PACIFIC GAS AND ELECTRIC COMPANY

IP G WE

77 BEALE STREET . SAN FRANCISCO, CALIFORNIA 94106 . (415) 781-4211 . TWX 910-372-6587

JAMES D. SHIFFER VICE PRESIDENT NUCLEAR POWER GENERATION

July 30, 1985

PGandE Letter No.: HBL-85-035

Mr. John A. Zwo'inski Chief Operating Reactors Branch No. 5 Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.C. 20555

Re Docket No. 50-133, OL-DPR-7 Humboldt Bay Power Plant, Unit No. 3 Additional Information on SAFSTOR Decommissioning

Dear Mr. Zwolinski:

NRC letters dated January 23 and February 14, 1985 requested additional information on SAFSTOR decommissioning of Humboldt Unit 3. PGandE provided responses on February 28, March 20, April 3, and July 11, 1985 (HBL-85-005, HBL-85-009, HBL-85-014, and HBL-85-030, respectively).

A partial response was provided in HBL-85-005 to Item 75 of the January 23 request. PGandE letter HBL-85-014 stated that a complete response to that item would be submitted by the end of July 1985. Enclosed is a complete response to Item 75. This submittal completes PGandE's responses to the NRC's questions on SAFSTOR decommissioning.

Kindly acknowledge receipt of this material on the enclosed copy of this letter and return it in the enclosed addressed envelope.

Sincerely. for J. D. Shiffer

Enclosure

cc: P. B. Erickson J. B. Martin Service List (Decommissioning)

> 8508140218 85073 PDR ADOCK 05000

ENCLOSURE

PACIFIC GAS AND ELECTRIC COMPANY HUMBOLDT BAY POWER PLANT UNIT 3 CRITICALITY ANALYSIS FOR SAFSTOR DECOMMISSIONING

04365/0035K

.

CONTENTS

Sec	tion	Page
Α.	Introduction	1
Β.	Overall Description	2
	1. Existing Rack Configuration	2
	2. Proposed Modifications	2
c.	Material Considerations	3
D.	Nuclear Considerations	4
	1. Overview	4
	2. PGandE Criticality Analysis With CASMO-2E	4
	3. General Electric Criticality Analysis with MERIT	12
Ε.	Conclusions	14
Refe	erences	24
App	endix - MERIT Input Listing	A-1

.

.

- 1 -

No.	Title	Page
1	Humboldt Bay Power Plant Storage Racks	15
2	Fuel Assembly Protective Can (Upper View)	16
3	Fuel Assembly Protective Can (Lower View)	17
4	Fuel Assembly Protective Can (Cross-section)	18
5	Typical Core Loading Diagram (Plan View)	19
6	Core II Loading Diagram - Nine Arrays with Zero Pin Pitch Separation	20
7	Core III Loading Diagram - Nine Arrays Separated by One Pin Pitch	21
8	Cores XIII, XIV, XV, XVII, and XIX - Nine Unit Assemblies Separated by One Pin Pitch and Boral Plates	22
9	MERIT Model	23

LIST OF FIGURES

.

.

LIST OF TABLES

No.	Title	Page
1	Effect of Outer Water Gap on K-infinity	5
2	Effect of Fuel Rod Pitch on K-infinity	5
3	Effect of Poison Inner Dimension and Pitch on K-infinity	6
4	Effect of Boral Thickness on K-infinity	7
5	Effect of Fuel Density on K-infinity	7
6	Optimal Pitch Search for Poison Tube Design	8
7	Characteristics of Critical and Exponential Lattice Experiments and the CASMO-2E Calculated K-effective	9
8	Comparison of K-effective for the Eight Cores From Reference 3	11
9	Summary of General Electric High Density Fuel Storage Rack Experience	13

04365/0035K

.

- 111 -

A. INTRODUCTION

Item 75 of NRC letter dated January 23, 1985 requested the following information:

"Discuss the likelihood of a reactivity accident in the spent fuel storage pool due to heavy load drop or seismic event. If sufficient likelihood (10-6 per year) of such events exists, then, assuming step and/or ramp reactivity insertions in the stored spent array due to reduction in undermotion of stored fuel in the pool, in turn due to fuel reconfiguration initiated by a heavy load drop or strong seismic event, calculate offsite radiological consequences assuming:

- a) upward spray of all pool water without the presence of the building roof, and
- b) pool boiling without spray and without the presence of the building roof."

