NUREG/CR-4130 PNL-5379

ICEDF: A Code for Aerosol Particle Capture in Ice Compartments

Prepared by P. C. Owczarski, R. I. Schreck, W. K. Winegardner

Pacific Northwest Laboratory Operated by Battelle Memorial Institute

Prepared for U.S. Nuclear Regulatory Commission

1

8510040377 850930 PDR NUREG CR/4130 R PDR

NUTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

 The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555

10 20

- The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082, Washington, DC 20013-7082
- 3 The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

NUREG/CR-4130 PNL-5379 R1

ICEDF: A Code for Aerosol Particle Capture in Ice Compartments

Manuscript Completed: July 1985 Date Published: September 1985

Prepared by P. C. Owczarski, R. I. Schreck, W. K. Winegardner

Pacific Northwest Laboratory Richland, WA 99352

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B2444

ABSTRACT

This report describes the technical bases and use of the computer code ICEDF. ICEDF was developed to estimate the extent of particle retention in the ice compartments of pressurized water reactor (PWR) ice condenser containment systems during severe accidents. This report also serves as a complete user's guide for the most recent stand-alone version of ICEDF. A complete code description, code operating instructions, code listing, examples of the use of ICEDF, and a summary of a parameter sensitivity study support the use of code ICEDF.

CONTENTS

ABST	RACT.		• • • • • • • • • • • • • • • • • • • •	iii		
EXEC	UTIVE	SUMMAR	۲۷	ix		
1.0	INTE	RODUCTI	DN	1		
2.0	TECHNICAL BASES SUMMARY					
	2.1	SUMMAR	RY OF PARTICLE CAPTURE MECHANISMS IN NUREG/CR-3248	2		
		2.1.1	Gravity Settling	3		
		2.1.2	Impaction and Interception	4		
		2.1.3	Brownian Diffusion	5		
		2.1.4	Diffusiophoresis	6		
		2.1.5	Thermophoresis	7		
		2.1.6	Overall Decontamination Factors	8		
	2.2	PARTIC	LE GROWTH	8		
		2.2.1	Growth in Supersaturated Atmospheres	9		
		2.2.2	Soluble Particle Growth	13		
3.0	ICEDF CODE DESCRIPTION					
	3.1	CODE 0	RGANIZATION	15		
		3.1.1	Read/Write Input	15		
		3.1.2	Define Fixed Variables	15		
		3.1.3	Output DO Loop	15		
		3.1.4	Input Massage	15		
		3.1.5	DF Entrance Region	17		
		3.1.6	Ice Bed DO Loop	17		
		3.1.7	DF and Liquid Water Loss Calculations	17		
		3.1.8	Heat Transfer Calculations	17		

		3.1.9	Particle Growth Calculations	17
		3.1.10	Thermodynamic Calculations	17
		3.1.11	Readjustment of Parameters	17
		3.1.12	Ice Melt Calculations	17
		3.1.13	DF Exit Region	18
		3.1.14	Output Preparation	18
	3.2	METHODS	S/ALGORITHMS OF CALCULATION	18
		3.2.1	Heat Transfer Coefficients	18
		3.2.2	Particle Growth	20
	3.3	SUBROUT	INES	21
		3.3.1	Subroutine KELVIN	21
		3.3.2	Subroutine DIFFU	22
		3.3.3	Subroutine VISC	22
		3.3.4	Subroutine VSET	23
		3.3.5	Subroutine IID	23
		3.3.6	Subroutine SOLGR0	23
		3.3.7	Subroutine ICEMELT	24
.0	CODE	OPERAT	ION AND PARAMETER SELECTION	25
	4.1	INPUT	REQUIREMENTS	25
		4.1.1	Ice Bed Physical Parameters	25
		4.1.2	Inlet Aerosol Parameters	27
		4.1.3	Calculational and Output Specifications	28
	4.2	OUTPUT	DESCRIPTION	29
		4.2.1	Output Description by Particle Size	29
		4.2.2	Additional Output	30
	4.3	INPUT/	OUTPUT EXAMPLES	30

1

5.0	CODE	VALIDATION STATUS	35
	5.1	ICEDF VALIDATION STATUS REVIEW	35
	5.2	VALIDATION EXPERIMENTAL PLANS	35
REFE	RENCES	5	38
APPE	NDIX	A - PARAMETER AND MECHANISM SENSITIVITY	A.1
APPE	NDIX	B - ICEDF LISTINGS	8.1

.

FIGURES

1	Flow Chart of the ICEDF Code	16
2	Example of an Input File	31
3	ICEDF Printout of Figure 2 Input File	32
4	Particle-Size of Output for Figure 2 Input File at 18.3 h	33
5	Overall Aerosol Properties Part of the Output File for Figure 2 Input File at 18.3 h	34
6	Ice Condenser Validation Tests, Phase I Laboratory Apparatus	36
7	Ice Condenser Validation Tests, Cross Section of Single Basket Test Apparatus	37

-

¥

EXECUTIVE SUMMARY

This report describes the technical bases and use of the computer code ICEDF. The code was developed to estimate particle retention in the ice compartments of pressurized water reactor (PWR) ice condenser containment systems during severe accidents. ICEDF and other codes are products of a broader U.S. Nuclear Regulatory Commission (NRC) study of the particle retention effectiveness of Engineered Safety Features (ESFs). Pacific Northwest Laboratory (PNL) is conducting the study for the NRC.

The technical bases of code ICEDF consist of the particle removal mechanisms presented in an earlier PNL report, NUREG/CR-3248, and particle growth calculation methods recently developed at PNL. The particle removal mechanisms modeled in ICEDF are gravitational settling, impaction and interception, Brownian diffusion, diffusiophoresis, and thermophoresis. The particle growth methods use the principles of cloud physics and heat and mass transfer and are important in enhancing settling, impaction, and interception removal mechanisms.

This report is also intended to serve as a complete ICEDF user's manual. In this function the following items are included: 1) ICEDF code description with methods/algorithms of calculation and subroutines; 2) code operating instructions with input requirements, output descriptions, parameter selection guidelines, and examples of ICEDF use; 3) a parameter sensitivity study summary; and 4) a complete list of ICEDF with subroutines.

A brief description of experiments planned for use in future validation efforts is also presented.

1.0 INTRODUCTION

The ice condenser system for containment pressure suppression is one of many types of Engineered Safety Features (ESFs) installed in U.S. commercial nuclear power reactors to control and mitigate the consequences of occurrences that might challenge reactor integrity and/or adversely affect plant personnel or the public. This report is the result of a study funded by the U.S. Nuclear Regulatory Commission (NRC) at Pacific Northwest Laboratory (PNL) to assess the fission product retention effectiveness of ESF systems under hypothetical severe accident conditions.

Although the ice condenser system is designed to condense steam in the containment building of certain pressurized water reactors (PWRs), the primary objective of the ESF study is to assess the particle removal capability of the ice condenser design. A predecessor PNL report, NUREG/CR-3248 (Winegardner et al. 1983), provides most of the technical background for the computer code ICEDF. The objective of developing ICEDF was to provide a method for predicting ice compartment particle retention during postulated severe accidents where conditions change rapidly, making hand calculations impractical. An early version of ICEDF was modified and adapted to a containment aerosol code for recent severe accident source term analyses (Gieseke et al. 1984).

This report discusses the most recent stand-alone version of ICEDF. Chapter 2 reviews the technical bases of this code, which includes the particle capture mechanisms discussed in NUREG/CR-3248 (Winegardner et al. 1983) and recently developed particle growth mechanisms. Chapter 3 discusses code organization, methods and algorithms of the calculations, and subroutines. Chapter 4 provides the details for using the code including input requirements, output description, parameter selection guidelines, and examples of ICEDF use. Chapter 5 discusses the status of ICEDF validation. Appendix A summarizes a parameter sensitivity study, and Appendix B is a recent code list.

2.0 TECHNICAL BASES SUMMARY

The version of the ICEDF code described in this report was developed in two separate phases. The initial version was based almost solely on the equations for particle capture that were developed by Winegardner, Postma, and Jankowski, and presented in NUREG/CR-3248, Studies of Fission Product Scrubbing Within Ice Compartments. These retention equations are reproduced in Section 2.1 of this report. Although neglected in the initial effort, NUREG/CR-3248 also noted that the potential for enhanced removal upon particle growth by water vapor pickup should be investigated as part of the effort to attain the goal of making realistic estimates of particle retention. As a result, analytical models to calculate the extent of growth in the presence of condensible vapors were subsequently developed and incorporated into the code. The resulting equations, including those for the growth of soluble nuclei in unsaturated conditions as well as those for condensational growth arising from a supersaturated vapor (from the mixing of the hot, moist gas from an accident with the cool gas already in the ice compartment) are developed in Section 2.1.

2.1 SUMMARY OF PARTICLE CAPTURE MECHANISMS IN NUREG/CR-3248

The particle capture mechanisms considered in NUREG/CR-3248 were gravity settling, impaction and interception, Brownian diffusion, diffusiophoresis, thermophoresis, and turbulent deposition. Because turbulent deposition is considered negligible for most of the velocities predicted in the ice bed, the model developed for this latter mechanism was not incorporated into the code.

To illustrate the ICEDF mechanisms quantitatively, consider a particle mass balance over a control volume of gas flowing vertically between ice baskets. This volume or node is considered to be at steady state and well mixed; i.e., the particle concentration of the gas within the node is the same as that of the gas leaving the node. The mass balance can then be written as

$$G_{i}C_{gi} = K_{s}C_{go} + K_{I}C_{go} + K_{BD}C_{go} + K_{D}C_{go} + K_{T}C_{go} + G_{o}C_{go}$$
, (2.1)

where

 $G = gas flow rate. m^3/s$

 $C = airborne concentration. g/m^3$

 $K = removal rate constant. m^3/s.$

The subscripts have the following meaning:

i = conditions at node inlet

g = in the gas phase

s = settling

- I = impaction and interception
- BD = Brownian diffusion
- D = diffusiophoresis
- T = thermophoresis
- o = conditions at node outlet.

The ratio of the inlet to the outlet particle rate $(G_i C_{gi}/G_0 C_{go})$ is defined as the decontamination factor (DF). Rearrangement of Equation 2.1 in terms of this ratio results in the following expression for the DF of the well-mixed node.

$$DF = 1 + \sum_{i} K_{i}/G_{0}$$
 (2.2)

The overall column DF for n nodes in series is then given by

$$DF = DF(1)DF(2) \dots DF(n)$$
 (2.3)

Finally, it is necessary to consider the nodal DF for each particle size j, DF_{i} , in the gas stream. Hence,

$$DF_{j} = 1 + \sum_{i} K_{ij}/G_{o}$$
, (2.4)

where K_{ij} is the removal rate constant for particle size 'j' by mechanism 'i'. The remainder of Section 2.1 lists the equations used to describe the various rate constants.

2.1.1 Gravity Settling

The expression for the rate constant associated with gravity settling, K_{sj} , is the product $V_{sj}A_s$, where V_{sj} is the particle settling velocity, cm/s and A_s is the available horizontal upward facing surface area, cm².

For particles having aerodynamic equivalent diameters (AED) <70 μ m, V_{sj} normally follows Stokes law for spherical particles:

$$V_{sj} = \rho_j d_j^2 g Cn_j / 18 \mu$$
, (2.5)

where

 ρ_j = effective particle density, g/cm³ d_j = effective particle diameter, cm g = acceleration of gravity, 980 cm²/s

Cn_j = Cunningham correction factor (see subroutine DIFFU, Section 3.3)

 μ = bulk gas viscosity, poise.

For particles of $d_j > 70 \ \mu\text{m}$, ICEDF uses a series of empirical expressions to find V_{sj} (see subroutine VSET, Section 3.3.4). The area A_s is an important parameter; its selection is discussed in Section 4.1.1.

2.1.2 Impaction and Interception

The ice baskets and support structures have a large number of surfaces that can serve as targets for removal by impaction and interception. The impaction/interception removal rate constant is

$$K_{I} = V_{I} A_{I} \varepsilon_{I} , \qquad (2.6)$$

where

 V_T = gas velocity approaching the segment, cm/s

 A_{T} = projected area perpendicular to the flow, cm³

- = impaction/interception efficiency.

The efficiency is

$$e_{I} = \frac{\text{Stk}^{2}}{(\text{Stk} + 0.05)^{2}} - 0.04 + 2\frac{d_{j}}{d_{c}}, \qquad (2.7)$$

where Stk is the Stokes number $({\tt V}_I \rho_j d_j^2~{\tt Cn}_j/9_{\mu}d_c)$ and d_c is the collector diameter, cm.

2.1.3 Brownian Diffusion

For particles <0.1 µm diameter, Brownian diffusion becomes important as a capture mechanism. The Brownian removal rate constant is defined as

$$K_{BDi} = V_I A_{BD} \varepsilon_{BDi} , \qquad (2.8)$$

for flow perpendicular to capture surfaces. Here

 V_{I} = gas velocity approaching the surface, cm/s

 A_{32} = projected area for diffusional deposition, cm²

eBDi = diffusional capture efficiency.

The efficiency $\varepsilon_{BD\,i}$ for cylinders is

$$BD_j = \frac{1}{Pe_j} + 1.727 \text{ Re}^{1/6}/Pe_j^{2/3}$$
, (2.9)

where

For flow parallel to the capture surface, the removal rate constant $K_{\rm BDj}$ is related to particle mass transfer coefficients by the relationship

$$K_{BDj} = \sum_{1}^{N} K_{j1} A_{1},$$
 (2.10)

where

K_{j1} = mass transfer coefficient for the j-th particle size to the l-th surface, cm/s,

 A_1 = surface area of the 1-th surface, cm².

Correlations are available for the mass transfer coefficients. For natural convection in ice beds

$$\frac{K_j}{D_j} = 0.13 \, (\text{Gr Sc}_j)^{1/3} / \ell$$
, (2.11)

where

$$\begin{split} & \text{K}_{j} = \text{j-th particle size mass transfer coefficient, cm/s} \\ & \text{Gr} = \text{Grashof number} = (\rho z^{3}g/\mu^{2})\Lambda\rho \\ & \text{Sc}_{j} = \text{Schmidt number} = \mu/\rho\text{D}_{j} \\ & \rho = \text{bulk gas density, g/cm}^{3} \\ & \Delta\rho = \text{density difference between bulk gas and gas at the surface, g/cm}^{3} \end{split}$$

l = characteristic length of surface in direction of flow, cm.

Equation (2.11) is preferred over forced convection correlations in ICEDF, since the flow rates along the ice are likely to be strongly influenced by density instabilities. For forced convection flow, other types of correlations for the Sherwood number, $K_j \delta/D_j$, can be used. Here, δ is some characteristic dimension of the flow system (e.g., the hydraulic radius of the flow path between ice baskets).

2.1.4 Diffusiophoresis

The deposition velocity used to develop the removal rate constant for diffusiophoresis, K_D , is based on consideration of both Stefan flow and the

molecular weight gradient arising from steam condensation. For steam air mixtures these two mechanisms are opposing with Stefan flow dominating. Consideration of the above results in the following equation for the rate constant, an expression that is independent of particle size.

$$K_{D} = 0.9G_{O}\left(\frac{X_{2O}X_{i}}{X_{2i}} - X_{O}\right), \qquad (2.12)$$

where

 G_0 = volume flow rate of gas at outlet of node X_{20} = node outlet mole fraction of air X_i = node inlet mole fraction of steam X_{2i} = node inlet mole fraction of air

 X_{o} = node outlet mole fraction of steam.

2.1.5 Thermophoresis

The following equation, an expression to predict the extent of removal resulting from the fact that the capture target can be colder than the gas, was developed for the thermophoretic deposition rate constant $K_{T,i}$.

$$K_{Tj} = G_0 C_{Tj} (T_j - T_o) / \alpha$$
, (2.13)

where

 $C_{T,i}$ = constant defined below

 T_i = node inlet temperature, °K

 T_{o} = node outlet temperature, °K

 α = gas thermal diffusivity, cm²/s.

The constant C_{Tj} depends on the diameter of particle j (Davies 1966):

$$C_{Tj} = \frac{3\mu}{2\rho T} Cn_{j} [k_{g}/k_{p} + C_{t} Kn_{j}] / [(1 + 3 C_{m} Kn_{j})(1 + 2 kg/kp + 2 C_{t} Kn_{j})], \quad (2.14)$$

where

 k_g/k_p = ratio of thermal conductivities of gas/particle C_t = thermal accommodation constant Kn_j = Knudsen number = $\frac{gas mean free path}{j-th particle radius}$ C_m = momentum accommodation constant.

2.1.6 Overall Decontamination Factors

In ICEDF the expressions for diffusiophoretic and thermophoretic DF are considered as separate factors in the overall expression for nodal DFs of each particle size. Thus for the k-th node and j-th particle size

$$DF_{j}(k) = \left(1 + \frac{K_{Dj}}{G_{o}}\right)_{k} \left(1 + \frac{K_{Tj}}{G_{o}}\right)_{k} \left[1 + (K_{sj} + K_{BDj} + K_{Ij})/G_{o}\right]_{k} . \quad (2.15)$$

Then for the series of n nodes [Equation (2.3)]

$$DF_{j} = \prod_{k=1}^{n} DF_{j}(k)$$
, (2.16)

and to obtain an overall DF for all particles over all nodes

$$DF = \sum_{j} \dot{m}_{j} / \sum_{j} \dot{m}_{j} / DF_{j} , \qquad (2.17)$$

where

$$\dot{m}_i$$
 = inlet mass flow rate of particle size j, g/s.

Equations (2.15), (2.16), and (2.17) comprise the core of calculations in ICEDF. All other computations serve to support the calculations of the various removal rate constants and to interpret the output data.

2.2 PARTICLE GROWTH

As indicated earlier, particle growth was neglected in the development of the initial version of the ICEDF code, a version that was based almost entirely on the above capture equations. Because of the possible significant enhancement effect, most of the work that has been conducted since the development of the initial model has focused on the growth of aerosol particles by condensation. The technical bases for condensational growth models for both unsaturated and supersaturated environments is discussed below. Before proceeding, note that it is assumed that agglomeration effects can be neglected because of aging.

