

$\delta=a+5=.251 \phi^{\prime \prime}+.7689^{\prime \prime}=1 . \phi 199^{\prime \prime}$
$t=5.16 \phi^{\prime \prime} \quad s=.7689^{\prime \prime}$
Figure
$\frac{x}{X} \quad$ Inside Surface \quad Outside Surface $\quad \begin{aligned} & X \\ & X\end{aligned} \quad$ Embedded Flaw $\quad \frac{X}{X}$ Cirgitudinal Flaw
Circumferential Flaw 1299w.wpf:1b/011995

OK

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normai to pressure retaining surface

Length

Length of the flaw "" is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=234-6(L 2)-233-8$ \qquad $=0.8$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " $=5,160$ inches

Calibration

The measured angle in the calibration block was 45,0 degrees
Calculations using metal path From page ___ of the UT report, Scan \#_1_
The flaw exhibited 20% DAC at 5,50 and 6,21 inches MP. Max amplitude is at 5,75 inches MP with the transducer exit point at _2__ _ inches (W) from the centerline of the weld and 234.2
inches (L) from the 0 " reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \%$ DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface.
5. 50 (metal path at 20% upper) * COS of the measured angle _0._7071 $=\ldots 3.8890$ inches depth.
2) Determine the lower depth of the flaw from the exam surface.

6 21_ (metal path at 20% lower) * COS of the measured angle _ $\quad 7071=\ldots \quad 3911$ inches depth.
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. $\frac{5}{4} \cdot \frac{75}{}$ (metal path at maximum amplitude point) * COS of the measured angle _0 $\mathbf{0 8 5}$ inches depth.
4) Determine the distance from the center line of the weld to the maximum amplitude point of the flaw. 5. 75 (metal path at maximum amplitude point) squared $=-33 . \quad 0625\left(a^{2}\right)$ $-\frac{4}{a^{2}}-\frac{0658}{b^{2}=4}$ (depth at maximum art slitude point) squared $=-16 \cdot-\frac{5307}{}\left(\mathrm{~b}^{2}\right)$ $\sqrt{a^{2}}-b^{2}=4,0659$ inches of suriace distance to the flaw from the transducer exit point. 2__2_(Wmax) - 4, 0659 (surf dist) $=\ldots-1,8659$ inches to the centerline of the weld.
5) Determine S by picking the smaller of the following:
$S=3.8890$ _ (result of 1$)=$ distance between exam surface and the upper flaw tip $\gg O R \ll$
$S=5-160$ (part " $\left.\psi^{\prime}\right)-4.3911$ (result of 2$)=$ 0. 7689 distance between the side opposite exarn surface and the lower flaw tip
6) Determine 2 d in though wall thickness. 4.3911_(from step 2) - 3_8890 (from step 1) = 0. 5021 inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.1004$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 d+S=$ \qquad inches.
If S is greater than or equal to 0.4 a the flaw is sub-surface. $a=2 \mathrm{a} / 2=\ldots 0.2510$ inches
$l=0.8$ (for $a / l>0.5, l=2 a$)
$\mathrm{t}=5.160$ (part thickness)
$a=0,2510$ (surf or sub suri) circle one)
$S=0.7689$
flawtrig (for perpendicular scans) Rev 0

Date
March 5， 1997
From Ad Hoc Evaluation Group
Location CSC－2
To File
Location

Subject Use of revised ISI calculation worksheets and correction for curvature

During the 1997 inspection of Steam Generator 22，weld W－A，several indications were reported under reports 97－0136 and 97－0137．Using procedure ISI－FE－1 Rev 2 to perform the flaw evaluation，it was determined by the level III that the applicable worksheet（Figure 7）could be improved upon for these calculations．As a result，two new worksheets were developed that have the following benefits；
－The determination of length varies with the direction of scan and is addressed by the new sheets．Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans，and W1 and W2 for parallel scans．
－The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB
－The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component．

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets． The original worksheets did not consider curvature when determining indication depth on the circumferential scans．
The corrected values for＂S＂were reviewed against the calculations for surface proximity and value for＂γ＂and found to have no impact on the acceptability of the indications．
 Thomas Jones Lvi III Tin Tran＇ISI Program Mgr Jeff Ricker Supt M\＆SP

| Page 6 |
| :--- | :--- |
| Report $1.97-0,76201$ |

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface
ASME SECT XI 1989 WI NO ADDENOA Th SINITIAL TO VERIFY
ISI Report \#_97-0136
Flaw \# \qquad 2

Length

Length of the flaw "" is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans
L and W values are from page \qquad of the UT report.
$l=1232^{2}(\mathrm{~L} 2)-122.4(\mathrm{~L})=0.8$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " $=5.160$ inches

Calibration

The measured angle in the calibration block was $\mathbf{4 5}, \ldots$ degrees
Calculations using metal path From page ___ of the UT report, Scan \#__ 1
The flaw exhibited 20% DAC at _1.73_ and _1.91_ inches MP. Max amplitude is at _1.82_ inches MP with the transducer exit point at $-1 \quad 3$ inches (W) from the centerline of the weld and $122 \quad \overline{6}$ inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications > $100 \% \overline{D A C}$ is conservative.)

1) Determine the upper depth of the fl- . from the exam surface.
 inches depth.
2) Determine the lower depth of the flaw from the exam surface _1_._91_ (metal path at 20% lower) * COS of the measured angle _0_ 7071 _ $=1 . \quad 3506$ inches depth.
3) Determine the depth of the flaw from the exam surface at the maximurn amplitude point. 1.-82 (metal path at maximum amplitude point) * COS of the measured angle _0__7071_= 1.2869 inches depth.
4) Determine the distance from the center line of the weld to the maximum amplitude point of the flaw. $-1-82$ (metal path at maximum amplitude point) squared $=3.3124\left(a^{2}\right)$
-2869 (depth at maximum amplitude point) squared $=1.6561 \quad\left(\mathrm{~b}^{2}\right)$
$\sqrt{a^{2}-b^{2}}=1 \quad 2870$ inches of surface distance to the flaw from the transducer exit point.

5) Determine S by picking the smaller of the following;
$S=1 \ldots 2233$ _ (result of 1) = distance between exam surface and the upper flaw tip
$\gg O R \ll$
$S=n^{5}=160$ (part "t") $\quad 1 \quad 3508$ (result of 2$)=\ldots .8094$ distance between the side opposite exam surface and the lower flaw tip
6) Determine 2 d in though wall thickness
_1__ 3506 (from step 2) -_ 2233 (from step 1) $=\ldots$. 1273 inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0254$
Compare to S (from step 5)
If S is less than $0.4 d$, the flaw is surface $a=2 d+S=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the flaw is sub-surface $a=2 a / 2=0.0636$ inches
$l=0.8$ (for all > $0.5,!=2 \mathrm{a}$) $\quad \mathrm{t}=\mathbf{5} \cdot-\frac{160}{}$ (part thickness)
$a=$ 0. 0636 (surf or sub surf) circle one) $\quad S=1.2233$
flawtrig (for perpendicular scans) Rev 0

Subject Use of revised ISI calculation worksheets and correction for curvature
Tests Evallantion shall levimiar to RV CLOSunf mean w. C
Exman 97-0109.
Pen Teuton A pprounc $\frac{T_{0} \text { Af Rickie } 3 / 7 / 97 / \mathrm{mC}}{\text { Tow }}$
During the 1997 inspection of Steam Generator 22, weld W-A, several indications
were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2
to perform the flaw evaluation, it was determined by the level tIl that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

$$
\begin{array}{|l|}
\hline \text { Page } \frac{10}{} \text { Report } 97-013621 \\
\hline
\end{array}
$$

