UCLEAR REGUL

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

50-327/328

D

November 8, 1996

LICENSEE: Tennessee Valley Authority

FACILITY: Sequoyah Nuclear Plant, Units 1 and 2

SUBJECT: SUMMARY - NOVEMBER 4, 1996, MEETING WITH TVA TO BRIEF THE STAFF ON THE STATUS OF THERMO-LAG FIRE BARRIER UPGRADES AT SEQUOYAH

On November 4, 1996, representatives of the Tennessee Valley Authority (TVA) met with members of the NRC staff in Rockville, Maryland. The staff requested this meeting to discuss with TVA the status of the Thermo-Lag fire barrier corrective action program at the Sequoyah Nuclear Plant (SQN) and the three-year slippage in the schedule for completion of the program. A list of attendees is given in Enclosure 1. Copies of the handouts provided by TVA are given in Enclosure 2.

TVA representatives discussed the Thermo-Lag testing program they conducted in order to gain the necessary confidence that use of additional Thermo-Lag material in the upgrades would be prudent. This testing included fire endurance testing, material property and composition testing, ampacity (current carrying capacity) derate testing, and seismic testing.

There are approximately 4,400 linear feet of single conduit configurations and 1,650 square feet of special configurations that utilize Thermo-Lag at SQN. On the basis of its test results, TVA believes that approximately 2,100 feet of the linear configuration Thermo-Lag can be qualified as is. The remainder of the fire barriers will need to be upgraded by addition of material. Standard designs have been developed and detailed walkdowns will be required to verify the qualification of the 2,100 feet of linear barrier and to apply the standard designs to the remaining configurations. TVA stated that most of these walkdowns (as well as during the installation of the additional material) would require erection of temporary scaffolding and much of this work would be in proximity to sensitive equipment. The sensitive equipment is mostly electrical and instrumentation. During the meeting, the TVA representatives could not characterize how many of the barriers were in close proximity to sensitive equipment.

TVA plans to train and use a number of relatively small installation teams to ensure quality work and to minimize risk of plant upsets while the plarts are operating, which will be throughout most of the walkdowns and installation of the upgrades. There is also concern regarding this work jeopardizing required system/component availability during outage periods. TVA noted the differences between performing Thermo-Lag upgrades at Watts Bar (single unit) prior to the plant receiving its operating license and performing the upgrades at SQN with at leas? one unit operating (most of the time with both units operating).

9611180023 961108 PDR ADOCK 05000327 F PDR The installation effort is expected to require approximately 110,000 personhours of direct support and approximately 11,000 person-hours of engineering support. The walkdowns are scheduled to start within the next several months and finish in late 1999. Total cost over the next three fiscal years is estimated at about \$9 million. The staff had requested, in advance of the meeting, that TVA be prepared to discuss other planned/budgeted capital and O&M projects with which the Thermo-Lag upgrade is competing. This information can be found in Enclosure 2.

The staff requested specific information from TVA regarding documentation of the integrated program plan/schedule that could be reviewed by NRC inspectors at the plant site to determine whether or not TVA had complied with 10 CFR 50, Appendix B, Criterion XVI, *Corrective Action*, requiring **prompt** corrective action of conditions adverse to quality. TVA agreed to make this information available to the staff. The staff informed TVA that it is still concerned about the length of the Sequoyah Thermo-Lag corrective action program and the significant delay in TVA's previously proposed completion schedule (i.e., October 1999 vs. October 1996).

The staff questioned TVA's decision to resolve the Thermo-Lag issues at it's Watts Bar Nuclear Plant, at that time a Near-Term Operating License plant, prior to resolving them at Sequoyah, an operating plant. There was speculation by some staff members that more preliminary work could have been performed at Sequoyah during the past few years in parallel with the testing program. The staff requested an historical breakdown of resources expended by TVA on Therm²Lag resolutions by site (Browns Ferry, Watts Bar, and Sequoyah) and year since the identification of the technical concerns by the staff in 1992 and a breakdown of the projected resources to be expended until all Thermo-Lag issues are resolved. The staff requested the breakdown by site because TVA made its presentation in the context of the TVA-wide program.

Finally, the staff requested a comprehensive accounting of the amounts of installed Thermo-Lag in relation to the sensitive equipment that TVA is concerned about disrupting during this project.

Original signed by

Ronald W. Hernan, Senior Project Manager Project Directorate II-3 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Docket Nos. 50-327 and 50-328

Enclosures: 1		Attendance List
2		TVA Handout
cc w/onclosure	c .	See next name

DOCUMENT NAME: G:\SQN\MEETSUM.114 To receive a copy of this document, indicate in the box: "C" * Copy without attachment/enclosure

E - Lopy	FRICH BLUGGIMMETTL/ DIRLUGGIT	C R - HO CODY	and the second	
OFFICE	PDII-3/PM	PDII-3/LA	SPSB/BC Cult	PD11-3/PD C
NAME	RHernen 11	BClayton Ale	TMarsh & M	FHebdontan In
DATE	11/ 8/96	11/ 7/96	11/04/96	11/ 8 196

OFFICIAL RECORD COPY

-2-

HARD COPY(w/Enclosures 1 and 2) Docket File PUBLIC PDII-3 Reading

A

HARD COPY (w/Enclosure 1) OGC ACRS

E-Mail(w/Enclosure 1) F. Miraglia (FJM) R. Zimmerman (RPZ) A. Thadani (ACT) S. Varga (SAV) B. Sheron (BWS) G. Holahan (GMH) J. Zwolinski (JAZ) E. Jordan (JKR) T. Marsh (LBM) S. West (KSW) F. Hebdon (FJH) R. Jenkins (RVJ) L. Tran (LN1) L. Whitney (LEW1) P. Madden (PMM) G. Tracy (GMT) E. Merschoff (EWM) R. Hernan (RWH) B. Clayton

150075

Mr. Oliver D. Kingsley, Jr. Tennessee Valley Authority

cc:

Mr. O. J. Zeringue, Sr. Vice President Nuclear Operations Tennessee Valley Authority 6A Lookout Place 1101 Market Street Chattanooga, TN 37402-2801

Mr. Mark O. Medford, Vice President Engineering & Technical Services Tennessee Valley Authority 6A Lookout Place 1101 Market Street Chattanooga, TN 37402-2801