2.2.1 Growth in Supersaturated Atmospheres

A supersaturated atmosphere exists in many cases when rapid cooling of near-saturated gas occurs. To discuss this phenomena quantitatively, the degree of saturation, S, is defined as

$$S = P_v / P_v^0$$
, (2.18)

where P_v is the actual partial pressure of water vapor in the gas, and P_v^0 is the equilibrium water vapor pressure at the pressure and temperature of the gas for a plane surface. For S < 1, the gas is subsaturated. When 1 < S < 4, supersaturated vapors can condense on heterogeneous wettable surfaces. When S > 4, water vapor can condense by homogeneous droplet nucleation and growth as well as on heterogeneous surfaces (Pruppacher and Klett 1980).

The rate of heterogeneous particle growth is of primary concern when considering ice bed depletion of particles from the gas phase. In the flow regime of the ice bed, two processes limit the growth rate. The first process is the rate of sensible heat loss from the gas to the ice relative to the rate of latent heat loss that condenses vapors on the ice. The second process is the condensation rate on individual particles. This latter rate limiting step is considered next.

The classical rate equation, called Mason's equation, for growth of droplets in rain clouds is found in the fundamental theories of cloud physics; it is derived in Byers (1965) as

$$r\frac{dr}{dt} = (S-S')/[(M_{WV} \Delta H_{V}^{2} \rho_{L}/kgRT^{2}) + (\rho_{L}RT/P_{V}^{0} DM_{WV})], \qquad (2.19)$$

where

r = droplet radius, cm
t = time
M_uv = molecular weight of the vapor, 18 g/g-mole

AH, = latent heat of vaporization, j/g

 ρ_1 = density of condensed liquid, g/cm³

kg = gas thermal conductivity, j/cm s

R = gas constant

T = absolute temperature, °K

 $D = vapor diffusivity in gas, cm^2/s$

S' = actual saturation level at droplet surface^(a).

Equation (2.19) is more simply written as

$$r\frac{dr}{dt} = \frac{S-S'}{a+b}$$
(2.20)

and is used in its integrated form (for constant, S, a, and b) as

$$r^{2} = r_{0}^{2} + \frac{2(S-S')}{a+b} (t - t_{0})$$
 (2.21)

Mason's equation accounts for both the diffusive resistance of the condensing vapor as well as the conductive resistance of the gas surrounding the droplet that inhibits the removal of the latent heat of condensation. The above equations are used in ICEDF along with empirical relationships for the constants a(T) and b(T).

The remaining growth-limiting process, related to heat removal, requires detailed mass and energy balances to be described quantitatively. First, recall that the calculational node is a well-mixed control volume. At steady state, the mass balances rate equations can be written as

$$\dot{M}(NC)_{i} = \dot{M}(NC)_{o}$$
, (2.22)

(a) The Kelvin equation relates the droplet diameter d₀' to the droplet saturation level (Adamson 1976):

$$d_{\sigma}' = 4\sigma V/RT \ln(S')$$

where \tilde{V} is the liquid molar volume, cm³/g mole.

 $M(\text{NC})_{\,i}$ and $M(\text{NC})_{\,0}$ are the noncondensible mass flow rates at inlet and outlet, respectively.

For j-size particles (P;)

$$\dot{M}(P_j)_i = \dot{M}(P_j)_0 + \dot{M}(P_j)_i (1 - 1/DF_j).$$
 (2.23)

For water

$$\dot{M}(w)_{i} = \dot{M}(wv)_{i} + \dot{M}(cw)_{i}$$
 (2.24a)

$$\dot{M}(cw)_{j} = \sum_{i} \dot{M}_{j}(cw)_{j}$$
(2.24b)

$$\dot{M}(cw)_{i} = \dot{M}(wv)_{0} + \dot{M}(cw)_{0} + \dot{M}(wl)$$
, (2.24c)

where

M_j(cw)_i = mass rate of condensed water on j-sized particles, g/s
w = water
v = water vapor
cw = condensed water.

The water loss rate M (w1) is

$$\dot{M}(wl) = p \Delta z h_c (T_i - T_w) / \Delta H_v + \sum_i \dot{M}_j (cw)_i (1 - 1/DF_j)$$
, (2.25)

where

p = ice perimeter of flow channel, cm h_c = condensational heat transfer coefficient, watts/cm²°K T_w = water film wall temperature, °K Δz = thickness of control volume in flow direction, cm. The energy balance across the node is similar. Define the enthalpy flow rate of the aerosol as \hat{E} , then

$$\dot{E}_{i} = \dot{E}_{0} + \dot{Q}$$
, (2.26)

where \mathbb{Q} , watts, is the energy loss rate to the ice in the thickness $\vartriangle z$. A more detailed definition of \mathbb{Q} is given by

$$\dot{Q} = p \Delta z \left[\left(h_{c} + h_{s} \right)^{-1} + \frac{\Delta x}{k_{w}} \right]^{-1} (T_{i} - T_{w})$$

$$+ \sum \dot{M}_{i} (cw)_{i} (1 - 1/DF_{i}) \left[Cp_{w} + (1 - fw_{ii}) Cp_{s} / fw_{ii} \right] (T_{i} - T') ,$$
(2.27)

where

1st term on rhs = condensation and sensible heat loss rates
2nd term on rhs = enthalpy loss because of particle capture

h_s = sensible heat transfer coefficient, watts/cm²°K

 Cp_{w} = condensed water heat capacity, $J/g^{\circ}K$

k_w = water film thermal conductivity, watts/cm°K

∆x = water film thickness, cm

 $Cp_c = solid particle heat capacity, J/g^{\circ}K$

fw_{ii} = weight fraction of water in inlet for j-th particle size

T' = enthalpy reference temperature (273.2°K here). (a)

To complete the details of the energy balance, the expression for E_i is

⁽a) In Equations (2.25) and (2.27), the inlet temperature T_j is used instead of T_0 , the outlet or well-mixed volume temperature. This simplifies calculations and introduces minimal error for small Δz .

$$\dot{E}_{i} = [\dot{M}(NC)_{i} Cp_{NC} + \sum_{j} [\dot{M}_{j}(cw)_{i} Cp_{w} + (1 - fw_{ij})Cp_{s}/fw_{ij}] + \dot{M}(wv)_{i} Cp_{v}] (T_{i} - T') + \dot{M}(wv)_{i} \Delta H_{v}, \qquad (2.28)$$

wnere

 Cp_{v} = water vapor heat capacity, $J/g^{\circ}K$.

A similar expression can be written for E_0 . The solution of the above equation for the outlet values neglecting condensation on droplets is discussed in more detail in Chapter 3.0. A last necessary step is needed for adjusting the outlet quantities if $S_0(T_0) > 1$ to allow for condensation for the thermodynamic limit in particle growth. This requires that the outlet gas be at $S_0(T_0') = 1$. This new (higher) temperature T_0' is obtained from E_0 with a net loss in $M(wv)_0$ and gain in $M(cw)_0$. The algorithms for this adjustment are also discussed in Chapter 3.0.

Note that a more rigorous method of solution for particle growth was considered. This method involved a simultaneous solution of the complete set of first-order derivations of all variables along the flow path. The method would have required a completely new beginning for ICEDF, which already had a nodalized system without particle growth. Another disadvantage of the more rigorous method was the high degree of 'stiffness' of the set of equations. For these two reasons, the rigorous method was dropped, and the ICEDF code evolved into the calculational system to be described in Chapter 3.0.

2.2.2 Soluble Particle Growth

Although not separated in reality, soluble particle growth is considered independent of the growth induced by supersaturation. The two growth phenomena are treated separately to facilitate calculations. Specifically it is assumed that soluble substances in the particles are dissolved in water and are in equilibrium with the subsaturated (S < 1.0) atmosphere. Growth is frozen at S = 0.99 because of this phenomenon. When S > 1.0, growth proceeds according to the equations presented in Section 2.2.1, but with the initial diameter equal to the equilibrium particle diameter at S = 0.99. The cutoff at S = 0.99 is based on technical judgment. Experimental comparison of growth phenomena with soluble and insoluble particles are needed to better define the value.

The equilibrium drop size reached in a humid atmosphere is governed by the degree to which the vapor pressure of water is lowered by the soluble material and the degree to which curvature affects an increase in the vapor pressure. Both effects are well understood and are calculable using classical physics and chemistry. The equilibrium saturation ratio, S, is related to drop size by an equation presented by Fletcher (1962).

$$S = \frac{\exp\left(\frac{2\sigma}{n_{L}kTr}\right)}{1 + \left[\frac{imMw_{o}}{Mw\left(\frac{4}{3}\pi r^{3}\rho - m\right)}\right]}$$
(2.29)

where

S = saturation ratio (the relative humidity)

σ = surface tension of solution, dyne/cm

 $n_1 = number of molecules/cm^3 of solution (solvent + solute)$

r = radius of drop, cm

i = van't Hoff ionization factor

 ρ = density of solution, g/cm³

Mw = molecular weight of solute, g/g mole

 Mw_{α} = molecular weight of solvent, g/g mole

m = mass of solute in the droplet, g.

Equation (2.29) was evaluated under the assumption that the solute was cesium hydroxide, the solvent water, and the temperature 100° C. Results are summarized in Table 2.1.

The data of Table 2.1 illustrate that particle growth factors depend on relative humidity, S, and that significant growth factors are predicted.

TABLE 2.1. Growth of CsOH Particles in Humid Atmosphere at 100°C

Dry Particle	Droplet Radius in Stated Humidity				
Radius, µm	S = 0.9	S = 0.95	S = 0.99	S = 0.999	
0.01	0.0195	0.0225	0.0295	0.0345	
0.10	0.195	0.255	0.425	0.775	
1.0	1.95	2.55	4.45	9.35	
10.0	19.5	25.5	44.5	95.5	

3.0 ICEDF CODE DESCRIPTION

This chapter provides details of the ICEDF code organization, the calculation methods/algorithms, and subroutines used. The code began as a simple combination of the DF calculations of NUREG/CR-2348 and evolved into a more complex system incorporating mass and energy balances for the gas phase along with particle-growth calculations in supersaturated atmospheres.

3.1 CODE ORGANIZATION

The ICEDF code does not follow the recent trends of 'structured' programming, where the main code is essentially a driver of many subroutines. The main code in ICEDF is centered around DF calculations for a series of nodes corresponding to the gas flow path in the ice bed. It is supported by calculations of removal rate constants, particle-size changes, heat and mass balances, and thermodynamic conditions. There are seven subroutines involved in the supporting calculations. Figure 1 represents a flow chart of the main program of ICEDF. A brief discussion of each block in the flow chart follows.

3.1.1 Read/Write Input

The input data are read in and reprinted immediately using a free-field format. The input data consist of ice bed physical parameters and inlet aero-sol characteristics throughout the accident sequence.

3.1.2 Define Fixed Variables

A number of constants used in various equations are defined. An important vector, DPART(J), is defined in a DATA statement. DPART(J) represents the particle sizes as equivalent spherical diameters (in centimeters) in J = 1, ... 20 Fuckets. This vector can be changed by the user by recompiling the program. The existing DATA DPART/statement provides a set of 20 sizes representing a lognormal distribution about 1 µm (10⁻⁴ cm) for the inlet aerosol if the input file particle concentrations are a constant multiple of the example file (cf., Section 4.1).

3.1.3 Output DO Loop

The user has specified the number (KOUT) of output times that DF calculations are to be made. At a corresponding set of times, TOUT (K = 1, \dots KOUT), the ICEDF code interpolates all changing input conditions to correspond to each TOUT(K) and follows a volume of aerosol from the inlet of the ice bed to the outlet.

3.1.4 Input Massage

First the code takes the appropriate TOUT(K) value to interpolate between time-dependent variables specified in the input. Then the inlet gas conditions

are appropriately defined for determining particle-removal rate constants for DF calculations; particle growth on soluble particles is then computed.

3.1.5 DF Entrance Region

The compartment below the ice baskets can deplete particles from the entering aerosol by gravity settling and Brownian diffusion. This is accomplished as a special well-mixed node using an appropriate form of Equation (2.15).

3.1.6 Ice Bed DO Loop

The ice bed calculations begin by following the flow in a series of NZ well-mixed nodes. The DO 290 MZ=1, NZ loop begins with the aerosol conditions leaving the entrance region at the entrance temperature.

3.1.7 DF and Liquid Water Loss Calculations

Particle loss is computed for each particle size by Equation (2.15). Then the water loss to the surfaces in the nodes via the droplets capture is calculated.

3.1.8 Heat Transfer Calculations

Both sensible and latent heat loss from the gas is computed [Equation (2.27)]. This precedes the mass and energy balances.

3.1.9 Particle Growth Calculations

In this code section, newly condensed water vapor from the previous node is placed on the airborne particles. The algorithms for this are discussed in Section 3.2.

3.1.10 Thermodynamic Calculations

The overall mass and energy balances [Equations (2.22) through (2.28)] are used to obtain an estimate of the MZ node outlet temperature without considering condensation on particles. This temperature is then readjusted to allow condensation to occur (cf., Section 3.2.2). Then the amount condensed is calculated and placed on particles in the next node.

3.1.11 Readjustment of Parameters

This section of the code returns variables indexed as outlet conditions from node MZ to inlet conditions for node MZ+1 [e.g., E_2 (MZ) = E_1 (MZ+1)]. At this point the calculations return to MZ = MZ + 1 if MZ + 1 < NZ.

3.1.12 Ice Melt Calculations

These calculations are done according to subroutine ICEMELT. See Section 3.3.7.

3.1.13 DF Exit Region

This code section takes credit for removal processes that occur in the unoccupied space above the ice baskets in the same manner as the entrance region (Section 3.1.5).

3.1.14 Output Preparation

Output printing is scheduled for each TOUT (K = 1, ..., KOUT). The first output preparation consists of listing six variables at ice bed exit conditions as functions of the particle bin number J = 1, ..., 20: particle diameters both dry and wet, particle flow rate grams/second both dry and wet, particle numbers, and decontamination factor. Then 12 other quantities are prepared including number median particle radii (wet and dry), particle geometric standard deviation and integrated overall DF [Equation (2.17)]. See Section 4.3 for an example of output.

3.2 METHODS/ALGORITHMS OF CALCULATION

As mentioned in Chapter 2.0, the basis for computing DFs along the flow path is the nodalization of the flow channel into NZ nodes. Each of these nodes is considered to be well mixed; parameter values are 'lumped' for this well-mixed situation. No boundary layer phenomena exist, and all driving forces are based on a bulk gas/ice or basket surface difference. Most methods or algorithms of calculation are simple and straightforward. The more complicated methods or algorithms involving the growth of particles in supersaturated atmospheres are discussed below, along with a discussion of other model choices where alternative methods are available.

3.2.1 Heat Transfer Coefficients

For condensing steam/air mixtures on solid surfaces, the Uchida correlation for heat transfer coefficient is used (Uchida et al. 1964):

$$h_c = 0.04502 (\rho_v / \rho_{nc})^{0.8}, \frac{watts}{cm^{2} 0K}$$
 (3.1)

with the limit

h_ = 0.15889 maximum.

Here ρ_{y} and ρ_{nc} are the vapor and noncondensible gas densities in the bulk gas. Note that other correlations are available [e.g., Handbook of Heat Transfer, p. 12-31 (Rohsenow and Hartnett 1973)].

For sensible heat transfer, more choices are available; however, the choice is made difficult by the low flow rates expected during fan flow in the ice bed channels. The Reynolds number can range typically from 3000 to 6000 for forced convection fan flow. These Reynolds numbers are in the transition region for heat transfer (Bird, Stewart and Lightfoot 1960) and present a problem for application of correlations that are good for Re < 2100 and Re > 10⁴. Calculations have shown that the cold ice surfaces cause density instabilities and, therefore, natural convection flows. For this reason, a natural convection heat transfer correlation is used in ICEDF. This correlation is of the form

 $Nu_z = a (Gr_z Pr)^b$ (Jaluria 1980) (3.2)

where

 Nu_z = Nusselt number based on flow direction coordinate z (o < z < ℓ)

 Gr_z = Grashof number based on flow direction coordinate z

Pr = Prandtl number.

By analogy with Equation (2.11), Equation (3.2) become

$$h_s = 0.13 (GrPr)^{1/3} kg/l, \frac{watts}{cm^2 \cdot k},$$
 (3.3a)

where the Pr is substituted for the Schmidt number ${\rm Sc}_{\rm i}$. Here

$$Pr = Cp_{\alpha}\mu/kg , \qquad (3.3b)$$

where Cpg is the gas thermal conductivity, watts/cm°K. Note that as in Equation (2.11), the transfer coefficient (here h_s) is independent of the characteristic dimension l.

The version of ICEDF listed in Appendix B also uses a forced convection correlation for h_s. The source of the correlations is Figure B.2-1 in Bird 1960. The correlations developed from that figure do apply to transition Reynolds numbers, but probably with high uncertainty. h_s is obtained from equations for the plots of NuRe¹_pPr^{-1/3} (μ_b/μ_0)^{0.14} versus Re_b where the subscript 'b' refers to bulk gas and o to the ice film. See subroutine IID for details of the equations used. The subroutine picks the larger h_s, either the free-convective h_s from Equation 3.3a or the forced-convective h_s above. This value of h_s is then corrected for high mass transfer rates in the manner of Bird 1960, pp. 661-664.

The well-mixed node assumption made for ICEDF ignores the threedimensionality of the heat transfer coefficient. The Nusselt correlation type above recognizes the z (flow) direction dependence. However, the crosssection of the flow channel is cross shaped, which will give an additional twodimensional dependence in heat transfer coefficient. The narrowest dimensions across the flow in the channel arms will have the slowest forced convection velocities and might also have the highest back flow tendencies. Experimental measurements are needed to determine the importance of this effect.

3.2.2 Particle Growth

The algorithms for calculating particle growth follow the sequence of events below for each node:

- 1. Calculate T(2), the node temperature, without allowing for condensation to occur.
- 2. Calculate apparent saturation, S. If S > 1, continue.
- 3. Calculate new T'(2) for S' = 1 that allows DXI, g moles/s to condense on particles. This is the thermodynamic maximum growth rate. This computation is done by intersecting two lines obtained from DXI = DXI [ρ_v , T'(2)] and DXI = DXI [É, T'(2)], and solving for DXI and T'(2).
- Use Mason's equation (2.21) with above S and the Kelvin restriction to calculate the maximum growth rate, DXS, for all particles in the node.
- 5. If DXS > DXI, then the thermodynamic growth rate limit applies. If DXS < DXI, then the particle growth rate equation applies; go to 7.
- 6. For DXS > DXI, the particles are allowed to share DXI in the following way: An equation for approximating small mass increases in a droplet can be obtained from Mason's equation (2.20):

$$\Delta M_{i} = 2\pi d \rho_{i} (S - S') \rho_{i} \Delta t / (a+b) , \qquad (3.4)$$

where

 ΔM_j = mass of particle size j increase, g dp_j = original diameter, cm Δt = time of growth, s.

