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ABSTRACT

This study has been performed for the Nuclear Regulatory Commission
(NRC) by the Structural Analysis Division of Brookhaven National Laboratory
(BNL). The study was conducted during the fiscal year 1986 on the program
ontitled "Benchmarking of Structural Engineering Problems" sponsored by NRC.
The results presented herein were developed both at the City University of New
York, under contract to BNL, as well as at BNL.

This report presents a summary of the second year's effort on the
subject of the influence of foundation ground water on the SSI phenomenon. A
finite element computer program, developed during the first year's effort, was
used to study the impact of depth to the ground water surface on the SSI
problem. The formulation used therein is based on the Biot dynamic equations
of motion for both the solid and fluid phases of a typical soil. Frequency
dependent interaction coefficients were then generated for the
two-dimensional plane problem of a rigid surface footing moving against a
linear-soil. The soil is considered dry above the GWT and fully saturated below.
The results indicate that interaction coefficients are significantly modified as
compared to the comparable values for a dry soll, particularly for the rocking
mode of response, if the GWT is close to the foundation. As the GWT moves
away from the foundation, these effects decrease in a relatively orderly
fashion for both the horizontal and rocking modes of response. For the vertical
interaction coefficients, the rate of convergence to the dry solution is
frequency dependent.

Calculations were made to study the impact of the modified interaction
coefficients on the response of a typical nuclear reactor building. The
amplification factors for a stick model placed atop a dry and saturated soil
were computed. It was found that pore water caused the rocking response to
decrease and translational response to increase over the frequency range of
interest, as compared to the response on dry soil.
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EXECUTIVE SUMMARY

This study has been performed for the Nuclear Regulatory Commission
(NRC) by the Structural Analysis Division of Brookhaven National Laboratory
(BNL). The study was conducted during the fiscal year 1986 on the program
entitled "Benchmarking of Structural Engineering Problems" sponsored by NRC.
The study was conducted in part at the City University of New York (CUNV)
under subcontract tc BNL.

This report presents a summary of the second year's effort on the
subject of the influence of foundation ground water on the SSI phenomenon.
During the first year's ef fort, a finite element computer program was
developed for the two-phased formulation of the combined soil-water problem.
This formulation is based on the Biot dynamic equations of motion for both the
solid and fluid phases of a typical soil. Frequency dependent interaction
coef ficients were generated for the two-dimensional plane problem of a rigid
surf ace footing moving against a saturated linear soil. The results indicated
that interaction coef ficients are significantly modified as compared to the
comparable values for a dry soil, perticularly for the rocking mode of response.
Calculations were made to study the impact of the modified interaction
coef ficients on the response of a typical nuclear reactor building. It was found
thci, pore water caused the rocking response to decrease and translational
response to increase over the frequency range of interest, as compared to the
response on dry soll.

For this year's effort, the computer program was modified to consider
the foundation soil as dry above the ground water table (GWT). Again, frequency
dependent interaction coefficients were generated, but in this case with the
goal of attempting to determine the impact of the depth to the GWT on the
computed responses. It should be pointed out that this effort did not include
any effort to (a) increase the size or speed of the computer program developed
previously, or (b) improve the transmitting boundary formulation in the,

j saturated zone to improve computational accuracy.

| The results found from these computations indicate that the computed
interaction coefficients are significantly modified as compared to the

i comparable values for a fully dry foundation soil. This is particularly true for
| the rocking mode of response, when the GWT is close to the foundation level. If
| the pore water becomes essentially trapped within the soil skeleton due to

ix
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permeability, compressibility of.the soll decreases, forcing the pore water to
- sffectively carry a larger portion of the applied structural load. As1the GWT
moves further from the strucuture, these effects decrease in an orderly f ashion
fc,r both th9 hortzontal and rocking modes of response. For the vertical response:

.

r.1 ode, the rate of convergence to the_ dry solution is highly frequency dependent.
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1.0 INTRODUCTION-

f

This study has been conducted at the City University of New York (CUNY)
under subcontract to Brookhaven National Laboratory (BNL). The work was
sponsored by the Nuclear Regulatory Commission (NRC) on the "Benchmarking of
Structural Engineering Problems" program, and was conducted during the fiscal
year of 1986. This report represents a summary of the second year's effort on
the subject of the influence of foundation ground water on the soil-structure
interaction phenomena.

Soil-structure interaction has been, of course, a topic of major interest
for many years in the area of geomechanics. The study of structural response to
seismic inputs has been extensively investigated, and, particularly with the
advent of the growth of digital computer capability, has lead to the development
of numerical methods of analysis which are used as standard tools for the
design of structures. One aspect of the soil-structure interaction process which
has not been developed to the same degree of sophistication is the impact of
ground water (or pore water) on the response of the soil-structure system.
There are very good reasons for this state of affairs, however, not the least of
which is the difficulty of incorporating this aspect into the analysis. One can
consider that the impact of pore water effects is directly controlled by the
magnitudes of the dynamic strains developed in the soil during the interaction
process. At one extreme, at the large strain end of the spectrum, the engineer is
concerned with the potential development of failure conditions under the

structure, and is typically interested with the onset of liquefaction conditions
in the soil. The current state of the art in this area is to a great extent based on
empirical methods of analysis, generated from investigations of limited failure
data from specific sites around the world. The difficulties encountered in this

i area stem primarily from a lack of knowledge of soil constitutive data at large
strains.

:

At the small strain end of the spectrum, the analytic approaches that can
be used to study the impact of pore water are more tenable, and in fact have a
relatively long history, extending back some 40 odd years. To be sure,

i difficulties still exist in this area, and these again are primarily associated
with constitutive properties of real soils. However, with the availability of

|

|
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computer power, realistic problems can be investigated to at least allow
engineers to assess the potential impact of pore water on seismic response. It
is with this latter category that this study is concerned.

