JONATHAN P. CARTER

Attorney at Law
First Interstate Center
877 W Main Street, Suite 610
Boise, Idaho 83702
(208) 336-1776
Fax: (208) 336-0003

FACSIMILE TRANSMITTAL

This transmittal is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this transmittal is not the intended recipient, or the employee or agent responsible for delivering the transmittal to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original transmittal to us at the above address via the U.S. Postal Service. Thank you.

TO:

Harold LaFevre

FAX NUMBER:

(301) 415-5398

FROM:

Jon Carter

DATE:

February 14, 1297

TOTAL PAGES

16 (including the cover page)

COMMENTS:

Harold -- Pursuant to our talephone conversation, I have attached copies of pages five and six of the "Director's Decision" regarding the NRDC's 10 CFR 2.206 petition and copies of the first and signiture pages of Larry Anderson's Complaint and Khosrow Semnani's Answer and Counterclaim for your review. As you can see from the attachments, the dates reflected in the Director's Decision appear to be in error.

On a related matter, has the NRC taken formal action on the American College of Nuclear Physicians' (California Chapter) "Petition for Rulemaking" dated January 21, 1997? Attached are copies of the first and last two pages of that document. Has the NRC been in touch with Utah on that "Petition?"

Please telephone me to discuss these matters. Thank you for your assistance.

(9702200164) XAG

F/=17

As a result, a follow-up inspection was conducted the week of January 27.

1997. Areas that were examined during this inspection included: 1) the licensee's quality assurance/quality control program; 2) the licensee's review of changes made to the facility; and 3) contractor laboratory certification. The results of the January 27, 1997, inspection are currently being evaluated. Once this evaluation is complete, the NRC will document the results in an inspection report. Based on a preliminary review of the inspection results, no significant violations were identified.

III. DISCUSSION

In December 1996, the Salt Lake Tribune published a series of articles that questioned the relationship between Larry F. Anderson, former Director of UDRC and Khosrow Semnani, President of Envirocare, during the licensing of the low-level radioactive waste (LLW) disposal facility. Subsequently, the NRC staff learned that on May 16, 1996, Larry F. Anderson filed a complaint against Khosrow B. Semnani in the Third Judicial District Court of Salt Lake County, State of Utah, to obtain compensation for alleged consulting services in the sum of 5 million dollars. The complaint alleges that, while Director of UDRC, Mr. Anderson recognized the need for a LLW site in Utah; incorporated a consulting firm, Lavicka, Inc., for the express purpose of developing a plan for siting the facility; and entered into a business arrangement to provide Mr. Semmani with a license application and consulting services. Mr. Anderson alleges that Mr. Semnani, President of Envirocare, agreed to pay a consulting fee of 100,000 dollars and an ongoing remuneration of 5 percent of all direct and indirect revenues that Mr. Semnani would realize from such a facility. if the site were successful. The complaint contends that Mr. Semnani owes Mr.

NKL/NMSS/DWM 09:3- 208 336 0003 PED 10'YY 15:21 NO.ULL F 14

Anderson unpaid compensation for consulting services in the sum of 5 million dollars.

In October 1996, Mr. Semmani filed a counterclaim in the court, denying Mr. Anderson's claim and alleging that, in fact, Mr. Anderson used his position as the Director of UDRC to extort money in the sum of 600,000 dollars. Mr. Semmani contends that all the money he paid was based on the belief that if he did not pay, Mr. Anderson would use his official position and capacity as an officer and employee of the State of Utah to deny Mr. Semmani fair consideration, review, hearing, and determination on his license application and, thereby, cause the license not to be granted, or, if Envirocare was granted a license, Mr. Anderson would use his position to subject the facility to unfair and biased oversight and supervision of the operation of the facility under the license. As a result of these allegations, the Utah Attorney General's office is investigating the relationship between Mr. Semmani and Mr. Anderson.

The MRDC petition is based on the events described above. The NRC has evaluated the NRDC's requests and found no basis to take the requested actions.