If $n_j = mass$ flow rate of particle size j out the node, then the total growth rate for all particles is

$$18DXI = \sum_{j=j}^{20} n_{j} \Delta m_{j} = [2\pi (S-S')\rho_{L} \Delta t/(a+b)] \sum_{j=j}^{20} n_{j} dp_{j} \quad (3.5)$$

where j' = smallest j where particles are allowed to grow (Kelvin restriction)

or

18 DXI = A
$$\sum_{j=j}^{20} n_j dp_j$$
 (3.6)

Since the true value of S is not known when growth is limited by thermodynamic principles, the value of A is found by Equation (3.6); then each particle grows by $\Delta M_i = Adp_i$ in the node.

7. For DXS < DXI, the particle growth per particle is obtained by Equation (2.21). This situation only occurs when few particles remain in the gas phase. The expressions for the constants a and b in Equation (2.21) are estimated by curves in Byers 1965. These curves can be expressed approximately as

$$a = \exp \left[1.35008 - 1.11063E - 02 \left(T - 273.2 \right) \right]$$
(3.7)

$$b = \exp \left[13.7102E - 06 - 6.45E - 02 (T - 273.2) \right]$$
 (3.8)

where T = actual temperature, °K.

3.3 SUBROUTINES

The following seven subroutines support the main program.

3.3.1 Subroutine KELVIN

This subroutine determines if particles can grow under the rescrictions of the Kelvin equation (see footnote, p. 10). If the vapor pressure of a curved droplet exceeds that of the surrounding vapor, growth is not permitted. For the smaller droplets, which have a curvature that permits growth, curvature still hinders growth.

3.3.2 Subroutine DIFFU

This subroutine computes the Brownian diffusion coefficient, D_j , in cm^2/s as a function of particle size, j, the mean free path of gas molecules, λ , in cm, and the Cunningham slip factor, Cn_j . Here

$$D_j = 1.38E - 16 T Cn_j / (3\pi ud_p), cm^2/s$$
 (3.9)

$$Cn_j = 1 + 2.492 \frac{\lambda}{dp_j} + 0.84 \frac{\lambda}{dp_j} \exp(-0.435 \frac{dp_j}{\lambda}), \text{ dimensionless}$$
 (3.10)

$$\lambda = 1.245E-02 (T/Mw)^{0.5} \mu/P , \qquad (3.11)$$

where

P = absolute gas pressure, atm.

3.3.3 Subroutine VISC

This subroutine computes the viscosity of the gas mixture in poises and thermal conductivity of the gas mixture in watts/cm°K. Individual gas viscosities are calculated from Bird, Stewart and Lightfoot (1950):

$$\mu_i = 2.6693E - 5 \sqrt{MW_i T} \sigma_i^2 \sigma_i$$
, poise (3.12)

where

 σ_i = collision diameter of molecules

 $Q_i = Q_i (kT/\varepsilon_i)$

 ε_i = Lennard-Jones 'well' energy.

and viscosity of the mixture is also from Bird, Stewart and Lightfoot (1960):

$$\mu_{mix} = \sum_{i=1}^{n} \frac{x_{i}\mu_{i}}{\sum_{j=1}^{n} x_{i} \Phi_{ij}}$$
(3.13)

$$\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{Mw_i}{Mw_j} \right)^{-1/2} \left[1 + \left(\frac{\mu_i}{\mu_j} \right)^{1/2} \left(\frac{Mw_j}{Mw_j} \right)^{1/4} \right]^2$$
(3.14)

The thermal conductivity is calculated using similar equations.

3.3.4 Subroutine VSET

This subroutine computes the terminal settling velocity of a particle in a gas phase. The method uses the Stokes settling equation:

$$V_{j} = \rho G C n_{j} d p_{j}^{2} / 18 \mu$$
 (3.15)

for f_{Re} < 9.6 where

$$f_{Re} = \frac{4}{3} \rho \rho_j G dp_j^3 / \mu^3 . \qquad (3.16)$$

For larger f_{Re} , empirical expressions are used in ICEDF for $Re_j = Re_j$ (f_{Re}) where $Re_j = Reynolds$ number pdp_jV_j/μ (Knudsen 1970).

3.3.5 Subroutine IID

This subroutine calculates the Brownian diffusion coefficient of Equation (2.11), the impaction/interception efficiency $\varepsilon_{\rm I}$ of Equation (2.7), the Brownian diffusion efficiency $\varepsilon_{\rm BD}$ of Equation (2.9), and the convective heat transfer coefficient, h_s [see 3.211].

3.3.6 Subroutine SOLGRO

This subroutine computes the diameter multiplier, RDPART_j, the growth factor for soluble particles using a simplified form of Equation (2.29), assuming that the soluble fraction of the dry particle is $C_{\rm S}$ OH. In the main code

$$dp_j = RDPART_j \times DPART_j, cm$$
, (3.17)

where DPART; = original dry particle diameter as a sphere.

3.3.7 Subroutine ICEMELT

This subroutine calculates the amount of ice remaining in the ice bed as a function of time. Enthalpy and mass balances are solved about the total ice bed using the exit gas temperature and composition calculated in the manner found in Section 2.2.1. The water leaving the bottom of the bed is assumed to be at the entering gas temperature and the ice shape is assumed to be cylindrical, diminishing in diameter as the ice melts. ICEMELT also estimates water film thickness and temperature on the ice for heat transfer calculations. An improved version of ICEMELT is expected to be developed, which will use actual ice geometry and water film thicknesses based on local heat transfer.

4.0 CODE OPERATION AND PARAMETER SELECTION

Code ICEDF has been written in FORTRAN-IV with some use of FORTRAN 77. The input file uses the free format of FORTRAN 77. This chapter details the necessary input requirements of the code and gives output description along with examples of both input and output. Parameter guidance is given in Section 4.1.1 and 4.1.2.

4.1 INPUT REQUIREMENTS

The input file of ICEDF requires three types of information: 1) ice bed physical parameters, 2) inlet aerosol parameters, and 3) calculational and output specifications.

4.1.1 Ice Bed Physical Parameters

For a detailed description of typical PWR ice bed parameters, see Winegardner et al. (1983). The necessary ICEDF parameters are also discussed. The code has a number of fixed ice bed parameters: AX, NUNIT, PERIM, and DZL. Examples of each follow:

- $AX = cross-sectional area, cm^2$, of the single flow channel between ice basket columns (e.g., 565.4)
- NUNIT = number of flow channels per reactor (e.g., 1944)
- PERIM = 'wetted' perimeter of a single flow cross section, cm (e.g., 95.8)

IZL = length of a flow channel, cm (e.g., 1460).

These can be changed at the user's preference, but require recompilation.

ce bed physical parameters that must be specified in each run are

- NDATA = number of data entry points per run where input parameters are specified
- TI(J) = time values (minutes) of each data entry point, J=1, NDATA
 - EF = factor used in the definition of ice surface area, based on the fraction of basket volume filled with solid ice and the fraction of the initial surface area exposed to gas
 - AS1 = basket sedimentation area, cm^2
 - AS2 = ice sedimentation area, cm²
 - AS3 = floor sedimentation area, cm²

AS4 = upper compartment sedimentation area, cm^2

AI1 = basket impaction area, cm²

AI2 = ice impaction area, cm^2

AD1 = basket diffusion area, cm^2

AD2 = ice diffusion area, cm^2

AD3 = floor diffusion area, cm²

AD4 = upper compartment diffusion area, cm^2 .

Typical values of the above that can be used are

NDATA = 2 (minimum) to 50 (dimension limit)

TI(J), J=1, NDATA = 0.,....

 $EF = 0. \rightarrow 0.3$ $AS1 = 2.2E+07 \text{ cm}^2$ $AS2 = 1.25E+10 \text{ cm}^2$ $AS3 = 4.E+06 \text{ cm}^2$ $AS4 = 4.E+06 \text{ cm}^2$ $AI1 = 1.24E+07 \text{ cm}^2$ AI2 = 0. $AD1 = 3.43E+07 \text{ cm}^2$ $AD2 = 2.5E+10 \text{ cm}^2$ $AD3 = 3.1E+08 \text{ cm}^2$ $AD4 = 1.6E+08 \text{ cm}^2.$

Assuming ice is in the form of flakes and considering removal by sedimentation, Winegardner et al. (1983) give reasons for selecting 0.3 as a possible upper bound for the parameter EF. Since the ice can fuse (glaciate) prior to any accident and can melt during an accident, this value probably is too high. A more realistic value for a column of new ice flakes that allows gas penetration to ~1 cm gives EF ~0.05, which might be a good starting point. Experimental measurements and/or observations at existing reactors are needed to provide a better definition of EF.

4.1.2 Inlet Aerosol Parameters

Definition of particle as well as bulk gas characteristics is needed to develop values for inlet aerosol parameters. Since inlet particle size is probably the most important parameter in the ICEDF code, considerable effort should be made to specify the size distribution throughout the accident sequence. There are 20 particle sizes specified in a DATA DPART/..../ statement. These 20 sizes can be a discrete representation of a particle-size distribution, as is shown in the listing example (Appendix B, line 0050). The example represents a lognormal distribution around a mass median diameter (MMD) of 1.0E-04 cm (1 µm). That DATA DPART statement combined with the following input vector for PARCON (J,I)

PARCON	(1,I)	=	8.00E-10	PARCON	(11,I)	=	7.50E-07	
PARCON	(2,I)	н	2.95E-09	PARCON	(12,1)	=	7.00E-07	
PARCON	(3,I)	=	9.75E-09	PARCON	(13,1)	=	4.75E-07	
PARCON	(4,I)	=	2.65E-08	PARCON	(14,I)	=	2.95E-07	
PARCON	(5,I)	=	7.50E-08	PARCON	(15,I)	=	1.65E-07	
PARCON	(6,I)		1.65E-07	PARCON	(16,I)	=	7.50E-08	
PARCON	(7,1)	=	2.95E-07	PARCON	(17,I)	=	2.65E-08	
PARCON	(8,I)	=	4.75E-07	PARCON	(18,1)	=	9.75E-09	
PARCON	(9,I)	=	7.00E-07	PARCON	(19,1)	=	2.95E-09	
PARCON	(10,I)	=	7.50E-07	PARCON	(20,I)	=	8.00E-10	

complete an inlet particle-size distribution at time TI(I) with a geometric standard deviation $\sigma_q = 2$ and a total inlet particle concentration of 5E-06 g/cm³ at the inlet gas conditions. To change the MMD by a certain factor at input time TI(I), specify the factor by DMULT(I). To change the particle concentrations by a single factor, specify the factor by PMULT(I). If the user desires to change σ_q , each PARCON (J,I) must be changed. It is easy to set σ_g to $\sigma_g = \infty$ where each PARCON (J-1,I) = PARCON (J,I) = PARCON (J+1,I) and to $\sigma_q = 1$ where only one PARCON (J,I) $\neq 0$. To adjust the PARCON vector to accommodate other σ_q values, a set of computations are necessary that are too extensive to be explained here. (Refer to any fundamental treatise on aerosols.)

Other properties of the aerosol particle required as input are

$$RHO(I) = particle density, q/cm^3$$
, I=1, NDATA

SOLF(I) = weight fraction of dry mass that is water soluble, I=1, NDATA.
Values of RHQ(I) are typically 1.0 g/cm³ for dilute aqueous droplets to as high as 11.0 g/cm² for fuel particles as UO_2 . Values for SOLF(I) range from zero for insoluble masses to 1.0 for dry masses consisting entirely of soluble compounds such as CsI or CsOH.

The final requirements for aerosol specifications involve the carrier gas description. These are

TGASIN(I) = inlet gas temperature, °C, I=1, NDATA

PGASIN(I) = absolute pressure of inlet gas, atm, I=1, NDATA

XH2I(I) = hydrogen mole fraction of inlet gas, I=1, NDATA

XH2OI(I) = water vapor mole fraction of inlet gas, I=1, NDATA

OUALI(I) = quality of inlet water, %, I=1, NDATA

XOH2OI(I) = water vapor mole fraction of exiting gas, I=1, NDATA

XCOI(I) = carbon monoxide mole fraction of inlet gas, I=1, NDATA

XCO2I(I) = carbon dioxide mole fraction of inlet gas, I=1, NDATA

XAIRI(1) = air mole fraction of inlet gas, I=1, NDATA

TGSOUT(I) = temperature of exit gas, °C, I=1, NDATA

GASINI(I) = gas inlet rate, m^3/s , I=1, NDATA.

Normally QUALI(I) = 100. Rarely will sufficient liquid water be entrained in the inlet gas for this parameter to be another value; e.g., a cold fog might qualify as a possible situation for QUALI(I) < 100.

Values for XOH2OI(I) and TGSOUT(I) are calculated by the code as the gas flows toward the exit. However, rough estimates are needed initially. For a full ice bed, XOH2OI(I) = 0.006 and TGSOUT(I) = 0. For an empty ice bed, XOH2OI(I) = XH2OI(I), and TGSOUT(I) = TGASIN(I).

4.1.3 Calculational and Output Specifications

Only four input numbers are required in this category: 1) NZ, the number of calculational nodes (see Section 2.1); 2) MICE, the ice melt switch; 3) KOUT, the desired number of times of output at 4) TOUT (K, K=1, KOUT) minutes (see Section 3.1.3.).

NZ controls the accuracy of calculations and represents the degree of backmixing. NZ > 200 seems to give sufficient resolution of the gas temperature profile. However, if no ice is present, a lower NZ should give adequate DF resolution. For extremely slow flow rates, an even larger NZ might be necessary. No default limits on NZ as a function of GASIN have been determined. Future experiments might provide better guidelines for NZ.

MICE is a switch to allow the ice to melt. If MICE = 0, no melting is allowed. This is useful for parametric studies where the quantity of ice is to be fixed. If MICE \neq 0, then ice is allowed to melt according to the ICEMELT subroutine. XMICE is the fraction of unmelted ice at TI(1) = 0.

KOUT and TOUT (K, K = 1, KOUT) are the output controls. KOUT must be >1 and TOUT (1) = 0. When ice is melting, it might be desirable to set KOUT > 10 and pick the TOUT(K)s to correspond to the TI(J)s as well as to fill in any time regions of rapidly changing conditions. Also TOUT(2) <1 min will allow the ice bed to respond to the early presence of melt water.

4.2 OUTPUT DESCRIPTION

The currently programmed output consists of two parts: the 'echo' of the input file and the output calculated for each time step TOUT(K). The calculated output also consists of two parts: the essential particle-size distribution information at the ice bed outlet, and other information on the overall particle distribution and gas conditions at the outlet. These are described in Sections 4.2.1 and 4.2.2 and exhibited in Section 4.3.

4.2.1 Output Description by Particle Size

The output file per time step is headed by a TOUT(K) print and 'Materials Leaving Ice Bed.' Below this is a matrix of eight vertical 20-component vectors of these material for each particle size:

- 1. Particle bin number
- 2. Particle dry diameter (cm)
- 3. Wet particle diameter (cm)
- 4. Particle flow rate, dry (g/s)
- 5. Particle mass flow rate, wet (g/s)
- 6. Particle number flow rate, particles/s
- 7. Particle decontamination factor
- 8. Containment particle removal rate constant, 1/s.

4.2.2 Additional Output

For the same TOUT(K), 16 other outlet (unless otherwise noted) variables are printed:

- 1. Individual particle density, dry (g/cm³)
- 2. Individual particle density, wet (g/cm³)
- 3. Weight fraction of water in particles
- 4. Number median dry particle radius, cm
- 5. Number median wet particle radius, cm
- 6. on for dry particles
- 7. on for wet particles
- 8. Mass flow rate of dry particles into the ice bed (g/s)
- 9. Mass flow rate of dry particles leaving the ice bed (g/s)
- 10. Mass flow rate of wet particles leaving the ice bed (g/s)
- 11. Integrated decontamination factor (No. 8/No. 9)
- Total particle flow rate leaving the bed, including condensed water, g/s
- 13. Gas outlet relative humidity, percent
- 14. Gas outlet temperature, °C
- Removal rate constant for all particles based on containment volume, 1/s
- 16. Fraction of initial ice remaining.

4.3 INPUT/OUTPUT EXAMPLES

Figures 2 and 3 are examples of an input file and the output echo of that input file, respectively. The unique feature of this input file is that it demonstrates the ICEMELT subroutine through the almost complete melting of the full charge of ice. The ice was nearly melted by 18.3 h of constant 100°C air/steam flow. DFjs for the larger particles are attenuated several orders of magnitude from the initial values with a full charge of ice to those at 18.3 h.

Figures 4 and 5 are examples of the output described on Sections 4.2.1 and 4.2.2. previously. These examples are the 18.3-h output by particle size and the overall properties of the aerosol at 18.3 h for Figure 2 input file. For brevity, no comparisons with output values at earlier times are given.

```
4
 0.,275.,550.,1100.
 1.,1.,1.,1.
 0.0.0.0.0.0.0.0
 8.E-10,8.E-10,8.E-10,8.E-10
 2.95E-9,2.95E-9,2.95E-9,2.95E-9
 9.75E-9.9.75E-9.9.75E-9.9.75E-9
 2.65E-8,2.65E-8,2.65E-8,2.65E-8
 7.5E-8,7.5E-8,7.5E-8,7.5E-8
 1.65E-7,1.65E-7,1.65E-7,1.65E-7
 2.95E-7,2.95E-7,2.95E-7,2.95E-7
 4.75E-7,4.75E-7,4.75E-7,4.75E-7
 7.E-7.7.E-7.7.E-7.7.E-7
 7.5E-7,7.5E-7,7.5E-7,7.5E-7
 7.5E-7,7.5E-7,7.5E-7,7.5E-7
 7.E-7,7.E-7,7.E-7.7.E-7
 4.75E-7.4.75E-7.4.75E-7.4.75E-7
 2.95E-7.2.95E-7,2.95E-7,2.95E-7
 1.65E-7,1.65E-7,1.65E-7,1.65E-7
 7.5E-8,7.5E-8,7.5E-8.7.5E-8
2.65E-8,2.65E-8,2.65E-8,2.65E-8
9.75E-9,9.75E-9,9.75E-9,9.75E-9
2.95E-9,2.95E-9,2.95E-9,2.95E-9
8.E-10,8.E-10,8.E-10,8.E-10
100.,100.,100.,100.
1.,1.,1.,1.
0.,0.,0.,0.
100.,100.,100.,100.
.2,.2,.2,.2
.006,.006,.006,.006
0.,0.,0.,0.
0.,0.,0.,0.
.8,.8,.8,.8
0.,0.,0.,0.
32.25, 32.25, 32.25, 32.25
1.,1.,1.,1.
1.,1.,1.,1.
1.,1.,1.,1.
2.2E+7,1.25E+10,4.E+6,4.E+6,1.24E+7,0.,3.43E+7,2.5E+10,3.1E+8,1.6E+8
200,2.16,1.,4,1.E+11,1,1...05
```

0.,275.,550.,1100.

