May 17, 1982

MEMORANDUM FOR:	D. Okrent, Chairman		
	ACRS Subcommittee on Midland Plant Units	1 &	2

FROM: D. Fischer, Reactor Engineer

OFF SURNA DA

NRC F

SUBJECT: PROJECT STATUS REPORT FOR THE ACRS SUBCOMMITTEE MEETING ON MIDLAND PLANT UNITS 1 & 2 - MAY 20-21, 1982, MIDLAND, MICHIGAN

Attached is a project status report for the subject meeting. The purpose of the meeting is to review the application of Consumers Power Company for a license to operate the Midland Plant Units 1 & 2.

The meeting will begin at 8:30 a.m. on May 20, 1982 and will be held at the Midland Holiday Inn, 1500 Wackerly Rd., Midland, Michigan. Attendance by the following ACRS members and consultants is anticipated and hotel reservations have been made at the Holiday Inn for the nights indicated. Box lunches and buffet dinners will be available at nominal expense on Thursday, May 20th.

D. Okrent	19th & 20th	
W. Mathis		
D. Moeller	•	
C. Siess	•	
P. Davis (partial)		
E. Epler		
W. Lipinski		
J. Osterberg	20th	
F. Parker	20th	
P. Pomeroy (partial)	20th	
R. Scavuzzo	19th & 20th	
M. Trifunac (partial)	20th	
Z. Zudans	19th & 20th	
Attachment: Project Status Report cc: ACRS Members	E. Epler	
R. Fraley	W. Lipinski	F- 11 05-1 02
M. Libarkin J. McKinley	F. Parker	FO1A-85-602 B/65
G. Quittschreiber	P. Pomeroy	,
P. Davis	R. Scavuzzo	RILE
F. Davis	M. Trifunac	0105
ACRS DELISCHER/bas 5-17-82	-2. Zudang	
MEL DEISCHER/bgs 5-17-82		
651	0080397 850930	
TE PDR	FOIA 830430	***************************************
ВКО	WNER85-602 PDR	
ORM 318 110/801 NRCM 6240 OFFICIAL RE	CORD COPY	
		n USGPO 1980-329.824

PURPOSE:

The purpose of this meeting is to review the application of Consumers Power Company for a license to operate the Midland Plant Units 1 & 2.

BACKGROUND:

Pertinent facts concerning the Midland Project include:

Location:

The Midland site is located partially within the city of Midland, Midland County, Michigan. The city of Midland is approximately 105 miles NNW of Detroit and about halfway up Michigan's lower peninsula on the Lake Huron (east) side. The facility is located along the south shore of the Tittabawassee River and south of the city of Midland. The site is adjacent to the Dow Chemical Company's (Dow) main industrial complex in Midland (located on the north side of the Tittabawassee River and due north of the plant). Within 10 miles of the plant, the 1970 estimated population was 72,706, within 5 miles, there were 48,501 residents. Circulating water for the two units is obtained from a cooling pond. The cooling pond receives make-up water from the Tittabawassee River. A map of the Midland plant site is included as Attachment 1.

Plant:

OFFICE

Each of the two units at the Midland plant employs a Babcock and
Wilcox-designed nuclear steam supply system (NSSS) consisting of a
pressurized water reactor (PWR) rated at 2468 megawatts thermal (MWt),
a pressurizer, two steam generators, four reactor coolant pumps, and
the associated piping required to connect these components. Attach-
ment 2 shows the NSSS arrangement. This rated power level includes
2452 MWt generated in the core plus 16 MWt added to the NSSS by the
four reactor coolant pumps. The maximum core design output (excluding
pump heat) is 2552 MWt. This power level is referred to as the
stretch level and is the value used in the radiological accident an-
alyses. The Midland plant is unique in that the heat generated will
be used not only to produce electrical energy but also to produce
steam for the Dow Chemical Company plant. The facility's turbine
generators will produce 504 megawatts electrical (MWe) from Unit 1
and 852 MWe from Unit 2. The remaining heat from Upit 1 will normally
be used to produce 460 kg/s (approximately 3.6 x 10° 1b/pr) at 1200
kPa gauge (175 psig) and 50 kg/s (approximately 0.4 x 10° lb/hr) at
4100 kPa gauge (600 psig) of process steam for use at the Dow plant.
The process steam system is a tertiary system utilizing heat extracted
from the secondary steam system of the Midland plant.