As an initial matter, NRDC requests that the NRC immediately revoke the NRC lle.(2) byproduct material license under which Envirocare is currently permitted to accept uranium mill tailings for disposal. In addition, NRDC also asks that the NRC immediately revoke any other NRC license, or agreement state license, if such license exists, held by Envirocare, Khosrow Semnani, or

HASKINS & ASSOCIATES
5085 South State Street
Murray, Utah 84107-4840
Telephone: (801) 268-3994
Facsimile: (801) 268-4031

2 200 300 UUU3

IN THE THIRD JUDICIAL DISTRICT COURT OF SALT LAKE COUNTY

Maria - Collin

STATE OF UTAH

LARRY F. ANDERSON, an individual, and LAVICKA INC., a Utah corporation,

Plaintiffs

KHOSROW B. SEMNANI, an individual, and ENVIROCARE OF UTAH, INC., a Utah corporation,

Defendants

COMPLAINT FILL INTER

Civil Number 960907271 CN

Tuope Tax.

COME NOW, the Plaintiffs, by and through their counsel, James C. Haskins, and allege the following claims as against the Defendants as follows:

JURISDICTION

I. The individual Plaintiff, Larry F. Anderson (hereinafter "Anderson"), although presently residing outside of the State of Utah, did reside in Utah County during the course of the activities herein alleged, and by filing this action in the above-entitled court does hereby submit to the jurisdiction of this court.

Page 1

- For an amount equal to not less than 35,000,00 representing the amount agreed for the services of the Plaintiffs as implied through the actions of the parties; Together with an order directing the Defendants to continue with such compensation for the Plaintiffs as the Defendants realize revenues. Such actual and final amount to be established at time of trial; or,
- 4. For an amount equal to not less than \$5,000,000 representing the damages incurred by the Plaintiffs by the fraudulent behavior of the Defendants;
- 5. Together with an amount equal to \$2,500,000 representing exemplary and punitive damages for the egregious actions of the Defendants;
- 6. Together with interest on such amounts, both before and after judgment, as the Court deems just;
 - 7. Together with the costs and expenses incurred herewith; and,
 - 8. Such other relief as the Court may deem just and proper in the circumstances.

Dated this 12 day of October, 1996

James C. Haskins

Amorney for Plaintiffs

-3

Gary A. Weston, USB #3435 NIELSEN & SENIOR Attorneys for Defendants 1100 Eagle Gate Tower 60 East South Temple Salt Lake City, Utah 84111 Telephone (801) 532-1900

IN THE THIRD JUDICIAL DISTRICT COURT OF SALT LAKE COUNTY STATE OF UTAH

LARRY F. ANDERSON, an individual, and LAVICKA INC., a Utah corporation,) ANSWER AND COUNTERCLAIM
Plainuffs,) Civil No. 960907271
٧.) Judge Frank G. Noel
KHOSROW B. SEMNANI, an individual, and ENVIROCARE OF UTAH, INC., a Utah corporation,	
Defendants.	j

Defendants, Khosrow B. Semneni and Envirocare of Utah, Inc., answer the Complaint of the Plaintiffs as follows:

FIRST DEFENSE

The Complaint fails to state a cause of action against Defendants upon which relief may be granted.

SECOND DEFENSE

- Admit the allegations of paragraph 1.
- Admit the allegations of paragraph 2.

Semnani the condominium unit and other property received from Mr. Semnani and for a udgment in an amount equal to the fair market value of such property as not disgorged and reconveyed, together with interest on all said amounts accruing at the rate of ten percent per annum from date received by Anderson. Further, for punitive damages in an amount of \$1.8 million and costs of court and such further relief as the Court may deem proper in the premises.

2. On their Second Claim for Relief, Defendants pray for judgment against the Plaintiffs in the amount of anomey fees incurred by Defendants in defending against the Complaint in this action, for costs of court and such further relief as the Court may deem proper in the premises.

DATED this 1st day of November, 1996.