FIGURE 2. Example of an Input File

0
9
9
8
8
7
7
7
7
7
7
17
17
17
)7
8
8
9
)9
10
00000.
999999E+10
4
000001E-02

FIGURE 3. ICEDF Printout of Figure 2 Input File

TOUT(004)=1100.00 MINUTES. MATERIALS LEAVING ICEBED

PARTICLE	PARTICLE	PARTICLE	GRAMS	GRAMS	NUMBER	DECON.	LAMBDA
BIN	MAID	DIAM	PER SEC	PER SEC	PER SEC	FACTOR	1/SEC
NUMBER	DRY (CM)	WET (CM)	DRY	WET		DF	
	0 76005 05	0 76005 05	0 20625 01	0 20625 01	0 90715114	0 12515+01	0 64745 04
1	0./600E-05	0.7600E-05	U.2002E-01	0.20026-01	0.89/12+14	0.12512+01	0.64/42-04
2	0.1000E-04	0.1000E-04	0.7592E-01	0./592E-01	0.14502+15	0.1253E+01	0.6515E-04
3	0.1300E-04	0.1300E-04	0.2505E+00	0.2505E+00	0.2177E+15	0.1255E+01	0.6562E-04
4	0.1700E-04	0.1700E-04	0.6792E+00	0.6792E+00	0.2640E+15	0.1258E+01	0.6620E-04
5	0.2200E-0	0.2200E-04	0.1917E+01	0.1917E+01	0,3439E+15	0.1261E+01	0.6685E-04
6	0.3000E-04	0.3000E-04	0.4203E+01	0.4203E+01	0.2973E+15	0.1266E+01	0.6775E-04
.7	0.3900E-04	0.3900E-04	0.7489E+01	0.7489E+01	0.2411E+15	.0.1270E+01	0.6863E-04
8	0.5200E-04	0.5200E-04	0.1201E+02	0.1201E+02	0.16312+15	0.12762+01	0.6973E-04
9	0.6800E-04	0.6800E-04	0.1761E+02	0.1761E+02	0.1070E+15	0 '282E+01	0.7093E-04
10	0.8400E-04	0.8400E-04	0.1878E+02	0.1878E+02	0.6053E+14	0.1288E+01	0.7204E-04
11	0.1100E-03	0.1100E-03	0.1865E+02	0.1865E+02	0.2677E+14	0.1297E+01	0.7378E-04
12	0.1500E-03	0.1500E-03	0.1722E+02	0.1722E+02	0.9743E+13	0.1311E+01	0.7654E-04
13	0.2000E-03	0.2000E-03	0.11508+02	0.1150E+02	0.2746E+13	0.13326+01	0.8037E-04
14	0.2600E-03	0.2600E-03	0.69875+01	0.6987E+01	0.75922+12	0.1362E+01	0.8566E-04
15	0.3500E-03	0.3500E-03	0.37526+01	0.3752E+01	0.1671E+12	0.1418E+01	0.9513E-04
16	0.4500E-03	0.4500E-03	0.1611E+01	0.1611E+01	0.3377E+11	0.15018+01	0.1077E-03
17	0,5900E-03	0.5900E-03	0,5128E+00	0.5128E+00	0,4769E+10	0.1666E+01	0.1290E-03
18	0.7800E-03	0.7800E-03	0.1401E+00	0.1401E+00	0.5639E+09	0.2244E+01	0.1788E-03
19	0.95002-03	0.9500E-03	0.3001E-01	0.3001E-01	0.6685E+08	0.3170E+01	0.22088-03
20	0.1030E-02	0.1030E-02	0.6777E-02	0.6777E-02	0.1185E+08	0.3807E+01	0.23785-03

FIGURE 4. Particle-Size of Output for Figure 2 Input File at 18.3 h

33

0.1000E+01	DRY PARTICLE DENSITY (GM/CM**3)
0.1000E+01	WET PARTICLE DENSITY (GM/CM**3)
0.0000E+00	WEIGHT FRACTION WATER IN PARTICLES
0.1249E-04	NUMBER MEDIAN PARTICLE RADIUS OF DRY PARTICLES (CM)
0.1249E-04	NUMBER MEDIAN PARTICLE RADIUS OF WET PARTICLES(CM)
0.1990E+01	GEOMETRIC STANDARD DEVIATION OF DRY PARTICLES
0.1990E+01	GEOMETRIC STANDARD DEVIATION OF VET PARTICLES
0.1613E+03	TOTAL GRAMS/SEC DRY PARTICLES INTO ICEBED
0,1234E+03	TOTAL GRAMS/SEC DRY PARTICLES LEAVING ICEBED
0.1306E+01	INTEGRATED DECONTAMINATION FACTOR
0.1234E+03	TOTAL GRAMS/SEC WET PARTICLES LEAVING ICEBED
0.1000E+03	RELATIVE HUMIDITY OF GAS LEAVING ICEBED (PERCENT)
0.1495E-02	OUTLET GAS TEMPERATURE (DEG C)
0.7560E-04	REMOVAL LAMBDA FOR ALL PARTICLES (1/SEC)
0.5219E-01	FRACTION OF INITIAL ICE REMAINING

FIGURE 5. Overall Aerosol Properties Part of the Output File for Figure 2 Input File at 18.3 h

5.0 CODE VALIDATION STATUS

The ICEDF code was independently reviewed and documented in February 1984 (Kress 1984). This chapter summarizes that review and briefly describes validation experiments that are being planned.

5.1 ICEDF VALIDATION STATUS REVIEW

The above-mentioned code review used NUREG/CR-3248 (see Section 2.1) as the source of information on the technical bases for the ICEDF code. The most significant comments from this review are as follows: 1) Equation (2.15) would underpredict overall particle DFs for unidirectional flow. The problem remains that the degree of backmixing on the ice bed flow is not known. A threedimensional flow analysis is needed to determine if the assumed series of wellmixed nodes used in deriving Equation (2.15) is more sound than a unidirectional flow model (not used in ICEDF). 2) The nearly total absence of supporting data makes systematic validation currently impossible. There are data, however, on each individual removal mechanism used in ICEDF. These data give support to their use in ICEDF; however, no data exist that include all the mechanisms together that were obtained with ice of proper dimensions and with expected flow conditions of an accident. Some of these data will be obtained in the planned tests described in Section 5.2.

5.2 VALIDATION EXPERIMENTAL PLANS

Work has already begun on the first of a progressive series of tests to develop validation data for the ICEDF computer code. Because of the numerous variables involved, the experimental plan has been initiated with small-scale, lower-cost laboratory studies. Initial results, along with additional calculations and experimental design, will then be used in the development of larger-scale prototype test facilities.

As suggested above, the major purposes of the laboratory studies are to refine experimental techniques and ensure that focus is on key parameters prior to developing larger-scale experiments. The laboratory test apparatus is shown schematically in Figure 6. Solid particles are generated by nebulizing and drying solutions of water-soluble materials or liquid suspensions of monodisperse polystyrene latex spheres. Polydisperse aerosols can be further classified and sorted into essentially monodisperse distributions by techniques based on electrical mobility. Aerosols of the desired properties are then directed past a cylindrical deposition target. Particle-capture mechanisms will be isolated and quantitatively evaluated by first operating with a dummy target to establish the extent of background retention by direct capture mechanisms (e.g., interception, impaction, and/or Brownian diffusion). The dummy target will then be replaced by a cold finger or ice target to supplement collection by thermophoresis. Finally, steam will be introduced to add retention by diffusiophoresis and to investigate condensational particle growth. Optical light-scattering techniques are used for measurements of the concentration and particle size of effluent aerosols.

Current plans are to follow the first-phase laboratory investigations with tests using a more prototypic vertical wind tunnel. The purpose of these tests will be to better define boundary geometries (e.g., flow around ice baskets, geometries available for deposition) for the phenomenological models that have been developed. Investigation of particle behavior would include the verification of predictions based on combined growth and retention phenomena as well as the characterization of individual mechanisms. A possible test section geometry, based on a single ice basket and sections of ice baskets, is shown in Figure 7. The basket would be placed in a housing to simulate the gas space associated with the test ice basket out to the surfaces of the adjacent baskets. Exterior surfaces of the housing would be insulated. Air as well as air-steam mixtures would be used. Ice would be loaded manually prior to each test. Length of the test section expected to be about 25 ft ultimately will be dictated by additional calculations concerning expected flow patterns and condensation rates.

FIGURE 7. Ice Condenser Validation Tests, Cross Section of Single Basket Test Apparatus

REFERENCES

- Adamson, A. W. 1976. Physical Chemistry of Surfaces. 3rd ed. John Wiley and Sons, Inc., New York.
- Bird, R. B., W. E. Stewart and E. N. Lightfoot. 1960. Transport Phenomena. John Willey and Sons, Inc., New York.
- Byers, H. R. 1965. Elements of Cloud Physics. The University of Chicago Press, Chicago, Illinois.
- Davies, C. N. 1966. Aerosol Science. Academic Press, Inc., New York.
- Fletcher, N. H. 1962. The Physics of Rainclouds, Cambridge University Press, London, England.
- Gieseke, J. A., P. Cybulskis, R. S. Denning, M. R. Kuhlman, K. W. Lee and H. Chen. 1984. Radionuclide Release Under Specific LWR Accident Conditions, Volume IV: PWR, Ice Condenser Containment Design (Draft). BMI-2104, Battelle Columbus Laboratories, Columbus, Ohio.
- Jaluria, Y. 1980. Natural Convection Heat and Mass Transfer: Volume 5, The Science and Application of Heat and Mass Transfer. Pergamon Press, Oxford, England.
- Knudsen, J. G. 1970. Properties of Air-Steam Mixture Containing Small Amounts of Iodine. BNWL-1326, Pacific Northwest Laboratory, Richland, Washington.
- Kress, T. S. 1984. Review of the Status of Validation of the Computer Codes Used in the NRC Accident Source Term Reassessment Study (BMI-2104). ORNL/TM/8842, Martin Marietta, Oak Ridge, Tennessee.
- Pruppacher, H. R., and J. D. Klet. 1980. Microphysics of Clouds and Precipitation, D. Reidel Publishing Company, Boston, Massachusetts.
- Rohsenow, W. M. and J. P. Hartnett, eds. 1973. Handbook of Heat Transfer, pp. 12-31, McGraw-Hill Book Company, New York.
- Uchida, H., A. Oyama and Y. Togo. 1964. "Evaluation of Post Incident Cooling Systems of Light Water Power Reactors." In Proceedings of the <u>3rd Inter-</u> national Conference on Peaceful Uses of Atomic Energy, 13:93, United Nations, New York.
- Winegardner, W. K., A. K. Postma and M. W. Jankowski. 1983. <u>Studies of</u> Fission Product Scrubbing Within Ice Compartments. NUREG/CR-3248, U.S. Nuclear Regulatory Commission, Washington, D.C.

APPENDIX A

PARAMETER AND MECHANISM SENSITIVITY

APPENDIX A

PARAMETER AND MECHANISM SENSITIVITY

This appendix summarizes parameter and mechanism sensitivities in the ICEDF code. With this summary, the user can concentrate on the most important controlling parameters in specifying code input and can better understand the calculated DFs in terms of mechanisms modeled in the code.

In Owczarski (1984a) a sensitivity study ranked the parameters without condensation occurring on particles. A later paper (Owczarski 1984b) included the effects of condensation. Table A.1 was constructed from the two papers for the ranking of the controlling parameters:

TABLE A.1. Parameter Sensitivity Summary

Most Important

Particle-size distribution

Very Important

- Particle-inlet concentration
- Ice availability
- Inlet steam mole fraction
- Particle density

Moderately Important

- Inlet gas flow rate
- Particle solubility
- Noncondensible gas species
- Inlet gas temperature

Least Important

Inlet gas pressure

These parameters are not independent. Particle-inlet concentration is only important if the inlet steam mole fraction is high, which requires a fairly high inlet gas temperature. If sufficient ice is present, then condensation can occur, usually resulting in enhanced DFs.

Owczarski (1984a) ranks the importance of the removal mechanisms for a given base case. If the ice compartment is fully charged, diffusiophoresis and particle settling are the most important mechanisms. Impaction/interception are only important at very high flow rates and for large particles; thermophoresis is important only at high inlet gas temperatures. Brownian diffusion becomes important only for particles <0.1 µm diameter.

REFERENCES

- Owczarski, P. C. 1984a. Particle Retention in PWR Ice Compartments. PNL-SA-11919, Pacific Northwest Laboratory, Richland, Washington.
- Owczarski, P. C. 1984b. Effects of Water Condensation on Aerosol Particles in <u>PWR Ice Beds and BWR Suppression Pools</u>. PNL-SA-12585, Pacific Northwest Laboratory, Richland, Washington.

APPENDIX B

ICEDF LISTINGS

APPENDIX B

ICEDF LISTINGS

0001	C<><>	00000000000000000000000000000000000000
0002	C<><>	000000000000000000000000000000000000000
0003	С	
0004	С	DRAFT VERSION OF CODE ICEDF IN DEVELOPMENT
0005	С	TO MODEL ICE CONDENSER AEROSOL REMOVAL.
0006	С	
0007	С	
0008	C<><>	000000000000000000000000000000000000000
0009	C<><>	000000000000000000000000000000000000000
0010	C	
0011	с	This code has been prepared in contemplation of Commission action.
0012	с	It may not have received patent review and may contain information
0013	С	received in confidence. Therefore, the contents of this code
0014	G	should neither be disclosed to others nor reproduced wholly or
0015	С	partially, unless written permission to do so has been obtained
0016	с	from the appropriate U.S. NRC office. The recipient is requested
0017	с	to take the necessary action to ensure the protection of this code.
0018	с	The distribution of the computer code is governed by the 'industrial
0019	с	property of a proprietary nature' clause of the Article on 'Use of
0020	с	Information' of the Agreement on Severe Fuel Damage Research Partic-
0021	с	ipation. This Article limits the dissemination which can be made by
0022	С	the receiving party.
0023	С	
0024		COMMON PERIM, AX, EMICEO, EMICE, AS2, AD2, XICE, PI, K, TOUT(100),
0025		1 TOG,TGAS,FMH20I,FMVH20,FMAIR,FMC0,FMC02,FMH2,FILM
0026		DIMENSION TI(10), DPART(20), RHO(10), SOLF(10), PARCON(20,10)
0027		1 ,XH2I(10),XH2OI(10),TGASIN(10),PGASIN(10),XCOI(10),
0028		2 XAIRI(10),XCO2I(10),TGSOUT(10),XOH2OI(10),
0029		3 PMDOT(20), PRCON(20), DFOV(20), VSET(20), UPH20(20)

8.1

```
0030
           4 .DFD(20).TG(2)
0031
             ,AMD(20),AN(20),DPARTW(20),WPMDOT(20),GASINI(10),
           5
0032
           6 CHII(10), AKN(20), CMI(20), DFTH(20), DFNZ(20), DFNZ0(20)
           7 ,CLAMB(20),RDPAR(20),WRHO(20),WFWET(20),QUALI(10),
0033
0034
           8 BN(20), ET(2), XH(2), BK(20), PNDOT(20), D1(20), D2(20).
0035
           9 WH20T(20), WH20UP(20), FN(20), OPMDOT(20), PMULT(20), DMULT(20)
0036
             DIMENSION XARRAY(10), YARRAY(10)
0037
      C
0038
      C
             DPART BELOW REPRESENT LOG NORMAL DISTRIBUTION ABOUT 1 MICRON
0039
      C
0040
             DATA DPART/.076E-4..1E-4..13E-4..17E-4..22E-4..3E-4..39E-4.
0041
           + .52E-4, .68E-4, .84E-4, 1.1E-4, 1.5E-4, 2.E-4, 2.6E-4, 3.5E-4,
0042
           + 4.5E-4.5.9E-4.7.8E-4.9.5E-4.10.3E-4/
      C
0043
0044
      0045
      C
0046
      C
             ICEDF INPUT VARIABLES
0047
      C
0048
      0049
      C
      С
             0050
             TI(J), J=1, NDATA, TIME VALUES AT EACH NDATA (MINUTES)
0051
      С
0052
      C
             DPART(I), I=1,....,20 CHARACTERISTIC DIAMETER OF EACH OF 20
0053
      C
                     PARTICLE BUCKETS (CM)
0054
      C
             RHO(J), J=1, NDATA , PARTICLE DENSITY (G/CC)
0055
      C
             SOLF(J), J=1.NDATA , WEIGHT FRACTION SOLUBLE MATERIAL
0056
      C
             PARCON(I,J)
                            , PARTICLES IN EACH SIZE CLASS (G/CC)
0057
      С
             XH2I(J)
                             , HYDROGEN MOLE FRACTION IN INLET GAS
```

T\$MAIN		15-Aug-1985 13:47:06	VAX FORTRAN V4.2-102 Page 2
		15-Aug-1985 13:45:40	DISK1:[ESFEFF]T.FOR;3
0058	С	XH201(J)	WATER MOLE FRACTION IN INLET GAS
0059	С	OUALI(J)	OUALITY OF WATER IN INLET GAS (%)
0060	С	TGASIN(J)	INLET GAS TEMPERATURE (C)
0061	С	PGASIN(J)	INLET GAS ABSOLUTE PRESSURE (ATM)
0062	С	XCOI(J)	CARBON MONOXIDE MOLE FRACTION IN INLET GAS
0063	С	XAIRI(J)	AIR MOLE FRACTION IN INLET GAS
0064	С	XC02I(J)	CARBON DIOXIDE MOLE FRACTION IN INLET GAS
0065	С	TGSOUT(J)	OUTLET GAS TEMPERATURE (C)
0066	С	XOH20I(J)	MOLE FRACTION OF WATER IN OUTLET GAS
0067	С	ASII ,	SEDIMENTATION AREA (CM**2)
0068	С	AS2I	SEDIMENTATION AREA (CM**2) FOR ICE
0069	С	AS3I,	SEDIMENTATION AREA (CM**2)
0070	С	AS4I,	SEDIMENTATION AREA (CM**2)
0071	С	AIII ,	IMPACTION AREA (CM**2)
0072	С	AI2I,	IMPACTION AREA (CM**2) FOR ICE
0073	С	AD1I,	DIFFUSION AREA (CM**2)
0074	С	AD2I,	DIFFUSION AREA (CM**2) FOR ICE
0075	С	AD3I,	DIFFUSION AREA (CM**2)
0076	С	AD4I,	DIFFUSION AREA (CM**2)
0077	С	EFI,	ICE EFFICIENCY PARAMETER (DIMENSIONLESS)
0078	С	GASINI(J),J=1,NDATA	,GAS INLET FLOWRATE (M**3/SEC)
0079	С	CHII(J),J=1,NDATA ,	SHAPE FACTOR FOR STOKES DRAG
0080	С	KOUT=1,,100 ,	NUMBER OF OUTPUT STEPS
0081	С	TOUT(K),K=1,,KO	OUT , SPECIFIED OUTPUT TIMES (MIN)
0082	С	NZ = MAXIMUM INDEX	OF VERTICAL ICE CALCULATIONAL ELEMENTS
0083	С	CT = THERMAL ACCOMO	DATION CONSTANT
0084	С	CMOM = MOMENTUM ACC	COMODATION CONSTANT
0085	С	VOLCON=CONTAINMENT	VOLUME (CM**3)
0086	С	MICE = 0 ICEMELT SU	JPRESSED
0087	С		
0088	C		

8.3

.

