UNSTEADY DRAG ON 3SUSMIRGZID STRUCTURZS
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ABSTRACT

Drag forces occurring on submerged structures in a
pressure suppression pocl during air expulsion and air bubble
oscillation are examined ‘n this study. 'The totai fcrce on
a structure is composed of an acceleration drag ccmgonent,
caused by the unsteady flow, and a standard drag component
associated with the instantaneous velocity field. Formulas
‘are given for estimating the acceleration drag on cecmmon
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INTRODUCTICH

Whenever air is discharged into a pressure suppression
pool, forces creatzd on submarged structures 2y pool water
motion must be considered in the mechanical design. If the
disturbance causing water moticn is rapid cempared to sznic
transit time in the pocl, acoustic loads of brief duration
will be gz2nerated. Acocustic loads on submerged structures
usually involve small impulses, and are not coésidered in'
the present work. This study is cdevoted to loads causad by
unsteady bulk pocl water moticn.

Steady flow forces on submerced objects usually are
predicted with the nelp of standard draz coefficlents, which
include effacts of 2oth dynamic pressure ard skin friction.
Dynamic pressure drag is caused by fluid velocity i=pingement
on the submerged object, which raises pressure on the sice
toward cncesming flow, and lowvers pressure cn the other side
due to wake formation. Skin friction drag is caused by
viscous shear stress on the lengthwise surface of the sub-
merged object,

Standard drag ccefficients for submarged objeccs usually
are tased on steady statg uniform flow withoutb pressure
gradients in the flowinj stream. Ho.ever, time-dependent

pressure gracdients asscciated with unsteady flows result in




an additicnal force to be
structures.,

The purposes of this study are: (1) to deter:i&e
unsteady nature of both acceleration and standard drag forces

caused by unsteady submerced air discharge or bubble oscil-

lation in a suppressicn pool; and (2) to provide a methed

for estimating the acceleration drag¢ on various submerced

structural elementse.

SUMMARY AMND CONCLUSIOMNS

Alr discharge into a suppression 2col from either a
postulated loss of coolant accident or a relief valve blow
will impose forces on submerged structures cue t0 unsteady

bulk fluid motion. Fluid acceleraticn imposes acceleration

drag forces, and fluid velocity imposes toth dynamic pressure
and skin frictio forces which, wnen comsin

to as either stardard or steady draa.

A submerged gas volume may be in the pro
€eGey Curing drywell blowdown inte the pool
a loss of coolant accident, or during relief
l pipe air, or a
lating after it has been

oscillating, an idealize
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structure at some radius from the bubble center, the flow
field in a neighborhood about the structure is approximated
by uniform flow, wnose velocity and acceleration correspond

to the generating bubble motion. Total drag on a submerged

structure should be estimated as the sum of standarsd and

acceleration drag components, Fsraw and B, e « The

—

standard drag force is obtained in the usual way from

U
Famw = CoA ;_1{': < (Eg. '°)

where € 4is surrounding fluld density, Cy is a combined
.~ pressure and skin friction drag cceffici¥nt obtained from
standard tables or graphs for the particular gecometry, A is
the structurearea projected on a plane normal.to the flow
field directicn, and U, is the eguivalent uniform flow
velocity, determined froma‘ .
UWp = R (‘F)

R = bubble wall velocity

R = bubble radius

' e distance f:om bubble cenﬁer

to structure

For a charcinz bubble at pressure P° and undisturbed pocl

pressure P ,

wiP

‘5.’: (Po=Pu)  (Eg.23)
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For an oscillatinz bubble, R and R are obtalned from

an independent solution to the Raleigh ecuation,

.ﬂ. + 3 az = q—;—(Pg-Pg) (Eb.‘\»

=

uhcfe PB is the bubble pressure corres;énéing to isentropic
expansion and compression.

The acceleration drag, which is the main outcome of this
study, Ls‘estimated from equations given in Tadble 1 for

several common structures. The acceleration of an egquivalent

L ] .
uniform flow fiesld, U, , is expressed in terms of bubble

radius R , wall velocity R , and wall acceleration R ,
and distance T as .