Mr. R. J. Adney, Site Vice President Sequoyah Nuclear Plant Tennessee Valley Authority P.O. Box 2000 Soddy Daisy, TN 37379

General Counsel Tennessee Valley Authority ET 10H 400 West Summit Hill Drive Knoxville, TN 37902

Mr. Raul R. Baron, General Manager Nuclear Assurance and Licensing Tennessee Valley Authority 4J Blue Ridge 1101 Market Street Chattanooga, TN 37402-2801

Mr. Pedro Salas, Manager Licensing and Industry Affairs Tennessee Valley Authority 4J Blue Ridge 1101 Market Street Chattanooga, TN 37402-2801

Mr. Ralph H. Shell, Manager Licensing and Industry Affairs Sequoyah Nuclear Plant Tennessee Valley Authority P.O. Lox 2000 Soddy Daisy, TN 37379

SEQUOYAH NUCLEAR PLANT

Mr. J. T. Herron, Plant Manager Sequoyah Nuclear Plant Tennessee Valley Authority P.O. Box 2000 Soddy Daisy, TN 37379

Regional Administrator U.S. Nuclear Regulatory Commission Region II 101 Marietta Street, NW., Suite 2900 Atlanta, GA 30323

Mr. Mel C. Shannon Senior Resident Inspector Sequoyah Nuclear Plant U.S. Nuclear Regulatory Commission 2600 Igou Ferry Road Soddy Daisy, TN 37379

Mr. Michael H. Mobley, Director Division of Radiological Health 3rd Floor, L and C Annex 401 Church Street Nashville, TN 37243-1532

County Executive Hamilton County Courthouse Chattanooga, TN 37402-2801

ATTENDEES

NRC/TVA MEETING ON NOVEMBER 4, 1996 REGARDING THERMO-LAG

Name	Affiliation
Ron Hernan	NRC/NRR/DRPE/PD II-3
Kent W. Brown	TVA - Sr. Elect. Engr., Corp
Mark Henry Salley	TVA - Sr. Engr., Corp
Craig Butcher	TVA - Elect. Engr. Mgr., SQN
James K. Rochelle	TVA - Civil Engr., Corp
John K. Gates	TVA - Project Manager
Michael J. Lorek	TVA - Mech. Engr. Mgr., SQN
Mark J. Burzynsky	TVA - Engr. & Matls Mgr SQN
Jon R. Rupert	TVA - Engr. & Tech. Supp., SQN
Raul R. Baron	TVA - Gen. Mgr. NA&L, TVAN
Ralph H. Shell	TVA - Mgr., Lic & Ind Affairs
Ronaldo V. Jenkins	NRC/NRR/EELB - Elect. Engr.
Linh N. Tran	NRC/NRR/DRP, Lead Proj. Mgr.
Fred Hebdon	NRC/NRR/DRP, PD 2-3
Jim Smith	TVA - SQN Licensing Supervisor
Patrick Madden	NRC/NRR/DSSA, Fire Prot. Engr.
K. Steven West	NRC/NRR/DSSA, Fire Prot. SL
L. B. Marsh	NRC/NRR/DSSA, Chief, SPLB
Brian Sheron	NRC/NRR, Acting Assoc. Dir.
Theresa Sutter	Bechtel, Licensing Engr.
Mike Schoppman	Florida Power & Light, Beth.
E. A. Thompson	Florida Power & Light, PE

ENCLOSURE 1

Tennessee Valley Authority

Sequoyah Nuclear Plant TVA/NRC Thermo-Lag Meeting November 4, 1996

Sequoyah Nuclear Plant TVA/NRC Thermo-Lag Management Meeting November 4, 1996 Agenda

Introduction	M. J. Burzynski
TVA Thermo-Lag Testing Plan	
- Fire Protection	M. H. Salley
- Ampacity	K. W. Brown
- Seismic	J. K. Rochelle
Thermo-Lag Application to SQN	M. J. Lorek/C. R. Butcher
Thermo-Lag Schedule	J. K. Gates
Summary	J. R. Rupert

Sequoyah Nuclear Plant

Introduction

Sequoyah Nuclear Plant Introduction

2

· TVA Strategy

4

- Research to bound testing
- Testing
- Internal standards
- Design
- Implementation
- TVA Perspective
 - Browns Ferry
 - Watts Bar
 - Sequoyah
- Schedule

0.

- Why we changed
- Where we will be in '97

Sequoyah Nuclear Plant

Thermo-Lag Testing

Sequoyah Nuclear Plant TVA Thermo-Lag Testing Plan

- TVA Integrated Thermo-Lag Program
 - WBN Unit 1 TVA Nuclear (TVAN) lead plant
 - BFN Units 2 and 3
 - * Cable rerouting
 - * Thermo-Lag intake pumping station
 - SQN Units 1 and 2 final TVAN plant
 - · Prototype for TVA Nuclear testing
 - Qualification and upgrade
- Multi-disciplined approach to resolve related issues
 - Fire protection rating
 - Ampacity derating
 - Seismic adequacy

TVA Nuclear Testing Position

- NRC/NRR meeting, October 7, 1992
- NRC GL 86-10, Supplement 1. March 25, 1994
- Regulatory Information Conference, May 4, 1993
- ACRS Subcommittee meeting, November 9, 1993
- ACRS Full Committee, December 9, 1993
- ASME International Joint Power Generation Conference, October 1995
- TVA continues to share testing with industry (NEI)

Sequoyah Nuclear Plant Thermo-Lag Testing Fire Protection

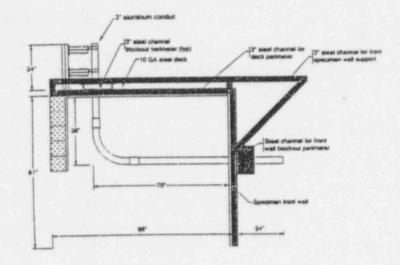
- Fire Endurance Testing Phase I
 - Developed testing methodology and acceptance criteria
 - Started construction, October 1992
 - Conducted testing, December 1992 through April 1993
 - * Fundamental one-hour configurations
 - * Six full-scale fire tests
 - * Basic conduits
 - · Basic air drops
 - * Basic junction boxes