7. Calculations OK Reviewer

-

From attached ISI Flaw sizing worksheet: $\ell=0.8^{\prime \prime} a=0.3006^{\prime \prime}$ Haw Type: Subsurface Planar $\quad t_{\text {nom }}=5.160^{\circ} \mathrm{S}=0.9598^{\prime \prime}$ $\frac{a}{l}=\frac{0.3006}{0.8}=0.3758$ Round to 0.38 Use 4 to 12 subsurface Flaw:

$$
\frac{d}{t} \%=\frac{0.3006}{5.160}=0.0583 \text { Round to } 5.8 \%
$$

From Table IWB-3510-1:

$$
\begin{array}{ll}
\frac{\mu_{1}}{0.35} & \frac{a / t \%}{5.1 y} \\
0.40 & 5.3 y
\end{array} \quad y=\frac{s}{a}=\frac{0.9598}{0.3006}=3.2 \Rightarrow y=1
$$

$$
\begin{aligned}
& a / t=\frac{0.38}{5.8 \%} \\
& \hline \text { 8. :results म oK Reviewer } H
\end{aligned}
$$

9. Table used for analysis

[] IWB-3511-1

- IWB-3514-3
IWB-3518-1
- IWB-3511-2
- IWB-3512-1
- IWB-3514-4
[IWB-3514-6
\square TWB-3516-2 IWB-3518-1
[] IWB-3518-2
IWC-3511-2
- INC. 3512.2

10. Was linear interpolation used? yes no if no, why? By observation, 11. Was IWA-3200 Significant Digits For Limiting Values followed? yes a OK Reviewer 12. The correct Code Edition and Addenda was available and used. ब yes Preparer M

风 OK Reviewer
PER Toms
Houston why?
$3 / 7 / 9$?
13. Statement of acceptability or rejectability with basis OK Reviewer

$$
(a / t) \text { Code allowable } \geq(a / t) \text { calculated }
$$

A Accept
Reject

5. Prepared by and date

$\int=a+s^{2} .39 \phi b^{\prime \prime}+.9598^{\prime \prime}=1.26 \phi 4$
$t=5.16 \phi^{\prime \prime}$
$a=3 \phi \phi 6^{\prime \prime} \quad S=.9598^{\prime \prime}$
Figure A-2.4
Flaw Evaluation Chart for the Tubesheet-Channel Head Junction for Prairie Island Units 1 and 2

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 W/ NO ADDENDA Th HNITIAL TO VERIFY

ISI Report \#_97-0136
Flaw \# 3

Length

Length of the flaw "" is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$1=143$ _ 8
(L2) \qquad (L1) \qquad

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " $=$ 5 $\cdot 160$ inches

Calibration

The measured angle in the calibrationi block was _45__0_ degrees
Calculations using metal path
The flaw exhibited 20\% DAC at with the transducer exit point at -2.4 inches (W) from the centerline of the weld and _143.2 (L) from the 0 " reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \% \bar{D} \overline{A C}$ is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{5.09}{\text { depth. }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle _ $0.071=3.5991$ _ inches
2) Determine the lower depth of the flaw from the exam surface $\frac{5.94}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle _o..-7071 $=-4.2002$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. $-\frac{5.47}{3}$ (metal path at maximum amplitude point) ${ }^{*} \mathrm{C}(\mathrm{S}$ of the measured angle _o_7071 $=$ 3.8678 inches depth.
4) Determine the distance from the center line of the weld to the maximum amplitude point of the flaw $-\frac{5}{3} .47$ (metal path at maximum amplitude point) squared $=29.9209\left(\mathrm{a}^{2}\right)$ 3.8678 depth at maximum amplitude point) squared $=-14.9599$ (b $\left.^{2}\right)$ $\sqrt{a^{2}-b^{2}=} 3.8679$ inches of surface distance to the flaw from the transducer exit point.

5) Determine S by picking the smaller of t : ollowing: $S=3.5991$ (result of 1$)=$ distance between exam surface and the upper flaw tip $\gg O R \ll$ $S=_5 _160 _(\text {part "t") - 4.2002_(result of } 2)=_0.9598$ d distance between the side opposite exam surface and the lower flaw tip
6) Detarmine $2 d$ in though wall thickness -4.2002_(from step 2) - 3. 5991 (from step 1) $=\ldots$._6011_ inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0 \cdot 1202$
Compare to S (from step 5)
If S is less than $0.4 d$, the flaw is surface. $a=2 d+S=$ \qquad inches
If S is greater than or equal to 0.4 a the flaw is sub-surface $a=2 a / 2=0.3006$ inches

Subject Use of revised ISI calculation worksheets and correction for curvature

 During the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable in worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the dir action of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and viii and viL for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for "S" were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

7. Calculations OK Reviewer

From attached ISI Flaw sizing worksheet: $\ell=1.0^{\prime \prime} \quad a=0.1626^{\prime \prime}$
Flaw Type: subsurface Planar $\quad t_{\text {nom }}=5.160^{\prime \prime} \quad s=1.3576^{\wedge}$

$$
\frac{a}{l}=\frac{0.1626}{1.0}=0.1626 \text { Round to } 0.16
$$

Use 4 to 12 subsurface Flaw:

$$
\frac{a}{t} \%=\frac{0.1626}{5.160}=0.0315 \text { Round to } 3.2 \%
$$

From Table IWB -3510-1:

$$
\left.\begin{array}{l}
\frac{4 / l}{0.15} \frac{y / t}{2.9 y} \\
0.20
\end{array}\right\} \begin{aligned}
& y=\frac{s}{a}=\frac{1.3576}{0.1626}=8.3 \Rightarrow y=1 \\
& \text { Interpolation } \quad q=0.16, y / t \%=3.0 \%
\end{aligned}
$$

$\frac{X}{X} \quad$ Inside Surface

$\underline{X}$$\quad$| Surface Flaw |
| :--- |
| Embedded Flaw |$\quad \frac{X}{X} \quad$| Longitudinal Flaw |
| :--- |
| Circumferential Flaw |

ISI Report \#97. $\$ 136$, Flaw \#5, 0.k. by hame book, Mach thy yo 3/4/97 1299w.wpf:1b/011995

$$
\begin{align*}
& \text { Page } \frac{17}{2020} \\
& \text { Report } 197-0136 R 1 \\
& \hline
\end{align*}
$$

ISI Flaw Sizing Worksheet					
1. ist Reporn Nymber $297-0136$	5 $\square 80$ W81 $\quad 86$ no adienda $\$ 89$ no addenda \square other		2.40		
			6. Method		
BTm Head					
BTM Head					
8. Calculations 0 OK Reviewer $\{j$ Show determination of surface or subsurface see attacked Show determination of type of " a " to use see attached 9. ISL-FE-1 Paraggaph 7.0. "Rounding-Off Method" was used. Myes Preparef Vh. \qquad $\{1$					
10. Code Plaw Dimensioss$" \eta=1.0$					
11. Flaw TypeWOK Reviewer if \square Surface Planar (UT/RT) Subsurface Planaer (UT) RT) \quad Laminar (UT/RT) Linear (PTMTRT)					
10. Prepared by and date					
$\begin{aligned} & \text { Pape } \frac{18}{} \text { oL } 20 \\ & \text { Report } 97-0,36 R 1 \\ & \hline \end{aligned}$					

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ISI Report \#,97-0136
Flaw \# \qquad
\qquad Evaluation Performed By:TCre Cued Date $2123 / 97$

Length

Length of the flaw """ is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page \qquad of the UT report.
$t=39 \quad 5$ (L2) - \qquad $(\mathrm{L})=$ \qquad 1.-0 inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page \qquad of the UT report.
" t " $=5.160$ inches