. i R\ 2 E 2

u w = R -F\‘ + ?1- R R ( t%. 7)

' . as
For a ghargirg oubzle, R = O . Otherwise, X , R , and
R are obtained from Zgs. (9), (23), and (29). The maxinun
acceleratisn drag corresponds o maximum pressure sradient in

the unsteady flow field. For an oscillating bubzle, maximum

oy ¥#°l acceleration drag occurs wnen the bubble wall is at either
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its maximum or minimum radius, for waich U p is cetermined
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in which the product in braces is chosen which has the larges:t

absolute va' e. For a charzing bubble,



TABLE 1 ACCELERATION DRAG FORCE FOR SUBMERGED STRUCTURES
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where bubble radius R 1§ estimated from Eq. (29). 1In the
last two egquations, subscripts MIN and MAX refer to minimum
and maximum values of either bubble radius or pressure during
oscillation, P, is pressure in 2 charging tubcle, P, is
undisturbed pool pressure, and € is simee '
Calculatsd acceleration drag forces based on equivalent
uniform flow flelds are expected to be valid for the following
constraints, imposed on bubble radius, structure characteristic

dimension, and distance from the bubble center to the structure:

_R‘: 2\ ; % <\ ’13 RS‘RP,H)RL)Q: (‘%.57)
. 2 L . v PaTE BR ¢ 2 (Pw.5
sBe: _-,?\. % Y- (Ef.54) ) Purre = <z (¥@.50)

\
P\OE , ANLLYT, I-ReAm 7\_'_5"_ L4 T4 (€%.55)

where (* is 1.0 for an oscillating bubtble, and 4/3 for a

charging bubble.
Example calculaticns were made for Loth a charging bubzle
and an coscillating bubtble. It was found that for charging,

acceleration and standard drag forces both increase as the

bubble grows. This implies that maximum bubble radius should

be cmployed in calculating design values of drag. !oreover, for

an oscillating bubble it was found that *he maximum drag ‘crce

was egual to "he maximum acceleration drag wnich occurred at

- bpubble minimum radius and maximum pressure.



THE FLOW FIELD

The envircnment 0f submerged structures normally is a
stagnant pressure suppression pool in which liquid velocity
and pressuré sradients are negligible. One form of disturbance
occurs whenever a relief valve blow compresses air in the
relief line and discharges it into the2 suporession pocl where
it then resembles a schere undergoing periodic expansion ard
contracticn until buoyancy forces it to the pool surface.
Another form of disturbance would be cau;ed by a postulatad
loss of coolant accident (LCCA) in which drywell air is
compressed and dischargad tﬁrough downcomers or vent ports.
into the suporession pool where it expands and causes pool
swell, finally breaking threugh the rising pool surface.

Elther relief valve blow or a LCCA results in approx-
imately spherical air volumes in the pool, which produce
motion of the surrounding liquid. The associated velocity,
acceleration, and pfcssure fields must ke determined in orcer
to predict loads on neardby submerged structurese.

The bulk flow field (negligible acoustic effects) produced
in liquid by motion of a submerged boundary, such as an
expanding or contracting gas bubble, is governed by mass and

momentum laws, written as

HAS S 9.V =0 . )
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boundary layers @';! wakes or regions of bo dary layer separ-

ation effects in the nelghborsood—pi-submerged structures are

|
relatively small compared to the pool size. Therefcre, the

bulk flow fleld may be determined by potential flow methods,

ard asscclated loads on structures will correspond to bulk U;
¥ &

flow or free stream properties. Specifically, bulk flow F'

solutions for various submerged geometries will provide both |
|

stream velocities to obtzin viscous forces, ancd stream pressure

gradients to determine acceleration forces. i

The advantage of potential flow methods is that properties
of flow flelds for a number of common cecmeiries submerged
in liquid are readily obtained. However, some of the desirable
potential flow patterns are based on structures submerged in

uniform flow fields. In order to use these flow patterns for

submerged bubble loads, first it is necessary to deternine
1f thne flow field produced >y a spherical gas bubble can e
treated as a uniform flow in the neighborhood of certain
submerced structures. ' : ) .