1.1 Objective and Scooe of Studv

As is well known, the various methods of seismic response analysis can
be grouped into several distinct categories. In these various approaches, the
structural models used can range from simple stick models composed of linear
beam e!oments to complex finite element models. The key to the adequacy of the
seismic analysis performed, however, is the adequacy of the developed
interaction coefficients used to represent the influence of the soil foundation.
For the one-phase, linear elastic material problem, various procedures are
available with which to generate such coefficients. However, for the case of
saturated soils, no such comparable capability is generally available tu perform
the soil-structure interaction analysis. In the first years' effort on this topic, a
finite element computer program was generated to study the impact of pore
water on the response. It is the goal of this study to generate estimates of the
potential impact of ground water on the soil-structure interaction process.

The basic problem under consideration is shown in Figure 1.1, in which a
linear flexible structure is situated at or near the surface of a soll half-space.
In keeping with typical small strain seismic analyses, the soil skeleton is
represented as a linear medium in which ali potential nonlinearities are at most
lumped together into an equivalent hysteretic damp!ng modulus. The only
additional fact included in this study is that the ground water level is located
at some depth relatively close to the structure, and in a position to impact on
the seismic response of the Mcility. In order to properly determine the response
of this soil / water system, a two phased medium formulation was developed
which treats the response of boti; the solids and water as two separate linear
media which are coupled together through soil permeability effects. Such a
formulation has been developed previously and is available for use in this study.

Since it is known that analytic solutions are available for only the
simplest of configurations, a numerical finite element solution process was
developed, as seen in Figure 1.2. Again, in keeping with typical SSI analyses, in

; 1.2
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i

order to make the finite element approach yield reasonable results, a
comparable transmitting boundary formulation was included in the original
numerical development. The purpose of the transmitting boundary formulation
is, of course, to allow for the treatment of extended soil / water halfspace
problems. However, in the original study, a simple one dimensional transmitting
boundary model was developed.

For this continuation of the program, a restricted effort was considered
on the pore water problem, since other activities took precedence. The primary
focus of this study was therefore limited to only two specific activities. The
first objective was concerned with the development of information on the
offect of depth to the ground water table on the interaction process. This phase
of the study made use of the available computer program, written for the first
years' effort, to generate interaction data as a function of ground water depth
below the structure. A second activity was the beginning effort to improve the
transmitting boundary formulation. To this end, the first half of the two
dimensional transmitting boundary formulation was developed. This analytic
formulation can then be used to complete the numerical development, if further
activites are to be invested on the pore water problem.

|

|
:
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2.0 GOVERNING SYSTEM EQUATIONS

The framework within which the governing system equations are developed
is based upon the classical formulation of Blot (Ref. 5-11) for the general case
of porous, linear elastic, two-phased media. This Blot model provides coupling
between the solid and fluid stress states and includes the effects of fluid
compressibility. Aside from the general three dimensional formulation, this
latter effect is a significant deviation from the standard Terzeghi formulation
that is typically used in standard approaches to consolidation studies. For
completeness of this report, the Biot equations are presented in detail.

Denoting by (u ,uy,u ) the components of displacement of the soil solidsx z
(soil skeketon), and using the standard assumptions of small strain, the
strain-displacement relations can be written as:

U UV + xUxc = cy =

bx bx by

ey cyz= h +"9 (2.1)0"9=v
by by bZ

du , bu . OSc - _ z, c x
bZ bZ bx

Assuming the soll skeleton to possess isotropic elastic properties (included here
for simplicity of the development), the corresponding stress-strain relations
reduce to the simplified form as:

[o - v(ovv + azz)]c = cxv = -xx xx

[ovv - v(azz + oxx)) cvz = (2.2)cy =v

= 1[ozz - v(oxx + 099)] c =h| c zz zx
E Gj

| fn the above equations, the coef ficients E, G and v are Young's modulus, shear
modulus and Poisson's ratio of the soil skeleton. The stresses (o ovz)arexx.,

the stresses sustained by the solid skeleten (the so-called Intergranular or
!

2.1
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effective soil stresses). Of course, the sheer modulus is related to the other two
elastic coefficients by

EG= (2.3)
2(1+v)

|
Equations 2.2 can be simply Inverted to yield -

(a) = [D]{e) (2.4)

where

(0) = (Oxx,099e azzioxvievz,0zx)
(2.5)

|
(e) = lexx,8vvs ezziexvievze ezx)

and
_ _

1 a a0 00
a 1 a0 00

(D) = (2.6)'

00 0b 00
00 00 b0
00 00 0b

-

(1-v)E
E* = (1+v)(1-2v)

b = (I-2""a= ,

(1-v) 2(1-v)

When the effects of pore pressure are included, the bulk (or total) stresses must
also be considered.The components of the total stress tensor are denoted herein
as t i;, where 1,j = x,y or z. Considering a unit volume of bulk material (solid plus
fluid), we denote the components of the fluid displacement vector as (U ,Uy,Uz).x
These components are defined such that the volumes of fluid displaced through
unit areas in the x,y and z directions are (U , fUv,and (U respectively, where fx z

2.2
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denotes the porosity of the solf d skeleton.The flow of the fluid relative to the
solid skeleton, but measured in terms of the volume per unit area of ihe bulk
medium is

f(U - u)e = x xx
wy f(Uy - uy) (2.7)=

u)f(Us = - zzz

The fluid volumetric strain is obtained by Blot as

f'
e = - (O'x + 0*9 0"L) (2.8)+ -

bx by bz

He has shown that the pore pressure can be written in terms of the volume
change of the solid fraction as well as the compressibility of both the fluid and
solid fractions by

p, = - aM(exx + e99 +ezz) + Mt (2.9)

where a is defined as the compressibility of the solid fraction and f1 is the
compressibility of the fluid fraction. The bulk (or total) stress tensor is then
given by

t xx " exx - "Pt t xv " exv
tyy = o99 - apt tvz = oyz (2.10)
tzz " ozz - "Pf tzx = azx