NIELSEN & SENIOR

Gary A. Weston

Attorneys for Defendants

53812.SE526.30 53812.SE526.30

ALLEN CARLES

January 21, 1997

Robert J. Hoffman, Chairman and Members Utah Radiation Control Board Department of Environmental Quality 168 Worth 1950 West P.O. BOX 144850 Salt Lake City, UT 84114-4850

Subject: Petition for Rulemeking

Dear Mr. Hoffman:

The following petition is submitted to the Utah Radiation Control Board in accordance with the State of Utah's responsibilities as an Agreement State under Section 274 (b) of the federal Atomic Energy Act as amended. Petition format and content is based on the U.S. Nuclear Regulatory Commission's 10 CFR Part 2. Subpart H, section 2.802(c) rule. We request that you inform us immediately if Utah law or regulations require us to follow an alternate procedure so we may take the necessary steps to resubmit it. By copy of this letter, we request that the Department of Environmental Quality undertake any related actions which are reserved to it or the Division of Radiation Control consistent with its Agreement State responsibilities and authority. We further request, by copy of this letter, that the NRC appropriately consider all Agreement State compatibility questions including the posting of sufficient financial assurances.

- General Problem Statement and Proposed Solution
- Problem Statement: Environage is not currently required to post substantial financial assurances, a circumstance we Consider directly inconsistent with the state's earlier decision to exempt Envirocare from 10 CFR Part 61 institutional control requirements for land ownership. This concern is compounded by Utah's recent authorization to dispose of non-containerized nuclear power plant ion exchange resin wastes.

Envirocare is now actively pursuing a state license renewal based on acceptance of up to 10.5 million cubic feet of radioactive waste per year from combined private sector and government sources. (For comparison purposes, ward valley is licensed to receive a total of 5.5 million cubic feet of weste over the site's entire 30-year life). Of this total,

American College of Nuclear Physicians

California Chapter

Derothy Dutty Price Executive Duector

LES AUSS. CA 94023

TEL 1419: 849-1341 FAX (418) 969-134

January 21, 1997 Robert J. Hoffman, Chairman and Members Page -7-

> disposal facilities pursuant to the federal Low-Level Radioactive Waste Policy Act. Since the Barnwell site has a finite remaining capacity, and the Richland site is only open to the Northwest and Rocky Mountain Compact states, Envirocare seems poised to emerge as the nation's main disposal sits.

AUTHOR CHILD

Perhaps our greatest fear is that Envirocare's cheap prices, expanding waste acceptance criteria and vast unused capacity will lead to abandonment of the new facility siting efforts now underway, and that Envirocare will indeed become the main national disposer just long enough to develop problems which force its unexpected closure. This scenario would leave our members and many other waste producers across the nation with no place to take their waste and an undesired share of potentially significant environmental restoration costs. In many ways, this fear lies at the crux of the issue.

We look forward to the State of Utah's formal reply and stand ready to help answer any questions you, the Department of Environmental Quality, or other state officials may have in considering this petition.

sincerely,

Marais

Carol S. Marcus, Th.D., M.D. Director, Nuclear Med. Outpt. Clinic Harbor-UCLA Medical Center

and Professor of Radiological Sciences, UCLA

and President, American College of Nuclear Physicians, California Chapter

TAN 91 197 (FR:) 15 44

-3

January 21, 1997 Robert J. Hoffman, Chairman and Members Page -8-

Attachment: May 7, 1996 Information Notice (Subject: ion exchange resin disposel)

cc v/ attachment:

Soverney Michael O. Leavitt
Shirley Ann Jackson, Chairman, U.S. Nuclear Regulatory Commission
Dianne R. Nielson, Executive Director, Utah Department of

Environmental Quality
William Sinclair, Executive Secretary, Radiation Control Board
and Director, Radiation Control Division
and Director, Radiation Control Division
Don Womeldorf, Executive Director, Southwestern Compact
Nembers, California ACNP Board

ENVIROCARE OF UTAH, INC

NRC GROUNDWATER
DEMONSTRATION

February 18, 1997

E/= 18

Agenda Envirocare 11e.(2)

- Objectives of Meeting
- Background
- Status
- Regulatory Issues and Options
- Technical Presentation
- Summary and Conclusions

Envirocare 11e.(2)

- Regulatory Background
 - Apparent Exceedance of Baseline 1995
 - Site Specific Standards Table STD-1
 - Apparent Exceedances of Baseline 1996
 - Apparent Exceedances of Table STD-1
 - Notifications
 - Compliance Monitoring

