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ABSTRACT

In a study conducted for the Nuclear Regulatory Commission by Pacific
Northwest Laboratory, the sensitivity of through-wall crack probability to
input distributions was studied. Flaw growth characteristics were evaluated
for three pressurized water reactor plants (Oconee 1, Calvert Cliffs 1, and a
hypothetical plant similar to H, B. Robinson 2). Three postulated pressurized
thermal shock (PTS) transients were considered for each plant. This report
describes the results of material and flaw distribution assumptions on
calculated conditional failure probabilities for the three reactors under
postulated severe PTS transients., The reasons for the predicted sensitivities
are evaluated and are related to requirements for defining input distributions
for probabilistic failure predictions.
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SUMMARY

In a study conducted for the Nuclear Regulatory Commission by Pacific Northwest
Laboratory, the sensitivity of through-wall crack probability to assumed input
distributions and assumed flaw characteristics was evaluated for ‘hree
presurized water reactor (PWR) plants and three postulated pressurized thermal
shock (PTS) transients for each plant. This report describes the effect of
material and flaw distribution assumptions on calculated conditional failure
probabilities for Oconee 1, Calvert Cliffs 1, and a hypothetical H. B. Robinson
2. The calculated probabilities are presented as a function of effective
full-power years (EFPY) or as a function of reference temperature for the nil
ductility transition (RTN ). The reasons for the predicted sensitivities are
evaluated and related to Punirements for defining input distributions for use
in probabilistic failure predictions,

Probabilistic calculations give an indication of relative failure probabilities
for selected conditions of interest. This study has shown how the absolute
failure probabilities are affected by specific assumptions made in the
calculations. The most critical uncertainty in making probabilistic failure
estimates was found to be the lack of knowledge about the flaw depth, length,
and position within the vessel wall, Critical review of these flaw assumptions
is recommended when evaluating results from failure probability studies.
Uncertainties in material property distributions were found to be less
significant than were the flaw uncertainties. Simulated parameters for
materials properties generally did not deviate from assumed mean values by more
than two ctandard deviations for cases of initiation. Therefore, knowledge of
these distributions in the tails beyond two standard deviations is not required
for the failure probability calculations. Analyses of initiation events
indicated a transition from failures caused by brittle materials and shallow
flaws at high failure probabilities to failures caused by ductile materials and
deep flaws at low failure probabilities,

Increases in the uncertainty in the copper content and fracture toughness
resulted in significant increases in the calculated failure probability. These
increases in failure probability were less than one order of magnitude.
Comparisons of finite length flaws to infinite flaws, buried flaws to surface
flaws, and inspected vessels to noninspected vessels each resulted in about two
orders of magnitude decrease in the calculated failure probability. The
assumed trend curve for predicting the irradiation shift in the RTN was found
to have a sianificant but not dominant influence on the calculated 9111ure
probability.

At Tow fluences, ductile initiation of deep cracks was predicted; whereas at
high fluences, brittle initiation of shallow cracks was predicted. Failure
probabilities less than 107% were characterized by cracks deeper than 2.5 in,
and by copper contents that were near the assumed mean values. Failure
probabilities greater than 10™“ were generally characterized by cracks
shallower than 1 in.

The copper content was the only material property that sometimes required
knowledge of the distribution beyond two standard deviations of the mean. At
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intermediate failure probabilities, the average copper content for the
simulated initiations exceeded two standard deviations above the mean for a few
cases., The simulated fracture toughness values for an initiation event were
typically about one standard deviation, and never less than two standard
deviations, below the mean,

The assumptions of fiaw length, position within the vessel wall, and inspection
had strong influences on initiation probabilities and also influenced crack
arrest after initiation. Finite length flaws compared to infinite-length flaws
required greater material embrittlement to achieve comparable failure
probabilities because of pinning constraints at the flaw ends. Buried flaws
did not initiate as readily as surface flaws because they had a lesser driving
force for initiation and were not as frequently within the near inner-surface
embrittled region. When the flaw size distribution was modified to account for
in-service inspection, the initiations and hence failures were reduced because
the assumed population of flaws was reduced.
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1.0 INTRODUCTION

Pressurized chrmal shock (PTS) is an event that induces thermal stresses in
addition to pressure stresses during rapid cooling of a pressurized water
reactor (PWR) .essel, At sufficiently low temperatures and high pressures,
there may exist a significant probability that a crack in a vessel may
propagate through the vessel wall. The probability of through-wall crack
propagation is determined by the driving force for crack growth and by the
fracture resis.ance of the vessel wall, The driving force is caused by thermal
and pressure stresses; the fracture resistance is a temperature-dependent
material property of the vessel wall. Thermal and pressure stresses are a
function of the transients in inner-wall temperature and pressure, Fracture
resistance is a function of wall temperature, irradiation exposure (i.e., a?e
of the plant), material chemistry, material form (i.e., plate or weld metal
and the initial unirradiated fracture resistance.