Substituting 2.9 into 2.10 and using 2.4 yields the f ollowing bulk stress
relations

8M(D*]){e) + aM(6)(w) (2.11)(t) = ([0] + a

where (t ) = (txx,tyy,t zz,txv,tvz,t zx)
(2.12)

(w) = (w ,wy,w )x z

and

2.3
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1 1 1 0 0 0
1 1 1 0 0 0

1 1 1 0 0 0 )"
0 0 0 0 0 0 l

'

0 0 0 0 0 0
0 0 0 0 0 0

- _

(2.13)
_ _

b/bx b/by b/bz
b/bx b/by b/bz
b/bx b/by b/bzg) ,

O O O

o 0 0

0 0 0

The kinetic energy per unit bulk volume is determined from

2 2 2
T=( )(o, + o + o,) +g

(pg)(U 6, + o 6 + o,6,) + (2.14)x g 9

2 2 2(* )(6, + 6 + 6,)
9

where

PLn- -

f
f = porosity
p = total mass density of bulk material
pg= fit'id mass density

The energy dissipation per unit bulk volume is given by Blot as

D=( )(6 +6 +6) (2.15)

2.4
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l

t

where
! n = fluid viscosity
; k = soll permeability
;

f We can now apply Lagrange's equations to this system, considering (u ,uy,u )x z
and (w ,wy,w ) as the generalized coordinates to develop the equations of motion.l x z
Considering first the displacements ut, Lagrange's equations are

1( bT ) _ bT = Qt (2.16)
dt 8 'J butt

If we define x and y as the horizontal coordinate directions and 2 as the vertical
coordinate direction (positive down), we obtain the specific equations of motion
as

(0 ) = p0x + pgEx

bT =0
bux

bt . bt xy . bt_ 32 pggxx
Qx

=

bx' by bz

etc. But gx = 99 = 0.Therefore the equations of motion can be written as|

bt . btxv + dt py + p,yxx xz .

I bx by bz

btyx btyy , btV2 pGy + pgG (2.17). =

bx by bz

Otzx + bt zy + btu pg pg . p,g,g,

bx by bz

Similarly, considering the coordinates w t, where 1 = x, y, or z, Lagrange's
equations are

1( bT ) . bD _bpf + pygt (2.18),

dt b6 66( btt

Therefore

2.5
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0- Ef = p,0x + E f-Gx + 34 x !6x f k j

A = p ,0 + E f-G, + 36 (2.19)9 9
by f k

A = pr0z + Elf'z + Es - p t 9z -
bz f kz

Equations 2.17 and 2.19 represent the governing equations at a point in the
two-phased solid / fluid medium. For the special case of a two-dimensional plane
strain condition, these equations can eastly be reduced to yield the following.

bt xx btxV = pu + p,Gx xax by
(2.20)

0tvx + btvv = po, + p,Gy
bx by

while equations 2.19 become
,

Pf = p,0x+ lE i
ax f x+k- x

(2.21)
OPf = p,09 + f_f_Gy + 36-

9
by f k

For the linear problem of interest herein, the gravitational force (or body force)
can be removed since its effect can be obtained by simple superposition of a

-static solution to the dynamic stress state. All displacements and stresses
presented are therefore values in excess of the static solution.

For the two-dimensional plane strain condition, the strain-displacement
relations are

2.6
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e bu /0Xxx x
(e) = ey, buy /bg (2.22)=

exw buy /bx + bu /byx

The corresponding stress-strain relations are
. . .

o 1 a0xx
'

(a) = o99 = Ec a 1 0 (2.23)
_-Ob _0oyx

where Ec, the confined modulus, and a and b are es were defined previousig in
(2.6). From equation 2.9, the pore pressure can be determined from

- aM(exx+*vv) + Mt (2.24)pg =

i'
where

(0*x + 0'W) (2.25) I,= -

bx by

In matrix form, equation 2.24 becomes

T T

b/bx u b/bx w*p , . _ an _n (2.26)x
'

b/bg uw b/bg wy

The bulk stress tensor ts then

t a - "P fxx xx

( (t) = tyy = 099 - apy (2.27)
j 0v |txv x

Combining equations 2.22,2.23 and 2.24 leads to

(t) = (Ec[Dc][D ] + a M(Dz]) N + aM(Og] "d (2.28)
'

2
i -

uy) sy) ;

! where

i

^

2.7
!

+

<

v ya " #------ a- ?y- - , - - - y - g Mgr M =e---e- r' r---t-:v *-N -w-+ ri " 7 - - - - - - - - - ^ - ' - - - -r
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l a 0

[Do] = a 1 0

0 0- b
_

' ~

b/bx 0

[D.]= 0 _b/by (2.29)
b/by b/bx

, _

_ _

b/bx b/by

[Dz]" b/by b/^y
0 0

. _

and a and b are as previously defined. If hysteretic damping effects are to be
included in the problem (as is typically the case in the one-phase soil-structure
interaction anellisis), equation 2.28 can be modified to

"* 0"x/DI{t) = Ee[De][D ) + Ee[0 ][0,)i 3
uw buy /bt

(2,30)

+ a f1( D ] b + at1[Dz3 -
2 "

2 uyJ syJ

where
, _

Ae Aca 0

(D ] = Aca he 0 (2.31)
'