· Fire Endurance Testing Phase II

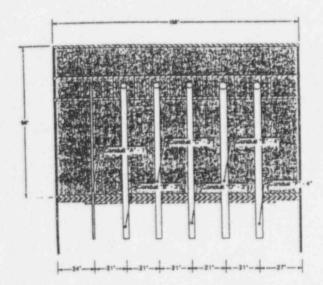
- Started construction, June 1993
- Conducted testing, September 1993 through October 1993
 - * Cable trays and advanced one-hour configurations
 - * Seven full-scale fire tests
 - * Three cable tray tests
 - Four SQN configurations
 - Boxed and ganged conduits
 - Improved junction box design

Sequoyah Nuclear Plant Thermo-Lag Testing Fire Protection

- Fire Endurance Testing Phase III
 - Started construction, October 1994
 - Conducted testing, December 1994 through January 1995
 - Conduit, cable tray, junction box (basic three-hour configurations)
 - * Two full-scale tests
 - · Four-hour, ten-minute rating


Fire Endurance Testing Phase IV

- Started construction, November 1995
- Conducted test, January 1996
 - * SQN material properties
 - * Thermogravimetric Analysis (TGA)
 - * Infrared (IR) Spectroscopy
 - * SQN/WBN June 15, 1995 update to GL 92-08 RAI
 - · Effects of cable fill in conduit
 - · Effects of banding


Sequoyah Nuclear Plant Thermo-Lag Testing Fire Protection

- January 1996 Test Results
 - OMEGA Point Laboratories Report issued March 20, 1996
 - Qualified SQN vintage material
 - Qualified 3-inch conduit protected with a single layer of nominal 5/8-inch Thermo-Lag 330-1
 - · Qualified existing bands on 3-inch and larger conduct
 - Developed relationship for conduit cable fill and thermal performance

6

Sequoyah Nuclear Plant Thermo-Lag Testing Fire Protection

January 1996 Fire Test Results (cont.)

Conduit	Size	Thermo-Lag 330-1 ERFBS	Cable Fill (lbs./ft.)	Conduit Surface Delta Tave (deg F)	Conduit Surface Deita Tmax (deg.F)
A	1"	Min. 1/2" TGA = ?	1	157	161
в	3"	Nom. 3/8" TGA = " Nom. 5/8" TGA = "		248	300
C	3"	Min. 1/2" TGA = ?		221	275
D	3**	Min. 1/2" TGA = ?	2.70	199	238
E	4"	Min. 1/2" TGA = ?	0.0	178	210
F	4**	Min. 1/2" TGA = v	0.0	189	230

Sequoyah Nuclear Plant Thermo-Lag Testing Fire Protection

- Summary
 - Existing Thermo-Lag performance
 - · SQN original installation is high quality
 - * Limiting conduit (1-inch) approximately 40-minute rating
 - Unique configurations upgrading
 - TVA received approval for Thermo-Lag ERFBS, October 1995
 - NRC NUREG-0847, Supplement 18
 - Testing has been thorough and systematic

- TVA Test Program Overview
- · Results and Issues

* *

Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

- Thermo-Lag Test Program
 - No original manufacturer deratings used
 - TU derating applied to single open-top trays
 - TVA test programs address
 - * Single conduits (single layer and upgrade)
 - · Boxed multiple conduits
 - · Covered trays
 - · Stacked trays

Thermo-Lag Test Program

- Testing based on IEEE P-848, "Procedure for the Determination of the Ampacity Derating of Fire Protected Cables"
- TVA program led the industry on numerous issues
 - Conduit
 - · Effect of conduit emissivity
 - · Effect of number of conductors
 - Non-standard configurations
 - Three-hour systems
 - Tray
 - Non-standard configurations
 - * Three-hour systems

Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

- Thermo-Lag Test Program
 - Final ampacity derating factors
 - Single conduits (includes 5% margin to address emissivity)
 - * 5/8-inch, 1-hour 7%
 - * 3/8-inch + 3/8-inch, 1-hour 7%
 - 5/8-inch + 3/8-inch, 1-hour 8%
 - * 330-1/770-1, 2 inch and larger, 3-hour 18%
 - · Boxed conduits
 - * Unistrut frame, 1-hour 12%
 - * Direct mounted, 1-hour 26%

Thermo-Lag Test Program

- Final ampacity derating factors

Tray

٦

- * Open top, 1-hour (TU test) 32%
- * Sheet steel-covered, 1-hour 40%
- * Stacked trays common enclosure, 1-hour 41%
- * 330-1/770-1, 3-hour 48%

Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

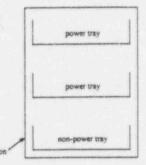
 Four questions from August 29, 1996 WBN request for additional information (RAI)

- Confirm absence of tray cover on specimen 7.1 baseline
- Cure time of wrapped specimen 7.3
- Simultaneous testing of two specimens
- Margin

Issue Number One

Confirm absence of tray cover on specimen 7.1 baseline

- · Testing of an open tray confirmed in four sections of the report
 - Test plan
 - Sequence and Procedure
 - List of test configurations
 - Description of test articles
 - Photographs


Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

splice loc

Issue Number Two

Cure time of wrapped specimen 7.3

- Original spacing 8 inches (tray bottom-to-tray top)
- Altered spacing 6-1/2 inches (bottom tray-tomiddle tray)
- Spacing restored and enclosure spliced
- Shortened splice cure has insignificant impact
 - Low percentage of the barrier affected by the splice (4%)
 - Location of the splice next to non-power tray
 - Elevated temperature exposure beginning October 4

Issue Number Two

Cure time of wrapped specimen 7.3

- Assembly chronology
 - August 30, 1994 Begin application of ERFBS with altered spacing between lower trays
 - September 7, 1994 Initial completion
 - September 8, 1994 Altered spacing deemed unacceptable, spacing restored with "splice"
 - September 9, 1994 Splice completed
 - October 4, 1994 Assembly placed in test enclosure and energized
 - October 6, 1994 Ampacity evaluation completed

Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

Issue Number Three

Simultaneous testing of two specimens

- Simultaneous testing had no effect
 - Hottest conduit in specimen 7.4 was away from assembly 7.1
 - Left- and right-side external temperatures within 0.2°C

Assembly 7.4		Assembly 7.1
	36" minimum	

Issue Number Four

Margin

- · Cables not reanalyzed with new multipliers
- Minimal impact expected
 - No wrapped power cable trays
 - Little change in conduit derating factors
- TVA Design Standard includes new multipliers