Probabilistic fracture mechanics methods are used to estinate conditional
failure probabilities aiven that a particular transient occurs. Distributions
in material properties and flaw sizes are input parameters, The Vessel
Integrity Simulation AnaTysis (VISA)! and Over-Cooling Accident Probabilistic
(OCA-P)? codes are Monte Carlo computer codes that have been used to calculate
through-wall crack probabilities for the transients of the Integrated
Pressurized Thermal Shock (IPTS) program.?"5 The OCA-P code is being used by
Oak Ridoe National Laboratory (ORNL) to estimate the integrated risk from
postulated transient(syents. The VISA code is being used by the Pacific
Northwest Laboratory'® 'to evaluate assumptions about input distributions and
also the calculational methods of the probabiiistic analyses,

This report describes results of VISA sensitivity calculations., Assumptions
made in the [PTS through-wall! crack probability estimates were evaluated.

Three representative severe transients for each of the three plants (Oconee,
Calvert C11ffs and H B, Robinson) were examined. The postulated transients
were provided bg-ORNL and the dominant events in the IPTS study for Oconee and
Calvert C1iffs.*"“ The VISA calculations for H. B. Robinson were made before
the IPTS study was completed.® Therefore, the transients examined for the
hypothetical H. B. Robinson vessel were not the dominant trancients reported by
ORNL. Each sensitivity was evaluated for irradiation exposures ranging from
the early l1ife exposure to the end-of-life plant exposure as expressed in terms
of effective full-power years (EFPY), The hypothetical H. B. Robinson vessel
was evaluated beyond a realistic end of life to study sensitivities up to
reference temperature for the nil ductility transition (RT ) values near the
PTS screening criteria.® Longitudinal flaws were evcluateuDIn each case,

Uncertainty in material properties and flaw assumptions were evaluated, The
method of estimating the RTNDT and the uncertainty in estimating the copper and

('Ibperated for the U.S. Department of Energy by Battelle Memorial
Institute,



nickel contents of vessel welds were evaluated. Uncertainties in crack
initiation toughness and crack arrest toughness were alsc examined., Flaw
assumptions, such as the flaw length, initial flaw position within the wall,
and inspection effectiveness also were varied in the calculations to evaluate
their influence on through-wall crack probability.




2.0 BASES FOR SENSITIVITY CALCULATIONS

2.1 VISA CODE

The Vessel Integrity Simulation Analysis (VISA) code is a Monte Carlo computer
simulation of through-wall crack probability given a transient event., The code
calculates conditional failure probability based on random selection of
parameters from assumed input distributions, For each set of .imulated
parameters, the driving force for crack propagation is compared to the material
resistance for crack propagation. If the driving force is larger than the
resistance, the crack is assumed to initiate and propagate through the wall
until it either arrests part way through the wall or propagates through the
wall. A simulation that results in through-wall propagation is counted as a
failure. A simulation that does not predict through-wall propagation is
counted as a nonfailure. After a predetermined number of simulations, usually
one million, the number of failures is divided by the total number of
simulations to obtain the conditional failure probability for the given set of
assumptions,

2.2 INPUT DISTRIBUTIONS

Two categories of input distributions were evaluated: material property
distributions and flaw distributions.

Fracture resistance is estimated through a series of relationships that
describe the influence of weld chemistry and neutron exposure on the expected
fracture toughness. Uncertainties in parameters in these relationships result
in uncertainty in the final estimate of fracture resistance. The fracture
resistance is calculated from knowledce of the material temperature and the
material RTNDT‘ where RT T is the nil ductility transition reference
temperature,  The materig? RT is calculated from statistical trend equations
that express RT 725 2 functqg; of copper content, nickel content, neutron
exposure, and tNB initial unirradiated RT, .. A1l material property
distributions are assumed to be normal digelibutions.