2.

0089		AAP=3.2437814
0090		BP=5.868263E-03
0091		CP=1.17023793E-08
0092		DP=2.1878462E-03
0093	С	
0094	C<><>	****
0095	С	
0096	С	READ INPUT DATA
0097	С	
0098	C<><>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0099	С	
0100		OPEN(UNIT=4, NAME='ICEDF.DAT', TYPE='OLD', READONLY)
0101		READ(4,*)NDATA
0102		PRINT * , 'NDATA=',NDATA
0103		READ(4,*)(TI(I), I=1, NDATA)
0104		<pre>PRINT * , 'TI(I)=',(TI(I),I=1,NDATA)</pre>
0105		READ(4,*)(RHO(I),I=1,NDATA)
0106		<pre>PRINT * , 'RHO(I)=',(RHO(I),I=1,NDATA)</pre>
0107		READ(4,*)(SOLF(I) I=1,NDATA)
0108		PRINT * , 'SOLF(I)=',(SOLF(I),I=1,NDATA)
0109		DO 5 J=1,20
0110		READ(4,*)(PARCON(J,I) I=1,NDATA)
0111		PRINT * , 'PARCON(J,I)=',(F.SCON(J,I),I=1,NDATA)
0112	5	CONTINUE
0113		READ(4,*)(TGASIN(I), I=1,NDATA)
0114		PRINT * 'TGASIN(I)='. (TGASIN(I), I=1, N, 'TA)

T\$MAIN	1	5-Aug-1985 13:47:06	VAX FORTRAN V4.2-102	Page 3
	1	5-Aug-1985 13:45:40	DISK1:[ESFEFF]T.FOR;3	
0115			L L NDATA)	
0115		READ(4, *)(PGASIN(1),	I=I,NDATA)	
0116		PRINT * , 'PGASIN(I)	· , (PGASIN(I), I=1,NDATA)	
0117		READ(4,*)(XH21(I),I=	I,NDATA)	
0118		PRINT * , 'XH2I(I)='	,(XH2I(I),I=1,NDATA)	
0119		READ(4,*)(QUALI(I),I	=1,NDATA)	
0120		PRINT *, 'QUALI(I)=',	(QUALI(I), I=1,NDATA)	
0121		READ(4,*)(XH20I(I),I	=1,NDATA)	
0122		PRINT * , 'XH2OI(I)=	',(XH2OI(I),I=1,NDATA)	
0123		READ(4,*)(XOH2OI(I),	I=1,NDATA)	
0124		PRINT * , 'XOH2OI(I):	=',(XOH2OI(I),I=1,NDATA)	
0125		READ(4,*)(XCOI(I),I=	1,NDATA)	
0126		<pre>PRINT * , 'XCOI(I)='</pre>	,(XCOI(I),I=1,NDATA)	
0127		READ(4,*)(XCO2I(I),I	=1,NDATA)	
0128		PRINT * , 'XCO2I(I)=	',(XCO2I(I),I=1,NDATA)	
0129		READ(4,*)(XAIRI(I),I	=1,NDATA)	
0130		<pre>PRINT * , 'XAIRI(I)=</pre>	',(XAIRI(I),I=1,NDATA)	
0131		READ(4,*)(TGSOUT(I),	I=1,NDATA)	
0132		PRINT * , 'TGSOUT(I)	=',(TGSOUT(I),I=1,NDATA)	
0133		READ(4,*)(GASINI(I),	I=1,NDATA)	
0134		PRINT * , 'GASINI(I)	=',(GASINI(I),I=1,NDATA)	
0135		READ(4,*)(CHII(I),I=	1,NDATA)	
0136		PRINT * , 'CHII(I)='	,(CHII(I),I=1,NDATA)	
0137		READ(4,*)(PMULT(I),I	=1,NDATA)	
0138		PRINT * , ' PMULT(I)	=',(PMULT(I),I=1,NDATA)	
0139		READ(4,*)(DMULT(I),I	=1,NDATA)	
0140		PRINT * , ' DMULT(I)	=',(DMULT(I),I=1,NDATA)	
0141		READ(4,*)AS1,AS2,AS3	,AS4,AI1,AI2,AD1,AD2,AD3,AD4	
0142		PRINT * , ' AS1=',AS	1, ' AS2=', AS2, ' AS3=', AS3, ' AS4=',	AS4
0143	1	,' AI1=',AI1,' AI2='	,AI2, ' AD1=', AD1, ' AD2=', AD2, ' AD3	=', AD3.
0144	2	' AD4=', AD4		
0145		READ(4,*)NZ.CT.CMOM.	KOUT, VOLCON, MICE, XICE, EF	

1 21 How

8

B.5

* 5 *

0

0146		PRINT * , ' NZ=',NZ,
0147		1 ' CT=',CT,' CMOM=',CMOM,' KOUT=',KOUT,' VOLCON=',VOLCON
0148		2 ,' MICE=',MICE,' XICE=',XICE,' EF=',EF
0149		READ(4,*)(TOUT(K),K=1,KOUT)
0150		PRINT * , 'TOUT(K)=',(TOUT(K),K=1,KOUT)
0151	С	RG=82.06 (GAS CONSTANT IN CC ATM/GMOLE-K)
0152		RG=82.06
0153		PI=3.14159265
0154	С	
0155	С	RH=HYDRAULIC RADIUS
0156	С	
0157	С	AX=CM**2 PER UNIT XSXN BETWEEN 4 ICE BASKET COLUMNS
0158	С	
0159	С	PERIM=CONTACT PERIMETER OF EACH FLOW COLUMN
0160	С	
0161	С	NUNIT=NO. OF FLOW COLUMNS IN ICEBED
0162	С	
0163	С	EMICEO = INITIAL MASS OF ICE PER COLUMN (GRAMS)
0164	С	XICE = FRACTION OF INITIAL MASS REMAINING
0165	С	
0166		NUNIT=1944
0167		DIA=30.48*SQRT(XICE)
0168		PERIM=PI*DIA
0169		AX=-PI*(DIA**2)/4.+1296.
0170		RH=AX/PERIM
0171		RH4=4.*RH
0172		EMICE0=5.144E+05
0173		EMICE=EMICEO*XICE
0174		FILM=0.
0175	C	
0176	С	MASSAGE INPUT DATA
0177	С	
0178	С	DETERMINE MOLE FRACTION OF NONCONDENSABLE GASES
0179	С	AND ACTUAL VALUES AT TIME T

0180	C	
0181	C<><>	000000000000000000000000000000000000000
0182	C<><>	
0183	С	
0184	С	MAJOR COMPUTATION LOOP (TO END OF PROGRAM)
0185	С	
0186	C<><>	000000000000000000000000000000000000000
0187	C<><>	000000000000000000000000000000000000000
0188	С	
0189		DO 1000 K=1,KOUT
0190		JOUT=NDATA-1
0191		D0 999 JM=1,JOUT
0192	С	
0193	С	THIS LOOP ESTABLISHES INTERPOLATION VALUES
0194	С	
0195		IF(TOUT(K).GE.TI(JM).AND.TOUT(K).LT.TI(JM+1))JIN=JM
0196	999	CONTINUE
0197		DINT=(TOUT(K) - TI(JIN))/(TI(JIN+1) - TI(JIN))
0198		PMUL=PMULT(JIN)+DINT*(PMULT(JIN+1)-PMULT(JIN))
0199		DMUL=DMULT(JIN)+DINT*(DMULT(JIN+1)-DMULT(JIN))
0200		DO 998 JP=1,20
0201		PRCON(JP) = PARCON(JP, JIN) + DINT* (PARCON(JP, JIN+1) - PARCON(JP, JIN))
0202	С	
0203	С	PARCON MULTIPLIER, PMULT
0204	С	
0205		PRCON(JP) = PRCON(JP) * PMUL
0206		DPART(JP)=DPART(JP)*DMUL
0207	998	CONTINUE
0208		<pre>XH2=XH2I(JIN)+DINT*(XH2I(JIN+1)-XH2I(JIN))</pre>
0209		XH2O=XH2OI(JIN)+DINT*(XH2OI(JIN+1)-XH2OI(JIN))
0210		<pre>XCO=XCOI(JIN) +DINT*(XCOI(JIN+1) - XCOI(JIN))</pre>
0211		XCO2=XCO2I(JIN)+DINT*(XCO2I(JIN+1)-XCOI(JIN))
0212		XAIR=XAIRI(JIN)+DINT*(XAIRI(JIN+1)-XAIRI(JIN))
0213		TGAS=TGASIN(JIN)+DINT*(TGASIN(JIN+1)-TGASIN(JIN))

0214		XOH2O=XOH2OI(JIN)+DINT*(XOH2OI(JIN+1)-XOH2OI(JIN))
0215		TGOUT=TGSOUT(JIN)+DINT*(TGSOUT(JIN+1)-TGSOUT(JIN))
0216		GASIN=GASINI(JIN)+DINT*(GASINI(JIN+1)-GASINI(JIN))
0217		CHI=CHII(JIN) +DINT* (CHII(JIN+1) -CHII(JIN))
0218		SOLFT=SOLF(JIN)+DINT*(SOLF(JIN+1)-SOLF(JIN))
0219		PGAS=PGASIN(JIN)+DINT*(PGASIN(JIN+1)-PGASIN(JIN))
0220		RHOT=RHO(JIN)+DINT*(RHO(JIN+1)-RHO(JIN))
0221		QUAL=QUALI(JIN)+DINT*(QUALI(JIN+1)-QUALI(JIN))
0222		GASIN=1.E+06*GASIN
0223	С	GASIN IN CM**3/S
0224		UI=GASIN/AX/NUNIT
0225	С	UI=SUPERFICIAL VELOCITY = IMPACTION VELOCITY (CM/S)
0226		AS1Z=AS1/NZ
0227		AS2Z=AS2*EF/NZ*XICE**.5
0228	С	
0229	С	FOR IMPACTION
0230	С	
0231		AI1Z=AI1/NZ
0232	С	
0233	С	FOR DIFFUSION
0234	С	
0235		AD1Z=AD1/NZ
0236		AD2Z=AD2*EF/NZ*XICE**.5
0237		AD3Z=AD3/NZ
0238		DZ=1460./NZ
0239	С	
0240		PS=0.
0241		DO 997 I=1,20
0242		PMDOT(I)=GASIN*PRCON(I)
0243		OPMDOT(I)=PMDOT(I)
0244		PS=PS+PMDOT(I)
0245		<pre>PNDOT(I) = PMDOT(I) / (RHOT*PI*DPART(I)**3./6.)</pre>
0246	997	CONTINUE
0247	С	

```
PS=TOTAL MASS FLOW RATE OF SOLIDS
0248
      C
0249
       C
      0250
0251
       C
       C
              ESTABLISH INLET PARAMENTERS
0252
0253
       C
      0254
0255
       C
0256
              TIG=TGAS+273.2
0257
              TG(1) = TIG
0258
              TG(2) = TG(1) - (TGAS - TGOUT) / NZ
0259
              XH(1) = XH20
              XH(2) = XH(1) - (XH20 - XOH20) / NZ
0260
              AMW=2.*XH2+29.*XAIR+28.*XC0+44.*XC02+18.*XH(1)
0261
              RHOGAS=AMW*PGAS/(RG*TG(1))
0262
0263
       C
0264
       C
              WLDOT = MASS RATE OF LIQUID WATER ENTERING (GM/SEC)
              WVDOT = MASS RATE OF WATER VAPOR ENTERING (GM/SEC)
0265
      C
              TMDOT = TOTAL MOLAR GAS + VAPOR RATE ENTERING (GMOLES/S)
      C
0266
     C
0267
              TMDOT=GASIN*PGAS/(RG*TG(1))
0268
              WDOT=XH(1) *TMDOT*18.
0269
0270
              WLDOT=WVDOT*(100./QUAL-1.)
0271
     C
              RHOL=1.
0272
0273
              VAPL = 4.5E+04
0274
              CPH2=28.9
              CPLH20=75.3
0275
              CPVH20=33.6
0276
0277
              CPC0=29.1
              CPC02=37.2
0278
              CPAIR=29.2
0279
             CPMIX=CPH2*XH2+CPVH2O*XH(1)+CPCO*XCO+CPCO2*XCO2+CPAIR*XAIR
0280
0281
     C
```

```
0282
        C
               ALL CP'S IN J/GMOLE*K. VAPL IN J/GMOLE
0283
        C
0284
               VLDOT=WLDOT/RHOL
0285
               VSDOT=PS/RHOT
0286
                GFLOW=GASIN
0287
        C
0288
        C
                MOLAR FLOW RATES PER CHANNEL
                                                                    2
0289
        C
0290
                FMAIR=TMDOT*XAIR/NUNIT
0291
               FMC02=TMD0T*XC02/NUNIT
0292
               FMCO=TMDOT*XCO/NUNIT
0293
               FMH2=TMD0T*XH2/NUNIT
0294
                FMVH20=XH20*TMD0T/NUNIT
0295
               FMLH20=FMVH20*WLDOT/WDOT
0296
               FMH20=FMVH20+FMLH20
0297
               FMGT=FMAIR+FMC0+FMC02+FMH2+FMVH20
0298
        C
               DEFINE FMH201 AS VAPOR INLET CONDITION FOR ICEMELT SUBROUTINE
0299
        C
0300
        C
0301
                FMH201=FMVH20
0302
        C
        C
0303
               DEFINE ENERGY (ENTHALPY) FLOW AT CONTROL VOLUME (CV)
0304
       C
                ENTRANCE ET(1) AND EXIT ET(2). BOTH IN J/S OR WATTS
        C
0305
0306
                ET(1) = (FMH2*CPH2+FMCO*CPCO+FMCO2*CPCO2+FMAIR*CPAIR+FMLH2O*
0307
             1 CPLH20+FMVH20*CPVH20)*(TG(1)-273.2)+FMVH20*VAPL
0308
                XP1=647.27-TIG
               PV1=218.167*10.**(-(XP1/TIG)*(AAP+BP*XP1+CP*(XP1**3.))/(1.+DP*
0309
            1 XP1))
0310
0311
       C
               SATN=AVERAGE SATURATION OF GAS IN ICEBED
0312
       C
0313
       C
               SATN=(XH20/PV1)*PGAS
0314
0315
        C
```

0316	С	START PARTICLE GROWTH CALCULATIONS
0317	С	
0318	С	GIVEN:
0319	С	RHOT, DRY PARTICLE DENSITY OF DIAM=DPART(IP)
0320	С	IF QUALITY LT 100%, BYPASS
0321		IF(QUAL.LT.100.)GO TO 4000
0322	С	
0323	С	CALCULATE:
0324	С	WET PARTICLE DIAM=DPART(IP)*RDPAR(IP)
0325	С	AND CORRESPONDING DENSITY WRHO
0326	С	
0327		IF(SOLFT.GT.O.)GO TO 331
0328		RDPART=((VLDOT+VSDOT)/VSDOT)**0.3333
0329		WFWET1=WLDOT/(WLDOT+PS)
0330		WRH01=(PS+WLDOT)/(VLDOT+VSDOT)
0331	331	IF(SOLFT.GT.O.)CALL SOLGRO(SATN, SOLFT, RHOT, WRHO1, WFWET1, RDPART)
0332	4000	CONTINUE
0333		DO 250 JP=1,20
0334		WRHO(JP) =WRHO1
0335		WFWET(JP) =WFWET1
0336		RDPAR(JP) =RDPART
0337		WH2OT(JP)=0.
0338	250	CONTINUE
0339	С	
0340	C	FIRST STEP IS TO CALCULATE SETTLING AND DIFFUSION AT BOTTOM
0341	С	OF ICE COMPARTMENT
0342	С	
0343		PS=0.
0344		CALL VISC(TG(1),XH(1),XH2,XCO,XAIR,XCO2,AMW1,VISMIX,AKG)
0345		DO 200 IP=1,20
0346		CALL DIFFU(DPART(IP), RDPAR(IP), VISMIX, TIG, AMWI, PGAS, DIFUS, CM, ELAM
0347		CALL VSETL(WRHO(IP), CM, DPART(IP), RDPAR(IP), VISMIX, AMW1, PGAS,
0348	+	TG(1), RHOGAS, VSET(IP))
0349		DIFP=DIFUS