PGandE's response dated February 28, 1985 stated the following: "PGandE is actively evaluating design alternatives that would prevent possible criticality due to seismic and heavy load events." This report provides a complete response to Item 75.

This report describes the design, fabrication, and safety analysis performed for the addition of neutron-absorbing material in the Humboldt Bay Power Plant (HBPP) Unit 3 spent fuel storage pool. The purpose of the modification is to ensure subcriticality following any event which results in a rearrangement of fuel assemblies from the existing criticality safe storage rack configurations.

The modification consists of enclosing each fuel assembly in a can fabricated from a neutron-absorbing material, so that a k-effective greater than 0.95 can not be achieved for any possible fuel configuration.

The criticality analysis associated with this project was prepared by Pacific Gas and Electric Company (PGandE). The goal of this analysis was to find the appropriate boron loading to ensure subcriticality. The General Electric Company performed an independent analysis using their own approved calculational methods and has verified the PGandE results.

B. OVERALL DESCRIPTION

1. Existing Rack Configuration

The HBPP spent fuel storage racks have a total capacity of 486 fuel assemblies. This includes 351 central pool locations in 88 groups of 4*, and 135 peripheral pool locations in 45 groups of 3. The central racks are designed to individually support each fuel assembly. The peripheral racks support fuel assemblies in groups of three.

The central storage racks (Figure 1) are constructed of aluminum and consist of pairs of storage units approximately 5 feet high and 12 inches square. Each storage unit is able to hold four fuel assemblies. The peripheral racks are similarly constructed except that they can hold either three fuel assemblies or one full fuel storage can.

The fuel storage racks are welded and/or bolted to cross members of aluminum channels. The fuel storage racks are spaced to be "criticality safe."

There are currently 390 irradiated fuel assemblies in the HBPP spent fuel storage pool, with exposures ranging from 1,307 to 22,876 MWD MTU.

2. Proposed Modifications

In order to preclude criticality in the spent fuel storage pool following an event which results in movement or damage to the fuel assembly storage racks, each fuel assembly will be enclosed in a can fabricated from a neutron-absorbing material. The can will contain an areal density (0.005 gm/cm^2) of boron (B-10) such that a k-effective greater than 0.95 cannot be achieved for any possible configuration.

A drawing of the can is shown in Figures 2, 3 and 4. The walls of the can will be fabricated from Boraltm. Three bands will be attached at the top, middle, and bottom of the can to provide structural strength. Additional support may be provided by corner angles, as necessary, as shown in Figures 2 and 3. A band will be attached to the bottom of the can to prevent the fuel assembly from coming out of the bottom. The top band will be fabricated with locking tabs which will be bent over to prevent inadvertent removal of the fuel assembly from the can. This design will ensure that the poisoned material is an integral part of the fuel assembly.

0436S/0035K

^{* (}However, pool location 64-07 cannot be used due to a bolt protruding into the bottom of this location and inadvertent use of this location is prevented by a triangular plate welded over the top.)

C. MATERIAL CONSIDERATIONS

.

Most of the material used in fabrication of the fuel bundle enclosure can is Boral, which is a thermal neutron poison material composed of boron carbide and 1100-alloy aluminum. Boron carbide is a compound having a high boron content in a physically stable and chemically inert form. The 1100 alloy aluminum is a lightweight metal with high tensile strength which is protected from corrosion by a highly resistant oxide film. The boron carbide and aluminum are chemically compatible and suited for long-term use in the radiation, thermal, and chemical environment of the HBPP spent fuel storage pool.

The Boral is provided in flat sheets and is formed to enclose the full length of each of the four sides of each individual fuel assembly. Physical integrity of the poisoned can is maintained by use of type 304 stainless steel bands which are attached to the Boral with aluminum rivets and encircle the can at the bottom, the approximate center, and the top.

