

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

TENNESSEE VALLEY AUTHORITY

DOCKET NO. 50-327

SEQUOYAH NUCLEAR PLANT, UNIT 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 224 License No. DPR-77

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Tennessee Valley Authority (the licensee) dated August 22, 1996 as supplemented March 28, 1997, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

9706120276 970610 PDR ADOCK 05000327 P PDR

- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment. Paragraph 2.C.(2) of Facility Operating License No. DPR-77 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 224, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of its date of issuance, to be implemented no later than 45 days of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Frederick Q. Holder

Frederick J. Hebdon, Director Project Directorate II-3 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: 1. Changes to the Technical Specifications

Date of Issuance: June 10, 1997

ATTACHMENT TO LICENSE AMENDMENT NO. 224

FACILITY OPERATING LICENSE NO. DPR-77

DOCKET NO. 50-327

Revise the Appendix A Technical Specifications by removing the pages identified below and inserting the enclosed pages. The revised pages are identified by the captioned amendment number and contain marginal lines indicating the area of change.

REMOVE INSERT 3/4 6-26 3/4 6-26 3/4 6-27 3/4 6-27 B 3/4 6-4 B 3/4 6-4

3/4.6.5 ICE CONDENSER

ICE BED

LIMITING CONDITION FOR OPERATION

3.6.5.1. The ice bed shall be UPERABLE with:

- a. The stored ice having a boron concentration of at least 1800 ppm boron as sodium tetraborate and a pH of 9.0 to 9.5,
- b. Flow channels through the ice condenser,
- c. A maximum ice bed temperature of less than or equal 27°F,
- d. A total ice weight of at least 2,082,024 pounds at a 95% level of confidence, and
- e. 1944 ice baskets.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION :

With the ice bed inoperable, restore the ice bed to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.5.1 The ice condenser shall be determined OPERABLE:

- a. At least once per 12 hours by using the ice bed temperature monitoring system to verify that the maximum ice bed temperature is less than or equal to 27°F.
- b. At least once per 12 months by:

Verifying, by visual inspection of a representative random sample of at least 54 flow passages (33 percent) per ice condenser bay, that the accumulation of frost or ice on flow passages between ice baskets, past lattice frames, through the intermediate and top deck floor grating, or past the lower inlet plenum support structures and turning vanes is less than or equal to 15-percent blockage of the total flow area in each bay, with a 95-percent level of confidence.

If the summation of blockage from the sample fails to meet the acceptance criteria, then 100 percent of the passages of that bay shall be inspected. If the 100-percent inspection fails to meet the acceptance criteria, then the flow passages shall be cleaned to meet the acceptance criteria. Each flow passage that is cleaned will be reinspected. Any inaccessible flow passage that is not inspected will be considered blocked.

SEQUOYAH - UNIT 1

3/4 6-26

Amendment No. 4, 126, 131,224

SURVEILLANCE REQUIREMENTS (Continued)

- c. At least once per 40 months by lifting and visually inspecting the accessible portions of at least two ice baskets from each 1/3 of the ice condenser and verifying that the ice baskets are free of detrimental structural wear, cracks, corrosion or other damage. The ice baskets shall be raised at least 10 feet for this inspection.
- d. At least once per 18 months by:
 - Chemical analyses which verify that at least 9 representative samples of stored ice have a boron concentration of at least 1800 ppm as sodium tetraborate and a pH of 9.0 to 9.5.
 - 2. Weighing a representative sample of at least 144 ice baskets and verifying that each basket contains at least 1071 lbs of ice. The representative sample shall include 6 baskets from each of the 24 ice condenser bays and shall be constituted of one basket each from Radial Rows 1, 2, 4, 6, 8 and 9 (or from the same row of an adjacent bay if a basket from a designated row cannot be obtained for weighing) within each bay. If any basket is found to contain less than 1071 pounds of ice, a representative sample of 20 additional baskets from the same bay shall be weighed. The minimum average weight of ice from the 20 additional baskets and the discrepant basket shall not be less than 1071 pounds/basket at a 95% level of confidence.

The ice condenser shall also be subdivided into 3 groups of baskets, as follows: Group 1 - bays 1 through 8, Group 2 - bays 9 through 16, and Group 3 - bays 17 through 24. The minimum average ice weight of the sample baskets from Radial Rows 1, 2, 4, 6, 8 and 9 in each group shall not be less than 1071 pounds/basket at a 95% level of confidence.

The minimum total ice condenser ice weight at a 95% level of confidence shall be calculated using all ice basket weights determined during this weighing program and shall not be less than 2,082,024 pounds.