Calibration

The measured angle in the calibration block was 45,0 degrees
Calculations using metal path
From page ___ of the UT report, Scan \#_1
The flaw exhibited 20% DAC at _1. 92 and ${ }_{2} 2.38$ inches MP. Max amplitude is at _ 2.15 inches in P with the transducer exit point at _0.1_ inches (W) from the centerline of the weld and _ 39.2_ inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications > 100% DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{1.92}{}$ (metal path at 20% upper) COS of the measured angle _0_7071 $=1.3576$ inches depth.
2) Determine the lower depth of the flaw from the exam surface. $\frac{2.38}{\text { depth. }}$ (metal path at 20% lower) * COS of the measured angle _0._7071 $=1.6829$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. -2.15 (metal path at maximum amplitude point) $* \operatorname{COS}$ of the measured angle _0__7071_ $=$ - ${ }^{1.5203}$ inches depth.
4) Determine the distance from the center line of the weld to the maximurn amplitude point of the flaw. 2. 15 (metal path at maximum amplitude point) squared $=4.6225\left(a^{2}\right)$ 1.5203 (depth at maximum amplitude point) squared $=2.3145-\left(\mathrm{b}^{2}\right)$
$\sqrt{a^{2}-b^{2}}=1.5203$ inches of surface distance to the flew from the transducer exit point -0.1 (Wmax $)=1.5203 \ldots\left(\right.$ surf dist) $=\Omega^{-1} £_{2} 03 \ldots$ inches to the centerline of the weld.
5) Letermine S by picking the smaller of the following:

$$
\begin{aligned}
& s_{1}=-1.3576 \text { (result of } 1 \text {) }=\text { distance between exam surface and the upper flaw tip } \\
& S=0 R \ll \\
& S=-160 \text { (part " } 4 \text { ") - 1.6829_ (result of } 2)=\text { 3.4771_ distance between the side opposite }
\end{aligned}
$$ exam surface and the lower flaw tip

6) Determine $2 d$ in though wall thickness.
1.6829 (from step 2) - 1.3576_ $($ from step 1$)=_0.3253$ _ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) \cdot 0.4=0.0650$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 d+S=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the flaw is subsurface $a=2 a / 2=0.1626$ inches
$t=1.0$ (for $a / l>0.5 . l=2 a$)
$a=$ 0.1626 (surf or sub surf) circle one)
$\mathrm{t}=\ldots$. 160 (part thickness)
$S=-1.3576$

Date
Location
CSC -2

Subject
Use of revised ISI calculation worksheets and correction for curvature
 Exam 97-0109. Pën Teccon Approunc ToffRcireie 3/7/97, During the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level Ill that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L.2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets.
The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

Thomas Jones LVI III Tin Tran ISI Program Mag Jeff Ricker Supt M\&SP
Page $\frac{20}{20} \times 70$
Report $+97-0,36 \%$!

7. Calculations ${ }^{1}$ OK Reviewer -

From attached Is Flaw sizing worksheet: $\quad \ell=0.3^{\prime \prime} a=0.0071^{\prime \prime}$
Fiqw Type: Subsurface planar $\quad t_{\mathrm{vem}}=5.160^{\circ} \mathrm{S}=0.6204^{\circ}$

$$
\frac{a}{l}=\frac{0.0071}{0.3}=0.0237 \text { Round to } 0.02
$$

use 4 to 12 subsurface Flaw:

$$
\text { a \% } \%=\frac{0.0071}{5.160}=0.0014 \text { Round to } 0.14 \%
$$

From Table IwB - 3510-1:

$$
\frac{4 / 2}{0.0} \begin{aligned}
& \frac{a / 2}{2.0 y} \\
& 0.05
\end{aligned} \quad y=\frac{s}{a}=\frac{0.6204}{0.0071}=87.4 \Rightarrow y=1
$$

By observation, since $\frac{d}{t}$ calculated equals 0.14% winch is

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface
ASME SECT XI 1989 W/ NO ADDENDA Th SINITIAL TO VERIFY
ISI Report \#, $97-0136$

Length

Length of the flaw "" is determined by finding the difference between L1 and L.2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=-1.7(W 2) \cdot-1.4(W 1)=0.3$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " $=\ldots 5 \cdot 160$ inches

Calibration

The measured angle in the calibration block was _ 45.0 degrees
Caiculations using metal path From page __ of the UT report, Scan \# _ 3 The flaw exhibited 20% DAC at 6.40 and 6. 42 inches MP. Max amplitude is at 6. 42 _ inches MP with the transducer exit point at -1.5 inches (W) from the centerline of the weld and -160.7 inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \% \overline{D A C}$ is conservative.)

1) Determine the upper depth of the flaw from the exam surface. 6. 40 _(metal path at 20% upper) ${ }^{*} \mathrm{COS}$ of the measured angle _0.7071_ $=4.5254$ _ inches depth.
2) Determine the lower depth of the flaw from the exam surface. $\frac{6.42}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \mathrm{CO}^{\circ}$ of the measured angle _0.7071_ $=-4.5396$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. 6. 42_ (metal path at maximum amplitude point) * COS of the measured angle _0 7071_ = -4.5396 _ inches depth.
4) Determine the distance from $0^{\prime \prime}$ reference to the maximum amplitude point of the flaw.
_6.42 (metal path at maximum amplitude point) squared $=$ _41.2164 $\left(a^{2}\right)$
4.5396 (depth at maximum amplitude point) squared $\left.=20.6080 \mathrm{~m}^{2}\right)$
$\sqrt{a^{2}-b^{2}}=4 \cdot 5396$ _ inches of surface distance to the flaw from the transducer exit point. _160.7 (Lmax) + 4.5396_ (surf dist) $=$ _ 165.2396 _ inches from 0 " reference.
5) Determine S by picking the smaller of the following:
$S=$ 4.5254 \quad (result of 1$)=$ distance between exam surface and the apper flaw tip $\gg 0$ R <<
$\mathrm{S}=_5.160$ (part "t") $_$. $4.5396 \ldots$ (result of 2$)=_0.6204 _$distance be ween the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness.
```
    _4.5396_(from step 2) - 4.5254_(from step 1) = 0.0142_ inches
```


Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0028$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the flaw is sub-surface $a=2 a / 2=0.0071$ inches.
$t=0.3$ (for $a / t>0.5, t=2 a)$
$t=5.160$ (part thickness)
$a=0.0071$ (surf or (sub suif) circle one)
$S=0.6204$

Subject Use of revised ISI calculation worksheets and correction for curvature

$$
\begin{aligned}
& \text { This Evecuntion sriull Pevimir to RV CLOSure sewn W. } \\
& \text { Examen 97-0109. } \\
& \text { PẼ econ Approver Toff Rickie 3/T/97 } \\
& \text { During the } 1997 \text { inspection of Steam Generator 22, weld W-A, several indications } \\
& \text { were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev } 2 \\
& \text { to perform the flaw evaluation, it was determined by the level lii that the applicable } \\
& \text { worksheet (Figure 7) could be improved upon for these calculations. As a result, two } \\
& \text { new worksheets were developed that have the following benefits; }
\end{aligned}
$$

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L.2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and ohintos the need to convert screen divisions into depth relating the calibration hin $_k$ to the component.

Consideration of the effect of the curve ure of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans The corrected values for " $\$$ " were reviewed against the calculations for surface proximity and value for " γ " and found to have no impact on the acceptability of the indications.