The flaw distribution is obtained from evaluations of the probability of
occurrence of flaws for a range of depths. In addition to the flaw depth
distribution, there is uncertainty in knowing the flaw Tength and the flaw
position., If a weld has been subjected to inspection and repair of flaws after
fabrication, then the flaw size distribution has to be modified accordingly.

2.2.1 Material Property Distributions

The copper and nickel content of pressure vessel welds has been determined from
weld chemistry studies. In particular, the Babcock and Wilcox (B&W) study”’
indicated expected variations in copper and nickel content within a given weld,
A representative standard deviation of copper within a2 weld was determined to
be 0.025% copper. A representative uncertainty hased on all welds made from
copper-coated electrode wire was 0.065% copper. Therefore, in the present
sensitivity study, the effect of weld-specific uncertainty, 0.025%, and the



effect of generic weld uncertainty, 0,065%, on calculated failure probabilities
were evaluated.

Nickel uncertainty was investigated b{ assuming no uncertainty (i.e., no
simulation of the nickel distribution' and by assuming an uncertainty of 0,.05%
that was ectimated from the BAW weid chemistry study. Special consideration
was given to Calvert Cl1iffs welds that were made using a three-wire technique
in which one wire was pure nickel.® In that rase, the welder introduced
variation in the nickel content by altering the feed rate of the pure nickel
wire. Therefore, nickel uncertainty fo~ the C:lvert C1iffs sensitivity to
nickel was assumed to be either zero or 0,15% nickel,

Fluence uncertainty is caused by uncertainty in the vessel wall dosimetry
measurements” and by the methods of predicting doses at a weld position given
the dosimetry measurement at the surveillance capsule location. A conservative
uncertainty of 30% of the expected fluence value was assumed for Oconee,
Calvert Cliffs, and H. B. Robinson,

Uncertainty in the initial RT pT Was assumed to be 15°F and its sensitivity on

calculated failure probabi\ity was not evaluated. The uncertainty was based on
the Combustion Engineering study® of variation in the initial RT .5 from weld

metal. That study reported a standard deviation of 17°F for the QIitital

RTyot

Statistical analyses of the irradiation indexed shift of RT T for pressure
vessel materials have indicated the dependence of RT shivq on copper
content, nickel content, and fluence. Two trend curvgl from statistical
analyses were cramined in this study. The first, the PTS trend curve, was used
in the ORNL analysis of PTS vessel failure probabilities using OCA-P. The
second is the weld trend curve. The PTS trend curve is based on a statistical
analysis of measured shifts in RT obtiiced both from PWR plate and PWR weld
metal surveillance specimens.'® *RI weld trend curve is based on a statistical
analysis of measured Lhifts obtained on1¥ from weld metal surveillance
specimens for the influence of chemistry': and fluence.'? The weld trend curve
has haen proposed as Requlation Guide 1.99 Revision 2. The trend curves for
RTNDT have the form:

RT = RTUDT(0) + CF * FF, (1)

NDT

where RTEDTI0) is the initial RT T and CF ard FF are the chemistry factor and
fluence facto , respectively. FBP the PTS curve,

CF = /=10 * 470 * Cu + 350 * Cu * Ni) (2)
and

FF = (fluence /1019)0+%7 (3)
For the weld trend curve,

CF = 360 * Cu M(1 + 1,38 erf((0.3 * Ni - Cu)/Cu + 1.0)] (4)




and
- 19
FF = (fluence /10'%) 0.28-0.1 log;o (fluence/10'7) (5)

Fluence is expressed in units of n/cm?2, E > 1 MeV.

Uncertainty in fracture initiation toughness, KI , and fracture arrest
toughness, K,,, was assumed to be either 10% or 90% of the estimated mean
value. The {6% value is representative of uncertainty on the lower shelf,!?
wnile values closer to 20% may be representative of uncertainties in the
transition region.

The effect of including an uncertainty in the trend curve correlation was
evaluated by simulating a correlation error in addition to simulating copper,
fluence, and initial RT ... The simulated error was subsequently added (or
subtracted) from RT uglermined as in the standard predictions. The standard
deviation in the troRd curve correlation was assumed to be 22°F,10

2.2.2 Flaw Distributions

The OCTAVIA flaw-size distribution'“ was used to simuiate the flaw depth. For
the baseline calculations, the flaw is assumed to be infinitely long and
located at the inside surface of the vessel. Furthermore, the OCTAVIA
distribution does not account for the expected benefits of in-service
inspection.