SEQUOYAH - UNIT 1

Amendment No. 4, 98, 131,224

BASES

3/4.6.4 COMBUSTIBLE GAS CONTROL

The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this equipment will be available to maintain the hydrogen concentration within containment below its flammable limit during post-LOCA conditions. Either recombiner unit or the hydrogen mitigation system, consisting of 68 hydrogen ignitions per unit, is capable of controlling the expected hydrogen generation associated with 1) zirconium-water within containment. These hydrogen control systems are designed to mitigate the effects of an accident as described in Regulatory Guide 1.7, "Control of dated November 1978. The hydrogen monitors of Specification 3.6.4.1 are part designated as Type A, Category 1 in accordance with Regulatory Guide 1.97, Assess Plant Conditions During and Following an Accident," December 1980.

The hydrogen mixing systems are provided to ensure adequate mixing of the containment atmosphere following a LOCA. This mixing action will prevent localized accumulations of hydrogen from exceeding the flammable limit.

The operability of at least 66 of 68 ignitors in the hydrogen mitigation system will maintain an effective coverage throughout the containment. This system of ignitors will initiate combustion of any significant amount of hydrogen released after a degraded core accident. This system is to ensure burning in a controlled manner as the hydrogen is released instead of allowing it to be ignited at high concentrations by a random ignition source.

3/4.6.5 ICE CONDENSER

The requirements associated with each of the components of the ice condenser ensure that the overall system will be available to provide sufficient pressure suppression capability to limit the containment peak pressure transient to less than 12 psig during LOCA conditions.

3/4.6.5.1 ICE BED

The OPERABILITY of the ice bed ensures that the required ice inventory will 1) be distributed evenly through the containment bays, 2) contain sufficient boron to preclude dilution of the containment sump following the LOCA and 3) contain sufficient heat removal capability to condense the reactor system volume released during a LOCA. These conditions are consistent with the assumptions used in the accident analyses.

The minimum weight figure of 1071 pounds of ice per basket contains a 15% conservative allowance for ice loss through sublimation which is a factor of 15 higher than assumed for the ice condenser design. The minimum weight figure of 2,082,024 pounds of ice also contains an additional 1% conservative allowance to account for systematic error in weighing instruments. In the

SEQUOYAH - UNIT 1

B 3/4 6-4 Amendment No. 4, 5, 131, 149, 224

1

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

TENNESSEE VALLEY AUTHORITY

DOCKET NO. 50-328

SEQUOYAH NUCLEAR PLANT, UNIT 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No.215 License No. DPR-79

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Tennessee Valley Authority (the licensee) dated August 22, 1996 as supplemented March 28, 1997, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment. Paragraph 2.C.(2) of Facility Operating License No. DPR-79 is hereby amended to read as follows:
 - (2) Technical Specifications

2.

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 215, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of its date of issuance, to be implemented no later than 45 days of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Frederick Q. Holdo

Frederick J. Hebdon, Director Project Directorate II-3 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Attachment: 1. Changes to the Technical Specifications

Date of Issuance: June 10, 1997

- 2 -

ATTACHMENT TO LICENSE AMENDMENT NO. 215

FACILITY OPERATING LICENSE NO. DPR-79

DOCKET NO. 50-328

Revise the Appendix A Technical Specifications by removing the pages identified below and inserting the enclosed pages. The revised pages are identified by the captioned amendment number and contain marginal lines indicating the area of change.

INSERT
3/4 6-27 3/4 6-28
B 3/4 0-4

3/4.6.5 ICE CONDENSER

ICE BED

LIMITING CONDITION FOR OPERATION

3.6.5.1 The ice bed shall be OPERABLE with:

- a. The stored ice having a boron concentration of at least 1800 ppm boron as sodium tetraborate and a pH of 9.0 to 9.5,
- b. Flow channels through the ice condenser,
- c. A maximum ice bed temperature of less than or equal to 27°F,
- d. A total ice weight of at least 2,082,024 pounds at a 95% level of confidence, and
- e. 1944 ice baskets.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION :

With the ice bed inoperable, restore the ice bed to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.5.1 The ice condenser shall be determined OPERABLE:

- a. At least once per 12 hours by using the ice bed temperature monitoring system to verify that the maximum ice bed temperature is less than or equal to 27°F.
- b. At least once per 12 months by:

Verifying, by visual inspection of a representative random sample of at least 54 flow passages (33 percent) per ice condenser bay, that the accumulation of frost or ice on flow passages between ice baskets, past lattice frames, through the intermediate and top deck floor grating, or past the lower inlet plenum support structures and turning vanes is less than or equal to 15-percent blockage of the total flow area in each bay, with a 95-percent level of confidence.