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 W/ NO ADDENDA YAh $\operatorname{INITIAL}$ TO VERIFY

ISI Report \#,97-0136 Evaluation Performed By, TOM SOL SA Date: $\frac{2 / 23 / 97}{97}$ Flaw \# 7

Length

Length of the flaw "" is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=-3.5(W 2)-2.9(W 1)=0.6$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom w _ , circle one).
This value is from page _ 1 _ of the UT report.
" t " $=5 \cdot 160$ inches

Calibration

The measured angle in the calibration block was _45.0 degrees
Calculations using metal path From page ___ of the UT report, Scan \#__3
The flaw exhibited 20% DAC at _3.76_ and _4.27_ inches MP. Max amplitude is at 3. 92 _ inches MP with the transducer exit point at -3.2 inches (W) from the centerline of the weld and _235.5 inches (L) from the 0 " reference. (Use of 20% DAC vs. 50% max amp for indications > 100% DAC is conservative.)
i) Determine the upper depth of the flaw from the exam surface. $\frac{3.76}{\text { depth. }}$ (metal path at 20% upper) $* \operatorname{COS}$ of the measured angle _0.7071_ $=2.6587$ inches
2) Determine the lower depth of the flaw from the exam surface.
$\frac{4.27}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle _o. $7071 _=3.0193$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. 3. 92 (metal path at maximum amplitude point) * COS of the measured angle _0.7071_= 2.7718 inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw.
4.27 (metal path at maximum amplitude point) squared $=-18.2329\left(a^{2}\right)$
2.7718 (depth at maximum amplitude point) squared $=7^{7.6829} _^{\left(b^{2}\right)}$
$\overline{a^{2}-b^{2}}=_3.2481$ inches of surface distance to the flaw from the transducer exit point. $235.5 _(\operatorname{Lmax})+\ldots 321$ _(surf dist $)=238.7481$ _ inches from 0 " reference.
5) Determine S by picking the smaller of the following;
$S=2.6587$ (result of 1) $=$ distance between exam surface and the upper flaw tip
$s>0$ OR <
$S \equiv _5.160 _\left(\text {part "t") }-3^{3} 0193 _ \text {(result of } 2\right)=_2.1407$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness.
3.0193(from step 2) - 2.6587 (from step 1) $=_0.3606$ inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=-0.0721$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches
If S is greater than or equal to $0.4 a$ the flaw is subsurface $a=2 a / 2=0.1803$ inches.
$\begin{array}{ll}t=-0.6 \\ \mathrm{a}=-1803 & \text { (for all }>0.5 . t=2 \mathrm{a}) \\ \mathrm{t}=5.160 \\ \text { (surf } & \text { (part thickness) } \\ \mathrm{S}=2.1407\end{array}$
$a=0.1803$ (surf or sub suit circle one) $\quad S=_2.1407$
Pave $\frac{27}{}$ of 20

Subject Use of revised ISI calculation worksheets and correction for curvature

THLS EVALLNTION SHMLL PEETNIN TO RV CLOSuRE HEND W.L Ear 97-0109.
 PEn Tel con Approver Toff Tour es

During the 1997 inspection of Steam Generator 22 , weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level ill that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan, and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans. and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100\% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans
The corrected values for " $\$$ " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

Thomas Jones LvI III Tin Tran ISI Program Ming Jeff Ricker Supt M\&SP

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 WI NO ADDEND \int INITIAL TO VERIFY

ISI Report \#, 97-0136

Length

Length of the fiaw "" is determined by finding the difference between L1 and L2 for perpendicular scans,
W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=-3.6(W 2)-2.9(W 1)=0.7$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wali (circle one).
This value is from page _1_ of the UT report.
" t " $=$ _ $5 \cdot 160$ inches

Calibration

The measured angle in the calibration block was _45.0 degrees
Calculations using metal path
The flaw exhibited 20% DAC at 2.05 with the transducer exit point at -3.3 inches (W) from the centerline of the weld and _159.5 inches (L) front the 0 " reference. (Use of 20% DAC vs. 50% max amp for indications > 100% DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface.
_2. 05 _ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle _0.7071 $=_1.4500$ _ inches depth.
2) Determine the lower depth of the flaw from the exam surface. 2. 53 (metal path at 20% lower) ${ }^{*} \mathrm{COS}$ of the measured angle _0.7071_ $=1.7890_{\text {_ }}$ inches depth.
3) Determine the depth of the fiaw from the exam surface at the maximum amplitude point. 2. 29 (metal path at maxi:num amplitude point) * COS of the measured angle _0.7071_ = - 1.6193 _ inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw.
2.29 (metal path at maximum amplitude point) squared $=\mathbf{5 . 2 4 4 1}\left(\mathrm{a}^{2}\right)$

- 6193 (depth at maximum amplitude point) squared $=\mathbf{2}^{2 \cdot 6221}{ }^{\left(b^{2}\right)}$
$\sqrt{a^{2}-b^{2}}=1.6193$ _ inches of surface distance to the flaw from the transducer exit point

5) Determine S by picking the smaller of the following;
$S=1.4500$ (result of 1) $=$ distance between exam surface and the upper flaw tip $\gg-O R \ll$
$S=\begin{aligned} & 5 \cdot 160 \\ & \text { (part " } t \text { " }) ~-~ 1.7890 ~\end{aligned}$ (result of 2) $=_3.371$ distance between the side opposite exam surface and the lower flaw tip
6) Determine 2 d in though wall thickness \ldots 1.7890 (from step 2) -1.4500 (from step 1) $=\ldots 0.3390$ inches

Determination of surface or subsurface
$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0678$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the nlaw is sub-surface. $a=2 a / 2=0.1695$ inches
$t=0.7^{2}$ (for $\mathrm{a} / \mathrm{l}>0.5, \mathrm{t}=2 \mathrm{a}$)
$\mathrm{t}=\mathbf{~}^{5} \cdot 160$ (part thickness)
a $=0.1695$ (surf or (Sub suif) circle one)
$S=1.4500$
flawtrig (for parallel scans) Rev 0

Subject

Use of revised ISI calculation worksheets and correction for curvature

$$
\begin{aligned}
& \text { THIS EUALLNTION SkULL bENIN TO RV CLOSMNに HErE WaL } \\
& \text { Exam 97-0109. } \\
& \text { Pen Tercon Approving Tom Topis 3/1/97/m } \\
& \text { During the } 1997 \text { inspection of Steam Generator } 22 \text {, weld W-A, several indications } \\
& \text { were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev } 2 \\
& \text { to perform the flaw evaluation, it was determined by the level III that the applicable } \\
& \text { worksheet (Figure 7) could be improved upon for these calculations. As a result, two } \\
& \text { new worksheets were developed that have the following benefits; }
\end{aligned}
$$

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets cid not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 W/ NO ADDENDA The INITIAL TO VERIFY

ISI Report \#_97-0136

Length
Length of the flaw "" is determined by finding the difference between L1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page \qquad of the UT report.
$1=-1.8(W 2)-1.5(W 1)=0.3$ inches.

Thicinness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one). This value is from page _1_ of the UT report.
" t " $=\ldots$. 160 inches

Calibration

The measured angle in the calibration block was _45.0 degrees
Calculations using metal path
The flaw exhibited 20% DAC at _3.49 with the transducer exit point at ${ }_{-1}-1.6$

From page \qquad of the UT report, Scan \#_3 and 4.31 inches MP. Max amplitude is at 3. 85 inches MP inches (W) from the centerine of the weld and _91.1_ inches (L) from the 0 " reference. (Use of 20% DAC vs. 50% max amp for indications > 100% DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{3.49}{\text { depth. }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle $_0.7071 _2.4678$ inches
2) Determine the lower depth of the flaw from the exam surface. $\frac{4.31}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle $_0.7071 _=3.0476$ _ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point.
3. 85 (metal path at maximum amplitude point) * COS of the measured angle _0.7071_ = _ 2. 72.23 _ inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw.
3.85 (metal path at maximum amplitude point) squared $=14.8225$ (a^{2})
2.7223 (depth at maximurn amplitude point) squared $=7.4109 \ldots$ (b2)
$\sqrt{a^{2}-b^{2}}=2.7224$ _ inches of surface distance to the flaw from the transducer exit point.