NRC FORM	318 (10/80) NRCM	0240	OFFICIAL	RECORD C	OPY		⇒ USGPO 1980329-824
DATE							
SURNAME							
	* * * * * * * * * * * * * * * * * * * *	********	* * * * * * * * * * * * * * * * * * * *	***************	****************	******	*****************

STATUS REPORT/MIDLAND

The containment for the nuclear steam supply system (NSSS) is a post-tensioned, reinforced concrete structure with a steel liner to provide leak tightness. The containment which was designed and constructed by Bechtel Power Corporation has a design pressure of 70 psig.

The reactor cores will be loaded with 177 fuel assemblies (15x15). The core will have an average thermal output of 5.47 kw/ft (based on cold BOL data). The SSE is 0.12 g horizontal, 0.8 g vertical. The OBE is 0.06 g horizontal, 0.05 g vertical. A comparison of Midland features with those of similar plant designs is included as Attachment 3.

ADDITIONAL CONSIDERATIONS:

Midland Units 1 & 2 have a nominal finish grade elevation of +634 ft. The design high water level due to probable maximum flood, including wave run up effects is +635.5 ft. The design water level of the Tittabawassee River, cooling pond, and ultimate heat sink are +588 ft, +618 ft, and +604 ft, respectively.

ACRS REVIEW:

The ACRS reviewed Midland for a CP license in June 1970. A copy of the CP letter and supplement thereto is included as Attachments 4 & 5, respectively. In response to requests for additional information from the Atomic Safety and Licensing Board (ASLB) the ACRS wrote an additional Supplemental Report on Midland Plant Units 1 & 2, dated Nov. 18, 1976 and provided comments to the Commission Chairman in a letter dated March 16, 1977. These two letters are Attachments 6 and 7 to this status report. Supplement No. 2 to the NRC Staff's CP SER of the Midland Plant addresses the ACRS concerns identified in the second supplemental ACRS letter report dated Nov. 18, 1976. This Staff SER supplement (less the ACRS letter) is included as Attachment 8.

On April 29, 1982 an ACRS Ad Hoc Subcommittee met to discuss the remedial actions for soils-related structural settlement problems at the Midland site. The report of that Ad Hoc Subcommittee meeting is included as Attachment 9. Of particular note in this report is the Ad Hoc Subcommittee's recommendation (accepted by the full ACRS during the May Full Committee meeting) that the Midland Plant Subcommittee revew:

- 1. The adequacy of the seismic input criteria and
- The seismic Site Specific Response Spectra and its relation to the proposed permanent site dewatering as a means of reducing the probability of liquefaction due to an earthquake.

NRC FORM	318 110/801 NRCM 0240	OFFICIAL	RECORD C	OBY		+ USGPO 1980-329-824

DATE						
SURNAME						
		****	*****	*****************	* * * * * * * * * * * * * * * * * * * *	*****************
OFFICE						

- 2 -

STATUS REPORT/MIDLAND

The full ACRS is tentatively scheduled to review the OL application during its June 1982 meeting.