3

0 0 Ab3
, ,

In equation 2.31, the term Ac represents the hysteretic damping retto associated
with hydrostatic compression while A3 represents the hysteretic damping ratio
associated with deviatoric (or shear) strains. It should be pointed out that
although separate damping ratios for the hydrostatic and shearing stress states
are not usually used in SSI analyses, it is more probable that for typical soils
these two ratios should in f act be dif ferent. The primary purpose for including j
this capability at this stSge of the study is to improve the capability of the !

developed computer program. Numerical results will be generated at a later time

1
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to ascertain the impact of this effect. |

Considering steady state solutions for this linear problem, we will use the
~

general notation (unless otherwise Indicated) of a super-bar to Indicate the
complex amplitude of a parameter. Thus, we use the form

(u) = (0)e (w) = (s)e etc. (2.32),- ,.

and at the same time define the parameters e = 0x/Ve and 6 = 09/Vc as the
dimensionless space coordinates. In addition, the following parameters are also
defined:

Ee aM
Ve =

N = PL (2.33) ,

f
"K=

Ec + a*H

With the aid of equations 2.32 and 2.33, equation 2.26 becomes
T I

, , aMO b/be 02
U b/b6 0c 9

(2.34)
T

. MQ b/be Wg

Ve b/b6 Gy

Equations 2.30 become -

Ee} Ee00n(t) = ( Ve j[Dc][D ](0) + 1 Uc j(D,.,][D ](0)4 4
(

(2.35)
+ " UN

[Ds](0) + (D ]{s)""
5

( Uc ) ( Uc J
.

:where
;g

k.' ,

'

'

g.
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,.

~ ~

b/be 0-

.[D ] = 0 b/be (2.36)4

_ b/be blbe_
~ ~

l 1 0-

[0 ] = 1 1 0 (D ] (2.37).5 4

0 0-0
, ,

With the aid of equation 2.35, equations 2.20 can be written in matrix form as

(D).{ c [Do][D ](0)4 4

LPU)c
|

2+1 (0 ][D ](0) + (a K)[Dsl(U) (2 38)3 4

V(P e)
+(aK)[Ds]{G)}+(0)+N(s)=0'

Similarly, with the aid of equation 2.34, equations 2.21 can be written in matrix
form as

((aK)(0)+K{s))
7

(2.39)

+ N(0) + (n)(s) - I (pkoj(G) = 0-
(D)

(f)

,
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3.0 FREE WAVE SOLUTION

As stated previously, the principal f ocus of this study has been the
attempt to determine the effects of ground water as a function of depth to the
ground water table, with the overall goal being to estimate when ground water
ef fects are negligible. Numerical finite element solutions will be presented for
this problem in the next section, but as would generally be anticipated, the
numerical results will be limited to the particular configuration analyzed. In an
attempt to generated a more general result, an analytic solution is presented for
the free wave solution to the wave propagation problem. This solution has the
added advantage of being available f or the development of an improved
transmitting boundary formulation at a later date.

The sr:cific configuration considered is shown in Figure 3.1 and consists
of the two dimensional plane strain elastic halfspace with the ground water
table (GWT) located at a depth H below the ground surf ace (GS). We now proceed
to develop solutions in each zone, with the goal of matching solutions by the
interf ace conditions at the depth H.

3.1 General Solution For Saturated Soil

For the saturated zone of this half space, the equilibrium equations are
given by equations 2.20 and 2.21, with the corresponding stress-displacement
celations presented in equations 2.26 and 2.27. These equations are combined to
yield

G(u ,xx+ u ,yy) + (G+A*)e,x - ant,x = p0 p,0+ xx x x

G(uy,xx+ u9,yy) + (G+h*)e,9 - aH(,9 = p0 9 p,09+

(3.1)
(ane - M(),x = p,0x + nG +(q/k)Gx x

+ m0 +(q/k)U(aMe - M(),9 = p,09 9 9

3.1
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where e = (u ,x + uy,y)x
(3.2)

C = - (*x,x + 8vsv)
and.

2m = p,/f. A* = A + m M

- - ~ -

y 1-v
c, Ee = EA"

_ 1+v)(1-2v)_(_1_v,

Potential functions ($ ,6 ) and (92,9 ) are defined in the usual way such that the2 3 3
displacement components are expressed as

ux = o ,x tz,9 x = $ ,x - '3,9r s-

3

(3.3)
uw = 6 ,9 + tz,x wy e ,v + '3,x=

2 s

and

e = (eg,xx + eg,vy) ( = - (e ,xx + 6 ,99) (3 4)s 3

Substituting 3.3 and 3.4 into 3.1 leads af ter some manipulation to

8 8(A*+2G)V e + aMV 6 = po,,u + p, $ ,ggz 3 3

(3.5)
GV'ez = p t,, + p, t,,zz

and

2 8 = p r z , u + *e3, t t + (n/k)e3,(aMV 0: + MV 6 e3

(3.6)
p f *z , t t + "3, t t + (q/k) = 0 ;

1

For the purposes of convenience, equations 3.5 and 3.6 can be written in matrix !
form as

3.2
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I

_ _

(h*+ 2G) an [h1-7
an n

_ le3J
_

(3.7)
_- -

O_t\ +

.

0h
(q/k) [(o3] , t

0P Pt 0 t
0_ p, m 0 ) ,t t

_3 __

and
__

_
0 , [g3 j

G 0 gyz ,

0

(3.8)
_

_[h1
_ _

[e lP Pt 0 0 t.

_ p r = _ (+3f , t t
_ (n/k) _ l+3] , t0

Equations 3.7 and 3.8 are the wave equations for the dilatational and distortional
propagation in the fully saturated soil system. It is easily shown that these
waves are uncoupled.