Sequoyah Nuclear Plant Thermo-Lag Testing Ampacity

Summary

- Development of test standard
- Numerous configurations evaluated
- Internal standards will ensure acceptable installation

- Objective
 - Describe TVA static, dynamic, and acceptance tests and application of test results for seismic/structural qualification of Thermo-Lag 330-1 ERFBS
- Requirements
 - Seismic II/I protection for safety-related equipment, components, and electrical cables
 - Account for Thermo-Lag mass and stiffness effects in qualification of enclosed electrical raceway systems
- Testing
 - Static (mechanical property)
 - Dynamic (shake table)
 - Lot acceptance (receipt inspection)

- TVA Milestones
 - Nov 94 Submitted static (mechanical property) and dynamic (shake table) test reports to NRC
 - Mar 95 Responded to Dec 94 RAIs describing plans for:
 - · New WBN enclosures and replacement of BFN enclosures
 - · Evaluation and upgrade of SQN enclosures
 - * Thermo-Lag enclosure design standards based on TVA tests
 - * Acceptance testing for density and shear strength
 - Installation per TVA General Specification (G-Spec) and plantspecific design output
 - Apr 95
- NRC WBN site audit of Thermo-Lag Seismic Adequacy

TVA Milestones

-	Oct 95	Completed	WBN	Thermo-Lag	installation	(DCN closed)
---	--------	-----------	-----	------------	--------------	--------------

- Oct 95 NRC IN 95-49 Thermo-Lag seismic adequacy and TVA test results
- Dec 95 Completed BFN Thermo-Lag replacement (DCN closed)
- Sep 96 Submitted revised response to Dec 94 RAI for SQN

- Static (Mechanical Property) Tests at Singleton Laboratory (SL), September 1994
 - Specimens fabricated by TVA; joints cured 30 days
 - Procedures per ASTM standards to extent possible; special fixtures developed
 - Tested worst case conditions (125°F and minimum curing time)
 - Submitted SL Report, November 11, 1994
 - Strength/stiffness properties needed for analysis
 - Comparison to TSI data (IN 95-49)

· Dynamic (Shake Table) Tests (Wyle Laboratory, September 1994)

- Cable tray, conduit, air drop fixtures and enclosures fabricated by TVA; cured 30 days
- Required Response Spectra (RRS) enveloped WBN requirements
- Simulated two OBEs followed by one SSE triaxial input
- Resonance search tests before and after proof tests (to assess changes)
- Tested at 125°F and minimum (30-day) cure time
- Submitted Wyle Report, November 11, 1994
- Video reviewed during WBN audit
- Test Response Spectra enveloped RRS in axes and frequency ranges
- Specimens performed very well (no significant damage)

- Material Lot Acceptance Tests (Singleton laboratory, March -August 1995)
 - Tests for each lot of material used at WBN and BFN
 - Board specimens tested for density and in-plane shear strength
 - Pre-formed (curved) panel specimens tested for density
 - Shear strength tests at 125°F
 - First tests provided basis for acceptance criteria in G-Spec (included material from lots used in TVA-sponsored fire, ampacity, and seismic tests)
 - SL Report, September 26, 1995 (Over 200 lots tested) (One 1-1/4 inch thick board lot rejected for low density)
 - Additional lot acceptance tests planned for SQN upgrade material

- TVA Civil Design Standard
 - Scope: Thermo-Lag 330-1 enclosures installed or upgraded per TVA G-Spec
 - Qualification by attribute comparison to dynamic test specimens and spectra
 - Allowable stresses based on static test minimum strength values
 - Modulus of elasticity and shear modulus values based on average test values
 - Density for boards (72 pcf) and pre-formed curved panels (84 pcf) based on mean plus one standard deviation of phase ! acceptance test data
 - Stress checks for enclosure qualification by analysis and analytical methods (correlated)

- TVA Civil Design Standard
 - Methods for qualifying enclosed raceways for added mass and stiffness
 - Reviewed during WBN Scismic Adequacy Audit, April 1995
 - Used to qualify WBN and BFN enclosures
 - Resulted in minor structural enhancements and span limits for Thermo-Lag enclosures qualified by TVA fire tests
 - To be applied for SQN Thermo-Lag designs

Summary

- TVA static, dynamic, and acceptance tests provided basis for seismic/structural qualification of Thermo-Lag enclosures and enclosed raceways at WBN and BFN
- Mechanical property/density values from TVA tests more specific than TSI data
- Mechanical properties from TVA tests lower than TSI properties (IN 95-49)
- WBN and BFN enclosures installed per TVA G-Spec and plant-specific design output
- Conservative tests: at maximum operating temperature (125°F) and minimum curing time (30 days)
- Application of TVA Civil DS resulted in minor structural enhancements and span limits for Thermo-Lag enclosures qualified by TVA fire tests (minor impact on enclosure design) (no significant impact on fire or ampacity qualification)
- TVA Civil DS and G-Spac to be applied for SQN designs

Sequoyah Nuclear Plant

Thermo-Lag Application to Sequoyah

· Current wrapped configurations

- 4374 linear feet of single conduit (1 inch, 1-1/2 inch, 2 inch, 2-1/2 inch, 3 inch, and 4 inch)
- 1646 square feet of special configurations
 - * Four boxed conduit configurations (three 4 inch, one 2 inch)
 - Twenty junction boxes
 - * Three cable trays
- · Reduction allowed by test results
 - 2132 linear feet of 3 inch and 4 inch conduit will be qualified as is
 - 2242 linear feet of 1 inch, 1-1/2 inch, 2 inch, and 2-1/2 inch conduit will require upgrade
 - 1646 square feet of special configurations will require upgrade

Sequoyah Nuclear Plant Thermo-Lag Testing Application

Upgrade implementation plan

- Walkdowns of installed Thermo-Lag will be required to verify acceptability
 - · Verification of design attributes (32 required by RAI)
 - Installation constructibility
 - * Civil support considerations
- A significant percentage of installed Thermo-Lag is on conduit runs near the ceiling of each elevation of the auxiliary building which will require a significant amount of scaffolding to access

- Scaffolding will have to be constructed around sensitive equipment
 - * RCP undervoltage and underfrequency relays
 - * S/G pressure transmitters
 - 120V AC vital instrument power boards
 - * 125V DC vital battery boards
 - 6.9kV shutdown boards
 - * Component cooling water pumps
 - * 480V MOV boards
 - 6900V/480V shutdown transformers