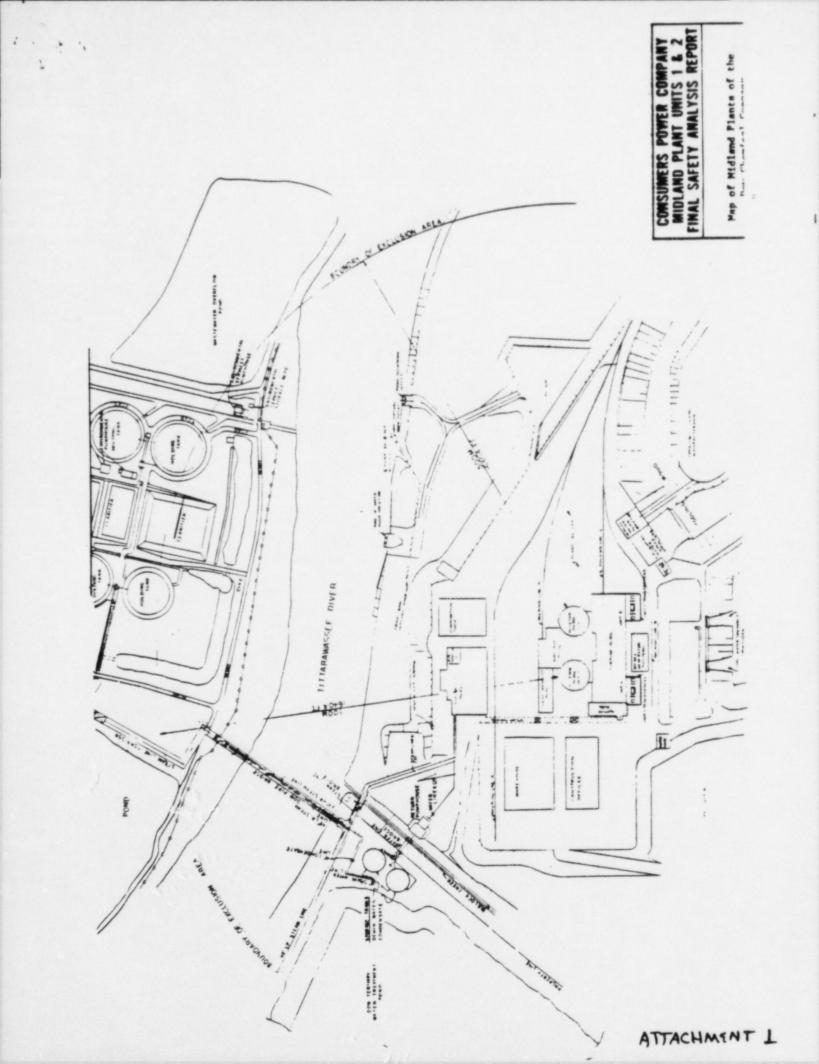
- 3 -

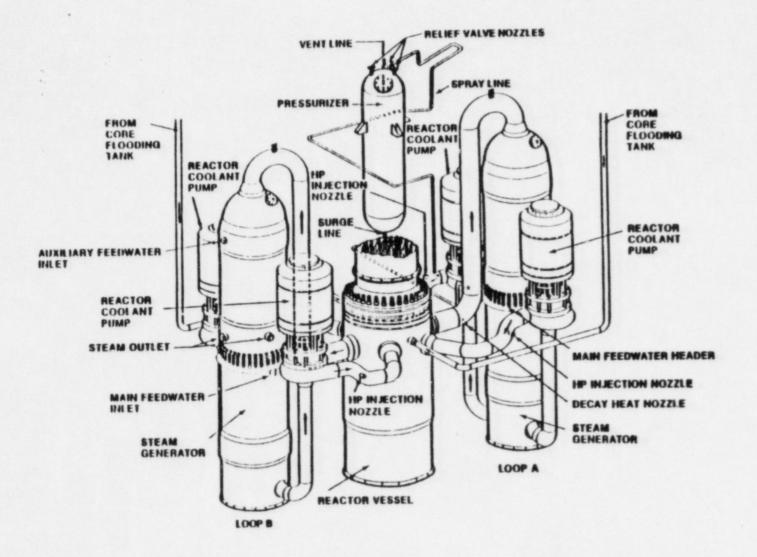
OPEN ITEMS:

There are currently 16 open items. About half of these items are unresolved due to pending NRC Staff action/evaluation and half due to the need for additional information/evaluation from Consumers Power Company. Disagreements between the NRC Staff and the Applicant still exist on several soils settlement issues and on the need for a reactor vessel head vent. A list of the current open items is included in Attachment 10. Attachment 10 also lists the license conditions to be imposed on the applicant. For a description of each of these open items and license conditions, please see the indicated section of the NRC Staff's Safety Evaluation Report.

MEETING TENTATIVE SCHEDULE:

The meeting tentative schedule was issued May 12, 1982. It incorporated topics identified in the NRC Staff's SER, past ACRS letters (Attachments 4,5,6, and 7), the ACRS Staff's list of suggested discussion items for OL Subcommittee meetings, and items identified in consultant reports concerning Midland. The consultant reports are included as Attachment 11. Comments received from ACRS members and staff were factored into the tentative schedule as were the comments received from members of the public.


SUBCOMMITTEE ACTIONS REQUIRED:


The Subcommittee should decide if the full ACRS should review the application of Consumers Power Company for a license to operate Midland Plant Units 1 & 2 at the June ACRS full Committee meeting. If the Subcommitee decides that the full Committee should review Consumers application in June, then the topics to be discussed during the Midland portion of the June full committee meeting should be identified at the close of the Subcommittee meeting.

PUBLIC PARTICIPATION:

A member of the public (Mary Sinclair/Dr. Charles Anderson has requested an opportunity to make an oral statement regarding the soils/foundation question. Time has been made available on the schedule for this statement. In addition, Mrs. Sinclair has provided a letter, Attachment 12, for ACRS consideration.

NPC FORM	318 (10/80) NRCM 0240 OFFICIA	
DATE		
SURNAME		 ******
OFFICE		

Midland reactor coolant system

. .

-

ATTACHMENT 2

		HIDLAND 142-FSAR			
		TABLE 1.3-1			6
	COMPARISON	OF NIDLAND PRATURES WITH S	INILAR DESIGNS"		*
Bystan	Ridland	Rancho Seco	Oconee	Turkey Point	_
Reactor and Reactor Coolant Sys [ref Chapters 4 and 5]	ten				
Rated heat output (core), MMt	2,452	2,772	2,568	2,200	
Maximum overpower, %	12	12	14	12	
Reactor coolant pressure (operating), psia	2,200	2,200	2,200	2,250	11 32
Power distribution factors					
Neat generated in fuel and cladding, X F &h (nuclear)	97.3 1.78	97.3 1.78	97.3 1.76	97.4 1.77	
THE ratio at rated conditions	2.50	1.75(#-3)	2.0	1.81	
DWB ratio at design overpower	2.07	1.39(#-3)	1.55		32
Coolant flow					
Total flowrate, 1b/hr x 10"	131.9	137.6	131.3	101.5	16
Effective flow area for heat transfer, ft ²	48.9	49.17	49.19	41.8	1 12
Average velocity along fuel rods, ft/s	15.5	16.5	15.73	14.5	1
Coolant temperature					
Nominal inlet (vessel)	555.2	556.5	556 .7	546.2 602.1	
Nominal outlet (vessel) Nominal outlet (core)	602.8 605.9	607.7	605.5	604.5	32
Maximum fuel temperature, "F	3,980	4,400(hotspot)	4,250	4,400(overpower)	
Beat transfer at 100% power					
Active best transfer surface				42,460	
area, ft' Average heat flus, Btu/hr/ft'	49,130 166,000	49,734 185,090	49.734 171,470	171,600	32
Average thermal output, kW/ft		6.10	5.65	5.5	
Core mechanical design paramete					
Puel assemblies	177	177	177	157	
Deeign	CRA canless	CRA canless	CRA canless	RCC canless	