A solutisn to £q. (1) for the symmetric velécl:y fileld
produced by a spherical cas bubble of radius R with wall
velocity 1.2(‘:\ is given by

s T R(E\\*
vg(re)= & () | SR L

where ¢ Ls the racdlal distance from the sphere.center to
some point in the liguid., The velonity field of Zg. (3)

differs roticeably from that of a uniform flow, which is

Vs (€)= U ale) (4
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However, the change in veloclity between radili ¥V and ¥ +arv

caused »y a gas bubble is obtain~d from Sq. (3) in the foré,

- T
ANg(rt) & —2RMW RV 4 (s)
v 3
If a length &V is chosen so that “—r‘:‘—. o y it follows

|

dimension 2% is small relative to the cube of its distance'

that -the chaﬁge tn velocity also is small, or AVg(rt)=o0 ./

Therefore, the flow fleld around a submerged structure whese

from the bubble center is aparoximately cne of uniform flow,
whose lccal velocity is

o =
UWale) = Veglr,e) = R(¢) (p‘-{?) @)

with local acceleration qivén by

. L . 2
Gaw = Vetre) = R (R« T RRGE (9

Gas bubble moticn is reguired Lefore flow field properties
can be determined from 2gqs. (3), (6), or (7). Employing
EqQe (3) for fluicd ve'occity, Zg. (2) becomes

L e e 1 23
LR -EEFER-E)e @

Eq. (8) later will be useful in determining the maximum '
pressure gradient ‘%S; , and hence, the maximum acceleration-
load. In order to eobtain R(&Y , é(é\ , and a(t\ for
a submerced tubtle, we may employ the conditicns that bubbtle

pressure 'Pg is exerted on the fluid at radius R , and



for these conditi 's, we obtain the classic . Raleigh bubbdle
equation, - s '

RR +: e = ‘ég: (Pe-Pn) - (4
A solution to Eq. (9) will provide R (%), R Le) ,and H(t\ for
use in Egs. (3), (68), or (7) to specify properties of the

flow field.

STEADY D2AC FORCE

e

When an object.is submerged iﬁ a fluld wgose bulk steady
flow velocity is U, , the steady drag force is calculated by
an equation of the form, ' '

L !:o A Sif;l 2 (10}
9

where © is fluid density, A is tne projected arsa of the

FSTMU

object on a plane normal to the direction of flow, and Lo
is a drag coefficient. An app:cpriate‘vclcﬁi:y for use in

Eqe (10) would te determined from Fq‘.(S) for a flow field

+Fy =g =

generated by a spherical bubble. "

Sometimes it is necessary to credict steady pressure and
skin friction drag forces separately, utillzlng tables or
graphs for Cp found in most basic fluid mechanics textbooks,
(€.ge, Binder, 1955, or Olsen,‘1973). However, the nature
of such drag forces during unsteady flow must be §xamined
to determine Lif the steady drag forces are adequate for

design ccnsiderationse.

e .- e - Tt a2 PV L



Pressure d'ag on a subnerged object ls based on the sum of

well known that in classical invisclid fleow theory, no boundary

layer separation or downstream wakes occur during flow past
a submerged cbject, and the net iceal pressu:e'd:ag is zero.
However, boundary layer separation and resulting turbulent
wakes behind a submerged object coccur in most real flows
and provide the mechanism for 2ressure drage.

When fluid is accelzrated from rest past an object, or

when an object is acceleratad into stationary fluid, it has

e ————

been determined that th‘kearll filow resembleg that of iaviscid

fluid without separation (Schlichting,'9$5). Therafore,
during the flow accelerations associated with unsteady flows,

pressure dras forces will be less than the final steady state

value. It follows that steady flow predicticns will provice

an upper limit for pressure drasg forces.

il
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TIME-DEPINSINT 3SKIN FRICTION DRAG

Drag due to skin fricticn is the result of viscous
~ shear siress cn the surface of an object. Shca;vstress is
obtained frem the defining ejuation,
T = A
whcrc.,L( is the dyh;mic viscosity, “ 1is the bulk fluid

veloclty compcnent parallel to the surface determined from
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to the surface. Benavior of the skin friction drag during

accelerating flow across a surface can be determined fronm

the simolified analysis dsscrived "In FIg. "1. ~"TRe fni¥fal™

—_— W(y,¢)
P I é\; ;Pr.