'

Assuming now a plane wave traveling in the x-direction, the potential
functions (o ,0 ) admit the solution in the exponential formr 3

(9)e, 4, ,II(ut - px) +
-

(3.9),

II 03 3

( By substituting equation 3.9 into 3.7 leads to
?

(q2)I 2 t 8 t(-(A*+2G)A + pu ) (-anA +p,u )

f f=0 (3.10)g 3
{-MA +mu -| E ')2 t Z t

( {-anA +p,u )
(kj (43j

where A* is defined as'

= (p -(8) (3.11)2A8

I

L

<
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The nontrivlel solution for (4 ,6 ) requires that the determinent of 3.10 vanish,
_ 2 3

leading to the following relation

[M(h+2G)]f VA
-

|

(uj

2

+(2=Mp, - pn - (h*+2G)(m-1 q '])(A , (3.12)
(3 3

-

-

(kj. (uj

+(pm - p -I
(ku)] = 0

.The solution to 3.12 leads to

2
(A3

i - =A B (3.13)
(usi,2

where
I

2n(+2G){(2ap,-p)-(h*+2G)(m-1 ))A=-

2n(h+2G){0i+10}'''
IB= 2

and
- -2 i

0, = _(2ap,-p)n - (h*+2G)m,
- 2 - -

(h*+2G) D- in(h+20)(pm-p )- -

| _
(kuj_ 1

;

/2 Yl
(kuj-((2ap,-p)n - (h*+2G)m)(h*+2G) + 2pM(h+2G)0: =!

From equation 3.11, the eigensolution for & is then given by !

I

i

l

3.4
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-1/2-

f T'"
(1,2 P 1- (3 14)"

(PBs,2)
_ _

where

ai,2 = (3.15)
A ,2i

Substituting this eigensolution into equation 3,10 leads to the "shape functions"

S ,2 (3.16)tz = 4 i3

where
, ,

(
all,

A - pg
( J '2

8 er - -

(9
- -

t .

, _A ,p - (As.20)
(u)l,2

_ ,

In a similar f ashion, solutions for the distortional wave can be obtained bg
assuming a solution in the form

(y1
f ,II(ut-p=)+Cv1 (3.17),

's Is)

Substituting 3,17 into equation 3.8 yields the matrix equation
~

fy23
-

,

2 t t(-GP +pu ) pgu

f f=0 (3.18)g
pgu (au -l - )

|
qkj Qsj

_ _

I
| where P is defined as
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f
' ;:
p

!

P8 = (p* - (8) (3.19)

! The eigen equation leading to a nontrivial solution is
. .

2' (n 3.

\ 2 pr - ap + IP -
'

fp3 (kuj
; =- J- (3.20)-i - ,

!
_

f Ttuj
G -a+1 a

-

(kuj,_

| end the corresponding eigen vector given by
.

|
f =6 f (3.21)3 3 t

where
1

- _

2
- G,

p3(
+p :

=- - \") - (3.22) {8 3

f

and from the definition of equation 319
;

5_ _

r 3

(3.23) f(3 = p 1 - | ,6) _
'

_ (P

where

5=(1) (3.24) |
.

P F

:

Thus the potential solutions for this free wave problem in the saturated zone can j
be written es i

)

f

!

|
>
>
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?

-. _ _ _ _



_. - -_ _

:

,

,

( A e '" +- Az e '"] e6: = i

(S A e '" + 6:Az e '"] e63 =
i i

(3,25)
g (i(ut-px))

tz = [ Be ,y ]e ,

g [I(ut-px)]
= [6 Be ,9 ]e9 3 3 ,

Substituting these solutions into the potential definitions of equations 3.3 and
'

the stress-displacement relations of equations 2.26 and 2.28 leads to the'

following relations:

~~ '

~ 3(ut-px)
l p(A e ,9+AzeC C , yT

(i )+(3Be(,g .u =
_e .

_

x
.

il(ut-px)"
q(gA e(,y+(zAz (,gj-IpBe(,9'

eU =y _e ,
_

i
-

,

(3.26)

. l(ut-px).
-

i
-

x ,

|p[$ Ag e(, y+$r Ar(,y g

j+6(3Be ,y
8 *~e

3
e 3

~

,

- -

3. .

6,(, A e(,9+6 ( Az (,9) - Ip6 Be ,g
.|(ut-px) g '

8W _ _

" e t e 3
i

i

and
' P 'N

t xx " * { -(2GP* + ( A*+al16 ) A 2]A e3 i i

8 89-(2Gp +(h*+ah6:)A 8] Age

+1(2Gp(3]Be 89 )

4
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. III# ~Pd l ((2Gp -(2G+A*+=MS )Ai ]A et 8 'N
tyy i i

8 2 *+(2Gp -(2G+A*+=MSz)Az ]Az e

*-l[2Gp(3]Be ) ,

(3.27)
i

' 'E 'U 89{-[12Gp(i]Ae - (12Gp(z]Aztxy =e i e

-[p +(8]Be 89 )8

'9~

(((a,+6)A 8]A epg =e i 3 i 3

)2 8
+((a+S )Az ]Az2 e

3.2 General Solution for Dry Soil

A similar solution can be generated for the case of a dry, single-phased
soil, which would apply for the upper soll zone, The solution can be obtained for

_

the saturated solution by setting it, p, and n equal to zero. The equations of
motion are

G(u ,xx + u ,99) + (A+G)(u ,xx + u ,xy) = p u ,((x x x w x
(3.28) ;

G(uy,xx + Uy,99) + (A+G)(u ,xV + UV, VV) = p Uy, (( )x

Assuming again potential functions eiand vi defined as

(3.29) [u = ei,x - v ,9 and uy ei,9 + t i,x=x i
t

!

!