Envirocare 11e.(2)

- Status of Groundwater Monitoring and Standards
 - Sampling and Analyses For All Apparent Exceedances - Splits on Every Sample
 - Notification of All Apparent Exceedances
 - Consider Apparent Exceedances to be Part of Background
 - Demonstrate Envirocare Position to NRC and Utah DRC Satisfaction

Envirocare 11e.(2)

- Regulatory Issues
 - Assumptions on source of apparent exceedances
 - Modeling for LARW
 - Level of information needed to support demonstration of background option
 - Appropriate process to follow
- Regulatory Options
 - Demonstrate part of background
 - · Use Mountain State's data
 - Adjust American West Analytical's original data
 - Demonstrate constituents are not hazardous constituents
 - Submit and support ACLs
 - Corrective action

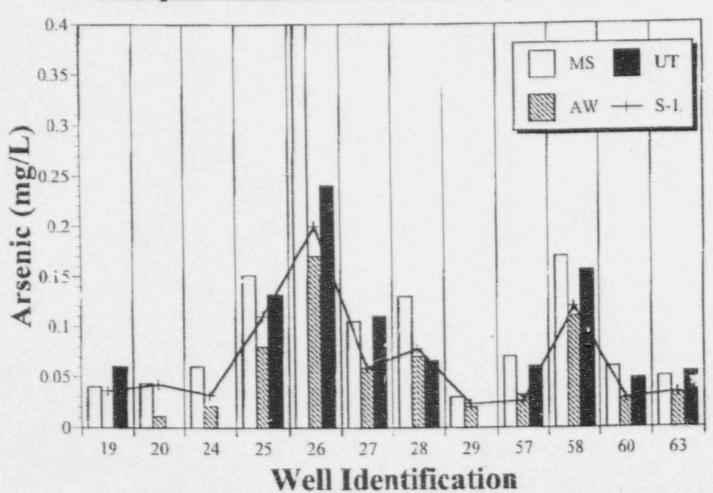
Overview

- Established Background/Exceedences
 - Background data collection
 - Analytical procedures
 - Evaluation of background
- Effects of Contract Laboratory
 - Time of change
 - Contrast in analytical procedure
 - Implications for established background
- · Site Conditions
 - Arsenic distribution
 - Time of travel
 - Groundwater mounding
- Current Efforts

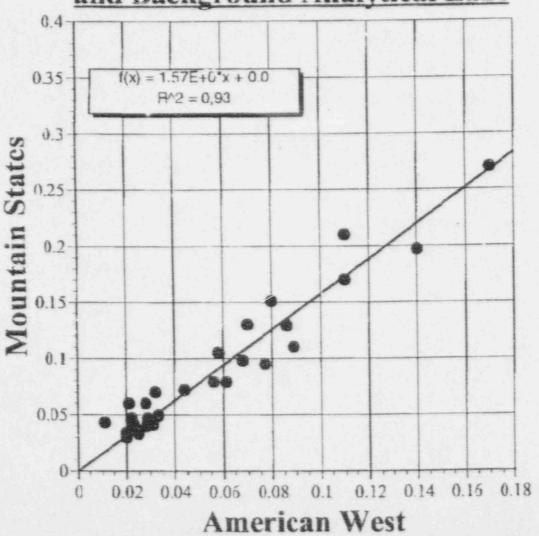
Establishing Background

January 1991 (earliest) - May 1994

American West Analytical Labs Graphite Furnace AAS


Analytical Methodologies

America West Analytical Lab (AWAL)