For conservatism and convenience, the flaw length for the standard condition is
assumed to be of infinite length in the axial direction. In reality, the flaws
have finite lengths and therefore require larger driving force for propagation
compared to the infinitely long flaws. A finite flaw is pinned at the ends,
which provides resistance to the crack increasing in depth. The dependence of
calculated failure probabilities based on finite length flaws was compared to
probabilities based on infinitely long flaws. The finite flaw was assumed to
have a length to depth ratio of 6:1.

The effect of assuming that flaws are buried and randomly distributed through
the thickness of the weld, rather than always at the inner surface, was
investigated. There is a larger driving force required for a buried flaw
than for a surface flaw of the same depth. Buried flaws are not located in the
inner surface region of maximum tensile stress. Also, the inrer surface has
the Towest toughness due to maximum fluence and minimum temperature. Buried
flaws randomly placed within the weld were simulated to compare probabilities
based on buried flaws to those on surface flaws. In the case of the buried
flaw, the flaw is first allowed to propagate toward the inner surface. The
flaw next becomes a surface flaw, which is then allowed to extend toward the
outer wall of the vessel. For buried flaws, the flaw depth refers to the
distance between the two crack tips.

The flaw size distribution was modified to account for detection during in-
service inspection. The inspection was an ultrasonic examination for near-
surface cracks. Such an examination would exceed the effectiveness of the

5






3.0 PLANT-SPECIFIC INPUTS

Simulations were performed for each of the three plants. Hypothetical
chemistries and fluences were used for the case of the H. B. Robinson analysis
to evaluate sensitivities for conditions near the screening critieria of RTND
plus two standard deviations equal to 270°F. The hypothetical values for H 6.
Robinson in this study are not the same as those assumed in the ORNL study.®

The critical welds for Oconee 1 and Calvert Cliffs 1 were identified and the
properties of the critical welds were used for the simulations The transient
events were selected from the ORNL analysis for each plant, 35

3.1 WELD CHARACTERISTICS

The mean values of critical weld chemistries and fluences are those used in the
ORNL reports for Oconee 1 and Calvert Cliffs 1. The plant critical weld
numbers and chemistries are shown in Table 1 along with the hypothetical
parameters for the case of H, B, Robinson,.

The EFPY, fluence, and RT values for the simulations are shown in Table 2.

's listed in Table 2 Blre calculated from the PTS trend curve using a
va¥BE of 58.8°F for two standard deviations as stated in the PTS Rule. The
range of EFPY was selected to produce a range of RT that would approach or
exceed the screening criteria as given in the PTS RU?I

Similarly, the pressure and temperature transients for the plant-specific
simulations were obtained from ORNL.*"° These transients are representative of
severe PTS events for the plants. The transients for each plant were as
follows: Oconee (TBVG4, MSLB1, and 6A), Calvert Cliffs (2.1, 2.4, and 8.3) and
H. B. Robinson (6.6, 6.9, and 8.6).

TABLE 1. Assumed Mean Values for Weld Copper Content, Nickel Content, and

Initial RTNDT for Each Plant Evaluated

Plant/Weld sCopper  Nickel  Fwpr (0).°F
Oconee 1 0.29 0.55 20

SA1430

Calvert Cliffs 1 0.21 0.87 -56

2-203

H. B. Robinson Hypothetical 0.21 0.87 -56

for material property sensitivity

H. B. Robinson Hypothetical
for flaw assumption sensitivity 0.19 1.00 -56
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TABLE 3. Standard and Sensitivity Values of Selected Parameters

Parameter
Copper standard deviation
Nickel standard deviation

RTNDT trend curve

Error in RTNDT

K,-/K;, Standard deviation
IC"IA

Flaw position

Flaw length

Inspection

Standard Value

Sensitivity Value

0.025 wt%
0.0 wt%

PTS

None

10% of mean
Surface

Infinite

None

0.065 wt%

0.05 wt¥
0.15 for Cal Cliffs

Weld trend curve
Error added

20% of mean
Buried

Finite (6:1 length-
to-depth ratio)