0350		IF(K.EQ.1AND.XICE.GT.O.OR.XICE.GT.OAND.MICE.EQ.0)TFILM=273.2
0351		IF(K.GT.1.AND.XICE.GT.0AND.MICE.NE.0)GO TO 196
0352		GO TO 197
0353	196	HTO =HVSAVE+HCSAVE
0354		HSU=1./(1./HTO+FILM/.0056)
0355		TFILM=TG(1)*(1HSU/HTO)+273.2*HSU/HTO
0356	197	IF(XICE.EQ.0.)TFILM=TIG
0357		XP3=647.27-TFILM
0358		XPONEN=-(XP3/TFILM)*(AAP+BP*XP3+CP*(XP3**3.))/(1.+0P*XP3)
0359		PFILM=218.167*10.**XPONEN
0360		PFS=PFILM/PGAS
0361		
0362		DELT=(TIG-TFILM)
0363		IF (DELT.LT.O.OR.XICE.EQ.O.)DEL T=0.
0364		IF(XICE.NE.O.)GO TO 198
0365		TG(1) = TIG
0366		TG(2)=TIG
0367	198	CONTINUE
0368		DTLM=DELT
0369		VISFLM=VISMIX
0370		CALL IID(CMI, CHI, RDPAR(IP), DPART(IP), VISMIX, VISFLM, UI,
0371	1	WRHO(IP),DIFP,RHOGAS,TG(1),DELT,RH4,AKG,AMW,CPMIX,AKD,
0372	2	EBD,EI,HV)
0373		AKS=VSET(IP)*AS3
0374		AKDB=AKD*2.*AS3
0375		RDPAR(IP) = RDPART
0376		DFOV(IP)=1.+(AKS+AKDB)/GASIN
0377		PMDOT(IP) = PMDOT(IP) / DFOV(IP)
0378		PNDOT(IP) = PNDOT(IP) / DFOV(IP)
0379		PS=PS+PMDOT(IP)
0380	С	
0381	С	CONVERT PMDOT/PNDOT TO PER CHANNEL BASIS
0382	С	
0383		PMDOT(IP)=PMDOT(IP)/NUNIT

```
0384
            PNDOT(IP)=P.IDOT(IP)/NUNIT
0385
            AN(IP) = PRCON(IP) *AX*DZ/DFOV(IP)
0386
            IF(AN(IP).LE.1.E-20)AN(IP)=1.E-20
0387
      C
0388
      C
            AN(IP) = NO. OF IP PARTICLES IN 1ST ICE SLAB DZ
0389
      C
0390
      0391
      C
0392
      C
            END OF ENTRANCE DF PER PARTICLE SIZE GROUP
0393
      C
0394
      0395
      C
0396
     200
            CONTINUE
0397
            VSDOT=PS/RHOT
0398
            VLDOT=VSDOT*(RDPART**3.)-VSDOT
0399
            WLDOT=VLDOT*RHOL
0400
            S=SATN
0401
            DXI=0.
0402
            AKP=(1.-WFWET1)*.06+WFWET1*.0068
0403
      C
0404
      C
            AKP = PARTICLE THERMAL CONDUCTIVITY, WATTS/CM/K
0405
      C
      C
0406
            START MARCH ALONG ICEBED WITH NZ
0407
     C
            FIRST ESTABLISH PARTICLE LOSS BASED ON INPUT CONDITIONS
0408
      C
0409
            GFLOW=GASIN
0410
            DELTT=TG(2)-TG(1)
0411
     0412
      0413
            DO 290 MZ=1.NZ
0414
            DELT=TG(1)-TFILM
0415
            IF(DELT.LE.01)DELT=.01
0416
           FH20=0.
0417
            TAV = (TG(1) + TFILM)/2.
```

0418			CALL VISC(TFILM,XH(1),XH2,XCO,XAIR,XCO2,AMW1,VISMIX,AKG)
0419			VISFLM=VISMIX
0420	С		
0421	С		VISFLM=GAS VISCOSITY AT WALL
0422	С		
0423			CALL VISC(TG(1),XH(1),XH2,XCO,XAIR,XCO2,AMW1,VISMIX,AKG)
0424	С		GO TO 605
0425			D0 201 IP=1,20
0426			CALL DIFFU(DPART(IP), RDPAR(IP), VISMIX, TG(1), AMW1, PGAS, DIFUS, CM, ELAM)
0427			CALL VSETL(WRHO(IP), CM, DPART(IP), RDPAR(IP), VISMIX, AMW1, PGAS,
0428		+	TG(1), RHOGAS, VSET(IP))
0429			CALL IID(CMI, CHI, RDPAR(IP), DPART(IP), VISMIX, VISFLM, UI,
0430		1	WRHO(IP), DIFP, RHOGAS, TAV, DELT, RH4, AKG, AMW, CPMIX, AKD,
0431		2	EBD,EI,HV)
0432			AKS=VSET(IP)*(AS1Z+AS2Z)
0433			AK I=U I*A I 1 Z*E I
0434			AKDB=UI*AD1Z*EBD+AKD*(AD2Z+AD3Z)
0435			DFNZ(IP)=1.+(AKS+AKI+AKDB)/GFLOW
0436	С		
0437	С		ADD THERMOPHORETIC TERM (DFTH(IP))
0438	С		
0439			AKN(IP)=ELAM*2./(DPART(IP)*RDPAR(IP))
0440			CTH=1.5*VISMIX*CM/(RHOGAS*TG(1))
0441			AKP=(1WFWET(IP))*.06+WFWET(IP)*.0068
0442			CTH=CTH*(AKG/AKP+CT*AKN(IP))
0443			CTH=CTH/(1.+3.*CMOM*AKN(IP))
0444			CTH=CTH/(1.*2.*AKG/AKP+2.*CT*AKN(IP))
0445			CMI(IP)=CM
0446			DFTH(IP)=1CTH*DELTT
0447	С		
0448	С		ADD DIFFUSIOPHORETIC TERM (DFD)
0449	С		
0450			DFD(IP) = (1XH(2))/(1XH(1))
0451	C		

0452	С		COMBINE ALL DF'S
0453	С		
0454			DFNZO(IP)=DFD(IP)*DFTH(IP)*DFNZ(IP)
0455			CLOG=ALOG10(DFNZO(IP))+ALOG10(DFOV(IP))
0456			IF(CLOG.GT.30.)GO TO 555
0457			DFOV(IP)=DFOV(IP)*DFNZO(IP)
0458			GO TO 402
0459	555		DFOV(IP)=1.E+30
0460	402		CONTINUE
0461	С		
0462	С		RELATE DF TO MASS TRANSFER COEFF, BK(I) (CM/SEC)
0463	С		
0464			IF(PERIM.EQ.0.)GO TO 403
0465			BK(IP)=(UI*AX*(11./DFNZO(IP)))/(DZ*PERIM)
0466	403		CONTINUE
0467			IF(PERIM.EQ.0.)BK(IP)=0.
0468	С		
0469	С		FLUX OF PARTICLES TO WALL, FN(IP) (GM/CM**2*SEC)
0470	С		
0471			FN(IP) = (BK(IP) *AN(IP) / (AX*DZ))*((DPART(IP) *RDPAR(IP))**3
0472		1	DPART(IP)**3.)*PI*RHOL/6.
0473			DOS=DPART(IP)*RDPAR(IP)
0474	С		
0475	С		LOSS OF WATER TO ICE VIA PARTICLES, FH20 (GM/SEC)
0476	С		
0477			FH20=FH20+FN(IP)*PERIM*DZ
0478			AN(IP) = AN(IP) / DFNZO(IP)
0479			IF(AN(IP).LE.1.E-35)AN(IP)=1.E-35
0480			PNDOT(IP) = PNDOT(IP) / DFNZO(IP)
0481			IF(PNDOT(IP).LT.1.)PNDOT(IP)=1.
0482			<pre>PMDOT(IP) =PNDOT(IP) *RHOT*PI*(LPART(IP)**3.)/6.</pre>
0483			WRHO(IP) = (RHOL*(DOS**3DPART(IP)**3.)+RHOT*DPART(IP)**3)/
0484		1	D0S**3
0485			WFWET(IP) = RHOL*(DOS**3, -DPART(IP)**3,)/(RHOL*(DOS**3, -DPART(IP)

0486	1	**3.)+RHOT*DPART(IP)**3.)
0487	201	CONTINUE
0483	С	
0489	С	END PARTICLE LOSS CALCULATIONS
0490	С	
0491	C	
0492	С	CALCULATE CONDENSATION HT. COEFF. USING UCHIDA CORRELATION
0493	С	
0494		WH=FMVH20*18.
0495		WA=FMAIR*29.+FMC0*28.+FMC02*44.+FMH2*2.
0496		IF(WH/WA.LE.O.)GO TO 208
0497		HC=4.502E-02*(WH/WA)**.8
0498		IF(HC.GT.,15889)HC=.15889
0499		AXH20=FMVH20/(FMAIR+FMVH20+FMC0+FMC02+FMH2)
0500		IF(AXH20.LE.PFS)HC=0.
0501		GO TO 209
0502	208	HC=0.
0503	209	CONTINUE
0504	С	
0505	С	ABOVE HC IN WATTS/CM**2*DEG K
0506	С	
0507	C	CALCULATE PARTICLE GROWTH RATE CONSTANTS
0508	С	FROM BYERS, P.112
0509		APR=EXP(13.5008-1.11063E-02*(TG(1)-273.2))
0510		BPR=EXP(13.7102-6.45E-02*(TG(1)-273.2))
0511		APP=APR*RHOL
0512		BPP=BPR*RHOL
0513	С	
0514	С	
0515	С	COMPUTE DROPLET GROWTH
0516	С	
0517	С	
0518		SUMFL=0.
0519		IF(S.LT.1.AND.SOLFT.GT.O.)CALL SOLGRO(S,SOLFT,RHOT,WRHO1,

0520		1 WFWET1, RDPART)
0521	С	
0522	С	
0523		DO 1002 KP=1,20
0524		IF(S.GE.1.)GO TO 333
0525		RDPAR(KP) = RDPART
0526		WRHO(KP)=WRHO1
0527		WFWET(KP)=WFWET1
0528	333	CONTINUE
0529		IF(S.GT.1.)CALL KELVIN(TG(1), S, DPART(KP), RDPAR(KP), KP, NKLVN)
0530		D1(KP) = DPART(KP) * RDPAR(KP)
0531		EMP=(DPART(KP)**3.)*RHOT
0532		EMW=D1(KP)**3DPART(KP)**3.
0533		WFWET(KP)=EMW/(EMP+EMW)
0534	1002	CONTINUE
0535		D0 1001 JP=1,20
0536		IF(PNDOT(JP),LT,1,)PNDOT(JP)=1.
0537	1001	CONTINUE
0538		00 202 IP=1,20
0539		IF(S.LT.1OR.NKLVN.EQ.20)G0 TO 303
0540		DENOM= 0.
0541		TWAV=DXI*18.
0542	С	
0543	С	TWAV=SUPERSATURATION WATER AVAILABLE FOR PARTICLE GROWTH,
		GRAMS/SEC/CHANNEL
0544	С	
0545		NK=NKLVN+1
0546		D0 2001 MP=NK,20
0547		DENOM=DENOM+PNDOT(MP)*D1(MP)
0548	2001	CONTINUE
0549		AMULT=TWAV/DENOM
0550		IF(IP.LE.NKLVN)AMULT=0.
0551		WH20UP(IP)=AMULT*D1(IP)
0552		WH20T(IP) = WH20T(IP) + WH20UP(IP)

0553		D2(IP)=(D1(IP)**3+6.*WH2OUP(IP)/(PI*RHOL))**0.33333
0554		GO TO 304
0555	303	D2(IP)=D1(IP)
0556	304	CONTINUE
0557		WH2OUP(IP)=PI*RHOL*(D2(IP)**3D1(IP)**3.)/6.
0558	С	
0559	С	WH2OT(IP) =WATER (GRAMS) INCREASED PER DROP
0560	С	
0561		RDPAR(IP) = RDPAR(IP) * D2(IP) / D1(IP)
0562		WH20T(IP) = PI*RHOL* (D2(IP)**3DPART(IP)**3.)/6.
0563		IF(S.LT.1.)WH2OT(IP)=0.
0564	202	CONTINUE
0565	С	
0566	С	WATER LOSSES TO WALL BY CONDENSATION
0567	С	
0568	С	DEFINE WVWALL=GM/SEC WATER LOSS TO WALLS BY CONDENSATION
0569	С	
0570		WVWALL=HC*PERIM*DZ*(TG(1)-TFILM)/(VAPL/18.)
0571	С	
0572	С	TOTAL WATER LOSS RATE (GM/SEC) = TWLR
0573	С	
0574		TWLR=WVWALL+FH20
0575	C	
0576	С	NEW FLOW OF WATER VAPOR OUT OF DZ, FMVH20 (GMOLES/SEC)
0577		FMLH20=SUMFL/18.
0578		FMVH20=FMH20-(TWLR)/18FMLH20
0579		FMGT3=FMH2+FMC0+FMC02+FMAIR
0580		AFILM=PFS/(1PFS)
0581		1F(FMVH20.LT.0.)G0 T0 600
0582		GO TO 601
0583	600	DELF=FMVH20
0584		TWLR=TWLR-18,*DELF
0585		FMVH20=AFILM*FMGT3
0586	601	CONTINUE

0587		AMFH20=FMVH20/FMGT3
0588		A3 X =F MV H2 0
0589		IF(AMFH20.LT.AFILM)FMVH20=AFILM*FMGT3
0590		A4 X = A3 X / F MV H20
0591		WVWALL=A4X*WVWALL
0592		HC=A4 X*HC
0593	С	
0594	С	NEW TOTAL FLOW OF WATER OUT OF DA, FMH20
0595	С	
0596		FMH20=FMLH20+FMVH20
0597	С	
0598	С	HEAT BALANCE NEXT
0599	С	SENSIBLE HEAT LOSS TO ICE, QSENS (WATTS) FROM GAS
0600	С	
0601	С	
0602	С	CONDENSATION HEAT LOSS TO WALLS, QCOND (WATTS)
0603	С	
0604		QCOND=PERIM*DZ*HC*(TG(1)-273.2)
0605	С	
0606	С	CORRECT HV FOR HIGH MASS TRANSFEF (BSL, p. 662)
0607	C	
8090		PHT = -HC/(HV+HC)
0609		IF(PHT.EQ.0.)GO TO 19
0610		RT=EXP(PHT)-1.
0611		TH T=PHT/RT
0612		HV=THT*HV
0613	19	CONTINUE
0614	С	
0615	C	HEAT LOSS TO ICE VIA MASS OF PARTICLES REMOVED, QPART (WATTS)
0616	C	NEGLECT SOLID MASS
0617	С	
0618		QPART=FH20*CPLH20*(TG(1)-273.2)
0619		QSENS=PERIM*DZ*HV*(TG(1)-273.2)
0620		

0621	C		SUM HEAT LOSS TO ICE, QSUM
0622	С		
0623			QSUM=QSENS+QCOND+QPART
0624	C		
0625	С		CORRECTION FOR FILM THICKNESS, FILM
0626			IF(K.EQ.1)GO TO 20
0627			HTOT=HC+HV+FH20*CPLH20
0628			IF(HTOT.EQ.0.)GO TO 20
0629			HSUM=1./(1./HTOT+FILM/.0056)
0630			QSUM=PERIM*DZ*HSUM*(TG(1)-273.2)
0631			TFILM=TG(1)*(1HSUM/HTOT)+273.2*HSUM/HTOT
0632	C		
0633	C		TFILM = TEMPERATURE OF WATER SURFACE, K.
0634	С		
0635	20		CONTINUE
0636			XP3=647.27-TFILM
0637			XPONEN=-(XP3/TFILM)*(AAP+BP*XP3+CP*(XP3**3.))/(1.+DP*XP3)
0638			PFILM=218.167*10.**XPONEN
0639			PFS=PFILM/PGAS
0640	C		
0641	С		NEW ENTHALPY FLOW INTO NEXT CV, ET(2)
0642	C		
0643			ET(2)=ET(1)-QSUM
0644	С		
0645	C		CALCULATE CV OUTLET TEMPERATURE, TG(2)
0646	С		
0647			QFM=FMH2*CPH2+FMCO*CPCO+FMCO2*CPCO2+FMAIR*CPAIR+
0648		1	FMVH20*CPVH20+FMLH20*CPLH20
0649			QTEST=ET(2)-FMVH20*VAPL
0650			IF(QTEST.LT.0.)FMVH20=ET(2)/VAPL
0651			FMH20=FMLH20+FMVH20
0652			TG(2)=273.2+(ET(2)-FMVH20*VAPL)/QFM
0653			IF(QTEST.LT.0.)TG(2)=TFILM
0654			IE(TG(2) GE TG(1))TG(2) = IG(1) + 0E(1) + 0E(1)