3.8
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equ'ations 3.28 reduce to uncoupled wave equations for the_ compressional and
distortional modes of motion as 1

<

af V 6 .= *i,tt8
3

(3.30)
02 V'+, = wi,tt

i where
2 ?. + 2G 2 0

St=-at = ,
P P

In a slmtler f ashion, equations 3.30 admit solutions of the form
'

i,

6 t (l(ut-px)+qr)i, ,

si t i

The solutions to equations 3.30 can then be written as- ,

:

ei=Re'99+ A e99 f3 4

(3.31)
.

Ei=Be-99+ Br Di e
.

Where :

I
- _1/2

"r=p 1-( )2 !

!
_

P "L
_

(3.32) I.

f
- t/2

"q=p 1-( )* ;

.
POL

_ ;

The stresses and displacements for the case of dry soil can then be written as
,

;

i

3.9 |
>
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l

. _ _

{(h(r-p)-2Gp*] Ae +A e"UP 8 8t "* ,3 4 ,xx-

_ _

-D D
_i , )-l(2Gpq) Be -Bre

{(h(r-p*)+2Gr] Ae +A e"U
~ '

8 8tyy =e 3 4

(
~

|
+1[2Gpq) Be -Be )i 2

(3.33)

txv =e {l(2Gpr) Ae + Ae3 4

- G(q +p ) Be^D+B eD }2 8
i 2

l

and !

(l(ut-px)]{-lp
~ ~

_A e-ry+ A eeyux "e 3 4 ,

+q B e'""+ Br " )i e

(3.34)
~E

uw =e {- r A e'""- A e""3 4 ;

)

- Ip B e ""+ Br "" )
'

i e

i
i
I

t

3.3 Coupled Solution

A solution to the free travelling wave problem can now be obtained by
combining the solutions for the two zones presented above.These solutions are ;
written in terms of the seven parameters A , A , and 8 from the saturated )i 2

solution and A , A , B and B2 from the dry solution. By sultet,19 applying the3 4 i
ground surf ace and interf ace boundary conditions, the coupled solution can be j

generated.

3.10
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At the free surf ace, in the dry.soll, the vertical stress tyy and sheer
stress t xy are zero. From equations 3.33, two relations can be obtained as:

(A(r -p )+2Gr ][A +A ] + |(2Gpq][B -Bg] = 0 (3,35)i 8 2 8
3 4 i

and

1(2pr][A +A ] - [q +p ][B +B ] = 0 (3.36)2 2
3 4 i

At the interf ace between the two zones, the matching conditions are obtained by
equating the horizontal and vertical displacements u and uy, as well as thex
vertical and sheer stresses. Equating horizontal displacements at y = H, we
obtain

- Ip (A e " +A e" ] + q (B e ""-Br " ]
' '

e3 4 i
(3.37)

= - Ip (Age ' +6 A e * ] - ((3Be * ]4 g

while equating vertical displacements leads to

- r(A e " -A e" ] - Ip(B e " +Br ""]
' '

3 4 i e

(3.38)
(&i+(z 4)R e '" - Ip(Be *"H]S= i

Equating the total vertical stress at y=H, we obtain

(q +p )(A e ""+A e" ] + i(2pq)(B e ""-Br ""]
'

2 8 e3 4 i

2p - 2+ h*+aMS,S2g2)(Ae' ) (3.39)
I

={ 2p*- 2+h**"U8 A + t
i

. L G J _ _ \ G j

-| {2p(3Be*)

3.11
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while equating sheer stresses leads to

-|(2pr)(Ae"" R e ] - (q +p )(B e #+Br #]
'

8 8 e3 4 i

(3.40)
= - 12p(Ci+(r6 )(R e''"] - (p +(!)(Be '"]8

4 i ;

The seventh condition is obtained by setting the pore water pressure equal to
,

zero at the depth H, the location of the GWT.This leads to the relation

' 8R =6e (3.41)4

where
("*0')A'64= -

8
_((a+6 )A2 .

These seven conditions are in turn reduceable to a set of six homogeneous
algebraic equations which can be placed in matrix form as follows:

R ; X; = 0 1,j = 1 to 6 (3,42)i

where the nonzero terms are

Rit=[1+(q/p)8]exp(rH) Re=2(q/p)exp(qH)i
Ri3=[1+(q/p)8]exp(-rH) Ri4=-2(q/p)exp(-qH)
Rei= 2(r/p)exp(rH) Re =(1+(q/p)8]exp(qH)
R3=-2(r/p)exp(-rH) R4=[1+(q/p)8]exp(-qH)
R ,=(1+(q/p)8] R:=2(q/p) R33=R3 3 3

R34=-R : R ,=-2(r/p) R :=R ,4 33 4

R45=(2/p)((i+(6)R43=2(r/p) R44=R33 4

Asi=1 Ast=(q/p) R53=1
R ,=(r/p)Rs4=-(q/p) Ass =-(1+6 ) 34

R :=1 R33=-(r/p) R34=13

R s=(1/p)((i+( 6 ) R33=-13 4

Ass = {-2(1+6 )+(2+( A**"00')]( A )8 +(2+( A***"I } ]( A )8)L L
4

G p G p

3.12



For a given set _of problem parameters (such as sheer modulus, Poisson's
ratio, soll density, soil porosity, soil permeability and water compressibility),
the solution to equations 3.42 can be obtelned for a given frequency, u, and wave

; number, p; that is, the value of H which satisfies the six equations can be-
_ determined. The specific procedure to obtain this solution is a trial and error
process and is still being investigated for typical values of soll parameters.
Equations 3.42 can be simplified for the specific case of zero soll permeability,
T), that is, assuming that the water is confined to move with the solids. The
objective of the numerical procedure is of course to develop information in a
form which can indicate how effects of the ground water decrease as the depth,
H, increases, such as_is shown in Figure 3.2.
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4.0 FINITE ELEhENT C ALCUL ATIONS

In order to develop solutions for interaction coef ficients, e variety of
calculations were made using the finite element computer program developed
previously (Ref. 1). For the two-phased soil-fluid system, the governing
equations of Section 2 were discretized into e set of nodal equations for the
displacement parameters (u, and u, for the two dimensional problem) and the
relative water displacements (w, andw ). For any given frequency of steady state
motion, the numerical solution is obtelned, from which the corresponding soil
and water stresses can be calculated.