Yes
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FIGURE 5. Calculated failure probabilities for Calvert Cliffs 1 Transient 2.4
for increased copper content and fracture toughness uncertainty
compared to the standard uncertainties. Results for the assumed
weld trend curve are also shown,
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FIGURE 6. Calculated failure probabilities for Calvert Cliffs 1 Transient 8.3
for increased copper content and fracture toughness uncertainty
compared to the standard uncertainties. Resu?ts for the assumed
weld trend are also shown.
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FIGURE 9. Calculated failure probabilities for the hypothetical
H. B. Robinson Transient 8.6 for increased copper content
and fracture toughness uncertainty compared to the stan-
dard uncertainties. Results for the assumed weld trend
curve are also shown,

Addin? uncertainty to the RT prediction did not significantly increase the
calculated failure probab!li!vls. Typically, adding uncertainty to the trend
curve correlation fncreased the failure probability by less than 50% as seen in
Tables 4 and 5,

4.2 ANALYSIS OF SIMULATED VALUES FOR INITIATION

Uncertainties in copper content and fracture toughness were evaluated in
relation to flaw depth and relative ductility for the simulated initiation
events, The evaluation indicated that simulated copper contents for
initiations were usually less than two standard deviations above the specified
mean values., Simulated fracture toughness values were ?cnerally one standard
deviation below the specified average values. High failure probabilities were
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associated with initiations dominated by brittle initiation of shallow flaws,
whereas low failure probabilities were associated with initiatifons dominated by
ductile initiation of deep flaws.

Parametric trends as a function of calculated failure probability for each of
the three plants are shown in Figures 10 through 12 and Tables 6 through 8.
The data plotted in Figures 10 through 12 include failure probabilities
calculated for the standard, copper, and K,. sensitivity conditions for each
plant, The copper content and fracture toaahncss values are referenced to the
assumed mean values and normalized by the assumed standard deviation. With
increasing failure probability, the average simulated initiation had a smaller
flaw depth and a lower value of T-RTu . With increasing failure probability,
the average simulated copper content le low at the extremes, i.e., low and
high probabilities, but high at intermediate failure probabilities. The
simulated fracture toughness values were not strongly dependent on the failure
probability,

The simulated copper contents for initiation were high at intermediate failure
probabilities because the flaws were shallow enough to be affected by
irradiation and because failures occurred in the transition region of the
fracture toughness curve where RT .. sensitivities are important. For flaws
deeper than 2.5 in., the flaw tip"qx beyond the zone of significant irradiation
damage and therefore is not strongly influenced by the simulated copper
content., Failure probabilities less than 10 ° were of a ductile type and were
associated with flaw depths greater than 2.5 in,, T-RT values greater than
200°F, and copper contents less than one standard devi¥¥Ton above the mean
value. Failure probabilities greater than 10°° and less than 10 ? were
associated with copper contents near to or greater than two standard deviations
above the mean value, For H, B, Robinson, Figure 12, a decrease in simulated
copper content was evident with an incrsase in failure probability above 10 3.
This indicates that for very high failure probabilities, the failures occurred
on the lower shelf for Kl . On the lower shelf, the fracture toughness is
insensitive to the RT Snd hence the assumed copper content, Therefore, the
simulated copper contﬁﬂls for initiation should approach the mean copper
content at high failure probabilities on the lower shelf,

The Oconee calculations did not show high simulated copper contents because the
assumed mean content was high, 0,29%, compared to Calvert Cliffs, 0.21%, and

M, B, Robinson, 0,21%, Wnen the assumed mean value was low, the simulated
copper contents were high relative to the assumed mean value. In addition, the
sensitivity to copper uncertainty was affected by the VISA code assumption that
the copper content could not exceed 0.4% Cu, For the assumed high uncertainty
in copper content, the mean plus two standard deviations, 0.13%, was 0.42% and
was above the 0.4% cutoff, Therefore, the average simulated copper content for
Oconee was restricted by the assumed upper limit for copper content,

The simulated fracture toughness values for inftiation showed a weak dependence
on the magnitude of calculated failure probability, The average toughness
values were about one standard deviation below the assumed mean values as seen
in Figures 10 through 12. The lowest simulated toughness values were for the
Oconee transient, but even fbr that case, the average values never were less
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than two standard deviations below the assumed mean value. The reason for the
lack of dependence of the fracture toughness uncertainty on the calculations is
that the fracture toughness distribution influenced ductile fai’.res at low
fluences, as well as brittle failures at high fluences. Therefore, the
sensitivity of failure probability to fracture toughness uncertainty at Tow
probabilities was similar to that at high failure probabilities.