NIDLAND 142-PSAR

~

ATTACHMENT 3

(sheet 1) Revision 32 1/81

-

· · · ·

NIDLAND 142-FSAR

TABLE 1.3-1 (continued)

System	Midland	Rancho Seco	Oconee	Turkey Point	
Rod pitch, in. Overall dimensions, in. Number of grids per assess	0.568 8.567 sq bly 8	0.568 8.536 mg	0.568 8.536 mg 8	0.563 8.425 sq 7	
Fuel rode					
Number Outside diameter, in. Clad thickness, in. Clad material	36,616 0.430 0.0265 Zirceloy-4	36,816 0.430 0.0265 Zirceloy-4	36,816 0.430 0.0265 Zirceloy-4	32,025 0.422 0.0243 Zircaloy	
Puel pellets					
Material Density, X of theoretical Diameter, in.	002, sintered 95.0 0.3686	002, sintered 92.5 0.370	002, eintered 93.5 0.370	00 ₂ , eintered 94,93,92 0.3659,0.3659,0.3649	33
Control rod assemblies (CRA)				
Neutron absorber Cladding material Clad thickness, in. Number of assemblies Number of control rods per assembly	5%Cd-15%In-80%Ag 30455-cold worked 0.021 61 16	5%cd-15%1m-80%Ag 30455-cold worked 0.021 61 16	5%cd-15%in-80%Ag 30455-cold worked 0.021 61 16	5%Cd-15%In-80%Ag 30455-cold worked 0.019 53 20	
Burnable poison rod					
assemblies (BPRA)	58	68	68	68	
Nuclear Design Data					
Structural characteristics					
	93.1 metric tons	204,820	207,486	176,000	
Core diameter, in. (equivalent)	128.9	128.9	128.9	119.5	
Core beight, in. (active fuel)	141.0	144	144	144	33
Performance characteristics					
Loeding technique Puel discharge burnup, Nud/atU	3 region	3 region	3 region	3 region	
average first cycle equilibrium core average	13,746 27,789	14,250	16,250	13,000 24,500	32

(sheet 2) Revision 33 4/81

.

-

...

•••

MIDLAND 162-FSAR

. .

TABLE 1.3-1 (continued)

.

.

System	Midland	Rancho Seco	Oconee	Burkey Point
Control characteristics				
Effective multiplication	(BOL)			
Cold, zero power, clean, no burnable poison	1.24	1.252	1.248	1. 180
Hot, zero power, clean, no burnable poison	1.19	1.19	1.198	1.138
Hot, rated power, equili- brium Xe, with burnable				1 077
poison	1.11	1.12	1.134	1.077
Boron concentrations				
To shutdown with rods in	serted, 1, 143/641	1,099/605	992/493	780/510
clean, cold/hot, ppm Boron worth, hot,	1, 143/ 641	.,		
\$ (ak/k) / ppm	1/96	1/100	1/100	7.3/
Boron worth, cold, % (ak/k)/ppm	1/74	1/75	1/75	5.6/
Principal design parameters of the reactor coolant system				
System heat output, MWt	2,468	2,772	2,584	2,200 2,235
Operating pressure, psig	2,185	2,185	2, 185	546.2
Reactor inlet temperature,	°F 555.2	556.5	554	602.1
Reactor outlet temperature	.oF 602.8	607.7	604	3
Number of loops	2	2		2,485
Design pressure, paig	2,500	2,500	2,500	650
Design temperature, or	650	650	650	630
Hydro test pressure (cold), psig	3, 125	3,125	3,125	3, 107
Principal design parameters				
of reactor vessel				
Material	SA-533 Gr B,	SA-533, Gr B	SA-533, Gr B,	SA-302 Gr B, low alloy
Macarian	18-855 clad	18-855 clad	18-8SS clad	steel, internally clad with SS
Design pressure, psig	2,500	2,500	2,500	2,485
Design temperature, or	650	650	650	650
Operating pressure, psig	2, 185	2, 185	2,185	2,235
Inside diameter of shell, overall height of vessel	in. 171	171	171	155.5
and closure head (over CED nozzles), ft-in.	40/8-7/8	40/8-3/4	40/8-3/4	41/6
				•

(sheet 3) Revision 15 11/78

-

• • •

. .