Sequoyah Nuclear Plant Thermo-Lag Testing Application

- · Engineering effort required to resolve Thermo-Lag
 - Estimated 13,000 man-hours for Fiscal Year '97
 - Scoping walkdowns account for 10% of this estimate
 - Approximately 90 cables require ampacity review
 - Civil Engineering required to evaluate ERFBS supports
- Efforts best accomplished by dedicated teams of reasonable size to ensure consistency and high quality

- Walkdown attributes
 - Thermo-Lag installations will be walked down
 - Dedicated, specially-trained team consisting of fire protection engineers, electrical engineers, civil engineers, modifications engineers, and operations
 - Special scaffolding required, some in close proximity to sensitive equipment
 - Team will perform detailed documented inspections of existing installation for attributes such as:
 - * Correct thickness
 - Correct surface texture
 - * Cracks or shrinkage in material
 - * Visible gaps or separation from adjacent materials
 - · Compliance with requirements to cover intervening items

Sequoyah Nuclear Plant Thermo-Lag Testing Application

Walkdown attributes (continued)

0

- * Presence of mechanical fasteners and compliance with space rules
- * Presence of surface voids (unacceptable)
- Presence of surface delaminations (unacceptable)
- · Adequacy of civil support systems
- · Protection of mechanical fasteners and civil supports
- * Water damage and the need to use a protective coating
- Need for weep holes (junction boxes)
- * Document the acceptability of single conduits ≥ 3 inches
- * Initiate minor maintenance documents to correct minor deficiencies
- * Document required upgrades to be made
- · Verify constructability of upgrade configurations

- Engineering analysis to support upgrade configurations
 - Existing configurations will be evaluated and those found compliant to requirements will be returned to service
 - Currently estimated that approximately 2100 feet of conduit will be acceptable as-is and returned to service following documentation from walkdowns
 - Ampacity evaluations of approximately 90 power cables
 - Civil evaluations of structural support systems
 - Fire protection evaluations of fire barriers to conform to requirements (GL 86-10 evaluations)
 - Creation of entire new drawing series to document installation details
 - Potential cable rerouting
- · Two design change notices per and planned
 - One for removal of material no longer required
 - One for upgrade of fire barriers

Sequoyah Nuclear Plant Thermo-Lag Testing Application

- Thermo-Lag reduction
 - Installations identified by evaluations as not required can be removed
 - Material will be retained to evaluate acceptability of past installations
 - Verify presence of stress skin material
 - Verify assembly was pre-buttered at time of initial installation

Training of team members

- 9

- Improved training based on lessons learned from WBN
- Extensive training of engineering and modifications individuals
 - Requirements for inspections
 - * Requirements for installations
 - ° Clear understanding of requirements
 - * Consistent direction from engineering staff
 - · Promotes a strong and effective team
- Highest quality can be achieved through smaller installation teams
- · Consistency of installations and retention of lessons learned

Sequoyah Nuclear Plant Thermo-Lag Testing Application

- Implementation of fire barrier upgrades
 - Additional 11,000 man-hours estimated for engineering support
 - Modification estimates near 111,000 man-hours for implementation
 - Scaffolding will be required in the same sensitive areas previously described
 - Installation is very labor intensive
 - To ensure quality construction, a crew of 10-12 insulators with previous Thermo-Lag installation experience will be utilized with close supervision
 - Most locations will be difficult to work in
 - Final document closure following installation and verification
 - Integration of resources with other site projects
 - Balance Thermo-Lag upgrades with other reliability issues
 - Multi-year business plans

1

Sequoyah Nuclear Plant

Thermo-Lag Schedule

Sequoyah Nuclear Plant Thermo-Lag Schedule

- · Majority of implementation nonoutage
- · Spring and Fall outages in '97 dictate Engineering resources
- · Application is specialized work
- Management concerns

- Capital Projects Three-Year Plan
- O&M Projects Three-Year Plan
- Implementation i. auxiliary building

Sequoyah Nuclear Plant

Summary

Sequoyah Nuclear Plant Summary

- · Overall TVA systematic approach
- · Thermo-Lag installation details
- · Implementation considerations for quality of work
- Schedule reflects a balanced approach to address reliability and regulatory issues

SEQUOYAH O&M PROJECTS LIST

FISCAL YEARS 1997-1999

لله حد

1

PROJECT TITLE	OUTAGE	SCHED	FY 1997	FY 1958	FY 1999
Tech Spec Upgrade (Includes Procedure Upgrade)			\$696	\$1,407	\$1,441
Work Management System Data Bases			\$802	\$518	\$416
ISI Support	U1C8	Jun-97	\$165		
Erosion/Corrosion	U1C8	Jun-97	\$187		
Coatings		Sep-97	\$214		
Raw Water Inspection		Sep-97	\$140		
Erosion/Corrosion	U2C8		\$144		
ISI Support	U2C8		\$85		
Drawing Backlogs			\$735	\$1,110	
Thermolag Enhancements			\$748	\$3,076	\$2,996
II SQ960654PER Resolution (Partial Mods)		Sep-97	\$449		
DCN Closeout	U1C8		\$426	\$200	
Relief Valve Issue	U2C8		\$193	\$303	
U1 & Common Relief Valve Issue	U1C9			\$250	\$500
Loss of Voltage Relay, Annunciator Main Bus	U1C8	Apr-97	\$3		
U1 Replace Flow Switches			\$12	TBD	TSD
Control Air for ABGTS		Jul-97	\$180		
Thermal Barrier Isolation VIvs	U1C8	Apr-97	\$41		
Ecolochem			\$516		

10/31/96 11:22 AM Om97-99a

.

