equivalently,

-

~ (g = &) * 7 aq = (wemr)p . (6.1.14b)

. Interfacial Momentum Balance Equation. Equation (5.5.21a), when simpli-

fied for conditions consistent with those used in deriving equation (6.1.9),
becomes
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) t<§k>" .l (v, 0 - 20/, n ) dAcs f% v, o+20 M Va , (6.1.15)
k,f

where YV, is the {nterfacial surface gradient operator, 0 is the temporal mean
interfacial tension, Hk {s the teamporal mean of the average principal curva-
ture of the interface, and subscript k can be either 1 or 2, referring to
fluids on either side of the interface. The first term on the right side
accounts for the variation of surface tension along the interface, which is
probably small in dispersed systems owing to the random nature of its distri-
bution over the particles. The second term accounts for the mean curvature
effect. When both contributions are small, equation (6.1.,15a) becomes

-
\

i et =0, (641.15b)
K, £

The interfacial transfer equation associated with equation (6s1,12) has
been given by Ishii (Eqs. IX 1.12, iX 1.13, and VII1 2.7 in Ref. 1) It is

2
1 1 - == 1 =
Z M EI 2(u,, = A, Jon, + 208, Va, + force due to V,0 , (6+1.16a)

\

-

K

where I.'l denotes the area concentration per unit volume., The first term on
the right side of equation (6.1.16a) accounts for the effect of the change in
mean curvature, which is not included in equation (6.1.15a). When the terms

on the right side of equation (6.1.16a), taken collectively, are small, one
can write

2

£ ot

| =0, (6.1.16b)
e

When the assumptions used in establishing equations (bs1.14a) and (6.1.16a)
are valid, equations (6.1.15b) and (6.1.16b) become identical.

In two recent publications, Ishil and Mishima {25] and 1shii and
Kocamustafaogullari [26] gave the following "simplified" form of the time-
averaged momentum equation (Eq. 2 in Refs. 25 and 26):

3 1= = 1 -
T A "
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I

- S,
MR R THE TR . T (6.1.17)

in which g, is the interfacial shear stress and My, s the "generalized”
interfacial drag. By couparln&:equntion (6,1.12) with equation (6,1.,17), one
sees that 113 4-(Fk1 - ’k) Va = M. The authors of Refs. 25 and 26
suggested that for the dispersed phase,

My = sum of standard drag force, virtuval mass force, and Basset
force, all computed on the basis of a unit volume. (6.1.18)*

Equation (6.1.18) is not a derived result, While it is physically meaningful,
there is no assurance that it 1is complete, nor there is agreement among
researchers how the three forces should be mathematically represented.

The interfacial momentum balance equation associated with equation
(6.,1.,17) as given in Ref. 26 is

} M =0, (6.1.19)

Again, {f we assume that t<I‘k>' - F:. By ® fyy Gy = GI. e*c.,, we can

readily demonstrate that equations (6,1.9) and (6.1.17) become formally
identical if

_t $ /5 - ) ( o e =S
Qk> ‘gki y.k d ~L1 IkJ v ck * ml]k !1k ) (6.1.20}

which is equivalent to equation (6.1.14b) since M, = 5: * (ﬁki # Fk) Vo .

6.2 Comparison with Energy Conservation Equation Used in TRAC Computer Code

The field equations describing the two-phase, two-fluid flow used in the
Trausient Reactor Analysis Code (TRAC) were based on the mixture mass equa-
tion, vapor mass equation, vapor equation of motion, liquid equation of
motion, mixture energy equation, and vapor energy equation [27]. Since the
energy equation is written in terms of internal energy, it is selected for
comparison,

*The “generalized” drag force was represented by M, , in equation (6) of Ref.
25 and in equation (9) of Ref. 26 instead of M; . Presumably the subscript d
refers to the dispersed phase,
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APPENDIX A

t
i
DERIVATION OF Xy Qk V. $)>

o 3 Ay, * -
Beginning with the decomposition P, POpt ’Pk + Py and Uy Ur + U,
+ Uy, we obtain

5 -~ 1 - 1
Uy K LF U2tp Y Pp Yt Ot PV Y

01 . . 0'
+"pkv <u, > +i>kv gk+?*kv U

-
k Yer t P Lth % - (A.1)

Since we are interested in evaluating the time average of i<Pk ¥ _llk>. the

following terms in eciuation (A.1) require no consideration since they vanish

upon time-averaging: <Pk>LF AR _l_)_“(, 'Pk A 2"‘, P"( V. «—“k)LF and P"{ AR gk'
Now

a 1<‘<P> v-‘<u>*>-‘<p> v-‘<u>*>-1<p> 7+ a XU
K k’LF Ye’Lr K’LF Ue’Lr K LF T

+i s v riqs* Lo oa
k’LF " 7 R ™

7 .ty ¥

{
PeLp Y .

i
i 5 > i ~
ay < <Pk>LF VeUu <Pk>LF <V o -g-k>

ol 1
PV a <UD

""l i ! <
+ (Pk>LF JA.k p* n, dA . (A.3)

£ I
I <Pk e <9k>LF>' ' (A.4)
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APPENDIX B
.
DERIVATION OF <°k <Qk>>
We recall that oy * ;k:vgk. Using the decomposition
alee > 4% myg! )
I Telur TRk T Lk (B.1)

where i<;k>u. is defined by equation (5.5.9b), ik by equation (5.5.9¢), and g4
by equation (5.5.9d), and carrying out the indicated scalar multiplication of

the tensor and the dyad V U, , one obtains
Lk =%

Lo 4 o o e , i A
SR PR USRS T T s ST

f ¢ 1 » | I , 3 1
M VLR RN SRR T VAN (B.2)

Following a procedure completely analogous to that detailed in Appendix A, we
obtain

s i 1, J*
(o "4 =, ‘g0 NUOTE +ay o + (WD), (8.3)
where

¢ G B+ Ml o (B.4)
and

(vo1), = v ’<;_k>u,:&k U, n A . (B.5)

Note that the integrand pk n ois a dyad.
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