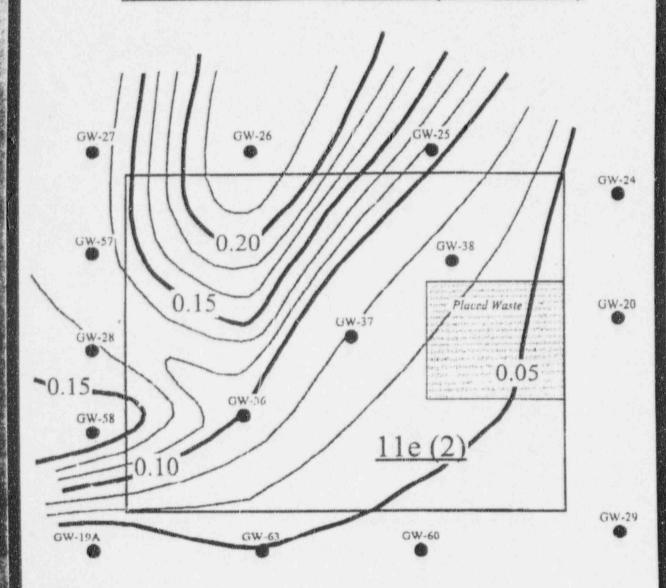

Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) **Mountain States**

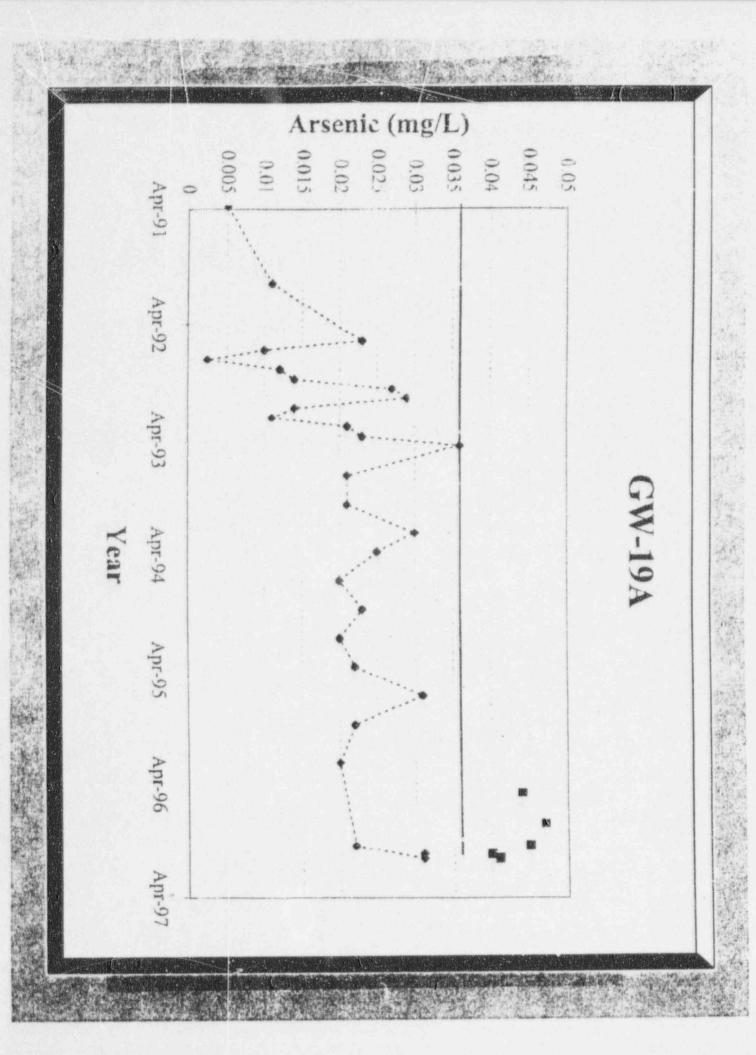
Hydride Generation Atomic Absorption Spectroscopy (HAAS)