The materials contained in the Boral, as well as the stainless steel, are compatible with all parts of the spent fuel storage system, including the fuel assemblies, the cooling system, the cleanup system, the pool liner, and the storage racks. The useful life of the Boral will exceed 40 years when in contact with the storage pool water. The corrosion resistance of Boral is provided by the protective film on the aluminum cladding that is an integral part of the Boral panels. Testing performed by the Boral supplier confirms that the effects are negligible from general corrosion, galvanic corrosion of the Boral/stainless steel interface, pitting corrosion, stress corrosion, and intergranular corrosion.

Boral is manufactured under the control and surveillance of a computer-aided quality assurance/quality control program that conforms to the requirements of 10 CFR 50, Appendix B, entitled "Quality Assurance Criteria for Nuclear Power Plants."

Boral has been licensed by the USNRC for use in BWR and PWR spent fuel storage racks, and is also used around the world for spent fuel shipping and storage containers.

D. NUCLEAR CONSIDERATIONS

1. Overview

.

The criticality analysis for these proposed modifications was performed by PGandE using the CASMO-2E (Ref. 1) computer code. These calculations were performed using a conservative set of assumptions and resulted in a maximum k-infinity of 0.894.

An independent analysis was then performed by General Electric using their MERIT code. The results of that evaluation indicated a maximum k-infinity of 0.884.

The details, assumptions, and code inputs for each of the analyses are described in the following sections.

2. PGandE Criticality Analysis With CASMO-2E

CASMO-2E is a multigroup, two-dimensional (2-D) transport theory, fuel assembly analysis code. It was used to design a B-10 loading for poison cans to be attached to the fuel assemblies in the HBPP Unit 3 spent fuel storage pool. A 25-energy group library, supplied with CASMO and based on ENDF/B-III cross-sections, was used. A worst case analysis was performed to bound all possible fuel assembly rearrangements by analyzing an infinite array of the most reactive fuel assembly in its most reactive configuration. The effects of moderation between assemblies and within assemblies were analyzed to obtain the most reactive geometry. Additionally, effects of uncertainties in fuel density and poison can design were analyzed and included in a conservative manner. The following conservative assumptions were made:

- All fuel was assumed to have the highest as-built enrichment (2.52% U-235) and contain the greatest U-235 mass (GE Type III-4).
- All fuel assemblies were at beginning of life (BOL), cold and clean, and contained no gadolinia (no credit for exposure, fission products, or burnable poisons).
- No credit was taken for neutron absorption in the materials of the fuel storage racks, the fuel channel, or the aluminum outside of the B4C containing core of the Boral.
- The 2-D transport calculation assumed an infinite array of infinitely tall fuel assemblies, thus bounding all geometries (no credit for radial or axial leakage).
- Optimal moderation was imposed by varying the gap between assemblies, the inner dimension of the poison can, and the fuel rod pitch within the poison can.

a. Achieving Optimal Moderation

The effect of fuel assembly separation was investigated by analyzing several gap thicknesses between assemblies with as-built lattice dimensions at several B-10 loadings. These results, shown in Table 1, indicate the most reactive situation to be the zero separation case. This is due to the fact that water outside the poison cans serves as a flux trap.

Table 1

EFFECT OF OUTER WATER GAP ON K-INFINITY

(Model - As-Built Lattice, Poison Can 60 Mils Thick, Inner Dimension = 4.54 inches)

Outer Water Gap (cm)	0.003	B-10 Loading (gm/cm ²) 0.005	0.010
0.0	0.92992	0.86875	0.79089
0.5	0.86889	0.80850	0.73443
1.0	0.81790	0.75703	0.68492
2.0	0.72857	0.66708	0.59912

Using the results from Table 1, a B-10 loading of 0.005 gm/cm^2 was chosen for further investigation. The fuel rod pitch was perturbed to test the effects of moderation within the poison cans. Table 2 results show the assembly to be undermoderated within the poison cans as increasing pitch increases k-infinity.