5) Determine S by picking the smaller of the following:
$S=2.4678$ (result of 1) $=$ distance between exam surface and the upper flaw tip $\gg O R \ll$
$S=5^{5.160}$ (part "t") - 3.0476 (result of 2) $=\ldots 2.1124$ _ distance hetween the side opposite exam surface and the lower flaw tip
6) Determine 2 d in though wall thickness.
3.0476 (from step 2) - 2. 4678 (from step 1) $=_0.5798$ inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) \cdot 0.4=0.1160$
Compare to S (from step 5)
If S is less than $0.4 d$, the flaw is surface. $a=2 d+S=$ \qquad inches
If S is greater than or equal to $0.4 a$ the flaw is sub-surface $a=2 a / 2=0.2899$ inches
$l=0.5798 \quad$ (for a/l $>0.5=2 \mathrm{a}) \quad \mathrm{t}=5.160$ (part thickness)
$a=0.2899$ (surf or sub surf) circle one) $\quad S=2.1124$

From Ad Hoc Evaluation Group

To File

Location
CSC-2

Subject Use of revised ISI calculation worksheets and correction for curvature
 During the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " γ " and found to have no impact on the acceptability of the indications.

ISI Flaw Sizing Worksheet			
1. Ist Report Number 21970136	2. Flaw Number 10		2. 40
4. ISI Interval COK Reviewer \qquad \square 2nd interval © 0 3rd interval \square preservice	5. Code Edition and Addenda COK Reviewer $\quad 27$ [80 W81 86 no addenda 28 no addenda other \qquad		
7. Flaw Sketch DOK Reviewer \qquad Front View			
Top View			
Side View			
8. Calculations COK Reviewer \qquad Show determination of surface or subsurface see attached Show determination of type of " a " to use see attached 			
		$3350-1$ \square IWA-3380-1 $360-1$ - TWA-3390-1	- IWA-3400-1
13. Flaw Characterization Figure Number	WFlaw	aw 2 - Flaw 3 - Flaw 4	- Flaw
15. The correct Code Edition and Addenda was available and used. Pyess Preparer			
Page 38 \qquad ot 20 Report $\$$ \qquad			

ASME SECT XI 1989 WI NO ADDEND The INITIAL TO VERIFY

ISI Report \#_97-0136
Flaw \# _ 10

Length

Length of the flaw "" is determined by finding the difference between L. 1 and L2 for perpendicular scans, W1 and W2 for parailel scans.
L and W values are from page ___ of the UT report.
$t=-4.2\left(W_{2}\right)--3.6(W 1)=-0.6$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one). This value is from page _1_ of the UT report.
" t " $=$ _ 5 160 inches

Calibration

The measured angle in the calibration block was _45.0_ degrees

Calculations using metal path

From page \qquad of the UT report, Scan \#__4
The flaw exhibited 20% DAC at _4.39 and _5.1 inches MP. Max amplitude is at _ 4.87 _ inches MP with the transducer exit point at _-3.9 inches (W) from the centerline of the weld and _6.9_inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \%$ DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface.
$\frac{4.39}{\text { depth. }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angie $\quad 0.7071=3 \cdot 1042$ inches
2) Determine the lower depth of the flaw from the exam surface. $\frac{5.1}{\text { depth. }}$ (metal path at 20% lower) * COS of the measured angle $0.7071 _=3.6062$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. $\frac{4.87}{3.4436}$ (metal path at maximum amplitude point) ${ }^{*} \mathrm{COS}$ of the measured angle $0.7071=$
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw. 4.87_(metal path at maximum amplitude point) squared $=23.7169\left(a^{2}\right)$
$]^{3.4436}$ (depth at maximum amplitude point) squared $=1 \overline{1.8584}\left(b^{2}\right)$
$\sqrt{a^{2}-b^{2}}=Z^{3} \cdot 4436$ inches of surface distance to the flaw from the transducer exit point. _6.9_(Lmax) - 3.4436_(surf dist) $=$ _3.4564 _ inches from 0 " reference.
5) Determine S by picking the smaller of the following;
$S=3.1042 \ldots$ (result of 1) $=$ distance between exam surface and the upper flaw tip \gg OR<<
$S=_5.160 _$(part " t ") $-_^{3.6062}$ _ (result of 2$)=1.5538$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness.
3.6062 $($ from step 2) - 3. 1042 $($ from step 1) $=\ldots .502$ inches.

Determination of surface or subsurface
$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.1004$
Compare to S (from step 5)
If S is less than $0.4 d$, the flaw is surface. $a=2 d+S=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the flaw is sub-surface. $a=2 a / 2=0.251$ inches.

```
l=_0.6_(for a/l>0.5,t=2a) t= 5.160_ (part thickness)
a=0.251_(surf or sub surf) circle one) }S=_1.553
```


From Ad Hoc Evaluation Group
To File

Location CSC-2
Location

Subject Use of revised ISI calculation worksheets and correction for curvature
 During the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result. two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets.
The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

ALL EMBEDDED FLAWS (ON TITS SIDE OF DEMARCATION LINE)
ARE ACCEPTABLE PER
CRITERIA OF IWB 3600
AS LONG AS 2a/ts 0.25

Flaw Evaluation Chart for the Tubesheet-Channel Head Junction for Prairie Island Units 1 and 2
$\frac{X}{X} \quad$ Inside Surface
$\underline{X}$$\quad \begin{aligned} & \text { Surface Flaw } \\ & \text { Embedded Flaw Surface }\end{aligned} \quad \frac{X}{X} \quad$ Longitudinal Flaw
Is Report \# 97-9136, Flaw \#11, 0. ky by haploody. STalkers 3/4/i7
Page $\frac{42}{}$ ot 70
Report, $97-0 / 3622$

\qquad

Length

Length of the flaw """ is determined by finding the difference between L1 and L.2 for perpendicular scans,
W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$l=-4.4(W 2)--3.5(W 1)=0.9$ inches.

Thickness

Thickness of the component at the location of the fiaw, using UT or nom wall (circle one).
This value is from page \qquad of the UT report.
" t " $=\ldots$. 160 inches

Calibration

The measured angle in the calibration block was _45.0 degrees

Caiculations using metal path From page ___ of the UT report, Scan \#__4

The flaw exhibited 20% DAC at _1.15_ and _1.70 inches MP. Max amplitude is at _1.49_ inches MP with the transducer exit point at -3.9 inches (W) from the centerline of the weld and 73.8 inches (L) from the 0 " reference. (Use of 20% DAC vs. $50 \% \max$ amp for indications > 100% DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{1.15}{\text { depth. }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle $_0.7071=_0.8132 _$inches
2) Determine the lower depth of the flaw from the exam surface. $\frac{1.70}{}$ (metal path at 20% lower) ${ }^{*} \mathrm{COS}$ of the measured angle _0.7071_ $=1.2021$ inches depth.
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. _1.49 (metal path at maximum amplitude point) * COS of the measured angle _0.7071 = - 1.0536 inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw. -1.49 (metal path at maximum amplitude point) squared $=2.2201\left(\mathrm{a}^{2}\right)$ $a^{2} b^{2}=$ (depth at maximum amplitude point) squared $=1.1101 \ldots\left(b^{2}\right)$ $\sqrt{a^{2}-b^{2}}=1.0536$ inches of surface distance to the flaw from the transducer exit point. _73.8_(Lmax) - 1.0536_(surf dist) $=$ 72.7464_ inches from 0 " reference.
5) Determine S by picking the smaller of the following;
$S=_0.8132 \ldots$ (result of 1$)=$ distance between exam surface and the upper flaw tip $\gg O R \ll$
$S=5 \cdot 160$ (part " t ") $_$_ 2021 _ (result of 2$)=3.9579$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness
_ 2021 (from step 2) - 0.8132 (from step 1) $=_0.3889$ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0778$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 d+S=$ \qquad inches
If S is greater than or equal to 0.4 a the flaw is sub-surface $a=2 a / 2=0.1944$ inches

Date
Location
From Ad Hoc Evaluation Group
To File
Location

Subject Use of revised ISI calculation worksheets and correction for curvature

TEHS EVALLATTION SHULL PERTNIV TO RV CLOSuRE HEWD W.L,

 During the 1997 inspection of Steam Generator 22, weld W-A, several indications CAIL were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets.
The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