SEQUOYAH O&M PROJECTS LIST

FISCAL YEARS 1997-1999

PROJECT TITLE	OUTAGE	SCHED FINISH	FY 1997	FY 1998	FY 1999
PROJECTS TO IMPROVE RELIABILITY					
MCR Annunciator		Jul-97	\$81		
Power Circuit Breakers	U2C8		\$11	\$20	
Replace Doors C49 and C50				\$104	
SCWS Pump Discharge Iso Valves	U1C8	Apr-97	\$13		
SCWS Pump Discharge Iso Valves	U2C8		\$11	\$10	
Con Demin Waste		Sep-97	\$85		
NASH Relief Valve Drain Pipe	U2C8		\$51	\$26	
No. 7 HDT Optimization			\$24	\$133	
U1 Upgrade Rad Monitor Software		Jul-97	\$55		
U2 Upgrade Rad Monitor Software		Sep-97	\$55		11
Sight Glass Replacement	U2C8		\$45	\$39	
No. 7 Heater Drain Tank Flow in MCR	U1C8	Apr-97	\$23		
No. 7 Heater Drain Tank Flow in MCR	U2C8		\$23	\$5	
U1 No. 3 HDTP Seal Injection Lot Delta P Alarm		Jul-97	\$15		
ERCW Traveling Screens			\$19	TBD	
Various Reach Rod Operated Valves			\$11	TBD	TBD
Press Control Vivs 77-430,431	U1C9		\$20	TBD	TBD
Press Control VIvs 77-430,431	U2C8		\$20	TBD	
Positioner for 2-PCV-47-189	U2C8		\$12	\$8	
Interlock Gen Output Breaker to MOD	U2C8		\$14	\$12	
Add T-Drains to 35 MOVs	U2C8		\$30	TBD	TBD

10/31/96 11:22 AM Om97-99a

PROJECTS LIS	07 1000
O&M	VEADS 1007
SEQUOYAH (FISCAL

PROJECT TITLE	BOATUO	FINISH SCHED	7661 YR	8661 Y J	6661 YF
U2 AMSAC Test Switch		79-nul	\$22		
Change Elev Benchmark Liquid Level Gauge	U1C8	Apr-97	\$16		
U1 AMSAC Test Switch		Jun-97	\$22		
Feedwater Heater Isolation Logic	U2C8		\$42	\$6	
System Descriptions		Sep-97	\$30		
Future Modifications				\$500	\$700
Miscellaneous O&M		TBD	\$14		
TOTAL			\$6,500	\$7,727	\$6,053

0

17/31/96 11:22 AM Om97-99a

.

SEQUOYQH CAPITAL PROJECTS LIST

FISCAL YEARS 1997 - 1999

PROJECT TITLE	OUTAGE	SCHED	FY 1997	FY 1998	FY 1995
OPERATOR WORK AROUNDS					
REPL MOTOR OPERATORS 1-FCV-47-180 & 181	U1C9	************************		TBD	TBD
REPL MOTOR OPERATORS 2-FCV-47-180 & 181	U2C8	**********	60	TBD	100
FLOW MODIFIER 1-FM-142A TERRY TURBINE CNTRL	UIC8	Apr-97	68		
FLOW MODIFIER 2-FM-142A TERRY TURBINE CNTRL	U2C8		53	TBD	
REPLACE ICE CONDENSER GLYCOL CHILLERS				3,297	485
POST UIC7 ARROW-HART ISSUES		Nov-96	36		
HEAT TRACE RECORDERS FOR FREEZE PROTECTION		Jan-97	28		
U1C8 ARROW-HART ISSUES	UIC8	Apr-97	2,224		******
U2C8 ARROW-HART ISSUES	U2C8		211	************************	
CVCS VENTING	UIC9	***************		615	248
CVCS VENTING	U2C9	***********************		125	738
GLYCOL CHILLERS INSTRUMENTATION				249	
INSTALL NEW MFP MINIFLOW VALVE NEW ORFICE AND NEW CONTROLLERS	U1C9	************************		350	300
INSTALL NEW MFP MINIFLOW VALVE NEW ORFICE AND NEW CONTROLLERS	U2C8	*********	200	400	50
RHR SYSTEM DISCHARGE PIPING WATER HAMMER (GAS ENTRAINMENT)	UIC8	Apr-97	350	*********	**************
RHR SYSTEM DISCHARGE PIPING WATER HAMMER (GAS ENTRAINMENT)	U2C8		191	159	*********
POST U2C7 ARROW-HART ISSUES		Nov-96	355	**********************	
REPL ARROWHART CONTACTORS (FY97 MONEY IN PCN'S 2048, 2158, 2159, & 3031)			ABOVE	1,150	1,400
SUBTOTAL OPERATOR WORK AROUND®	***		3,776	6,345	3,221
REPLACEMENT OF OBSOLSTE EQUIPMENT	-				
MAIN TURBINE SUPERVISORY INSTR UI	UIC9			TBD	TBD
MAIN TURBINE SUPERVISORY INSTR U2	U2C9			TBD	TBD
OBSOLETE RECORDERS	U2C8		165	TBD	
REPLACE AUX AIR COMPRESSORS				TBD	******
POWER SUPPLY 1-PX-3-142	UIC8	Apr-97	14	*********	*******
REPLACE CRD COOLER CONTROLLERS UI		Jun-97	98	**********************	
REPLACE CRD COOLER CONTROLLERS UI		Jul-97	94	*****	

10/31/96

١.

SCHED FINISH 1997 OUTAGE 1998 1999 **PROJECT TITLE** FY FY FY **REPLACE DUNHAM BUSH TIMER TMR-103** Jun-97 63 **REPLACE S&K FLOW INDICATING XMITTERS UI** U1C8 Apr-97 245 **REPLACE S&K FLOW INDICATING XMITTERS U2 U2C8** 200 TBD **OBSOLETE EQUIPMENT** DETAIL 1.000 1,000 AUXILIARY POILER RECORDER AND CONTROLS UPGRADE 300 **OBSOLETE RECORDERS U1C8** May-97 405 **REPLACE MICRO R 100 RECORDERS** 200 REPLACE MICRO R 100 RECORDERS 200 SUBTOTAL REPLACEMENT OF OBSOLETE EQUIPMENT 1.284 1.700 1,900 **CHEMISTRY & RAD PROTECTION UPGRADES** RESOLVE PAS SYS PROBLEMS Jul-97 307 RESOLVE PAS SYS PROBLEMS Jul-97 294 INSTALL CABLE AND CONDUIT TO POWER PLASMA SPECTROMETER 200 SECONDARY SAMPLING AND INSTRUMENT Feb-97 1.019 SECONDARY SAMPLING AND INSTRUMENT 2,542 50 INSTALL DATA ACQUISITION SYSTEM 703 REPLACE ERCW CHLORINATION SYS 50 1.063 REPLACE RCW CHLORINATION SYSTEM 981 LOWER COMPARTMENT COOLER COILS 325 SUBTOTAL CHEMISTRY & RAD PROTECTION UPGRADES 5,928 0 1,606 FIRE PROTECTION ISSUES CSST A OIL RETAINING CURB Jan-97 176 **UPGRADE FIRE PROTECTION SYS** 2,562 200 FIRE DETECTION IN PASF Jul-97 332 SUBTOTAL FIRE PROTECTION ISSUES 3.070 200 0 VARIOUS BUILDING UPGRADES REACTOR BLDG ROOF UPGRADE 140 140