0655		IF(TG(2).LT.TFILM)TG(2)=TFILM
0656	С	
0657	С	CALCULATE SATURATION, S
0658	С	
0659		FMGT2=FMH2+FMCO+FMCO2+FMAIR+FMVH20
0660	С	
0661	С	CALCULATE GAS HEAT CAPACITY (CPMIX), JOULE/GMOLE/K
0662	С	
0663		CPMIX=QFM/FMGT2
0664		XH(2)=FMVH20/FMGT2
0665		XH2=FMH2/FMGT2
0666		XAIR=FMAIR/FMGT2
0667		XCO=FMCO/FMGT2
0668		XCO2=FMCO2/FMGT2
0669		XP3=647.27-TG(2)
0670		XPONE - (XP3/TG(2))*(AAP+BP*XP3+CP*(XP3**3.))/(1.+DP*XP3)
0671		PV3=218.167*10.**XPONEN
0672		XS≈PV3/PGAS
0673		S=XH(2)/XS
0674		IF(S.LT.1.)GO TO 203
0675	С	
0676	С	THIS NEXT SXN ADJUSTS TG(2) TO REFLECT THE FORMATION
0677	С	OF CONDENSED H20 ON PARTICLES WHEN S.GE.1.
0678	С	
0679		TG1=TG(1)
0680		TG2=TG(2)
0681	С	00 205 MP=1,3
0682		TEMP=ABS(TG2-TG1)
0683		IF(TEMP.LT.0.001)TG2=TG1001
0684		DX1A=ET(2)-(TG1-273.2)*QFM-FMVH20*VAPL
0685		DX1A=DX1A/((TG1-273.2)*(CPLH2O-CPVH2O)-VAPL)
0686		DX1B=ET(2)-(TG2-273.2)*QFM-FMVH20*VAPL
0687		DX18=DX18/((TG2-273.2)*(CPLH20-CPVH20)-VAPL)
0688		¥24=647.27-TG1
0689		XPONEN=-(X2A/TG1)*(AAP+BP*X2A+CP*(X2A**3.))/(1.+DP*X2A)
------	---	--
0690		P2A=218.167*10.**XPONEN
0691		X2B=647.27-TG2
0692		XPONEN=-(X2B/TG2)*(AAP+BP*X2B+CP*(X2B**3.))/(1.+DP*X2B)
0693		P2B=218.167*10.**XPONEN
0694		DX2A=(PGAS*FMVH2O-P2A*FMGT2)/(PGAS-P2A)
0695		DX2B=(PGAS*FMVH20-P2B*FMGT2)/(PGAS-P2B)
0696	С	
0697	С	INTERSECT LINES DXI=AX2+BX2*TGI AND DXI=AX1+BX1*TGI
0698	C	
0699		BX1=(DX1A-DX1B)/(TG1-TG2)
0700		AX1=DX1A-BX1*TG1
0701		BX2=(DX2A-DX2B)/(TG1-TG2)
0702		AX2=DX2A-BX2*TG1
0703		TGI=(AX2-AX1)/(BX1-BX2)
0704		DXI=AX2+BX2*TGI
0705		TG(2) = TGI
0706		IF(DXI.LT.0.)DXI=0.
0707		IF(DX1.EQ.0.)S=1.
0708	С	
0709	C	THIS SXN CALCULATES PARTICLE GROWTH WHEN FEWER PARTICLES EXIST
0710	C	
0711		\$2=\$
0712		IF(S2.GT.4.)S2=4.
0713		DTIME=DZ/UI
0714		TUPH20=0.
0715		00 206 IP=1,20
0716		DUP=0.
0717	C	IF(IP.GT.NKLVN)
0718		DUP=2.*(S2-1.)*DTIME/(RHOL*(APP+BPP))
0719		RO=DPART(IP)*RDPAR(IP)/2.
0720		UPH20(IP) = (RHOL*4.*PI/3.)*((RO**2.+DUP)**1.5-RO**3.)
0721	C	
0722	С	UPH20(IP) =MASS UPTAKE OF SINGLE IP PARTICLE IN DZ

0723	C	
0724		TUPH20=UPH20(IP)*PNDOT(IP)+TUPH20
0725	206	CONTINUE
0726		OSTRU1=OSTRUE
0727		IF(0STRU1.EQ.0.)0STRU1=.0001
0728		DXS=TUPH20/18.
0729		IF(DXI.GE.DXS)GO TO 12
0730		IF(DXI.EQ.0.)STRUE=1.
0731		IF(DXI.EQ.OOR.DXS.EQ.O.)GO TO 13
0732		S3=DXS/DXI
0733		S4=S-1.
0734		STRUE=1.+S4/S3
0735		GO TO 13
0736	12	STRUE=S
0737	13	CONTINUE
0738		OSTRUE=STRUE-1.
0739		OSTRUE=SQRT(OSTRU1*OSTRUE)
0740		STRUE=1.+OSTRUE
0741		IF(DXS.GE.DXI)GO TO 203
0742		DXI=DXS
0743		TG(2)=273.2+(ET(2)+(-FMVH20+DXI)*VAPL)/((CPLH20-CPVH20)*DXI+QFM)
0744	203	CONTINUE
0745		IF(S.LE.1.)TG(2)=273.2+ET(2)-FMVH20*VAPL
0746		IF(DELTT.EQ.0.)DELTT=001
0747		IF(TG(2).GE.TG(1))TG(2)=TG(1)+DELTT
0748		IF(TG(2).LT.TFILM)TG(2) =TFILM
0749		DELTT=TG(2)-TG(1)
0750	C	
0751	С	CONDENSATION RATE ON PARTICLES IS DXI, GMOLES/HR
0752	С	
0753	С	
0754	C	CALCULATE NEW VELOCITY, UI
0755	C	
0756		UI=UI*FMGT2*TG(2)/(FMGT*TG(1))

```
C
0757
0758
       C
                NEW GAS DENSITY (RHOGAS) AVERAGE MOLECULAR WEIGHT
        C
0759
0760
                AMW=(FMVH20*18.+FMH2*2.+FMC0*28.+FMC02*44.+FMAIR*29.)/FMGT2
0761
                RHOGAS = AMW * PGAS/(RG*TG(2))
0762
        C
0763
        C
                NEW GAS FLOW, GFLOW
0764
                GFLOW=GFLOW*FMGT2*TG(2)/(FMGT*TG(1))
0765
        C
                DTLM = LN MEAN TEMPERATURE DIRRERENCE
0766
        C
                IF(TG(2).LE.TFILM)TG(2)=TFILM+.001
0767
       C
                IF(TG(1), LE, TG(2))TG(1) = TG(2) + .001
                DTLM=(TG(1)-TG(2))/ALOG((TG(1)-TFILM)/(TG(2)-TFILM))
0768
       C
        C
                IF(DTLM.LE..01)DTLM=.01
0769
0770
                DTLM=DELT
0771
        C
       C
0772
                RETURN OF VARIABLES FOR NEXT MZ
        C
0773
0774
                TG(1) = TG(2)
0775
                DELH=XH(2)-XH(1)
0776
                XH(1) = XH(2)
0777
                XH(2) = XH(1) + DELH
0778
                ET(1) = ET(2)
0779
                FMGT=FMGT2
0780
                IF(MZ.GT.1)G0 T0 290
0781
                HCSAVE=HC
0782
                HVSAVE=HV
0783
        290
                CONTINUE
0784
        C
       C
0785
                COMPUTE OF FOR NZ+1 SPCE
       C.
0786
0787
                CALL VISU(TG(1),XH(1),XH2,XC0,XAIR,XC02,AMW1,VISMIX,AKG)
0788
                DO 210 KP=1.20
                CALL DIFFU(DPART(KP), RDPAR(KP), VISMIX, TG(1), AMW1, PGAS, DIFUS,
0789
0790
             1 CM.ELAM)
```

0791		CALL VSETL(WRHO(KP), CM, DPART(KP), RDPAR(KP), VISMIX, AMW1, PGAS,
0792		+ TG(1), RHOGAS, VSET(KP))
0793		DIFP=DIFUS
0794		CALL IID(CMI, CHI, ROPAR(KP), OPART(KP), VISMIX, VISFLM, UI,
0795		1 WRHO(KP), DIFP, RHOGAS, TG(1), DELT, RH4, AKG, AMW, CPMIX, AKD,
0796		2 EBD,EI,HV)
0797		AKDB=AKD*AD4
0798		AKS=VSET(KP)*AS4
0799		DFLAST=1.+(AKS+AKDB)/GFLOW
0800		BLOG=ALOG10(DFLAST) +ALOG10(DFOV(KP))
0801		IF(BLOG.GT.30.)GO TO 556
0802		DFOV(KP)=DFOV(KP)*DFLAST
0803		GO TO 557
0804	556	DFOV(KP)=1.E+30
0805	557	CONTINUE
0806		PMDOT(KP) = PMDOT(KP) / DFLAST
0807		PNDOT(KP)=PNDOT(KP)/DFLAST
0808	Ç	
0809	C	CONVERT PMDOT/PNDOT BACK TO TOTAL FLOW BASIS
0810	C.	
0811		PNDOT(KP) = PNDOT(KP) * NUNIT
0812		PMDT(KP)=PMDT(KP)*NUNIT
0813		AN(KP) =AN(KP)/OFLAST
0814		IF(AN(KP).LE.1.E-35)AN(KP)=1.E-35
0815		CLAMB(KP)=GASIN*(11./DFOV(KP))/VOLCON
0816	210	CONTINUE
0817	C	
0818	C	
0819	C	END OF CALCULATIONS
0820	C	
0821	C	PREPARE OUTPUT INFORMATION
0822	C	
0823	C	FLOWRATE OF DRY PARTICLE SIZE EXITING, (PMDOT(1)) AND
0824	C	WET(WPMDOT(I)) AND TOTAL FLOWRATE OF PARTICLES (TEPD/TPFI)

0825		TOG=TG(2)-273.2
0826		TFPI=0.
0827		TFPO=0.
0828		WTFPO=0.
0829		TM=0.
0830		Τ√=Ο.
0831		DO 310 I=1,20
0832		IF(WFWET(I).GT999)WFWET(I) =999
0833		<pre>wpmdot(I)=pmdot(I)/(1WFWET(I))</pre>
0834		TFPI=TFPI+OPMDOT(I)
0835		TFPO=TFPO+PMDOT(I)
0836		WTFPO=WTFPO+PMDOT(I)/(1WFWET(I))
0837		TM=TM+WPMDOT(I)
0838		TV=TV+PMDOT(I)/RHOT+(WPMDOT(I)-PMDOT(I))/RHOL
0839	310	CONTINUE
0840		DFAP=TFPI/TFPO
0841		DLAMB=GASIN* (11./DFAP) /VCLCON
0842		RHOW=TM/TV
0843		FWET=1TFP0/WTFP0
0844	C	
0845	C	WTFPO = TOTAL FLOWRATE OF WET PARTICLES OUT OF ICE COLUMN
0846	C	
0847	С	OUTPUT PARTICLE NUMBERS/SEC = AN(N)
0848	C	MASS OF DRY PARTICLE, AMD(N)
0849	Ç	
0850		ANT=0.
0851		DO 311 I=1,20
0852		AMD(I)=RHOT*PI*(DPART(I)**3.)/6.
0853		BN(I) = PMDCT(I) / AMD(I)
0854	С	
0855	C	ANT = TOTAL NUMBER FLOWRATE OF LEAVING PARTICLES
0856	С	
0857		ANT=ANT+BN(I)
0858	311	CONTINUE

0859	C	
0860	С	ANMEND = NO. MEAN PARTICLE DIAM: DRY
0861	С	ANMENW = NO. MEAN PARTICLE DIAM: WET
0862	C	ANMEDD = NO. MEDIAN PARTICLE DIAM: DRY
0863	С	ANMEDW = NO. MEDIAN PARTICLE DIAM: WET
0864		ANMEND=0.
0865		ANME NW= 0.
0866		ANMEDD=0.
0867		ANMEDW=0.
0868		00 312 I=1,20
0869		DPARTW(I) = DPART(I) * RDPAR(I)
0870		ANMEDD=ANMEDD+BN(I)*ALOG(DPART(I))
0871		ANMEDW=ANMEDW+BN(I) *ALOG(DPARTW(I))
0872		ANMEND=ANMEND+BN(I)*DPART(I)
0873		ANMENW=ANMENW+BN(I) *DPART(I) *RDPAR(I)
0874	312	CONTINUE
0875		ANMEDW=EXP(ANMEDW/ANT)
0876		ANMEDD=EXP(ANMEDD/ANT)
0877		ANMEND=ANMEND/ANT
0878		ANMENW=ANMENW/ANT
0879	C	
0880	C	CALCULATE:
0881	С	SIGWET = GEOMETRIC STD DEVIATION OF WET PARTICLES
0882	С	SIGDRY = GEOMETRIC STD DEVIATION OF DRY PARTICLES
0883	С	
0884		SWET=0.
0885		SDRY=0.
0886		DO 313 N=1,20
0887		SWET=SWET+BN(N)*((ALOG(DPARTW(N)/ANMENW))**2.)
8880		SDRY=SDRY+BN(N)*((ALOG(DPART(N)/ANMEND))**2.)
0889	313	CONTINUE
0890		SIGWE T=EXP((SWE T/ANT)**.5)
0891		SIGORY=EXP((SDRY/ANT)**.5)
0892		RADDRY=ANMEDD/2.

8.27

0893			RADWET=ANMEDW/2.
0894			REL H=S*100.
0895			WRITE(6,100)K,TOUT(K)
0896			00 10 I=1,20
0897			WRITE(6,101)I, DPART(I), DPARTW(I), PMDOT(I), WPMDOT(I), BN(I),
0898		1	DFOV(I),CLAMB(I)
0899	10		CONTINUE
0900			WRITE(6,104)RHOT, RHOW, FWET, RADDRY, RADWET, SIGDRY, SIGWET, TFPI,
0901		1	TFPO, DFAP, WTFPO, HELH, TOG, DLAMB, XICE
0902			DO 11 KP=1,20
0903			DPART(KP) = DPART(KP) / DMUL
0904	11		CONTINUE
0905			IF(KOUT.GT.1.AND.K.LT.KOUT.AND.MICE.NE.O.AND.XICE.GT.O.)
0906		1	CALL ICEMELT
0907	1000		CONTINUE
0908	100		FORMAT(1H1,///,
0909		1	' TOUT(',13.3,')=',F7.2,' MINUTES. MATERIALS LEAVING',
0910		2	' ICEBED',///,' PARTICLE', 12, 'PARTICLE', T24, 'PARTICLE', T37,
0911		3	'GRAMS', T49, 'GRAMS', T60, 'NUMBER', T72, 'DECON.', T84, 'LAMBDA',/,
0912		4	' BIN', T13, 'DIAM', T25, 'DIAM', T36, 'PER SEC', T48, 'PER SEC', T60,
0913		5	'PER SEC', T72, 'FACTOR', T84, '1/SEC', /, ' NUMBER', T12, 'DRY (CM)',
0914		6	T24, 'WET (CM)', T37, 'DRY', T49, 'WET', T75, 'DF',/)
0915	101		FORMAT(1H T3,12,T12,7(E10.4,2X))
0916	104		FORMAT(1H0,//,T12,E10.4,T24,'DRY PARTICLE DENSITY (GM/CM**3)',/,
0917		1	T12,E10.4,T24,'WET PARTICLE DENSITY (GM/CM**3)',/,
0918		2	T12,E10.4,T24, WEIGHT FRACTION WATER IN PARTICLES',/,T12,E10.4,
0919		3	T24, 'NUMBER MEDIAN PARTICLE RADIUS OF DRY PARTICLES (CM) '
0920		4	,/,T12,E10.4,
0921		5	T24, 'NUMBER MEDIAN PARTICLE RADIUS OF WET PARTICLES(CM) '
0922		6	,/,T12,E10.4,T24,'GEOMETRIC STANDARD DEVIATION OF DRY PARTICLES',
0923		7	/,T12,E10.4,T24,'GEOMETRIC STANDARD DEVIATION OF WET PARTICLES',
0924		8	/,T12,E10.4,T24,'TOTAL GRAMS/SEC DRY PARTICLES INTO ICEBED',/,
0925		9	T12,E10.4,T24,'TOTAL GRAMS/SEC DRY PARTICLES LEAVING ICEBED',/,
0926		1	T12,E10.4,T24, 'INTEGRATED DECONTAMINATION FACTOR',/,

0927		2	T12, E10.4, T24, 'TOTAL GRAMS/SEC WET PARTICLES LEAVING ICEBED'. /.
0928		3	T12,E10.4,T24, 'RELATIVE HUMIDITY OF GAS LEAVING ICEBED (PERCENT)'
0929		4	,/,T12,E10.4,T24,'OUTLET GAS TEMPERATURE (DEG C)'
0930		5	,/,T12,E10.4,T24, 'REMOVAL LAMBDA FOR ALL PARTICLES (1/SEC) '
0931		6	,/,T12,E10.4,T24,'FRACTION OF INITIAL ICE REMAINING')
0932			STOP
0933			END
0001			SUBROUTINE KELVIN(T,ST,DP,RD,K,N)
0002	C		
0003	С		THIS SUBROUTINE DETERMINES IF PARTICLES CAN GROW UNDER
0004	С		RESTRICTIONS OF KELVIN EQUATION FOR CURVED SURFACES.
0005	С		GAMMA=SURFACE TENSION, ERG/CM**2
0006	C		
0007			TC=T-273.2
0008			GAMMA=66.2-(TC-60.)*0.1825
0009			IF(TC.LT.60.)GAMMA=75.71583*TC
0010			V=18.
0011			R=DP*RD/2.
0012			RG=8.3136E+07
0013			PK=EXP(2.*GAMMA*V/(R*RG*T))
0014			N= 0
0015			IF(PK.GT.ST)RD=1.
0016			IF(PK.GT.ST)N=K
0017	Ç		
0018	C		SEE ADAMSON, A.W., PHYSICAL CHEMISTRY OF SURFACES, 3RD ED.,
0019	C		WILEY, NY, 1976.
0020	С		
0021			RETURN
0022			END
0001			SUBROUTINE DIFFU(DPART, RDPART, VISMIX, TAV, AMW, PGAS, DIFUS, CM, ELAM)
0002	C		
0003	C		THIS SUBROUTINE CALCULATES PARTICLE DIFFUSIVITY, DIF(N)
0004	C		AS A FUNCTION OF PARTICLE SIZE
0005	C		

0006	С	INPUTS:
0007	С	DPART, RDPART, VISMIX, TAV, AMW, PGAS
0008	С	
0009	С	CUNNINGHAM FACTOR, CM AND ELAM, MEAN FREE PATH OF GAS
0010	С	
0011		PI=3.14159265
0012		ELAM=1.245E-02*((TAV/AMW)**.5)*VISMIX/PGAS
0013		DPA=DPART*RDPART
0014		IF(DPA.LT.1.E+3)G0 TO 95
0015		RATD=ELAM/DPA
0016		CM=1.+2.492*RATD+0.84*RATD*EXP(-0.435/RATD)
0017		GO TO 90
0018	95	CM=1.
0019	90	CONTINUE
0020		DIFUS=1.38E-16*TAV*CM/(3.*PI*VISMIX*DPA)
0021	С	
0022	C	OUTPUT: DIFFUSIVITY, DIFUS IN CM**2/SEC
0023	С	
0024		RETURN
0025		END
0001		SUBROUTINE VISC(TB,XAH20,XH2,XC0,XAIR,XC02,AMW,VISMIX,AKG)
0002		DIMENSION Y(5), VS(5), WM(5), Z(5), PHI(5,5), VK(5)
0003		SQRTTB=SQRT(TB)
0004		EPSH20=809.1
0005		EPSH2=38.
0006		EPSAIR=97.
0007		EPSCO=110.
8000		EPSC02=190.
0009		SIGH20=2,641
0010		SIGH2=2.915
0011		SIGAIR=3.617
0012		SIGC0=3.59
0013		SIGC02=3,996
0014	C	