ASME SECT XI 1989 W/ NO ADDEND The INITIAL TO VERIFY
ISI Report \#_97-0136
Flaw \# \qquad 12

Length

Length of the flaw """ is determined by finding the difference between L1 and L2 for perpendicular scans,
W1 and W2 for parallel scans.
L and W values are from page \qquad of the UT report.
$l=-3.7(W 2)--3.1(W 1)=0.6$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " = _5. 160 _ inches

Calibration

The measured angle in the calibration block was $_45.0$ degrees

Calculations using metal path From page ___ of the UT report, Scan \#__4_

The flaw exhibited 20% DAC at 1.40 and 2.10 inches M.P. Max amplitude is at 2.07 inches MP with the transducer exit point at _-3.4 inches (W) from the centerline of the weld and _95.1_ inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications > 100% DAC is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{1.40}{\text { depth }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle _0.7071_ $=0.9899$ _ inches
2) Determine the lower depth of the flaw from the exam surface.
$\frac{2.10}{}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle $0.7071=1.4849$ inches depth.
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point.
2. 07 (metal path at maximum amplitude point) * COS of the measured angle _0.7071 = _1. 4637 _ inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw.
2. 07 (metal path at maximum amplitude point) squared $=4.2849\left(a^{2}\right)$
3. 4637 (depth at maximum amplitude point) squared $=2_{2} \cdot 1424 _\left(b^{2}\right)$
$\sqrt{a^{2}-b^{2}}=1.4637$ _ inches of surface distance to the flaw from the transducer exit point.
_95.1 (Lax) - 1. 4637 (surf dist) $=$ _93.6363_ inches from 0 " reference
5) Determine S by picking the smaller of the following:
$S=0.9899$ (result of 1) $=$ distance between exam surface and the upper flaw tip $\gg 0 R \ll$
$S=_5.160$ (part "t") \quad 1.4849 $($ result of 2$)=3.6751$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness.
.1.4849 (from step 2) - 0.9899 (from step 1) $=0.495$ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) \cdot 0.4=0.099$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches.
If S is greater than or equal to $0.4 a$ the flaw is subsurface. $a=2 a / 2=0.2475$ inches
$\begin{array}{ll}t=-0.6 \text { (for all }>0.5 . t=2 \mathrm{a}) & \mathrm{t}=-5.160 \text { (part thickness) } \\ \mathrm{a}=-0.2475 \text { (surf or (sub surf) circle one) } & \mathrm{S}=-0.9899\end{array}$

From
Ad Hoc Evaluation Group
File
Location
CSC-2

Location

Subject Use of revised ISI calculation worksheets and correction for curvature
 E un Euncumtia
End $97-0109$. P=A TEL CON APPROVNC ToFf RCNE 3/7/97
Du. g the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by th : new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100\% DAC and also provides a conservative recording level for flaws in excess of 100% DAB
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets.
The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " S " were reviewed against the calculations for surface proximity and value for " γ " and found to have no impact on the acceptability of the indications.

Thomas Jones Lvi III Tin Tran ISI Program Mage Jeff Richer Supt M\&SP

Flaw Sizing Calculations Using Metal Path for Vassel Welds > 2"
For surface and subsurface single planar flaws oriented in plane norme i to pressure retaining surface
ASME SECT XI 1989. V/ NO ADDENDA TH \int INITIAL TO VERIFY
ISI Report \#_97-0136

Length

Length of the flaw "" is deterr ined by finding the difference between L1 and L. 2 for perpendicular scans,
W1 and W2 for parallel scans
L and W values are from page? __ of the UT report
$t=-3.5(W 2)-2.8(W)=0.7$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page \qquad of the UT report. " t " $=\ldots 5,160$ inches

Calibration

The measured angle in the calibration block was _45.0 degrees
Calculations using metal path
From page \qquad of the UT report, Scan \#_4
The flaw exhibited 20% DAC at $3 \cdot 20$ and _3. 80 inches MP. Max amplitude is at 3.64 inches MP with the transducer exit point at _-3.0 inches (W) from the centerline of the weld and 111.4 inches (L) from the 0 " 'eference. (Use of 20% DA v vs. JJ\% max amp for indications > $100 \% \overline{D A C}$ is conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{3.20}{}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle $0^{0.7071}=2.2627$ inches depth.
2) Determine the lower depth of the flaw from the exam surface $\frac{3.80}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \mathrm{COS}$ of the measured angle $0.7071 _=2.6870$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point.
$-\frac{3.64}{2.5738}$ (metal path at maximum amplitude point) * COS of the measured angle _0.7071 $=$ 2. 5738 inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw 3.64 (metal path at maximum amplitude point) squared $=-13.2496\left(a^{2}\right)$
2.5738 (depth at maximum amplitude point) squared $=-6.6244-\left(\mathrm{b}^{2}\right)$ $\sqrt{a^{2}-b^{2}}=2.5739$ inches of surface distance to the flaw from the transducer exit point. _111.4_(Lmax) - 2. 5739_(surf dist) $=$ _108.8261_ inches from 0 " reference.
5) Determine S by picking the smaller of the following: $S=2.2627$ (result of 1) = distance between exam surface and the upper flaw tip
\qquad (result of 2) $=_2.473$
distance between the side opposite $S=-5 \cdot 160$ (part " t ") -2.6870
6) Determine 2 d in though wall thickness.
2. 6870 (from step 2) - 2. 2627 (from step 1) $=_0.4243$ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0849$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches.
If S is greater than or equal to 0.4 a the flaw is sub-surface. $a=2 a / 2=0.2122$ inches

$$
\begin{array}{ll}
t=-\frac{0.7}{}(\text { for } \mathrm{a} / l>0.5, l=2 \mathrm{a}) & \mathrm{t}=\mathbf{5}^{5.160} \text { (part thickness) } \\
\mathrm{a}=\underline{0.2122} \text { (surf or sub surf) circle one) } & \mathrm{S}=-2.2627
\end{array}
$$

Subject Use of revised ISI calculation worksheets and correction for curvature

THis Euncumtion stuLl Pevimid to RV CLOSuRE Hew w. 6 Exam 97-0109. Pen Tercon AppROve ToffReckic 3/7/9.

 During the 1997 inspection of Steam Generator 22, weld W-A, several indications were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected fo, flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans. The corrected values for " S " were reviewed against the calculations for surface proximity and value for " γ " and found to have no impact on the acceptability of the indications.

Pave $\frac{53}{3}$ oi 70

Use 4 to 12 subsurface Flaw:

$$
\frac{a}{t} \%=\frac{0.2722}{5.160}=0.0528 \quad \text { Round to } 5.3 \%
$$

From Table IWE - 35 $10-1$:

$$
\frac{4 / 2}{0.5} \frac{1 / t \%}{7.6 y} \quad y=\frac{s}{a}=\frac{0.4970}{0.2722}=3.7 \Rightarrow y=1
$$

By observation, since a / t calculated equals 5.3% which is less than 7.6\%. Indication is Acceptable.

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface
ASME SECT XI 1989 W/ NO ADDENDA THU SINITIAL TO VERIFY
ISI Report \# 97-0136
Flaw \#_14

Length

Length of the flaw "" is determined by finding the difference between L1 and L.2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=-2.6(W 2)--2.1(W 1)=0.5$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _ _ of the UT report.
" t " $=\mathbf{5} \cdot 160$ inches

Calibration

The measured angle in the caliinration block was _45.0 degrees

Calculetions using metal path
The flaw exnibited 20% DAC at 1.41 with the transducer exit point at -2.3 in

From page \qquad of the UT report. Scan \#__ 4 and _2. 18 inches MP. Max amplitude is at _ 1.59_ inches MP inches (W) from the centerline of the weld and _157. 2 _ inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \% \overline{\operatorname{DAC}}$ is conservative.)