SEQUCY H CAPITAL PROJECTS LIST

FISC VEARS 1997 - 1999

SEQUOYQH CAPITAL PROJECTS LIST

FISCAL YEARS 1997 - 1999

PROJECT TITLE	OUTAGE	SCHED	FY 1997	FY 1998	FY 1999
SOLAR BLDG ELEVATOR INSTALLATION		Jul-97	75		
ALPINE VILLAGE UPGRADE		Jui-97	100	************************	
SOLAR BUILDING UPGRADE		Jul-97	100		
PLANT OFFICE BUILDING UPGRADE		Jul-97	350		
SUBTOTAL VARIOUS BUILDING UPGRADES			765	140	0
ELECTRICAL PENETRATION CHANGEOUTS					
ELECTRICAL PENETRATIONS	U1C8	May-97	2,005		
ELECTRICAL PENETRATIONS U2C8	U2C8		640		
REPLACE ELECTRICAL PENETRATIONS (FY97 MONEY IN PCN'S 2174 & 3080)			ABOVE	2,440	300
SUBTOTAL ELECTRICAL PENETRATION CHANGEOUTS			2,645	2,440	300
STEAM GENERATOR PRESERVATION		********			
RETUBE GLAND STEAM CONDENSER	UIC8	Apr-97	122	**********************	***********
CONDENSER RETUBE PROJECT	U1C8	Jun-97	23,596	**********	
CONDENSER RETUBE PROJECT	U2C7	Dec-96	200		
INSTALL S/G N16 MONITOR	UIC9	**********************		175	75
INSTALL S/G N16 MONITOR	U2C9			<u>50</u>	200
SUBTOTAL STEAM GENERATOR PRESERVATION		**********************	23,918	225	275
UPGRADE/REBUILD OF PLANT EQUIPMENT					
REBUILD J-A ERCW PUMP & MOTOR		Feb-97	487		
REPLACE SCSA COMPRESSORS		Jul-97	600		
REPLACE WASTE GAS ANALYZER		Jul-97	325		
SUBTOTAL UPGRADE/REBUILD OF PLANT EQUIPMENT		*****	1,412	0	0
OUTAGE IMPROVEMENT					
LOWER CONTAINMENT COOLING	UIC9	**********************		26	85
LOWER CONTAINMENT COOLING	U2C9				32
CRDM DUCT REPLACEMENT AT RPV HEAD	UIC8	May-97	91		***************

SEQUOYQH CAPITAL PROJECTS LIST

FISCAL YEARS 1997 - 1999

PROJECT TITLE	OUTAGE	SCHED FINISH	FY 1997	FY 1998	FY 1999
PRESSURIZER SAFETY VALVES	UIC9		1,399	TBD	TBD
PRESSURIZER SAFETY VALVES	U2C8	*****	701	699	
SUBTOTAL OUTAGE IMPROVEMENT			2,191	725	117
ICE COND FLOOR MODIFICATIONS					
ICE COND FLOOR MODIFICATION	U1C8	***************************************	666	600	650
ICE COND FLOOR MODIFICATION	U2C9	**********************		1,450	1,350
SUBTOTAL ICE COND FLOOR MODIFICATIONS	******	*****	666	2,050	2,000
PROJECTS TO IMPROVE RELIABILITY	******			 	
GENERATOR DIAGNOSTIC SYSTEM		***********************	*****************************	200	
GENERATOR DIAGNOSTIC SYSTEM		*******************	***********************	200	****************
REDUNDANT CUNO FILTER	U1C8	Apr-97	142		******
CHANGE MFP CONTROLS FROM MHC TO EHC			***************************************		560
MOTOR DRIVEN AUX FEEDWAYER WATER LEVEL CONTROL VALVES	U2C9	**********************	***********************	250	355
INSTALL BEARING LUBE WATER UPGRADE SYSTEM (CCW)		*****************	502	**********************	
CHANGE MFP CONTROLS FROM MHC TO EHC	U2C10	************************	**********	***********************	100
MOTOR DRIVEN AUX FEEDWATER WATER LEVEL CONTROL VALVES	U1C9		************************	545	60
STATION BATTERY BANK REPLACEMENT		Dec-96	42		***************
STM. GEN. FEEDWATER INTERFACE PIPING	U1C9			1,000	506
STM. GEN. FEEDWATER INTERFACE PIPING	U2C9				1,737
PMP FLOODING ISSUE		Jul-97	150		
CABLE DRIVE FOR TRANSFER SYSTEM	U2C9	*****	300	620	**********
UPGRADE AIRBORNE RAD MONITORS-(CAMs)			**********************	561	
NO. 2 FEEDWATER HEATER - AUTO BYPASS TO CONDENSER	UIC9			200	92
NO. 2 FEEDWATER HEATER - AUTO BYPASS TO CONDENSER	U2C9			75	255
REPLACE RAD MONITOR 0-RE-090-122		Aug-97	298		
480V BOARD ROOM SUPPLEMENTAL COOLING				285	185
480V BOARD ROOM SUPPLEMENTAL COOLING				250	185
ROD POSITION INDICATING SYSTEM	U1C9			125	550