The specific problem investigated is shown in Figure 4.1. A rigid surf ace
footing of width 2e is located at the surf ace of the elastic helfspace and moved
in the three coordinate directions (horizontal, rocking and vertical modes) in a
steady state menner, from which the total forces developed on the footing ere
calculated. The corresponding influence coefficients are then determined as a
function of frequency of the steady state motion. All the date genereted is then
plotted es e function of dimensionless frequency, which is defined by

A=a0/V (4.1)3

where e is the half footing width, O is the input frequency of the steady state
motion and V is the sheer wave velocity of the dry soII.The specific properties3

of the soil and water used in the calculations are defined in Figure 4.1.These are
typical for a relatively stiff silty sand.

As mentioned previously, the primary goal of this numerical :tudy has
been to determine the influence of the depth to the ground water table (GWT) on
the standard interaction coef ficients. In the previous study (Ref.1), calculations
were made for the two cases of either fully saturated soil (GWT et the ground
surf ace) or dry soil (GWT et infinite depth). In this study, the computer program
was modified to allow for placing the ground water table et verlous depths,
considering the soll above the GWT es dry. In all the calculations performed, the
simplified one-dimensional transmitting bounderg originally developed for the
previous study was used. As will be seen in some of the following date, this

4.1



simplif ted ' transmitting formulation is reasonably adequate for these
calculations. However, in studying more realistic problems, en improved two
dimensional formulation is required. The developments outlined in Section 3
would be would be of significance in such a development. Unfortunately, the
scope of this study did not allow for this added development.

Calculations were performed with two meshes for this calculation, the
shallower mesh, Model 1, of Figure 4.2 end the deeper mesh, Model 2, shown in
Figure 4.3. In both cases, the bottom and side boundaries are subjected to the
one-dimensional transmitting boundary condition mentioned above. 0bviously, the
required symmetry conditions are applied on the lef t boundary.

4.1 Calculations With Model 1

The first mesh, Model 1, is rnado up of uniform rectanguler elements,
fourteen laterally (B/A = 7) and eight vertically (D/A = 4). Based upon previous
calcuations, this mesh is adequate to treet wave propagetton up to e
dimensionless frequency of 2.5 to 3. All calculations presented herein are thus
limited to e maximum dimensionless frequency of 2. Calculations were then
performed for a verlety of configurations, moving the GWT from the ground
surf ace to e depth specified by H/A = 3.5 (seven elements below the footing.
Figure 4.4 presents horizontal interaction coeffletents (stiffness and demping)
for a verlety of the depth to the GWT. As may be noted from the lower figure, the
demping coefficient rapidly decays from the fully saturated case to the dry case,
until at a depth rotto of 1.0, the demping coefficients are essentially identical to
the dry problem. From the upper plot of Figure 4.4, however, it may be noted that
the horizontal stiffness coefficient does not es quickly converge to the dry case.
Similar date is shown in Figure 4.5, which shows additional results for the lower
depths to the GWT. As con be seen, the demping coefficients still show the
Independence with the GWT et these depths, with the stiffness coefficients
essentially showing relettvely uniform results below a dimensionless depth of
2.0.

Similar date from Model 1 for the rocking stiffness and demping in Figure
46 and 47. As may be noted, the demping essentially approaches the dry dote et
depths below 0.5 while the rocking stiffness converges to the dry case et depths

4.2
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t

i
;

of 1.5. The small differences et the higher frequencies probably are unreal if
actual material demping ef fects were considered in the calculations. All the date ;
et the deeper depths shown in Figure 4.7 show essentially complete agreement

'

with the dry data et depths below 1.5.
,

Unfortunately, no similar simple conclusions een be developed for the
.

vertical interaction coef ficient, the results for which are shown in Figures 4.8
and 4.9 for the various depths to the GWT. At low values of dimensionless
frequency, below a value of about 0.8, the demping coeff tetents are reasonably !

close to the fully dry case. At higher frequencies, however, the demping [
coefficients are significantly dif ferent from the dry date. A possible explanetton !

can be the following. At shallower depths to the GWT, the demping coefficient is
higher then the dry case, indicating that the energy loss through the water-soll

,

coupling (through soll permeability effects) is important since soll/ water
,

relettve motions are larger. At the lower depths to the GWT, however, the water
~1nterf ace may prevent radiation energy loss usually associated with the dry |
helfspace. But at the same time, energy loss due to permeability may be small
since the relettve motions between water and soll at these depths are smell. In t

any case, the energy loss associated with this vertical motion is composed of
two Prts, one due to relettve soll/ water movements and the second due to :
radiation effects.The specific emount of each is apparently frequency as well as :

depth dependent.. i

i
r

i 4.2 Calculottons With Model 2
[

As noted from Figure 4.3, the mesh of Model 2 extends to e depth fif ty [
percent deeper then that of Model 1, with the same side boundary location. |

'

t Ageln, one dimensional transmitting boundary conditions were applied at the
bottom and side boundertes.The primary goal of these calculettons was to see if
the vertical coeffletents settle down to the dry data et these deeper depths.