System	Midland	Rancho Seco	Ocone e	Turkey Point
Minimum clad thickness, in	. 1/8	1/8	1/8	5/32
Principal design parameters	of			
the steam generators				•
Number of units per reacto	r 2	2	2	3
туре	Vertical, once- through, integral superheater, straight-tube	Vertical, once- through, integral superheater, straight-tube	Vertical, once-through, integral superheater, straight-tube	Vertical U-tube, integral moisture separator
Tubeside design				
pressure, psig	2,500	2,500	2,500	2,485
Tubeside design				
temperature, or	650	650	650	650
Shell side design				
pressure, psig	1,050	1,050	1,050	1,085
Shell side design				
temperature, °F	600	600	600	556
Operating pressure				
Tubeside, psig	2,185	2,185	2, 185	2,235
Smell side, psig	910	910	910	1,020
Hydrostatic test pressure,				
cold, tubeside, psig	3, 125	3,125	3,125	3,107
Principal design parameters reactor coolant pumps	of			
Number of pumps			•	3
Type	Vertical, single	Vertical, single	Vertical, single	Vertical, single
.)	stage	stage	stage	stage
Design pressure, psig	2,500	2,500	2,500	2,485
Design temperature, or	650	650	650	650
Design capacity, gpm	88,000	92, 00	88,000	89,500
Design total developed				
head, ft	327	362	396	260
Hydrostatic test pressure (cold), psig	3, 125			3, 107
Notor type	ac, induction,	ac, induction,	ac, induction,	ac, induction,
meror offe	single speed	single speed	single speed	single speed
Motor rating, hp	9,000	10,000	9,000	6,000
Reactor coolant piping				
Hot leg (id.) in.	36	36	36	29
Cold leg (id.) in.	28	28	28	27-1/2

(sheet 4) Revision 15 11/76

-

MIDLAND 162-FSAR

.

TABLE 1, 3-1 (continued)

System	Midland	Rancho Seco	Oconee	Turkey Point	
Engineered Safety Features (ref Chapter 6)					
Safety injection system					
Number of high head pumps Capacity each, gpm/ft Number of low head pumps Capacity each, gpm/ft	3 250/6,000 2 3,000/370	3 300/5,850 2 3,000/350	3 250/5,900 2 3,000/350	4 (shared) 300/2,700 2 3,750/240	15
Containment coolers					
Type Number of units Capacity, Btu/hr each, at accident	Fan coolers 4 50x104	Fan coolers 4 60x10*	Fan coolers 3 80x10*	Fan coolers 3 60x10*	
Core flooding system					
Number of tanks Total water volume, each ft ³	2 1,040	2 1,040	2 1,040	3 1,200 (total volume) 775 water vol min	
Containment spray					
Number of pumps Capacity, each, gpm Spray additive for iodine removal	1,300 N ₂ H ₄	2 1,500 NaOH	1,500 None	2 1,450 None	13
Emergency power					
Type Quantity	Diesel 2/5,250kW each continuous	Diesel 2/2,600kW each continuous	Various 7 sources of signif- icant capacity	Diesel 2/2,500kW each continuous	
Power Conversion System (ref Chapter 10) (1)					
Turbine-generator	Unit 2 Unit 1				1
Gross generator output, MW	852 504.8, 595.2	3)	847	728	1
Cylinders, high-pressure, 1 low-pressure		1p 1 hp, 2 1p	1 hp, 3 lp	1 hp, 3 lp	1
				(sheet 5) Revision 15	

Revision 15 11/78

. .