If the summation of blockage from the sample fails to meet the acceptance criteria, then 100 percent of the passages of that bay shall be inspected. If the 100-percent inspection fails to meet the acceptance criteria, then the flow passages shall be cleaned to meet the acceptance criteria. Each flow passage that is cleaned will be reinspected. Any inaccessible flow passage that is not inspected will be considered blocked.

SEQUOYAH - UNIT 2

3/4 6-27

Amendment No. 80, 118,215

SURVEILLANCE REQUIREMENTS (Continued)

- c. At least once per 40 months by lifting and visually inspecting the accessible portions of at least two ice baskets from each 1/3 of the ice condenser and verifying that the ice baskets are free of detrimental structural wear, cracks, corrosion or other damage. The ice baskets shall be raised at least 10 feet for this inspection.
- d. At least once per 18 months by:
 - Chemical analyses which verify that at least 9 representative samples of stored ice have a boron concentration of at least 1800 ppm as sodium tetraborate and a pH of 9.0 to 9.5.
 - 2. Weighing a representative sample of at least 144 ice baskets and verifying that each basket contains at least 1071 lbs of ice. The representative sample shall include 6 baskets from each of the 24 ice condenser bays and shall be constituted of one basket each from Radial Rows 1, 2, 4, 6, 8 and 9 (or from the same row of an adjacent bay if a basket from a designated row cannot be obtained for weighing) within each bay. If any basket is found to contain less than 1071 pounds of ice, a representative sample of 20 additional baskets from the same bay shall be weighed. The minimum average weight of ice from the 20 additional baskets and the discrepant basket shall not be less than 1071 pounds/basket at a 95% level of confidence.

The ice condenser shall also be subdivided into 3 groups of baskets, as follows: Group 1 - bays 1 through 6, Group 2 -bays 9 through 16, and Group 3 - bays 17 through 24. The minimum average ice weight of the sample baskets from Radial Rows 1, 2, 4, 6, 8 and 9 in each group shall not be less than 1071 pounds/basket at a 95% level of confidence.

The minimum total ice condenser ice weight at a 95% level of confidence shall be calculated using all ice basket weights determined during this weighing program and shall not be less than 2,082,024 pounds.

SEQUOYAH - UNIT 2

Amandment No. 80, 87, 118,215 March 2, 1990

BASES

3/4.6.4 COMBUSTIBLE GAS CONTROL

The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this equipment will be available to maintain the hydrogen concentration within containment below its flammable limit during post-LOCA conditions. Either recombiner unit or the hydrogen mitigation system, consisting of 68 hydrogen igniters per unit, is capable of controlling the expected hydrogen generation associated with 1) zirconium-water within containment. These hydrogen control systems are designed to mitigate the effects of an accident as described in Regulatory Guide 1.7, "Control of Combustible Gas Concentrations in Containment Following a LOCA," Revision 2, dated November 1978. The hydrogen monitors of Specification 3.6.4.1 are part designated as Type A, Category 1 in accordance with Regulatory Guide 1.97, Revision 2, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident," December 1980.

The hydrogen mixing systems are provided to ensure adequate mixing of the containment atmosphere following a LOCA. This mixing action will prevent localized accumulations of hydrogen from exceeding the flammable limit.

The operability of at least 66 of 68 igniters in the hydrogen control distributed ignition system will maintain an effective coverage throughout the containment. This system of ignitors will initiate combustion of any signifiis to ensure burning in a controlled manner as the hydrogen is released instead of allowing it to be ignited at high concentrations by a random ignition

3/4.6.5 ICE CONDENSER

The requirements associated with each of the components of the ice condenser ensure that the overall system will be available to provide sufficient pressure suppression capability to limit the containment peak pressure transient to less than 12 psig during LOCA conditions.

3/4.6.5.1 ICE BED

The OPERABILITY of the ice bed ensures that the required ice inventory will 1) be distributed evenly through the containment bays, 2) contain sufficient boron to preclude dilution of the containment sump following the LOCA and 3) contain sufficient heat removal capability to condense the reactor system volume released during a LOCA. These conditions are consistent with the assumptions used in the accident analyses.

The minimum weight figure of 1071 pounds of ice per basket contains a 15% conservative allowance for ice loss through sublimation which is a factor of 15 higher than assumed for the ice condenser design. The minimum weight figure of 2,082,024 pounds of ice also contains an additional 1% conservative allowance to account for systematic error in weighing instruments. In the

SEQUOYAH - UNIT 2

B 3/4 6-4

1

1