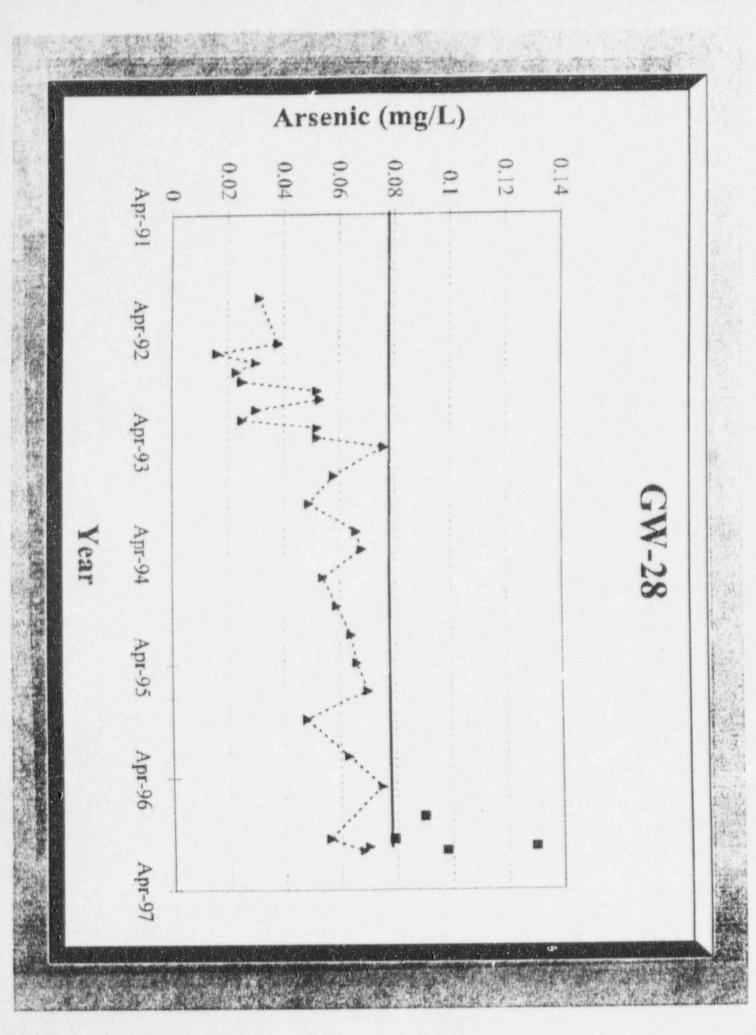
Comparison of Groundwater Split Analyses

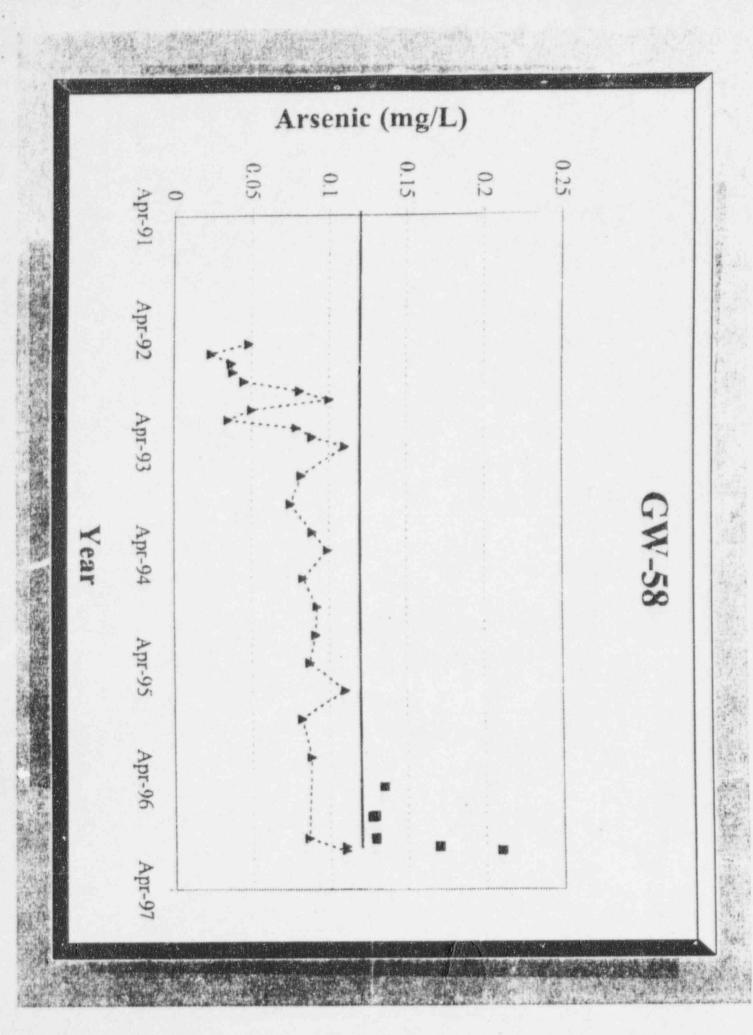
Relationship Between Current and Background Analytical Labs