- P> Pa
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Figure 1 Unsteady 3Skin Friction Orag Determination

fluid velocity WU(Y4,0)is taken as zero. Pressures P, and

Pz. suddenly are applied at ;ach end of the piate whose
length is L and whose depth into the page is D . Since
there are no vertical forces, parallel lefteto-right fluid
moticn will occur. Rasulting wall shear 7T is obtaired
from Eq. (11) with 3-‘-;‘; evaluated at Y>>0 . “hen motion
begins, liguid in contact with the plate will be at zero
velocity and far from the plate, the shear will bé zero.
Momentum conservatisn for a horizontal fluid sﬁrip of vertical
thichkess J%. and area DL parallel to the plate leads to
a differential egquation which governs the flow behavior.

The full problem is speclified as

Sl 3-1_'._‘ - q_‘(9|-(=1.\
T BR=-VYI T T (12)
3 Uiy, eV=o0 (131
Be Ulee)=0 : (14)

Tlaie) = oo Nt =0 (5
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the velocity UU( %) s given by =
8
1, (Bof t/._ L ((s-=)e

shear stress at the plate is

P————n.

“u = 2 P._p‘ .
?ui?(o.t)=/u;-'-1(0.t) ( '-\‘UT:

and the total skin friction drag on one side is

(1e

TwOL = 2 (?"Pa} o) j_P__‘_t— (l?
Eqe. (18) shows that skin friction drag st::;s at zero and
increases during flow acceleration. Wwhen steady flow is f;{¢1;i?
reached in any fluid of finite extent, the skin friction .}(h.
b

drag will have reached its maximum value. It follows that oot

e ————

steady flow predicticns will pravide ~ax1num values of skin

——— e s e ——— - — e ——

friction drag forces on submerged objects.

MAXIMUM PRESSUT GRIDITHT AND ACCILIRATICH D3AG

Pressure and skin friction drag forces depend on local

velocity, which is seen o be proportional to bubble wall
-

velocity R in 2q. (6). Wnen R=0 , these drag forces are

) . o
zero. However, Zg. (3) shows that even if R=0O , a pressure

=] . s
gradient aa—‘.. can occur if bubble wall acceleration R F O .
Resulting accelnraction drag forces on submerged struc:ufes
‘e

will te considered next, Substituting R from Eq. (9) into

Eqe (8), the pressure gracdie t is given by
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Durin; alr charging, a submerzed bubble will ex:ard. “inen air’“"

A —_--- - -
i

charging steps, the bubble will undergo oscillatory moticn.
It is necessary to consider the pressure gradient behavior
during both charging and oscillatory motions to deternine
maximum acceleration loads. First, the bubble motion will
be examined.

Zq. (3) describes bubtle motion for a glven bubble pres-
sure Pg . In order to determine bubtle motizsn, another
relationship for bubble pressure is regquired, which is obtained

from mass and energy conservatiom. Figure 2 shows a bubble

18 FLew b 95 -— CLPMIsiaN WCAK TA™Y
b v &t
. €
N
Pe

Figure 2 3ubble ilass and Znergy Conservaticn

-
being charged by mass flow rate YA and incoming stagnation
enthalpy Mo « Znergy leaves the bubble by expansion work
on the surroundings, and heat transfer effects are neglected.

It follows that
X ! M
MnaAS m = ‘o
. dt

CNER G, Pe 42":; - w\a IE =0
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Employing the state equations

X f e = — Pg‘f
ho" =\ _?_o ) k— boarenmpeb @B et o pue 5y
and expressing the volume of a spherical tubble as
Nz ZwRE
we obtain the equation
[ 4
dPe - 2¥ P o _gyfe R : (20!
d+ AWQ‘ Se R

which relates bubble pressure rate with wall velecity and
charging properties. In order to find the maximum pressure
gradient, £q. (19) is differentiated with respect to time to
obtain its rate of change at arbitrary distance ™ . Since

% %{. is.negative in most regions of interest w-en Pg=uro,
if it can be shown that g%( ?; >0, we may conclude that the

necative pressure zradient is beceming less re~3tive, and

acceleration loads are decreasinz. Therefore, information
oen the rate of change of oressure gradient will be useful
in'determinin; ccnditions for maximum accelaration loads.
Ahen Eq. (1%) is differen:ié:-d with respect &2 time, and

.
£gs. (9) and (20) are employed to eliminate R and Pg ,

we obtain . 2
S TCCARR IR CIS zwh))ﬂ:a.aiz “(+)
w23 (142 (3)) ~1x e B

Several observations can be made immediately from Zgqs. (19)

and (21)
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Cbservation 1 Ma.. mum pressure gradient fc. an oscillating

bubble occurs simultaneously with zero bubble wall velocity.