Table 2

EFFECT OF FUEL ROD PITCH ON K-INFINITY

(Model - 0.005 gm B-10/cm², Zero Outer Water Gap, Poison Can 60 Mils Thick, Inner Dimension = 4.54 inches)

K-infinity			
0.87237			
0.86875			
0.79619			
	K-infinity 0.87237 0.86875 0.79619		

04365/0035K

The maximum pitch possible is determined by the inner dimension of the poison can. The poison can must fit within a fuel rack storage cell so the 5.125-inch inner dimension of the largest cell serves as an absolute upper bound on the poison can design. The pitch was varied within the poison can area to find the highest k-infinity. The results of this optimal pitch search are shown in Table 3 as well as results for two other poison can dimension cases. These results indicate a maximum k-infinity due to moderation occurs with a maximum poison inner dimension of 5.125 inches and a pitch of 2.1168 cm (98% of the maximum pitch possible for this case).

Table 3

EFFECT OF POISON INNER DIMENSION AND PITCH ON K-INFINITY

(Model - 0.005 gm B-10/cm², Zero Outer Water Gap, Poison Can 60 Mils Thick)

Poison Inner Dimension Maximum Pitch	4.8935 in. (2.06 cm)	5.039 in. (2.125 cm)	5.125 in. (2.16 cm)
% of Maximum Pitch			
100 99 98 97 95 90 83 79 74 69	0.88908 0.89149 0.89056 0.88557 0.87558 0.84465	0.89097 0.89575 0.89695 0.89292 0.88379 0.85513	0.89238 0.89771 0.89943 0.89580 0.88702 0.85939 0.80635 0.75818 0.70369 0.64559

The Boral poison was modelled as being 60 mils thick with the mass density needed to obtain an areal density of 0.005 gm B-10/cm². Using a mass density typical of Boral manufacturing, a thickness of 11 mils was necessary to reach the same areal density. This case was explicitly modelled at the previously determined optimal moderation conditions to account for a lack of conservatism in the model due to Boral thickness. The results are shown in Table 4.

Table 4

EFFECT OF BORAL THICKNESS ON K-INFINITY

[Model - 0.005 gm B-10/cm², Zero Outer Water Gap, Poison Can Inner Dimension = 5.125 inches, Pitch = 2.1168 cm (optimal)]

Boral Thickness	K-Infinity
60 mils	0.89943
11 mils	0.90217

The HBPP Unit 3 fuel has a nominal density of 10.3 gm/cc with an upper bound of 10.5 gm/cc. The final consideration of the worst case analysis was to model the extreme fuel density in the optimal moderation. The maximum k-infinity was found to be 0.90624. Table 5 illustrates the magnitude of this effect.

Table 5

EFFECT OF FUEL DENSITY ON K-INFINITY

[Model - 0.005 gm B-10/cm², Zero Outer Water Gap, Poison Can 11 Mils Thick, Inner Dimension = 5.125 inches, Pitch = 2.1168 cm (optimal)]

Fuel Density (gm/cc)	K-Infinity
10.3	0.90217
10.5	0.90624

b. Analysis of Final Design

Additional analyses were performed to model the actual dimensions of the poison can as designed. The design for the poison can specifies an outer dimension of 5.0 inches and a total Boral thickness of 100 mils. The tube material will consist of roughly 16 mils of a mixture of 35 weight percent B4C and 65 weight percent aluminum, sandwiched between two aluminum sheets 42 mils thick. The CASMO-2E model neglects the sandwiching aluminum and conserves the inner dimension of the poison tube design. Results of the optimal pitch search are shown in Table 6. Using optimal moderation and the extreme fuel density results in a maximum k-infinity of 0.894 for the design.

Table 6

OPTIMAL PITCH SEARCH FOR POISON TUBE DESIGN

(Model - 0.005 gm B-10/cm², Zero Outer Water Gap, Poison Can 16 Mils Thick, Inner Dimension = 4.8 inches)

Pitch	Fuel Dens	sity (gm/cm ³) 10.5	
2.022 2.00178 1.995 1.99167 1.98156	0.88823 0.89006 0.89018 0.88850	0.89400 0.89412 0.89407	

c. PGandE Benchmark of CASMO-2E

The CASMO-2E prediction of k-effective was tested against 61 experiments using the 25-group production cross-section library. These experiments are uniform cold critical or exponential water-moderated UO2 lattices reported by Strawbridge and Barry (Ref. 2) and by Price (Ref. 3). Table 7 lists these experiments by case number as presented in Reference 2 and by page number as presented in Reference 3. All these cases are UO2 fuel pins with enrichment ranging from 1.3 to 4.0 w/o U-235, an H20:U ratio of from 2.10 to 9.3, and natural boron concentration from zero to 3396 ppm. The mean k-effective value for 59 independent experiments (cases 18 and 19 and pages 169 and 170 of References 2 and 3, respectively, are repeated measurements on identical lattices) is 0.9981. The standard deviation is 0.0100.