9

SEQUOYQH CAPITAL PROJECTS LIST FISCAL YEARS 1997 - 1999

PROJECT TITLE	OUTAGE	SCHED	FY 1997	FY 1998	FY 1999
ROD POSITION INDICATING SYSTEM	U2C9			150	600
YARWAY ARC VALVE REPLACEMENT	U1C9	**********************		650	85
YARWAY ARC VALVE REPLACEMENT	U2C9	**********		200	550
REPLACEMENT OF THE 125V DC DIESEL GENERATOR BATTERIES		***********************		620	330
MAIN GENERATOR VOLTAGE REGULATOR REPLACEMENT	U1C9	*********************		600	400
MAIN GENERATOR VOLTAGE REGULATOR REPLACEMENT	U2C9	**********************		100	900
SUPER SHORT CYCLE MODIFICATION	UIC8	Apr-97	450	100	900
FEEDWATER HEATER SHROUD UPGRADE	UIC9		430	190	50
FEEDWATER HEATER SHROUD UPGRADE	U2C9	************************		170	260
DIGITAL MFW CONTROL SYSTEM	UICIO	************************		735	
DIGITAL MFW CONTROL SYSTEM	U2C10	*********************		133	1,300
MANHOLE SUMP PUMPS		************************		340	100
SUBTOTAL PROJECTS TO IMPROVE RELIABILITY		*******	1,884	7.896	9.38
CIVIL/SEISMIC ISSUES		****	*****	*****	
CIVIL ISSUE - LARGE BORE PIPING REVIEW		Jan-97	406		*********
CIVIL ISSUE - UNQUALIFIED PIPING IN AUX BLDG UI			90	***********************	*******
CIVIL ISSUE - CCS THERMAL OP MODE U1	UIC9		1,499	*******	
CIVIL ISSUE- U2 CCS OP MODES	U2C8	**********	400	*******	*************
CIVIL ISSUES (FY97 MONEY IN PCN'S 167, 2088, 2084, & 2099)		******************************	ABOVE	2,475	1,485
SUBTOTAL CIVIL/SEISMIC ISSUES	*******		2,395	2,475	1,485
MINOR CAPITAL PROJECTS	******				*********
REPLACE CAT. 2 LIGHTS WITH CAT. 1 SYSTEM 3		******			77575
REPLACE TEMPERATURE SWITCHES		Feb-97	43		TBD
CONTROL BLDG LOW LEAKAGE DAMPERS		1-00-97	43	TDD	*****
REDUNDANT VAPOR EXTRACTOR - MAIN TURBINE OIL TANK	UICIO	******		TBD	TDD
HGH PRESSURE ALARM FOR SAFETY INJECTION	UICIO	*****			TBD
REPLACE FT'S ON EGTS & CONTAINMENT AIR RETURN FANS	UICIO				TBD
SPENT FUEL BRIDGE CRANE HOIST	01010	*********			TBD

.

SEQUOYQH CAPITAL PROJECTS LIST

FISCAL YEARS 1997 - 1999

PROJECT TITLE	OUTAGE	SCHED	FY 1997	FY 1998	FY 1999
EQUALIZATION VALVES ON HIGH PRESSURE FILTERS PDS-47-12, 17-41	U1C9			TBD	TBD
EQUALIZATION VALVES ON HIGH PRESSURE FILTERS PDS-47-12, 17-41	U2C9			TBD	TBD
AFWPT 1A-S OIL DRAIN SAMPLE VALVE	UIC8	Apr-97	15	*****	
ADD LOOP L-77-1 (RCDT LEVEL) TO PLANT COMPUTER		************			TBD
HEAT TRACE & INSULATE 1-RE-90-106/112 LINES		Feb-97	84		
HEAT TRACE & INSULATE 2-RE-90-106/112 LINES		Dec-96	84	*******	
FIRE DETECTION @ AUX BLDG HVAC ROOMS		Jan-97	127		
REPLACE LUNDELL ANNUNCIATOR UI		Jul-97	150		
REPLACE LUNDELL ANNUNCIATOR U2		Jan-97	77	***********************************	
REPLACE SECURITY BACK-UP DIESEL FUEL TANK		****************		TBD	TBD
FIFTH DIESEL SECURITY PROTECTION		Nov-96	44	***********	
EMERGENT PCN 0282		TBD	52		
MINOR CAPITAL WORK		*******	DETAIL	1,000	1,000
SUBTOTAL MINOR CAPITAL PROJECTS	*****	********	676	1,000	1,000
PURCHASE OF TAGGED EQUIPMENT					
TAGGED EQUIPMENT			DETAIL	350	350
MANSEL LEVEL MONITOR SYSTEM			58		
TORBO-TOC TURBINE OIL CONDITIONER			77		
D/G DATA ACQUISITION SYSTEM			25		
RCS VACUUM PUMP			50		
X-RAY ANALYZER			130		
PIPING VIBRATION MEASUREMENT TRANSDUCER			<u>10</u>		
SUBTOTAL PURCHASE OF TAGGED EQUIPMENT		******	350	350	350
PLANT COMPUTER CHANGEOUT		********			
INTEGRATED COMPUTER SYSTEM (ICS)	U1C8	Apr-97	4,689		
INTEGRATED COMFUTER SYSTEM (ICS)	U2C7	Nov-96	<u>282</u>		
SUBTOTAL PLANT COMPUTER CHANGEOUT			4,971	0	0

SEQUOYQH CAPITAL PROJECTS LIST

FISCAL YEARS 1997 - 1999

PROJECT T?TLE	OUTAGE	SCHED	FY 1997	FY 1998	FY 1999
ENVIRONMENTAL COMPLIANCE			Î		
PCB RISK REDUCTION				2.149	
SUBTOTAL ENVIRONMENTAL COMPLIANCE		*******	0	2,149	0
MAINTENANCE IMPROVEMENT					
CVCS VALVE RELOCATION IN ACCUMULATOR ROOM	U1C9			300	TBD
CVCS VALVE RELOCATION IN ACCUMULATOR ROOM	U2C9	*******************		300	TBD
FOUR ADDITIONAL RCCA'S	U1C9			275	150
FOUR ADDITIONAL RCCA'S	U2C9	******************		250	<u>175</u>
SUBTOTAL MAINTENANCE IMPROVEMENT			0	1,125	325
PERSONNEL SAFETY					
ADDITION OF PLANT ACCESS PLATFORMS FOR MSVV'S	UIC9			500	100
ADDITION OF PLANT ACCESS PLATFORMS FOR MSVV'S				120	580
SUBTOTAL PERSONNEL SAFETY		*****	0	620	680
MANAGEMENT & MISCELLANEOUS					
EMERGENT WORK		**********************	1,000	1,500	1,500
CAPITAL SUPPORT		***********************	4,400	4,000	4,000
CAPITALIZED WORK REQUESTS			500	500	500
SUBTOTAL MANAGEMENT & MISCELLANEOUS		*********	5,900	6,000	6,000
TOTAL			61,831	37,046	26,133

.