— p :
=, - an o o Pl

'cr the case w~°O after 5::5ie cgar§ing is éciﬁleﬁé ééd dufigg
oscillating moticn, the pressure gradia:nt at any. ¥ reaches

. f

either a maximum or minimum when R=0 , which occurs simul- [

tanecusly with either maximum or minimum bubble racdius, or y

R - .
r"‘b‘ - - (PQ p.ﬂ’ | <1‘\,
The value of R(Pg-Px) employed should be either ﬂp.g(ﬂ;y‘.cﬂ.\
or Rum(Pgmu=f) , whichever has the largest absolute value.

Observation 2 The pressure cradient becomes less steep after

charging stoos. At the instant charzing steps, that is, when
ﬁ\-suddenly becomes zero, we have k >0 for which the
pressure gradient will beccme less negative (;2= 3—';‘,>o) ’
and acceleration loads will decrease, as long as fa~Cx > 0.

This conclusion is reacned by first writing £q. (21) as

t2(u L% (‘;t-%\*‘“? R
gl TR AT, ¢ . (ﬁ\i 3
+q(.§\ ? 2(Pa-P) +(1+2 )
b ;e =radient &0 acative & <[t .
the pressure :cradiant T is nagative for + <(q] , ard

noting that all terms on the right are greater than zero for

Y = 1.4, i >0 , and (g-Ps >0 , the conclusion is valid.

Observatizn 3 DOuring bubble charging, the pressure gradient

'may increase or decrease with time. During bubsle charging,

it is difficult to tell fram Eq. (21) whether %g becomes

more or less steep with time, Initially if the bubble mass

charging rate and volume expansion rate are related by

M o= €, YTR® 2



and ©g=Pp , th pressure gradient beccr

2 (% é.")[t“-; g {1 % (-4 V)(o-P) +i‘('f 2(%\’1]

Unfortunately, the right hand side can De either ositive or
negative, depending on the magnitudes of ©  and R .

Since the zressure sradient can be increasing or decreasing
during ch;rging as shown frcm observation 3, we will attempt
to find an upper limit value of %5"_ from Iq. (19) for the

e |
case Pg-P: >0 . Note that if R 1s a naximum value, the two |

't L
terms -°§‘ (Fs=) and -57: will add whenever %_ 4(%\\3 « rfeor

submerged structures inside this region, the two terms will
subtract, yielding lower acceleraticn loads. Therefore, a

case in which these two terms are larzest will correspond to

.
the maximum %;; e In order to determin. the maximum R |, we

rewrite 23, (9) as
2L

q‘ < l‘z
R ‘-i <= — (P .‘OA - e
et 3 5 ) < ,
from which it is noted that the maximum R at any Py corres-

pon;s to -

s | 2 Q, |
R - -'3' -s— (?S‘pﬂx (7'3’

The maximum value of.pa generally occurs just as bubbdle
charging begins, and subsegusntly decreases if dr&uell pressure
decreases wnen veﬁ:inq begins, and since expansion of the
initially forming spherical bubble recduces bubble'pressure.

Then, subs:zituting for the air charging rate

M = Sq ATR*R (2

Eqe {20) becomes for Pg= @ iy =comsT



T X 5, (s Qawu)l » (2s)
The maximum value of a2 would correspond %o dfs . e , fer
ovT
which we conclude from Zq. (25) that
Fa = So ? (16\
and p,lNH= A \

where P, and To are air properties elther in the drywell
or in the relief iine discharge plane during charging. 1If
.

R frem £q. (23) is used in =q. (19), it follows that the

upper limit balue of %E; durinq charging is

P 4 R
a—\-\ max, s (Pe=2a) "
CHARLING

whereas if the bubble wall velocity term of Egq. (19) is

neclected, we have

e = - R (Pe-®, (2¢)
2r ‘r‘(g *) :