4.3 FLAW ASSUMPTIONS

Assumptions of flaw length, position and inspection strongly affected the
calculated failure probability as shown in Tables 9 and 10 and in Figures 13
through 17, Finite-length flaws, buried flaws, and inspection caused one to
two orders of magnitude decrease in the probabilities compared to assumptions
of long, surface flaws and no in-service inspection. Of the three flaw
assumptions in-service inspection had the least influence on the predictions,
The predicted failure probabilities often approached 107%, which is the Tower
1imit of the VISA calculation for one million simulations. Therefore, some of
the apparent variations that are evident in the flaw assumption sensitivities
are caused by the relatively poor statistical confidences for low-probability
calculations.

The assumptions of finite length flaws, buried flaws, and in-service inspection
caused decreases in the calculated failure probability because flaw initiation
was less frequent, Pinning at the ends of finite flaws decreased the stress
intensity factor for initiation at the point of maximum flaw depth. Buried
flaws had a reduced probability of being within the brittle inner part of the
vessel wall and hence were less susceptible to initiation. Buried flaws also
have lower values of stress intensity factor and hence most often did not
propagate through to the outer wall, In-service inspection decreased the
number of flaws and hence decreased the number of flaws that could inftiate,

The assumed finite length of the flaw resulted in pinning restraint that
inhibited initiation at the point of maximum depth, Once a finite length flaw
initiated, its length was extended to a long flaw and subsequent propagation
was predicted in the same manner as a long flaw,

Reduced failure probabilities for buried flaws compared to surface flaws were
caused by a reduction in the number of flaws present near the brittle inner
surface and by a reduced driving force for propagation., The assumed flaw
position had a minor influence on arrest, but a major influence on flaw
initiation. The VISA code assumes that the buried flaw first extends to the
inner wall, The resulting surface flaw then propagates toward the outer wall,
The outward propagation was calculated in the same manner as for the surface
flaw of the standard reference case; therefore, no significant differences in
the arrest frequency . e expected once the flaw initiates. The average size of
initiated flaw was ir. cased by the buried flaw assumption for the Calvert
Cl1iffs and Oconee calculations. The average depth of an initiated flaw was not
significantly affected by the buried flaw assumption for H., B, Robinson,

The assumption of in-service inspection and repair caused a decrease in the
flaw initiation frequency and an increase in the fraction of initiations that
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arrested. Inspection generally reduced the average simulated flaw depth for
the initiation as calculated for H, B, Robinson, If the flaw depth was shallow
for noninspection, as for Calvert C1iffs, inspection had little effect on the
average simulated flaw depth,

The high average simulated copper contents that were observed for the standard
conditions were not evident for the cases of modified flaw assumptions. In
particular, the Calvert Cliffs and the M. B. Robinson simulated copper contents
were about one standard deviation lower for the finite flaw, buried flaw, and
in-service inspection than for the standard case. The average simulated copper
content for Oconee was not sensitive to the flaw assumptions because the
simulated copper contents were moderately above the mean even for the standard
conditions,
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TABLE 6. Average Simulated Parameters for Initiation for Oconee 1 Conditions.
The copper content and fracture toughness values are referenced to
the assumed mean values and normalized by the assumed standard
deviation. Also shown are the calculated initiation and failure
probabilities for each condition.
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TABLE 7.

Average Simulated Parameters for Initiation for Calvert Cliffs 1
Conditions. The copper content and fracture thoughness values are
referenced to the assumed mean values and normalized by the assumed
standard deviation. Also shown are the calculated initiation and
failure probabilities for each condition,
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TABLE 8. Average Simulated Parameters for Initiation for the Hypothetical
H. B. Robinson Conditions. The copper content and fracture toughness
values are referenced to the assumed mean values and normalized by
the assumed standard deviation. Also shown are the calculated
initiation and failure probabilities for each condition,
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Average simulated parameters for inftiation for the Oconee |
Transient TBVGA. The dependence of simulated flaw depth and the
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TJABLE 9. talculated Failure Probabilities for the Flaw Assumption
Sensitivity Study
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The effects of material property distributions and flaw assumptions on
calculated conditional failure probability were studied. The results
demonstrated that flaw uncertainties are more significant than are material
property uncertainties. The sensitivities identified in this study indicate
recommendations for evaluating methods used for conditional failure probability
calculations.