. •

System	Mid	lland Ra	ncho Seco	Oconee	Turkey Point
Steam conditions at throttl					
valve					
			10 77	11.17	8.97
Flow, 10° 1b/hr	9.77	9.62	10.77	900	745
Pressure, psia	900	566.4	595	568.8	510
Temperature, "F Moisture content, %	566.4	0	0	0	0.25
Steam flow to Dow Chemical					
		(100 (100)4)			-
Pressure, psig hp/lp	-/-	632/1984	-	-	-
Flow, 1b/hr hp/1p	-/- -/-	400,000/3.65x10 ⁶¹²¹ 6.84x10 ⁵ /1.8x10 ⁶¹³¹			
Turbine cycle arrangement					
atom and atoms no	2	2	2	2	1
Steam reheat stages, no. Feedwater heating stages,		5	6	6	6
DO.	-	-			
Strings of feedwater heaters, no.	2	2	2	2	2
neacers, no.					
Beaters in condenser necks, number	2	2	0	1	2
Heater drain system	Deserator	Deserator	Cascade	Pumped forward	Pumped forward
Number of condensate pump	cycle 2	2	3	3	2
Number of condensate boost		•	-		
pumps	2	2	0	3	0
Number of main feedwater					
pumps	2	2	2	2	2
Number of auxiliary	2	2	2	1 with interties to other	3-turbine
feedwater pumps	1-turbine	1-turbine	1-turbine	2 units - turbine driven	
	1-motor	1-motor	1-motor		(00
Capacity, each, gpm	885	885	840	7-1/2% full feedwater capacity	600

| 32

.

. '

(sheet 6) Revision 32 1/81

.

MIDLAND 162-PSAR

...

TABLE 1.3-1 (continued)

Surstan.	Midla	and	Rancho Seco	Oconee	Turkey Point
System	158	158	158	258	408
Main steam turbine bypass capacity, % Final feedwater temperature °F at mgl	430	430	471	460	436
Condenser					
Туре	Dual	Single	Dual pressure	-	Single pressure
	2	l	2	-	2 2.5
Condenser shells Design pressure Hg abs	4.07/2.77	2.83	2.5 average	-	2.5
hp/lp Total condenser duty.	5.51	2.14	6.24	-	5.02
Btu/hgx10(9)				Once through	Once through
Circulating water system	Cooling pond	Cooling pond	Cooling tower (hyperbolic)	Lake Keowee	Biscayne Bay
Circulating water	2/Unit 2	2/Unit 1	4/Unit	4/Unit	2/Unit
Flow, gpm x 10 ⁽⁵⁾ /unit	2.64	3.90	4.47	7.08	3.12
Ultimate heat sink	Cooling pond	Cooling pond	Spray pond	Lake Keowee	Biscayne Bay
Service water pumps, no.	2/Unit 2 (Plus one	2/Unit 1 common	2/Unit	3 shared	3 shared
	spare for 162)	Units			
Plow, gpm/each pump	21,000	21,000	16,000	15,000	16,000
Radioactive Waste Managemen Systems (ref Chapter 11)	<u>it</u>				
Liquid radwaste treatment	Degasified, fil- tered, demineral- ized, evaporated		Degasified, fil- tered, demineral- ized, evaporated	Degasified, evaporated	Degasified, demineralized evaporated

.