It follows that including the velocity term in Eq. (19) Z2uring
charging increases the pressure cradient by only 30 percent.
Therefore, it is conservative to obtain the acceleration drag
for the pressure gradient of £q. (27) during bubble charging.
If Eq. (23) is integrated from a bubble radius R, at t=o0,

we obtain the maximum posszible radius at any time € as

R= Ro+ [3 5 (RFs € - (-

Now we are in a position to express the uniform flow

fleld acceleration associated with the maximum pressure

gradient., 3Substituting R from 2g9. (9) into Eq. (7), we obtain

Uale) = RE [ 3 (py-2.) *-‘ie*’}‘x (19)
r> +



. Tor.cne case-or anoscilliating tubble, it was.shown that

R= at the maximum pressure gracdient of Zgq. (22) so that
maximum acceleration drag will correspond to either of the

relaticnsnips, ¢ Ru.u(?svn- 22

: L % .
Uﬁ(f\lhb‘ = ‘.‘L g i KH#& (pshml‘eo\% CltiviATV g (3
depending on which product in braces has the larges: absolute

value, Fcor the case of a charging bubble, the maximum pressure

gradient of Zg. (27) already contains tre maximum effect of

bubble wall velocity so that £g. (30) can be written as

-

Aav|, = '%(%(c.-;,\«-gi"gﬁ ! f{%’\?“ ) cearamwe (3
Eq%, (31) and (32) give uniform flow acceleratizsns which will
result in the maxinmum acceleration drag.
wWe will consider potential flow fields for several
submerged s:tructures. The velocity potential'é defined by
V=ve | | (33
is obtained for given gecmetries from a soluticn %9 2Zgq. (1),

£qe (2) is integrated to give Serncullli's equatien,

e (p-pPL) == 28 -V
?‘(P Pe) == 27 15, i

The procedure for obtaining maximum acceleration locads is to

- G .
obtain %?r correspenging to the maximum pressure gradient
for a given structure, use of £q. (21) to express pressure

on the sctructure surface, and integration over the structure

surface area. for uniform fl:w past a structure, it is well
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g8
established that the term g% in £q. (3%) contributes nothing

to the force in a potential fréu, unless circulaticn is present,
as it would be for an airfeil shape. However, most structures
to ke considered in a suppression pool are not shaped like
an airfoll, and therefore, ;;6 can be dropped from Zg. (34)
when integrating acceleraticn pressure on the s:tructure
surface area.

The potential function for uniform flow parallel to the
x axls past a structure is usually expressed in the functicnal

form,

4= L(Us®), %,y) = ¢(Unte);¥,0) (z5)
It follows that %g; can te cbtainad as
33 = aa' dgﬁ (f) 3¢)
< JUale) ¢

for use in Zq. (34) to determine pressure anywhere in the
flow fleld, and in particular, on the structural surfaces.
The acceleration drag will be cobtained next for several

gecmetries wnich suggest common submerged structurazl shapes.

ACCSLIRATICN DRAG, SPHIRT IN UNIFORM FLOW

Pig. 3 shows a sphere of radius i in a uniform flow
of velocity Uslt) . The associated velcoity potential

function (Streeter,'94g8) is

. .
b = Uals) (% +-v) cos 8 : S ¢
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Figure 3 'Sphere in Uniform Flow

' 1
It follows from Sgqs. (34) and (37) with the gﬁb term drepped

that pressure on the sphere at conditiqns cf maximum pressure

gradient is given by |
-
; 2 .
%(9-9,“““ = = Uale) 3 Rgcas 8 (2%

The incremental surface area indicated in Fig. 3 is
dA=z 2mr R swd de

Integrating to obtain the maximum acceleraticn drag force in

the directicn of the Sflow, '.e obtain
e 374 ‘3) e St | Ga
F .._(_% V) 3, » (&)

]
where \&9(5\ is cetermined from EScuations (31) or (32).

ACCELZRATION D2AG, PIPS IM UNIFCIM FLOW

Fig. 4 shows a pipe of radius Rp whose axis is normal

U, (£)

Il
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to a uniferm flow, and whose lencth is | . The classical
v o tem s — -...W - . ]

- -

velocity potential functicon for I=is cecmet y'is given by
R * .
&= Up) veess (v 520 A T
vz
It follows from Igs. (34) and (30) with the i?g term dropoed

that pressure on the cipe at conditicns of maximum pressure

gradient is given by

A (p- = = 20Us&)Rp ¢o
S(P P"’)(yzg? &l Ry s @ (u1y

The incremental surface area shown in Fige. 4 is

SA= Rel &8 (CER
Integrating the pressure force to obtain the maximum accel-

eraticn drag force in the x direction, we obtain
= 2(TReL) S G,
F= 2 PL) . Us &) (43

where the term LA;&¥is determined from tgs. (31) or (32).