An analysis of eight critical cores of close proximity water-moderated fuel storage experiments (Ref. 4) was conducted with the 25-group production cross-section library. These cores are composed of nine assemblies of 14 by 14 fuel pins each with boron/aluminum separation sheets between them, and borated water as moderator. (See Figures 5-8). The CASMO-2E/PDQ evaluation of k-effective for these eight cores is presented in Table 8. The B-10 loading and two sets of KENO results (for comparison) are also listed. The calculated k-effective values have a mean of 1.0014 and a standard deviation of 0.0030.

d. Previous Use of CASMO to Support Licensing Activities

Yankee Atomic Electric Company and Northern States Power are currently performing reload licensing using NRC-approved (Refs. 6, 7) CASMO-based physics methods (Refs. 8, 9).

Duke Power Company has submitted a partially CASMO-based physics method topical (Ref. 10) for NRC review.

TABLE 7

Characteristics of Critical and Exponential Lattice Experiments and the CASMO-2E Calculated K-effective

Case Number		H_0:U	Fuel	Fuel Pellet				Boron				
Number	Enrichment weight %	Vofume Ratio	Density g/cm	Diameter	Clad Material	Clad OD cm	Clad Thickness cm	concen- tration ppm	Lattice Pitch cm	Critical Buckling	CASMO-2	
1	1.311	3.02	7.53	1.5265							K-errecti	
2	1.311	3.95	7.53	1.5265	Â	1.6916	0.0711	0.00	2 2058	20 27		
5	1.311	4.95	7.53	1.5265	ÂÌ	1.6916	0.0711	0.00	2.3598	20.37	0.99438	
5	1.311	3.93	7.52	0.9855	AI	1.6916	0.0711	0.00	2.5128	29.00	0.99765	
6	1.311	4.89	7.52	0.9855	Al	1.1506	0.0711	0.00	1.5588	25.00	0.99748	
7	1.311	2.88	10.53	0.9728	AI	1.1506	0.0711	0.00	1.652ª	25 21	0.99379	
8	1 211	3.58	10.53	0.9728	Al	1.1506	0.0711	0.00	1.558ª	32 59	0.99340	
9	2 700	4.83	10.53	0.9728	AI	1.1506	0.0711	0.00	1.652 8	35.47	0.99//6	
10	2 700	2.18	10.18	0.7620	55-304	0 85 9/	0.0/11	0.00	1.806ª	34.22	0.99/5/	
11	2.700	2.93	10.18	0.7620	\$5-304	0.8594	0.04085	0.00	1.0287	40.75	1.0030/	
12	2.700	3.00	10.18	0.7620	55-304	0.8594	0.04085	0.00	1.1049	53.23	1.00/394	
13	2.700	9.02	10.18	0.7620	55-304	0.8594	0.04085	0.00	1.1938	63.26	1 00199	
14	2.700	10.30	10.18	0.7620	SS-304	0.8594	0.04085	0.00	1.4554	65.64	1.00909	
