ADVANCED MEDICAL SYSTEMS OPERATING PROCEDURE

PACKAGING OF SOLID RADIOACTIVE WASTE

ISP-25 Rev. 1/95

Page 1 of 5

- 1.0 PURPOSE: To ensure that solid radioactive waste is safely and properly packaged in preparation for shipment.
- 2.0 PRECAUTIONS AND LIMITATIONS:
 - 2.1 This procedure applies to all contaminated solid material that must be disposed of at an authorized radioactive waste disposal site.
 - 2.2 All waste is to be compacted in order to reduce the volume unless a significant airborne hazard will result.
 - 2.3 No liquid material is to be packaged. The waste disposal site will not accept liquids. Liquids must be solidified using approved methods prior to transportation.
 - 2.4 Full face respirators should be worn when handling and compacting material which has been in the Hot Cell.
 - 2.5 To reduce airborne contamination, material which has been in the Hot Cell should be bagged before extensive handling or compaction.
 - 2.6 Waste is to be packaged on an ongoing basis. It should not accumulate.
 - 2.7 This procedure requires that protective clothing and personal dosimetry equipment be worn.
 - 2.8 A breathing zone air sample shall be taken during compactor operation to verify adequate respiratory protection.
 - 2.9 Minimize stay time near high level waste materials.

Prepared by: Robert Meschter

Approved by: R mexelite

Date: 1-24-95

9702070190 970127 PDR FOIA ENGLISH96-444 PDR

- 3.0 INSTRUCTIONS:
 - 3.1 Compaction
 - 3.1.1 Waste should be surveyed prior to compaction. Any material reading over 800mR/hr should be segregated and brought to the attention of the RSO.
 - 3.1.2 After meeting all precautions and limitations, load the material into the compactor and compact it.
 - 3.1.3 Once the compactor bag is filled, remove bag from compactor and tape down top flaps.
 - 3.1.4 Survey the surfaces of the bag to insure that no part reads greater than 800mR/hr. If a reading is greater than 800mR/hr, mark the bag with the maximum radiation level found.
 - 3.2 Packaging
 - 3.2.1 Prepare a steel drum for loading by removing the lid, inserting a poly bag liner and placing the drum on kraft paper on the step off line in the air lock.
 - CAUTION: Be careful not to contaminate the drum.
 - 3.2.2 A second individual, situated on the clean side of the airlock, is required for packaging.
 - 3.2.3 Move the compacted waste bags out from the lab and place them inside the lined drum. Four bags will easily fit into one drum.
 - 3.2.4 Survey the drum surfaces to insure that no reading is greater than 800mR/hr.
 - 3.2.5 Fold the excess poly liner onto the top of the bags and replace the drum lid.
 - 3.3 Contamination Control
 - 3.3.1 Wipe down the drum exterior prior to surveying.

Page 3 of 5

- 3.3.2 Smears of the drum exterior shall be taken and recorded on Form ISP-25A. Smears should be taken on the drum top and ring area, on the side of the drum and along the bottom of the drum.
 - 3.3.3 No drum shall be removed from the airlock if any smears shows contamination in excess of 1,000 dpm/100cm².
 - 3.3.4 If any smear indicates contamination greater than 1,000 dpm/100cm², then the drum must be decontaminated and resurveyed until the contamination levels are below the above limits.
- 3.3.5 If the drum surface contamination is below the limit, then it should be marked with an ID number and removed from the airlock to a low background area for surveying.
- 3.4 Survey
 - 3.4.1 Survey the package surfaces and record on Form ISP-34A the highest readings found on the top, side and bottom surfaces. If the survey meter readings are in the upper 90% of the scale, the next higher scale should be used.
 - CAUTION: Readings that fall within 20% of the maximum (800mR/hr) will be verified with at least one other instrument.
 - 3.4.2 Mark the package hot spot with spray paint.
 - 3.4.3 Survey the package at a distance of one (1) foot from all surfaces. For purposes of documentation, divide the package into quadrants and record the highest reading in each quadrant on Form ISP-25A.
 - 3.4.4 Compute the average of the four (4) quadrant readings and record on Form ISF-25A.
 - 3.4.5 Survey the package at a distance of one (1) meter and record under Transport Index on Form ISP-34A.
 - NOTE: Not needed for LSA exclusive use.

- 3.5 Package Description
 - 3.5.1 Apply a permanent ID number sticker to the package and record it on Form ISP-34A.
 - 3.5.2 Weigh the package and record the weight.
 - 3.5.3 Describe the contents of the drum (i.e. compacted trash, cell waste, cardboard, wood, used protective clothing, etc.).
 - 3.5.4 Apply a "Class A Waste" label to the top of the package.
- 3.6 Storage
 - 3.6.1 Transfer the package to the designated waste storage area and place it so that the ID number is readily visible.
 - 3.6.2 High activity packages (greater than 200mR/hr contact) should be segregated from lower activity packages.

3.7 Documentation

3.7.1 Calculate the Curie content of the package using the 6CE formula following:

mR/hr@lfoot = 6 x Curie content x Gamma Energy

or Curies = <u>mR/hr @ one foot</u> 6 x Gamma Energy

EXAMPLE: For Cobalt-60

Curies = $\frac{mR/hr @ one foot}{6 x (1.33 + 1.17)}$ or $\frac{mR/hr @ one foot}{15}$

SOLID RADWASTE DATA SHEET

ISP-25A

Drum ID#:	Weight:		
Contents:			
	DUBY DEGUL		
<u> </u>	JRVEY RESULTS		
Meter used:	_ Ser.#:	Cal due	:
Surface Readings			
TopmR/hr Bottom_	mR/hr	Sides	mR/hr
Readings @ 1 foot (by quadra	ants)		
mR/hrmR/hr	mR/hr	mR/	hr
Average 1 foot reading	mR/hr		
Transport Index:	Curie com	ntent:	Ci
SURFA	CE CONTAMINATION		
Topdpm/100cm ² Bottom	dpm/100cm ²	Sides	dpm/100cm ²
Highest smear	dpm/100cm ²		
Performed by:	Date:		
eviewed by RSO: Date:			