Assumptions concerning flaw characteristics affected the failure probabilities
in a critical manner. Therefore, the significance of the calculations has to
be evaluated in light of understanding the flaw assumptions made for the
calculations. If the calculations are made based on assumptions not commonly
accepted, then a sensitivity study is needed to demonstrate the effect of the
alternative assumption on the calculated failure probability. A strong effect
would suggest that an evaluation of the merits of the alternative assumption
should be made. This study has demonstrated that assumptions concerning the
length of a flaw, the position of a flaw within the vessel wall, and the
effects of in-service inspections and repair are examples of flaw assumptions
that need to be evaluated in sensitivity studies. These flaw assumptions were
found to have significant effects for all cases examined and therefore are
expected to be important for most pressurized thermal shock analyses. However,
lacking strong justification, the flaws should conservatively be assumed to be
infinitely long, at the surface, and not inspected.

The effect of material property uncertainties on calculated failure
probabilities was less important than were the effects of fiaw assumptions.
Also, material property distributions are better established than are flaw
distributions. Therefore, plant-specific knowledge of materials can be used in
calculations to provide a more realistic estimate of expected failure
probability. The uncertainties in copper content, nickel content, and fracture
toughness in this study were both realistically small for specific welds and
realistically large for generic welds. The difference between results for the
small specific uncertainty and the large generic uncertainty generally did not
have dominant effects on the calculated failure probabilities.

The uncertainty in copper content sensitivity had a strong effect only for
failure probabilities that were less than 10 “, Such low failure probabilities
are not of practical interest to PTS risk. The copper content uncertainty is
not expected to affect the calculated failure probability by more than a factor
of three for PTS conditions that produce predicted failure probabilities
greater than 10 .

The nickel content uncertainty generally had an insignificant effect on the
calculated failure probabilities and therefore need not be included in a
failure probability study. The only significant effects of nickel content
uncertainty occurred for conditions that resulted in insignificant failure
probabilities that were lower than 107,

Increasing the uncertainty (standard deviation) in the fracture toughness from
10% to 20% of the assumed mean value increased the predicted failure
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probability by a factor of less than five. A 10% uncertainty in toughness is a
realistic estimate for failures approaching the lower shelf on the fracture
toughness-versus-temperature plot, at which conditions the predicted failure
probabilities are relatively high, i.e., greater than 107“, Feor these
conditions, there is a lack of justification for selecting the larger, 20%
uncertainty. At conditions of lower failure probability, a larger uncertainty
might be justified because the fracture toughness is being estimated in the
transition region between brittle and ductile failure.

The fracture toughness is less well established in the transition region and
therefore a larger, 20%, uncertainty might be justified. However, because the
failure probabilities are low in the transition region and because the fracture
toughness sensitivity is small, the assumption of a 10% uncertainty in fracture
toughness is considered to be appropriate.

Adding an error simulation to account for uncertainty in the trend curve
correlation did not significantly affect the predicted failure probability
compared to not simulating the correlation error. Because the effect was found
to be small, the correlation error need not be includea in the prediction of
failure probability.

The analyses of simulated values for initiation events indicated that the
extreme tails of the material prope. ., distributions were not significantly
influencing the predicted failure probabilities, The predicted failures were
typically caused by simulated values that were within two standard deviations
of the assumed mean values. Therefore, the input distributions for the
material property estimates need only be understood out to about two standard
deviations from the mean values. The copper content distribution and the
fracture toughness distribution are experimentally established within the
two-sigma range and therefore are appropriate distributions to use.

The analyses of the average flaw depth and the average T-RT for initiations
indicated that there is a transition in fracture mode from ugztile failure of
deep flaws at low failure probabilities to brittle failure of shallow flaws at
high failure probabilities. This transition should be considered when
examining the relative importance of material property input distributions on
predicted failure probabilities. For example, the copper content distribution
was found to have its greatest effect at intermediate failure probabilities
because of the influence of copper on the hrittle and ductile failure modes.
Uncertainty in the fracture toughness distribution becomes more important at
lower failure probabilities because the failures become independent of the
irradiation induced properties and more dependent on the unirradiated
properties.
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