15	2.700	2.50	10.18	0.7620	SS-304	0.8594	0.04085	0.00	1.5621	60.07	1.01249	
16	2.700	4.51	10.18	0.7620	SS-304	0.8594	0.04085	0.00	1.6891	52.92	1.01015	
17	3.699	2 50	10.18	0.7620	SS-304	0.8594	0.04085	0.00	1.0617	47.5	1.00173	
18	3.699	4.51	10.37	0.7544	55-304	0.8600	0.0405	0.00	1.2522	68.8	0.99663	
19	3.699	4.51	10.37	0.7544	SS-304	0.8600	0.0406	0.00	1.0617	68.3	1,00657	
20	3.699	4.51	10.37	0.7544	\$5-304	0.8600	0.0406	0.00	1.2522	95.1	1.00473	
21	3.699	4.51	10.37	0.7544	SS-304	0.8600	0.0406	456 1	1.2522	95.68 ^D	1.00318	
22	3.699	4.51	10.37	0.7544	SS-304	0.8600	0.0406	709 1	1.2522	74.64	0.99873	
23	3.699	4.51	10.37	0.7544	55-304	0.8600	0.0406	1261 4	1.2522	63.66	0.99698	
24	3.699	4.51	10.37	0.7544	55-304	0.8600	0.0406	1332 7	1.2522	40.99	0.99544	
25	4.020	2.55	9.46	1 1270	55-304	0.8600	0.0406	1475 2	1.2522	38.39	0.99485	
26	4.020	2.55	9.46	1 1270	55-304	1.2090	0.0406	0.00	1. 2522	33.38	0.99349	
34	4.020	2.14	9.46	1 1278	55-304	1.2090	0.0406	3396.3	1 5113	88.0	0.99674	
57	2.460	2.84	10.24	1.0297	55-304	1.2090	0.0406	0.00	1 450	17.2	1.00019	
42	3.000	2.64	9.28	1,1268	55-204	1.2060	0.0813	0.00	1.5113	79.0	0.99208	
43	3.000	8.16	9.28	1,1268	55-304	1.2701	0.07163	0.00	1.555	70.10	1.01783	
45	4.020	2.59	9.45	1,1268	55-304	1.2701	0.07163	0.00	2, 198	50.75	0.99233	
46	4.020	3.53	9.45	1,1268	55-304	1.2701	0.07163	0.00	1.555	69 75	0.98588	
47	4.020	8.02	9.45	1.1268	55-304	1.2701	0.07163	0.00	1.684	85 52	1.00209	
50	4.020	9.90	9.45	1.1268	55-304	1.2701	0.07163	0.00	2.198	92 84	0.99700	
51	2.070	2.84	10.24	1.0297	Al	1.2701	0.07163	0.00	2.381	91 79	1.01207	
52	2 070	2.06	10.38	1.524	Al	1.6010	0.0813	1677.2	1.5113	20.2	1.00051	
53	2 070	3.09	10.38	1.524	Al	1 6916	0.07112	0.00	2.1737	58.0	1 05223	
54	2.070	4.12	10.38	1.524	Al	1 6916	0.0/112	0.00	2.40.52	80.6	1 00740	
55	2.070	6.14	10.38	1.524	Al	1 6916	0.0/112	0.00	2.6162	85.7	0.99/153	
		0.20	10.38	1.524	Al	1 6916	0.07112	0.00	2.9891	77.0	0 9992	
						1.0310	0.0/112	0.00	3.3255	61.6	0 98/67	

^aHexagonal lattices; all others are square.

^bThese bucklings were not measured directly but were inferred from critical loadings.

TABLE 7 (cont'd)

Characteristics of Critical and Exponential Lattice Experiments and the CASMO-2E Calculated K-effective