0015	С	DEFINE MOLE FRACTIONS WITH STEAM AMF2 MOLE FRACTION
0016	С	
0017		YH2O=XAH2O
0018		YH2=XH2
0019		YCO=XCO
0020		YC02=XC02
0021		YAIR=XAIR
0022		AMW=YAIR*29.+YC02*44.+YC0*28.+YH20*18.
0023		OMH20=0.765+0.82*EPSH20/TB
0024		VISH20=2.6693E-05*SQRT(18.*TB)/((SIGH20**2.)*OMH20)
0025		0MH2=0.765+0.82*EPSH2/TB
0025		0MC0=0.765+0.82*EPSC0/TB
0027		OMC02=0.765+0.82*EPSC02/TB
0028		OMAIR=0.765+0.82*EPSAIR/TB
0029		VISH2=2.6693E-05*SQRT(2.*TB)/((SIGH2**2.)*OMH2)
0030		VISCO=2,6693E-05*SQRT(28,*TB)/((SIGCO**2.)*OMCO)
0031		VISCU2=2.6693E-05*SQRT(44.*TB)/((SIGC02**2.)*OMC02)
0032		VISAIR=2,6693E-05*SQRT(29,*TB)/((SIGAIR**2.)*OMAIR)
0033		AKGH20=(.3268*SQRTTB-3.9179)/10000.
0034		AKGH2=(.1718*SQRTTB-1.15520)/10000.
0035		AKGC 0=(.2583*SQRTT 8-1.9407)/10000.
0036		AKGC02=(.2795*SQRTTB-3.1296)/10000.
0037		AKGAIR=(.2716*SQRTTB-2.0671)/10000.
0038	C	AKG - IN WATTS/CM/K
0039		Y(1)=YH20
0040		Y(2)=YH2
0041		Y(3)=YCO
0042		Y(4)=YCO2
0043		Y(5)≈YAIR
0044		VS(1)=VISH20
0045		VS(2)=VISH2
0046		VS(3)=VISCO
0047		VS(4)=VISCO2
0048		UC/S)=UTCATO

0049	VK(1)=AKGH20
0050	VK(2)=AKGH2
0051	VK(3)=AKGCO
0052	VK(4)=AKGCO2
0053	VK(5)=AKGAIR
0054	WM(1)=18.
0055	WM(2)=2.
0056	WM(3)=28.
0057	WM(4)=44.

VISC		15-Aug-1985 13:47:06	VAX FORTRAN V4.2-102	Page 2
		15-Aug-1985 13:45:40	DISK1:[ESFEFF]T.FOR;3	
0058		WM(5)=29.		
0059		00 301 J=1.5		
0060		00 301 I=1.5		
0061		PHI(I,J)=1./(((1.+WM	(I)/WM(J))*8,)**,5)*(1,+SORT(V	5(1)/95(1))
0062		1 *(WM(J)/WM(I))**.25)	**2	5(1)/15(0)/
0063	301	CONTINUE		
0064		00 302 I=1,5		
0065		Z(I)=0.		
0066		DO 302 J=1,5		
0067		Z(I)=Z(I)+Y(J)*PHI(I	.J)	
0068	302	CONTINUE		
0069		AKG=0.		
0070		VISMIX=0.		
0071		00 303 I=1,5		
0072		VISMIX=VISMIX+Y(I)*VS	S(I)/Z(I)	
0073		AKG=AKG+Y(I)*VK(I)/Z(I)	
0074	303	CONTINUE		
0075	C			
0076	C	VISMIX IN POISES. CAL	CULATIONS USE BSL PAGE 24	
0077	C			
0078		RETURN		
0079		END		
0001		SUBROUTINE VSETL(WRHO	,CM,DPART,RDPAR,VISMIX,AMW,PGA	IS, TAV,
0002		1 RHOGAS,VSET1)		
0003	C	CALCULATE SETTLING VE	LOCITIES NOW (VSET1)	
0004		G=980.		
0005		RG=82.06		
0006		VSET1=WRHO*G*CM*(DPAR	T*RDPAR) **2./(18.*VISMIX)	
0007	C			
8000	С	FOLLOWING TAKEN FROM	BNWL-1326, PAGE 12-13	
0009	C			

		RHOGAS=AMW*PGAS/(RG*TAV)
		FDRE2=1.3333*WRHO*RHOGAS*G*((RDPAR*DPART)**3.)/(VISMIX**2.)
		IF(FDRE2.GT.9.6.AND.FDRE2.LT.93.6)RE=(FDRE2/27.)**(1./1.13)
		IF(FORE2.GE.93.6.AND.FDRE2.LT.410.)RE=(FDRE2/24.32)**(1./1.227)
		IF(FDRE2.GE.410AND.FDRE2.LT.1.07E+04)RE=(FDRE2/15.71)**
	1	(1./1.417)
		IF(FDRE2,GE.1.07E+04.AND.FDRE2.LT.2.45E+05)RE=(FDRE2/6.477)
	1	**(1./1.609)
		IF(FDRE2.GE.2.45E+05)RE=(FDRE2/1.194)**(1./1.867)
		IF(FDRE2.GT.9.6)VSET1=RE*VISMIX/(DPART*RDPAR*RHOGAS)
С		
		RETURN
		END
		SUBROUTINE IID(CMI, CHI, RDPART, DPART, VISMIX, VISFLM, UI
	1	,WRHO,DIFP,RHOGAS,TAV,DELT,RH4,AKG,AMW,CPMIX,AKD,EBD,EI,HV)
C		
Ċ		STOKES NUMBER (STK)
C		
C		DC=COLLECTOR DIAMETER (CM)
C		
		DC=.199
		STK=UI*WRHO*CMI*(RDPART*DPART)**2./(9.*VISMIX*
	1	DC*CHI)
C		
G		IMPACTION EFFICIENCY (EIMP)
C		
		EIMP=(STK/(STK+.5))*204
		IF(EIMP.LT.0.)EIMP=0.
C		
C		INTERCEPTION EFFICIENCY (EINT)
C		
		EINT=2.*RDPART*DPART/DC
C		
C		OVERALL EFFICIENCY (EI)
	0 00000 000 000 00	

0022		EI=EINT+EIMP
0023	С	
0024	C	DIFFUSION COLLECTION PARAMETERS
0025	с	PECLET NUMBER (PE)
0026	C	DCD=DIFFUSION COLLECTOR DIAMETER
0027	C	
0028		DCD=.526
0029		PE=DCD*UI/DIFP
0030	C	
0031	C	COLLECTOR REYNOLDS NUMBER (REDI)
0032	C	
0033		REDI=RHOGAS*DCD*UI/VISMIX
0034	C	
0035	C	DIFFUSION EFFICIENCY (EBD)
0036	С	
0037		EBD=1./PE+1.727*(REDI**(1./6.))/(PE**(2./3.))
0038	C	
0039	C	GRASHOF NUMBER DIVIDED BY L**3 (GRL)
0040	C	
0041		GRL=(980./(VISMIX/RHOGAS)**2.)*DELT/TAV
0042	C	
0043	C.	SCHMIDT NUMBER (SCH)
0044	C	
0045		SCH=VISMIX/(RHOGAS*DIFP)
0046	C	
0047	С	DIFFUSION MASS XFER COEFF (AKD)
0048	C	
0049		AKD=DIFP*.13*(GRL*SCH) **(1./3.)
0050		IF(DELT.GT.O.)GO TO 5
0051		HV=0.
0052		RETURN
0053	5	CONTINUE
0054	С	
0055	C	CONVECTIVE HT COEFF (HV), WATTS/CM**2/K

0056	С			
0057	С	PRANDTL	NUMBER,	PR

IIO			15-Aug-1985 13:47:06	VAX FORTRAN V4.2-102	Page 30
			15-Aug-1985 13:45:40	DISK1:[ESFEFF]T.FOR;3	
0.050			DD-UTCHTV+CONTV/AVC/	A MARINE MARKAN AND A MARKAN AND	
0050	C		PR=VISMIX*CPMIX/AKG/	AMM	
0059	c		UNE - EDEC CONVECTIO	N NT OFFE	
0060	C		HVF = FREE CUNVECTIO	N HI CUEFF	
0001	L				
0062			HVF=AKG*,13*(GRL*PR)	**(1./3.)	
0063	C		FORCED CONVECTION HT	COEFF FROM FIG. 13.2-1, BSL PAGE	54 C
0064	C		400 FOR L/D=60.		
0065	C				
0066	C		RE = CHANNEL FLOW REY	NOLDS NUMBER	
0067	С				
0068			RE=RH4*RHOGAS*UI/VISM	1I X	
0069			VIS=VISMIX/VISFLM		
0070			IF(RE.LT.2100.)HV=(AK	.G/RH4)*(VIS**0.14)*0.475*(RE*PR)	**.3333
0071			F1=RE*(PR**.3333)*(VI	S**0.14)	
0072			F2=10.**(-0.8715*(ALC	G10(RE))**2.+6.49428*ALOG10(RE)-	14.5052)
0073			F3=1).004		
0074			F4=10.**(-0.192645*AL	OG10(RE)-1.62736)	
0075			IF(2100LE.RE.AND.RE	.LT.6000.)HV=F1*F2*AKG/RH4	
0076			IF(6000LE.RE.AND.RE	.LT.10000.)HV=F1*F3*AKG/RH4	
0077			IF(10000LE.RE.AND.R	E.LT.20000.)HV=F1*F4*AKG/RH4	
0078			IF(RE.GE.20000.)HV=0.	026*(AKG/RH4)*(RE**0.8)*(PR**0.3	333)
0079		1	*(VIS**0.14)		
0800			IF(HV.LT.HVF)HV=HVF		
0081			RETURN		
0082			END		
0001			SUBROUTINE SOLGRO(SAT	N, SOLFT, RHOT, WRHO1, WFWET1, RDPART)
0002			PI=3.14159265		
0003	C				
0004	С				
0005	C<><)	><)	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
0006	C				

0007	C<><><	000000000000000000000000000000000000000
0008	С	
0009	С	THIS SUBROUTINE CALCULATES PARTICLE GROWTH DUE TO PARTICLE SOLUBILITY
0010	С	
0011	C<><>	000000000000000000000000000000000000000
0012	С	
0013	C<><>	000000000000000000000000000000000000000
0014	C	
0015	С	PICK DPART=1 CM
0016	С	WMC=MASS OF SOLUTE (AS CSOH)
0017		WMC=SOLFT*RHOT*PI/6.
0018	C	
0019	C	WMS=MASS OF SOLVENT H20
0020	С	WFWET=FRACTION OF MASS AS H20
0021	С	
0022		IF(SATN.GE99)SATN=.99
0023		WMS=0.24*WMC/(1./SATN-1.)
0024		VI=(1SOLFT)*PI/6.
0025		RHOS=1.
0026		IF(WMC.EQ.0.)GO TO 332
0027		RHOS=1.+1.04*WMC/(WMC+WMS)
0028	332	VS1=(WMC+WMS)/RHOS
0029		WMI=RHOT*PI/6.
0030		WRHO1=(WMS+WMI)/(VI+VS1)
0031		RDPART=(6.*(VS1+VI)/PI)**.3333
0032		WFWET1=WMS/(WMI+WMS)
0033		RETURN
0034		END
0001		SUBROUTINE ICEMELT
0002	C	
0003	C	THIS SUBROUTINE CALCULATES SOME OF THE PARAMETERS THAT CHANGE
0004	C	AND THE WATER FILM THICKNESS AS THE ICE MELTS. THESE PARAMETERS
0005	С	ARE PERIM, AX, AS2, AD2, XICE, AND FILM.
0006		COMMON PERIM, AX, EMICEO, EMICE, AS2, AD2, XICE, PI, K, TOUT(100),

0007		1	TOG, TGAS, FMH20I, FMV H20, FMAIR, FMC0, FMC02, FMH2, FILM
8000	С		
0009	С		ESTABLISH TIME STEP DT (SECONDS)
0010	С		
0011			DT=TOUT(K+1)-TOUT(K)
0012			DT=DT*60.
0013			EICE=EMICE
0014			EMSI=FMH20I*18.
0015			EMSO=FMVH20*18.
0016			DTMP=TGAS-TOG
0017			A=DTMP*(28.9*FMH2+29.1*FMC0+37.2*FMC02+29.2*FMAIR)
0018			B=EMS I* (-2.4434*TGAS+2501.4)
0019			C=EMSO*(-(1.747*TOG+2501.4)+4.1904*TGAS)
0020			D=4.1904*TGAS+334.7
0021			DICE=-(A+B+C)*DT/D
0022			EMICE=EICE+DICE
0023			IF(EMICE.LT.O.)EMICE=0.
0024			DICE=EMICE-EICE
0025			XICE=EMICE/EMICEO
0026			DIA=SQRT(XICE*929.)
0027			PERIM=PI*DIA
0028			AX=1296PI*(DIA**2.)/4.
0029			AS2=AS2*DIA/30.48
0030			AD2=AD2*DIA/30.48
0031	C		
0032	С		THE FOLLOWING ESTIMATES WATER FILM THICKNESS, FILM (CM), ON ICE.
0033	C		W=WATER FLOW RATE (CC/S)
0034	C		
0035			W=EMSI-EMSO-DICE/DT
0036			IF(PERIM.EQ.O.)GO TO 2
0037			FILM=3.73E-02*(W/PERIM)**.3333
0038	C.		
0039	C		ABOVE FILM EQN=EQN 2.2-20, BSL AT O DEG C
0040	C		

0041		RETURN
0042	2	FILM=0.
0043		RETURN
0044		END

NUREG/CR-4130 PNL-5379 R1

DISTRIBUTION

No. of Copies

OFFSITE

5

U.S. Nuclear Regulatory Commission Division of Technical Information and Document Control 7920 Norfolk Ave. Bethesda, MD 20014

R. M. Bernero
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555

J. A. Mitchell Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555

C. W. Nilsen Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555

 M. Silberberg
 Office of Nuclear Regulatory Research
 U.S. Nuclear Regulatory Commission
 Washington, D.C. 20555

R. Oehlberg Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303 No. of Copies

> K. G. Steyer
> Office of Nuclear Regulatory Research
> U.S. Nuclear Regulatory Commission
> Washington, D.C. 20555

L. A. Curtis Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43210

R. S. Denning Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43210

J. A. Gieske Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43201

K. W. Lee Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43201

R. C. Vogel Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303

T. S. Kress Oak Ridge National Laboratories P.O. Box Y Oak Ridge, TN 37830

A. K. Postma Route 1 Box 46A Halfway, OR 97834 No. of Copies

> D. H. Walker Offshore Power Corporation P.O. Box 8000 Jacksonville, FL 32211

F. J. Rahn Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303

R. L. Ritzman Electric Power Research Institute P. O. Box 10412 Palo Alto, CA 94303

D. A. Powers Sandia National Laboratories P.O. Box 5800 Alburguergue, NM 87185

A. T. Wassell Science Applications, Inc. 2615 Pacific Coast Highway Suite 300 Hermosa Beach, CA 90254

FOREIGN

International Atomic Energy Agency Wagamerstresse 5 P. O. Box 100 A-1400, Vienna, Austria

No. of Copies

ONSITE

2	Mastinghouse Hapford Company
2	weschighouse hantord company
	R. K. Hilliard
	J. D. McCormack
	L. D. Muhlestein
1	Pacific Northwest Laboratory
	W. J. Apley
	E. P. Coomes
	D. W. Dragnich
	C. E. Elderkin
	E. J. Eschbach
	J. M. Hales
	M. A. Halverson
	P. C. Hays
	L. D. Kannberg
	B. W. Killand
	W. W. Laity
	N. S. Laulainen
	A. M. Liebetrau
	J. Mishima
	O. R. Moss
	P. C. Owczarski (10)
	F.E. Panisko
	D. R. Simpson
	R. A. Stokes
	J. A. Stottlemyre
	R. E. Wildung
	W. K. Winegardner (5)
	Technical Information (5)

Publishing Coordination (2)

BIBLIOGRAPHIC DATA SHEET	
101 J202 DIDLIUGHAFHIG DATA SHEET	NUREG/CR-4130
EE INSTRUCTIONS ON THE REVERSE	ENL=3379
TITLE AND SUBTITLE	3 LEAVE BLANK
ICEDF: A Code for Aerosol Particle Capture in Ice	
Compartments	4 DATE HEPORT COMPLETED
(MONTH YEAR
AU(THORIS)	July 1 1985
P. C. Owczarski	& DATE REPORT ISSUED
R. I. Schreck	September 1985
W. K. Winegardner	A PROJECT TASE WORK INIT NUMBER
Parific Northwest Laberatory	
P.O. Box 999	B FIN OR GRANT NUMBER
Richland, WA 99352	B2444
	Les Tres DE MERCH
Division of Engineering Technology	
Office of Nuclear Regulatory Research	Topical
U.S. Nuclear Regulatory Commission	E PERIOD COVERED (Inclusive dates)
Washington, DC 20555	and the second second second second
2 SUPPLEMENTARY NOTES	
This report describes the technical bases and was developed to serve as a tool for calculating pa	use of computer code ICEDF. ICEDF rticle retention in pressurized
This report describes the technical bases and was developed to serve as a tool for calculating pa water reactor (PWR) ice compartments during severe serves as a complete user's guide for the most rece A complete code description, code operating instruc- the use of ICEDF, and a summary of a parameter sens code ICEDF.	use of computer code ICEDF. ICEDF rticle retention in pressurized accidents. This report also nt stand-alone version of ICEDF. tions, code listing, examples of itivity study support the use of

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

> 120555078877 1 IANIRI US NRC ADM-DIV OF TIDC POLICY & PUB MGT BR-POR NUFEG W-501 BASHINGTON DC 20555

FOURTH CLASS MAIL POSTAGE & FEES PAID USNRC WASH D C PERMIT No. G 67