ACCELERATION 0245, PLATES IN UMIFC2M FLOW

Fig.'S shows a thin plate of width B and length || into

Uals) ‘é:é i_L_'
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Figure 5 Thin P ate in Uniform Flicw



the page, facing in the direction of a uniform flow. The
velocity potential function for the geometry of Fig. S is
given in the form (Vallentine, I4959),
o ST Y L
§* - “alst » W = Up () (x"-ux"*w’\ (ww)
&+ - |
At X=e |, Y#0 we have
& = Uk Jwiogr

and Eq. (34) provides the pressure on the plate as

.
L (P-fa)= = Upls) TG0 us)
S
where the double sign refers to left and right sides respec=-
tively. Using an area element
da=vL dy (4e)
the net acceleration fcrce obtaired by integrating cn both

sides is

T = ;“-(v w2 L) %.‘C(,, ) bl (47)

where again L‘A,-;(*\ is determinad from £gqs. (31) or (32).

ESTIMATED ACCILIRMATICH DIAS FCR OTHER STRUCTURES

Analytical sclutions have been empleoyed for a sphere,
plpe, and flat plate in a uniform flocw field. However, -
an91e$ with Léshaped cross sections and I-beams are common
_ submerged strucéu:al members for wnich analytical solutions

are not readily available Lf zt all., Therefore, it is

- ] - W - . A———— . ———



desirable to estimate the acceleration drag on angles
~and I-beanms.
If one side of an angle is oriented in the direction of

a uniform flcw, we have the situation shown in Fig. 6(a).

U (&)
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Figure 6§ Angle in Uniform Flow

Since the associated flow pattern correszeonds o tﬁe top half
of the symmetric flow pattern of a flat plate shown in Flg. 5,

the accelera:ion drag force can be exgressed as

F =3 (wwt) -‘f;-'_ Clo (%) (4 ¢)

However, if the angle is oriented some other w~2y as suggested
in Fig. 6(b), the effect con ac:ele;ation drag is not cobvious.
The gecmetry might be tr=22ted as another flat clate of wicdth
D equal to the maxiﬁum dimensicn normal to the flow field,
which for egually wide sicdes wauld result in a maximum crag

cbtalined from Zg. (47) as

1€d.°' » y
W\ L = WY 2 k) 4

which is the szma as zg. (48). Another bcunding calculatiocn

corresponds to the accelzrat >n drag on a circumscribed



equivalent pipe s:.own dotted in Fig. 6(b), .or which Eq. (43)

gives

T - o' . Say i
r <aar—

c = 2(“‘ R"'L\ 2 \:l; :(ﬁw‘g‘g U 2 N C%)
Qe g2

Comparing Sqs. (48), (49), and (50), it is clear that Eq. (50)
gives the “ichest acceleraticn drag, and is preferred for
conservative sstimates.

An I-beam also may have various orientaticns in a uniform
flow field. 3ince the circumscribed pipe cave highest accel-
eraticn drag for an angle, the same method is usecd to estimate

acceleration ¢rag for a submerced I-beam, where R; in 2q. (43)

is the clrcumscribed radius, |z .

VALID RANSS CF PAZS

"

%t AGALY

wn

1S

£qs. (3%), (43), and (47) give acceleraticsn drag forces
L]
propertional to the free stream acceleration, Ualt) .

€qs. (32) or (31) give &f in the form
Qe = & % (Pe-Fu) )
e .

where & 1is 1.0 for bukbble vscillatiocn or 4/3 for bubble
charging. However, there may be a limit on how small T ecan
be for a valid precdicticn of acceleration drag. This limit-
ation will be considered next.

VPressure exerted on a sutbmerzed cbjecé by oscillating
pubbles will rnot exceed that of the bubdles at extremes in

.

osciliation when R =© ., This can be proved by cperating on

£q. (34) with ¥* when Y=¢ , which leads to



L vep = - vV = : (s?)