1) Determine the upper depth of the flaw from the exarn surface. $\frac{1.41}{\text { depth. }}$ (metal path at 20% upper) ${ }^{*} \operatorname{COS}$ of the measured angle _0.7071 $=_0.9970$ inches
2) Determine the lower depth of the flaw from the exam surface. $\frac{2.18}{\text { depth }}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle _0.7071 $=1.5415$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. 1. 59_ (metal path at maximum amplitude point) * COS of the measured angle _0.7071 = 1.1243 ir ches depth.
4) Determine the sistance from 0 " reference to the maximum amplitude point of the flaw 1.59 (metal path at maximum amplitude point) squared $=2.5281$ (a^{2}) 1.1243 (depth at maximum amplitude point) squared $=1.2640 \ldots\left(b^{2}\right)$ $\sqrt{a^{2}-b^{2}}=1 \cdot 1243$ _ inches of surface distance to the flaw from the transducer exit point. 157.2_(Lmax) _ 1. 1243 (surf dist) $=\ldots 156.0757$ inches from 0 " reference.
5) Determine S by picking the smaller of the foilowing:
$S=_0.9970 _$(result of 1$)=$ distance between exam surface and the upper flaw tip \gg OR<<
$S=5.160$ (part "t") - 1.5415 (result of 2$)=_3.6185$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine 2d in though wall thickness.
_1.5415 (from step 2) - 0.9970 (from step 1) $=0.5445$ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.1089$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches
If S is greater than or equal to $0.4 a$ the flaw is sub-surface. $a=2 a / 2=0.2722$ inches
$l=0.5444$ (for a $/ l>0.5 \quad 1=2 \mathrm{a}) \quad \mathrm{t}=\mathbf{5}^{5.160} \quad$ (part thickness)
$a=0.2722$ (surf or sub suri) circle one)
$S=0.9870$
flawtrig (for parallel scans) Rev 0

Date
March 5, 1997
From Ad Hoc Evaluation, Group
Location
CSC -2

Location

Subject

Use of revised ISI calculation worksheets and correction for curvature

 were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology io calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The inform ration provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The orig, sinal worksheets did not consider curvature when determining indication depth on the circumferential scans. The ,erected values for " S " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact σ^{\prime}. the acceptability of the indications.

$$
\frac{a}{t}=\frac{0.1838}{0.3676}=0.50
$$

Use 4 to 12 subsurface Flaw:

$$
\frac{a}{t} \%=\frac{0.1338}{5.160}=0.0356 \text { Round to } 3.6 \%
$$

From Table Iws-3510-1:

$$
\frac{a}{l} \frac{a / t \%}{7.6 y} \quad y=\frac{s}{a}=\frac{1.2144}{0.1838}=6.6 \Rightarrow y=1
$$

By observation, since M / t calculated equals 3.6% wish io les than 7.6\%. Indication is Acceptable

${ }^{1.1 \text { si R Repon Nupber }} 297-\left.\left.0136\right\|^{\text {2. Flaw Number }} \quad 15\right\|^{\text {3. Lum Number }} 32.40$		
\downarrow		
0.3677°		
$\overline{1.21444^{\circ}}$		
Top View		
$\text { BTm Head } \frac{k 3.8^{\prime \prime} \rightarrow 1}{1+3}$		
$\begin{aligned} & k=0.57 \\ & 0.36+16^{\prime \prime} \end{aligned}$		
\qquad I \& weld		
Show dearm mintion of surfee or subarinee a thacked		
show deemmination ofypo or \% weesee attache		
$\left\lvert\, \frac{59}{1200}\right.$		

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 WI NO ADDENDA Th $\int_{\text {INITIAL TO VERIFY }}$

ISI Re sort \#_97-0136

Flaw \# \qquad Evaluation Performed By: form CasA
Reviewed By: E. 2 Date: $\frac{2 / 23 / 97}{\text { them Date: } 3-12.57}$

Length

Length of the flaw """ is determined by finding the difference between L. 1 and L.2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report
$t=-3.9(W 2)-3.6(W 1)=0.3$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page \qquad of the UT report " t " $=5.160$ inches

Calibration

The measured angle in the calibration block was _45.0_ degrees
Calculations using metal path The flaw exhibited 20% DAC at -5.06
with the transducer exit point at with the transducer exit point at -3.8

From page \qquad of the UT report, Scan \#_4 and $\mathbf{5}^{5.58}$ inches MP. Max amplitude is at _5.39 inches MP (L) from the $0^{\prime \prime}$ reference. (Use of 20% D conservative.)

1) Determine the upper depth of the flaw from the exam surface. $\frac{5.06}{\text { depth }}$ (metal path at 20% upper) * COS of the measured angle $0.7071 _=3.5779 _$inches depth.
2) Determine the lower depth of the flaw from the exam surface. $\frac{5.58}{\text { depth. }}$ (metal path at 20% lower) ${ }^{*} \operatorname{COS}$ of the measured angle $_0.7071 _=3.9456$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. $-\frac{5.39}{}$ (metal path at maximum amplitude point) * COS of the measured angle _0.7071 = - 3.8113 _ inches depth.
4) Determine the distance from $0^{\prime \prime}$ reference to the maximum amplitude point of the flaw _5.39 (metal path at maximum amplitude point) squared $=29.0521$ (a^{2}) 3.8113 (depth at maximum amplitude point) squared $\left.=14.5260 \mathrm{~m}^{2}\right)$ $\sqrt{a^{2}-b^{2}}=3.8113$ inches of surface distance to the flaw from the transducer exit point. 144.5_(Lmax) - 3. 8113 (surf dist) $=140.6887$ inches from 0° reference.
5) Determine S by picking the smaller of the following:
$S=3.5779$ (result of 1) $=$ distance between exam surface and the upper flaw tip \gg OR <<
$S=\$^{5 \cdot 160}$ (part " t ") _ 3.9456_(result of 2$)=_1.2144$ _ distance between the side opposite exam surface and the lower flaw tip
6) Determine $2 d$ in though wall thickness.
3. 9456 (from step 2) - 3. 5779(from step 1) $=\ldots 0.3677$ inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=_0.0735$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches
If S is greater than or equal to $0.4 a$ the flaw is sub-surface. $a=2 a / 2=0.1838$ inches.
$t=0.3676$
(for $\mathrm{a} l \mathrm{l}>0, \quad 1=2 \mathrm{a}$)
$\mathbf{t}=\mathbf{5} \cdot \mathbf{1 6 0}$ (part thickness)
$a=0.1838$ (surf or sub surf) circle one)

From Ad Hoc Evaluation Group
Location
To File
Location

Subject Use of revised ISI calculation worksheets and correction for curvature
 During the 1997 inspection of Steam Generator 22, weld W-A, several indications CATC were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for "S" were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

Flaw Sizing Calculations Using Metal Path for Vessel Weids > 2"
For surface and subsurface single planar flaw:3 oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 W/ NO ADDENDA 14 INITIAL TO VERIFY

ISI Report \#,97-0136
Flaw \# 16

Length

Length of the flaw """ is determined by finding the difference between L. 1 and L2 for perpendicular scans,
W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$1=-3.9(W 2)-3.5(W 1)=0.4$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom \mathbf{x} all (circle one). This value is from page _ 1 _ of the UT report. " t " = 5. 160 _ inches

Calibration

The measured angle in the calibration block was _45.0 degraes
Calculations using metal path
The flaw exhibited 20% DAC at 2.37 with the transducer exit point at -3.7

From page \qquad of the UT report, Scan \# _ 4 and 2.79 inches MP M2x ampiitude is at 2.65 inches MP inches (W) from the centerline of the weld and 212.4 inches (L) from the $0^{\prime \prime}$ reference. (Use of 20% DAC vs. 50% max amp for indications $>100 \% \overline{D A C}$ is conservative.)