Approach to Revision of Background Concentrations

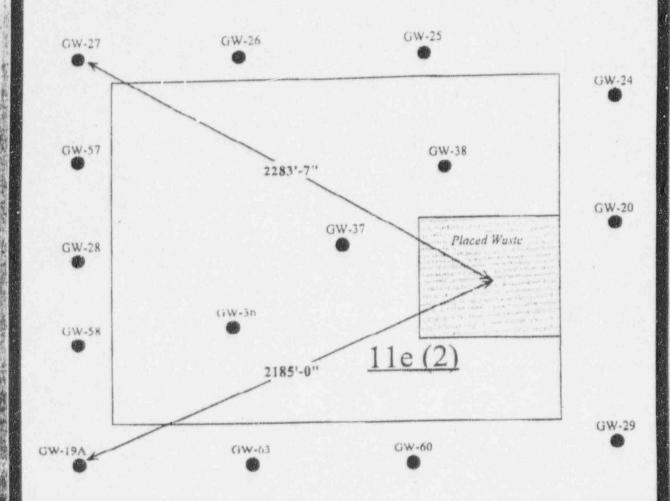

- Only Mountain States data were used (May Nov. 1996)
- For each element and each well, outliers were identified using a Q-test for small data sets
- · Outliers were discarded from do a set
- The mean and standard deviation for each element in each well was calculated
- Background concentrations were calculated as the mean plus two standard deviations.


Table of Revised Background Concentrations


29 Imital Revised 57 Initial Revised 58 Initial Revised 60 Initial Revised									A STATE OF THE STA	Period	28 Insteal	Revis	27 Initial	Revised	26 linha	Revised	25 Initial	Revised	24 Initial	Revised	20 Initial		194 Inmal	MCL		
ed 0.138 i 0.025 ed 0.05 l 0.026 l 0.049 l 0.11 l 0.12 sed 0.217 l 0.029 sed 0.049												ed 0.126		ed 0.405				ed 0.041			0.042		0.036	0.05	As	
0.038 0.02 0.048 0.02 0.048 0.038 0.038 0.037	0.038 0.02 0.048 0.02 0.048 0.038 0.038	0.038 0.02 0.048 0.038 0.038	0.038 0.02 0.048 0.048 0.038	0.038 0.02 0.048 0.02 0.048	0.038 0.02 0.048 0.02	0.038	0.038	0.038	The second name of the second	0.028	0.033	0.035	0.053	0.038	0.044	0.02	0.044	0.035	0.036	0.028	0.023	0.028	0.02	2	Ba	The same of the sa
0.005 0.003 0.005	0.005	0.0005	0.0005	0.005	-	0.0003	0.005	0.0003	0.005	0.0003	0.005	0.0003	0.005	0.0003	0.001	0.0003	0.001	0.0003	0.005	0.0003	0.005	0.0003	0.005	0.004	Ве	The second second second
0.004	19. 201010	1000	0.004	0.0003	10004	0.0003	0.004	0.0003	0.004	0.0003	0.004	0.(003	0.004	0.0003	0.004	0.(0003	0.504	0.6003	0.304	0.0003	0.004	0.0003	0.004	0.005	Cd	A CONTRACTOR OF THE PARTY OF TH
200 0	-	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	A05	305	0.005	0.005	0.005	0.005	0.005	0.1	Cr	
0 005	distance of the latest of the	0.0011	0.005	0.0011	0.005	0.015	0.005	11000	0.005	0.011	0.005	0.035	0.005	0.027	0.005	0.043	0.005	0.0011	0.005	0.0011	0.005	1100.0	0.005	0.015	78	
0 00046	The Personal Property lies and	0.00025	0.00049	0.0001	0.00062	0.00099	0.00038	0.00041	0.00038	0.0001	0.00038	0.00032	0.00026	16100'0	0.0002	1000.0	0.0002	0.00054	0.00029	0.00071	0.00049	0.0001	0.00034	0.002	Hg	
4.7.5	11:0	0.24	0.31	0.21	0.36	0.36	0.53	0.19	0.37	0.29	0.46	0.56	0.55	0.53	0.7	0.72	0.3	0.22	0.33	0.18	0.33	0.57	0.75		Mo	
	0.01	0.02	10.0	0.02	10.0	0.02	10.0	0.02	10.0	0.02	0.01	0.02	10.0	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02	6.01	0.1	3.	
	0.005	0.046	0.015	0.028	0.005	0.014	0.005	0.005	0.005	9.013	0.005	0.006	0.005	0.038	0.014	810.0	0.005	0.055	0.001	0.072	0.055	0.002	0.005	10.01	Se	
	0.005	0.003	0.005	8000	0.005	0.009	0.005	0.005	0.005	0.005	0.005	0.009	0 005	0 009	1000	7.000	0005	0.003	0.005	0 003	0.005	0.01	0.005	1	Ag	