Since Egs. (1) and (33) show that @ satisfies 2% =0 ’
it follows from Egq. (S2) that

UP =o Whaa, V=0 (s
€q. (S3) has the same form as the steady heat conducticn
equation, 77'T=o y for which it is well established that
no temperature in a closed region or on a nen=flow (insulated)
part of the boundary can exceed the highest temperature which
occurs elsewhere on the boundary. ZIxtending this character=-
istic to E£q. (53), it follows that pressure on any non=flow
becundary cannot exceed pressure occurring in the bubble. It
is expected that the same conclusion is valid even when the
flow field veleccity is not zero, since the bubble is free to
distort or to move away from a submerged boundary.

Based on the limitation that pressure on a submerced
object may not exceed that of the bubble, we will substitute
Eq. (51) into the surface pressure ecuations foé a sphere,
pipe, and plate, and require thzt the stagnation point pressure
be less.:han or equal to bubble pressure. This procedure will
establish limits on © .

For a sphere in a uniform flow, we have from Eqs. (238)

and £51) at the stagnation point =T 0

Re R o 2 L Semeny : (s4)
e 3

Por a pipe in a uniform flow, we have frem Zgs. (41) and (51)

at the stagnaticn point &=T ,

0t ¢ L oroe i £s)



For a plate in uniform flow, we have from Egs. (45) and (S1)

at the stagnation point 4 =0 ,

»R -
<= < 3 PLaTe ( 56)

£qs. (54), (55), and (56) cive the range of validity for v
in terms of bubble size and a characteristic dimension of
submerged structure so that no pressure on the surface of a
structure exceeds bubble pressure. In each case, both bubble
radius R and the characteristic size of the submerged cbiject

must be less than ¥ , leading to the further constraing,

& ¢
r (s)
v v v
ESTIMATZ OF TCTAL 233G ON SU3MERGED STRUCTURES
Total fluid force on a submerged structure is approx-
imated as the sum of both acceleration and standard drag,
Fyoraw = Fawee Y Fyran (5%

where ¥, ¢  and F¢.a, are based on instantanecus flow pro-
perties. “e may use Zg. (10) for the standard drag £force
assoclated with a uniferm flow velociiy Up once the steady
flow pressure and skin friction drag coefficients are obtained
for the particular subéergéd structure. A~lthough the express-
ions for acceleration drag are fér the maximum value, the
uniform flow acceleration &,;(t\ will be considered the

instantanecus value for acce.2raticon drag forces other than




-maximum, For all che sutmerged structures .considered, the
acceleration drag is written in the form

.
Faccee = K Uz () =

-
where from Egs. (39), (43), (47), and (50) the constant £

1o

takes on values,

!

Ksparre = %(%T\‘R;’) "\(A%“-:Z(TTRA \_\

'K poe = % (WR:L\ AW regram = 7_(1,7 g:‘,_) (Go)
K puare = i‘(“’“z‘-)

R
Using Egs. (8) and (7) for U,lt) are Up &) |, zq. (58) gives

the total drag as

Frora = ?‘SK(R - 1 RR] ( ) T‘ ((.\)
Fer a charging bubble, Egs. (81) and (23) give
_ % T/RY (4 K 4 [Com\RYT LA £y
Frra. = ag ‘.) Q”- = *'\?)k\_\j CwARLING

and for an oscillating bubble, Zgqs. (9) and (81) give
_ - S (KR ry Lp 2% Coar 2% &\ ’
FTO\’»:_ — jC% —(3' \ _é(?g-.o,,\‘.'i = 1*&%—)2 (T,\ OSCIcLATING (‘.

EXAMPLE: COMPUTATION, SUSMERGEID PIPE

Eqs. (23), (80), (82), and (63) and the projected area

A=‘LR9.L give the total drag force on a submerged pipe as



Frera -
M

(Pa-f) A

XM stA\-isnurJ

Voscieianng

tations were done for a submercged pipe with

!
a distance ™ =T 10 ft from the bubble center, and a drag

-

coefficient Cop= 1.0. Figs. 7 and 8 show resulting tagtal
drag forces in terms of bubb
was based on a comoutation ~ = 33.3 at R=R_, .,
and the bubble radius at P, son to Koz 2Ry,
Soth accelerazicn and Standard drag comsonents are seen
to increase as F{ increase . 7 for the charging
bubble example., This Uggests that the drag force specifie
that value at maxim'm bubble radius.,
usble case of rig. y Maximum total drag
imum bubble radius, and cdecreases with bubble

expansion.
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