1) Determine the upper depth of the flaw from the exam surface.
$\frac{2.37}{}$ (metal path at 20% upper) ${ }^{*} \mathrm{COS}$ of the measured angle $0^{0.7071}=-1.6758$ inches depth.
2) Determine the lower depth of the flaw from the exam surface. _2. 79_ (metal path at 20% lower) * COS of the measured angle _0.7071_ $=1.9728$ inches depth.
3) Dete mine the depth of the flaw from the exam surface at the maximum amplitude point. _2.65 (metal path at maximum amplitude point) * COS of the measured angle _0.7071_ $=$ 1. 8738 _ inches depth.
4) Determine the distance from 0 " reference to the maximum amplitude point of the flaw
2.65 (metal path at maximum amplitude point) squared $=7.0225\left(\mathrm{a}^{2}\right)$
1.8738 (depth at maximum amplitude point) squared $=3.5111$ ($\left.b^{2}\right)$
$\sqrt{a^{2}-b^{2}}=1.8739$ _ inches of surface distance to the flaw from the transducer exit point. 212.4^{2} (Lmax) - . 1.8739 (surf dist) $=\ldots 210.5261$ _ inches from 0 " reference.
5) Determine S by picking the smaller of the following;
$S=1.6758$ _ (result of 1) $=$ distance between exam surface and the upper flaw tip $>-O R \ll$
$S=_5.160$ (part "t") - 1.9728_(result of 2$)=_$3.1872_ distance between the side opposite exam surface and the lower flaw tip
6) Determine 2 d in though wall thickness.
1.9728(from step 2) - 1.6758_(from step 1) $=\ldots 0.297$ _ inches

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.0594$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface. $a=2 \mathrm{~d}$
If S is greater than or equal to 0.4 a the flaw is su:
ce. $a=2 a / 2=0.1485$ inches
$t=0.4$ (for $\mathrm{a}^{\prime} />0.5, t=2 \mathrm{a}$) $\quad 160$ (part thickness)
$a=0.1485$ (surf orsub suif circle one)
$S=\ldots .6758$
Page $\frac{64}{9720}$ of 20
flawtrig (for parailel scans) Rev 0

From Ad Hoc Evaluation Group

Location
CSC-2
To File
Location

Subject Use of revised ISI calculation worksheets and correction for curvature
 During the 1997 inspection of Steam Generator 22, weld W-A, several indications CALC, were reported under reports 97-0136 and 97-0137. Using procedure ISI-FE-1 Rev 2 to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be improved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, and W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets. The original worksheets did not consider curvature when determining indication depth on the circumferential scans. The corrected values for " $\$$ " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

Thomas Jones LvI III Tin Tran ISI Program Mngr Jeff Rocker Supt M\&SP
$\frac{65 \text { i } 20}{97-013621}$

ISI report \#97-8136, Flaw \#17, 0. ke by hofd loook, manhbluyo 3/4/97 1299w.wpf:1b/011925

A2-7
Page $\frac{67}{\text { Report } 1970}$

Flaw Sizing Calculations Using Metal Path for Vessel Welds > 2"
For surface and subsurface single planar flaws oriented in plane normal to pressure retaining surface

ASME SECT XI 1989 WI NO ADDENDA Th INITIAL TO VERIFY

ISI Report \# 97-0136
Flaw \# 17

Length

Length of the flaw "" is determined by finding the difference between L. 1 and L2 for perpendicular scans, W1 and W2 for parallel scans.
L and W values are from page ___ of the UT report.
$t=-4.1$ (W2) - -3.3 (W1) $=0.8$ inches.

Thickness

Thickness of the component at the location of the flaw, using UT or nom wall (circle one).
This value is from page _1_ of the UT report.
" t " $=$ 5. 160 inches

Calibration

The measured angle in the calibration block was _45.0 degrees

Calculations using metal path
The flaw exhibited 20% DAC at 2.75 with the transducer exit point at -3.7

From page of the UT report, Scan \#__ 4 and 3.48 inches MP. Max amplitude is at _ 3.17 inches MP inches (W) from the centerline of the weld and - 148.5 inches (L) from the $0^{\prime \prime}$ reference. (Use of 20\% DAC vs. 50% max amp for indications $>100 \%$ DAC is conservative.)

1) Determine tile upper depth of the flaw from the exam surface. 2. 75 (metal path at 20% upper) $* \operatorname{COS}$ of the measured angle _0.7071 $=1.9445$ inches depth.
2) Determine the lower depth of the flaw from the exam surface. $\frac{3.48}{\text { depth. }}$ (metal path at 20% lower) ${ }^{\circ} \operatorname{COS}$ of the measured angle $_0.7071 _2.4607$ inches
3) Determine the depth of the flaw from the exam surface at the maximum amplitude point. 3.17 (metal path at maximum amplitude point) * COS of the measured angle _0.7071 = 2.2415 inches depth.
4) Determine the distance from 0^{n} reference to the maximum amplitude point of the flaw.
$-\frac{3.17}{2.15}$ (metal path at maximum amplitude point) squared $=-10.0489\left(a^{2}\right)$
2.2415 (depth at maximum amplitude point) squared $=5.0243-\left(b^{2}\right)$ $\sqrt{a^{2}-b^{2}=2.2416}$ inches of surface distance to the flaw from the transducer exit point. _148.5 (Lax) - 2.2416 (surf dist) $=$ _ $^{146.2584}$ _ inches from 0 " reference.
5) Determine S by picking the smaller of the following:
$S=1.9445$ (result of 1) $=$ distance between exam surface and the upper flaw tip $\gg O R \ll$
$S=5.160$ (part "t") 24607 (result of 2$)=_$2.6993_ distance between the side opposite exam surface and the lower flaw tip
6) Determine 2 d in though wall thickness.
2. 4607 (from step 2) - 1. 9445 (from step 1) $=\ldots 0.5162$ inches.

Determination of surface or subsurface

$0.4 \mathrm{~d}=(2 \mathrm{~d} / 2) * 0.4=0.1032$
Compare to S (from step 5)
If S is less than 0.4 d , the flaw is surface $\mathrm{a}=2 \mathrm{~d}+\mathrm{S}=$ \qquad inches
If S is greater than or equal to 0.4 a the flaw is sub-surface. $\mathrm{a}=2 \mathrm{a} / 2=0.2581$ _inches
$t=0.8$ (for all $>0.5, l=2 a$)
$a=0.2581$ (surf or sub surf) circle one)
$\mathrm{t}=\mathbf{5 . 1 6 0}$ (part thickness)
$s=1.9445-1.9040^{\circ} \mathrm{cm}$

From Ad Hoc Evaluation Group
To File
Location
CSC -2

Subject Use of revised ISI calculation worksheets and correction for curvature

During the 1997 inspection of Steam Generator 22, weld W-A, several indications
were reported under reports 97-0136 and 97-0137. Using procedure ISi-FE-1 Rev 2
to perform the flaw evaluation, it was determined by the level III that the applicable worksheet (Figure 7) could be irnproved upon for these calculations. As a result, two new worksheets were developed that have the following benefits;

- The determination of length varies with the direction of scan and is addressed by the new sheets. Length of the flaw is determined by finding the difference between L1 and L2 for perpendicular scans, ard W1 and W2 for parallel scans.
- The level of recording in relation to DAC is corrected for flaws less than 100% DAC and also provides a conservative recording level for flaws in excess of 100% DAB.
- The methodology to calculate depth is based on metal path and obviates the need to convert screen divisions into depth relating the calibration block to the component.

Consideration of the effect of the curvature of the vessel on depth determination for indications

The information provided above was developed in response to comments from the reviewer of the ISI UT calculation worksheets.
The original worksheets did not consider curvature when determining indication depth on the circumferential scans.
The corrected values for " $\$$ " were reviewed against the calculations for surface proximity and value for " Y " and found to have no impact on the acceptability of the indications.