1 32

.*

System	Midland	Rancho Seco	Oconee	Turkey Point	
Evaporators, waste	30	30	10 approx	20	
capacity, gpm Quantity	1	1	1	1 4	
Demineralizers, waste	150	150	None	1,000 gal. batch @ 2 gpm	
capacity, gpm Quantity	2	2	-	1	
Gaseous radwaste treatment	Holdup tanks for decay, charcoal, and HEPA filters	Holdup tanks for decay, charcoal, and HEPA filters	Boldup tanks for decay, prefilter, absolute, and charcoal filters	Holdup tanks for decay, monitored, released to atmosphere	
Holdup Tanks					
Quantity Capacity, cubic ft (each)	6 390	490	1,190	6 525	
Solid radwaste treatment					
Containers	55 gallon drum	55 gallon drum	55 gallon drum	55 gallon drum	
Containment (ref Subsection 6.2.1					
Туре	Steel lined, pre- stressed, post-ten- sioned concrete cylinder with curved dome roof	Steel lined, pre- stressed, post-ten- sioned concrete cylinder with curved dome roof	Steel lined, prestressed, post-tensioned concrete cylinder with curved dome roof	Steel lined, prestressed, post-tensioned concrete cylinder with curved dome roof	
Leak rate, %/day	0.1	0.1	0.25	0.25	
Design pressure, psig	70	59	59	49.9	
Free volume, ft x10 ⁶ Cylinder inner diame-	1.67	1.98	1.91	1.55	
ter, ft	116	130	116	116	
Inside height, ft	193	185	208-1/2	169	

| 32

. .

(sheet 8) Revision 32 1/81

. .

-

-

TABLE 1.3-1 (continued)

System	Midland	Rancho Seco	Oconee	Turkey Point
Structural Design Require- ments (ref Section 3.8)				
Operating basis earthquake (horiz g)	.06	0.13	0.05	0.05
Safe shutdown earth- quake (horiz g)	.12	0.25	0.10	0.15
Vertical seismic ground motion (% of horizontal)	67	68	-	66
Maximum sustained wind,	85	90	95	145
Tornadoes, mph	360 max	-	300	225
lectrical Systems (ref Chap	ter			
Number of offsite circuits	2	5	12	(4 from 2 nuc units, 3 from fossil fuel)
Number of auxiliary power sources	2-startup trans- formers (shared)	2-startup trans- formers	1-startup transformer	1-startup transformer
	2-unit aux transformers	1-unit aux transformer	1-unit aux transformer	1-unit aux transformer
Number of preferred power to ESF buses	2	2	•	2
Number of 4.16kV ESF buses/unit (4kV)	2	2	3	2
Number of Class 1E 125Vdc systems supplying buses/unit	2	4	2	2
Number of Class 1E 120Vac preferred buses/us	4	4	•	•
Sharing of standby power	none	none	none	none
d Facilities (ref				
eactor building crane				
Type Capacity, tons	polar 190 main, 25 aux	polar 180	polar	polar 135 main, 35 aux

32

--

. . .

. .

.

••••

(sheet 9) Revision 32 1/81

13

System	Midland	Rancho Seco	Oconee	Turkey Point	
Transfer tubes/unit Number Capacity	1 dual	2 dual	2 dual	1 single II	
Spent fuel storage Capacity (number of fuel assemblies)	1,049	242	336	217	15
New fuel storage Type Wet or dry storage Capacity/unit	Dry 66	Dry 20	Wet 168 (new & spen	%et t) 53	32
Cask handling crane Type	Double girder bridge	Gantry crane	Double girder bridge	Double girder bridge and trolley	
Capacity, tons	125 main, 15 aux	185 main, 35 aux cask weight = 100	100	105 main, 15 auxiliary	

"Midland data given for Unit 2, unless Unit 1 data given in addition.

All data for other plants given on per unit basis.

¹⁷Design steam flow to Dow at rated reactor power. High-pressure process steam flow may exceed 400,000 lb/hr, up to a maximum of 800,000 lb/hr, when low-pressure process steam production is less than 3,650,000 lb/hr. Based on maximum calculated electrical production at 2,468MWt with a minimum corresponding

steam flow to Dow. "Represents total incoming and outgoing circuits.

^{Si}Data on plants other than Midland not maintained current after August 1977.

(sheet 10) Revision 32 1/81

1

.

1 32

32