man and accompanies of the second second

Groundwater Arsenic (Nov. 1996)



Groundwater Travel Times

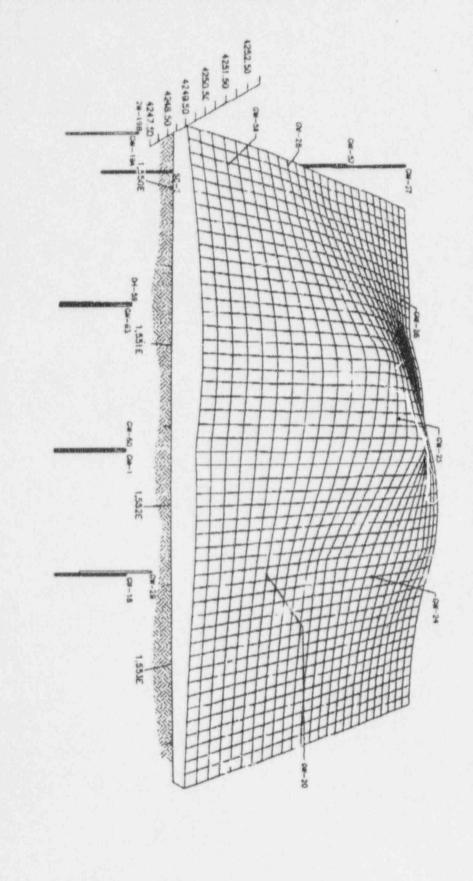
Regional Groundwater Velocity = 0.56 m/yr = 1.84 ft/yrTherefore, Time to 27 = (2284 ft)(yr/1.84 ft) = 1241 yrAlternatively, 2284 ft / 3 yrs = 761 ft/yr to reach 27

4251.50 425150 4249.50 4248 50 April 1982 Potentiometric Surface Vertral Exageration x 50 1.552E

SCALE IN SET (HORIZONTA)

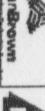
Adrianarown

APRIL 1982 POTEMTIOMETRIC SURFACE


VERTICAL EXAGERATION X 50

BYLL SO BESTDOM

22


AT E THING STATE IN LESS (HOMEONET) 425:50 BLANDOCTURE ON ASTRE 4248,50 4247.50 3155.1 Juria 1982 Potentionnetric Surface Map Vertical Evageration x 50 JUNE 1992 POTENTIONETRIC SURFACE VERTICAL EXAUERATION X 50

April 1994 Potentiometric Surface Vertical Exageration x 50

Adrianthown

APRIL 1994 POTENTIONETRIC SURFACE VERTICAL EXAGERATION X 50

County & State

4252.50 4251.50 1250 Si 4249.50 1,5516 8-30

June 1988 Potentiometr: Surface Vertical Exageration x 50

JUNE 1996 POTENTIOMETRIC SURFACE

SCALE IN FEET (NORZONTA)

AdrianBrown

MOCARE OF TYAR

County & Sich

Current Efforts

- abundance of elements of concern in aquifer solids
- potential effects of changing redox and pH conditions
- movement of water table (vertically and horizontally)