,

First, however, a comparison between the meshes was investigated to see if the |
transmitting boundary is edequate enough to compare these data between the two '

meshes. The horizontal interaction coef ficents are shown in Figure 4.10 for the
,

( two cases, both with the GWT et a depth of 3.5A. Both the demping and stiffness
coefficients are adequetely replicated by this boundary, with the dif f erences in
the stiffness coeffletents associated with a gross frequency of the mesh.

>
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The comparison of the rocking date is presented in Figure 4.11. As may be
noted, et the higher frequencies of interest, the results are good. However, below
the dimensionless frequency of about 0.8, the boundary effects appear to be
important. The demping date is reasonably good over the entire frequency range
of interest. Both of the vertical Interaction coefficients show excellent
agreement over the entire frequecy range of interest, es seen in Figure 4.12.This
indicates that under a vertical loed, the bottom boundary primary moves in e
one-dimensional mode and the one-dimensional formulation is reasonable. Since
the vertical problem is the primary purpose of the extended calculations, it is
felt that comparisons for the deeper depths to the GWT ere adequate for these
purposes. However, as mentioned previously, the improved two dimensional
soll/ water transmitting boundary formulation is required for specific response
calculations.

A comparison of the deeper results is shown in Figure 4.13 for the
horizontal interaction coefficients. Since it was already concluded that below a
depth of about 1.5, the influence of the GWT are small for this problem. The
differences that may be noted between the dry case and the results from Model 2
con be escribed entirely to the boundary effects as discussed previously, since
the results for the dry case were developed with Model 1. A similar conclusion
can be reached for the rocking date, shown in Figure 4.14. Again the differences
et the low frequency is due to boundary effects.

The vertical date, which shows little impact of the bottom boundary
formulation, is presented in Figure 4.15. As can be noted, the stiffness data
shows good correlation at depths below a value of about three.The demping date,
although showing reasonable correlation at these depths, still shows indications
of dif ferences et the higher frequencies of interest, as previously discussed.

<

<
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of this study indicate that pore water ef fects can play a
significant role in the soil-structure interaction process. Based upon the
calculations presented in Section 4, the following conclusions can be drawn.
First, if the ground water table is located at the depth of the foundation, the
pore water causes the horizontal interaction coefficients (both stiffness and
damping) to increase by more than 50L As the GWT moves away from the
foundation, this ef fect decreases. At a depth retto of 1.0 (depth from the
foundation to half width of foundation), the damping coefficient approaches the
dry case while stiffness coefficient reaches the dry case values at a depth ratio
of about 2.0. Similar results for the rocking case indicate that the damping
coef ficient approaches the dry value very rapidly, at a depth ratio of 0.5, while
the corresponding stif fness coefficient converges at a depth ratio of 1.5.

For the vertical mode of response, the results are not so clear and can be
considered as frequency dependent. Based upon the results generated to date,it
appears that below a depth ratio of about 3.0, the stiffness coefficients seem to
converge to the dry date. However, the damping data, contrary to the behavior
noted for the other coef ficients, does not seem to converge to the dry solution,
but rather to oscillate about it. This may be due to the effect of the GWT in
preventing radiation effects away from the foundation. At the lower frequency
range (dimensionless frequencies less than about 1.5) the damping appears to be
similar to the dry case. At the higher frequencies, however, the results are not
as conclusive.

As recommended in the previous study (Ref.15), it is suggested that
future work concentrate on the development of a two dimensional transmitting
boundary formulation.The results developed herein indicate that the simpler one
dimensional approach, although adequate to Investigate general trends in the
computations, is not adequate enough for the detailed capabilities required in
calculations associated with an actual f acility. It is recommended that the
approach follow the developments presented in Section 3 of this report. With the
solutions which can be developed from these calculations, the formulation will
be relatively straight forward. The computer results will be significantly
enhanced with this major improvement. With this improved formulation, further
numerical results can be generated to essess the impact of pore water on the

5.1
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interaction process.

An area of important consideration is to use the results of these linear

calculations to investigate the potential impact of soil liquef action on
structural response. Even though the liquefaction problem is a highly nonlinear
process, the results of the linear calculations can be used to estimate where

under a given foundation the pore water effects can be important. This data,
combined with the more empirical data available for liquef action based on soil
type, such as that presented in Refs. 36 and 37, can be used to judge if and when
liquef action can be en important issue.

;
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This report presents si . mary of the second year's effort on the subjec1
of the iafluence of foundation ground wat on the SSI phenomenon. A finite element compu-

r's effort, was used to study the ir. pact of*ter program, developed during the first '

depth to the ground water surface on th Sb problem. The formulation used therein is
based on the Biot dynamic equations of .otio for both the solid and fluid phases of a
typical soil. Frequency dependent in 'ractio coefficients were then generated for the
two-dimensional plane problem of a r'gid surfa ' footing moving against a linear soil.
The soil is considered dry above th CWI and fu y saturated below. The results indicate
that interaction coefficients are gnificantly dified as ccmpared to the comparable
u lues for a dry soil, particular for the rocki.> mode of response, if the GWT is
close to the foundation. As the VI moves away fr the foundation, these effects Je-
crease in a relatively orderly ashion for both the orizontal and rocking modes of
response. For the vertical i eraction coefficients, the rate of convergence to the dry
solution is frequency depende t.

Calculations were made to tudy the impact of the mo fied interaction coefficients on
the response of a typical clear reaction tuilding. T1 amplification factors for a
stick model placed atop a ry and saturatcd soil were co sted. It was found that pore
water caused the rocking esponse to decrease and translat )nal response to increase
over the frequency rang of interest, as compared to the re onse on dry soil.

i. c,ocuvis, . 6,sts . . .s v.o os c .a.,voas ,s 1v,.,.

saturated soils, f ndations, pore water, impedances, interact n,
parameters Unlimited
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