Case Number or Page Number	Enrichment weight %	H ₂ 0:U Volume Ratio	Fuel Density g/cm	Pellet Diameter cm	Clad Material	Clad OD cm	Clad Thickness cm	Boron concen- tration ppm	Lattice Pitch cm	Critical Buckling m	CASMD-2E k-effective
165	3.006	2.990 [°]	9.299	1,128014	55-304	1 26746	0.0595722	0.0	1 710010		
166	3.006	2.990 ^C	9.299	1,128014	55-304	1 26746	0.0696722	0.0	1.718818	56.6	0.99154
167	3.006	2.990 ^C	9.299	1.128014	55-304	1 26746	0.0696722	670.3	1.718818	36.71	0.98999
168	3.006	3.700 ^c	9,299	1,128014	55-304	1 26746	0.0696722	1336.5	1.718818	18.26	0.98908
169	3.006	3.700 ^c	9.299	1,128014	55-304	1 26746	0.0696/22	0.0	1.819402	65.81	0.98637
170	3.006	3.700 ^C	9,299	1, 128014	55-304	1 26746	0.0696722	4/1.2	1.819402	46.41	0.98667
171	3.006	3.700 ^C	9,299	1,128014	55-304	1.20/40	0.0696722	471.2	1.819402	45.00	0.99109
172	3.006	3.700 ^C	9,299	1,128014	55-304	1.20/40	0.0696/22	995.2	1.819402	26.20	0.98991
173	3.006	4.740 ^C	9,299	1 128014	55-304	1.20/40	0.0696722	1349.0	1.819402	14.62	0.98925
174	3.006	4.740 ^C	9,299	1.128014	55-304	1.20/40	0.0696722	0.0	1.957324	70.49	0.99029
175	3.006	4.740 ^C	9 299	1 128014	55-304	1.20/40	0.0696722	431.0	1.957324	46.34	0.99107
176	3.006	4.740 ^C	9 299	1 128014	55-304	1.26/46	0.0696722	806.0	1.957324	27.70	0.99142
177	3.006	4.740°	9 299	1 120014	55-304	1.26/46	0.0696722	1144.0	1.957324°	12.94	0.99019
178	3,006	6.490°	9 299	1 128014	55-304	1.26/46	0.0696722	0.0	2.169668°	70.22	0.99598
179	3.006	6.490°	9 299	1 128014	55-304	1.26746	0.0696722	289.1	2.169668°	47.61	0.99489
180	3.006	6.490°	9 299	1 120014	55-304	1.26746	0.0696722	604.3	2.169668°	25,22	0.99502
181	3.006	9 229C	9 299	1.120014	55-304	1.26746	0.0696722	772.7	2.169668°	15.05	0.99277
182	3,006	9.229C	9 299	1.128014	55-304	1.26746	0.0696722	0.0	2.465578°	61.73	0.99834
183	3.006	9 229C	9 200	1.128014	55-304	1.26746	0.0696722	173.0	2.465578°	41.18	1.00086
184	3.006	9 229C	9.299	1.128014	55-304	1.26746	0.0696722	260.5	2.465578	32.41	0.99961
185	3.006	9 220C	9.299	1.128014	55-304	1.26746	0.0696722	390.9	2.465578ª	20.51	0.99633
	01000		5.299	1.128014	55-304	1.26746	0.0696722	540.5	2.465578ª	6.04	0.99796

^aHexagonal lattices; all others are square.

^bThese bucklings were not measured directly but were inferred from critical loadings.

^cRecalculated by PGandE to agree with definition given in Reference [2].

Core Number	B&W KENO(a)	B&W "Meesured"(a)	N. SAE KENO(b)	PGandE	Boron Loading. B-10 Density in Boral(d) Sheets. grams/cm ²
11	1.007 ± .004	1.0001 ± .0005	.995 ± .004	1.0039	0
111	.999 ± .004	1.0000 ± .0006	1.009 ± .004	1.0054	0
X111	1.008 ± .005	1.0000 ± .0001	$1.008 \pm .006^{(c)}$ $1.011 \pm .006^{(c)}$ $1.003 \pm .005^{(c)}$	1.0034	5.582 x 10 ⁻³
XIIIa				1.0012	5.603 - 10-3
XIV	1.003 ± .004	1.0001 ± .0001	.999 ± .004 .997 ± .004	1.0001	4.348 × 10 ⁻³
XV	.995 ± .005	.9998 ± .0016	.996 ± .005	0.9956	1 387 - 10-3
XVII	.993 ± .005	1.00 00 ± .0010	.997 ± .004	. 99 97	0.837 - 10-3
XIX	.991 ± .004	1.0002 ± .0010	.995 ± .003	1.0021	0.346 x 10 ⁻³

TABLE 8

Comparison of k-effective for the 8 Cores From Reference [4]

(a) Reference 4, Tables IX and XI.

(b) Reference 5, Table III.

(c)Cases XIII and XIIIa are "combined by Reference 5. The soluble boron concentration in these cases are different; 15 and 18 ppm.

(d)_{B-10} is 19.8 a/o of Boron.

3. General Electric Criticality Analysis With MERIT

MERIT is a Monte Carlo program which solves the neutron transport equation as an eigenvalue or a fixed source problem. This program was written for the analysis of fuel lattices in thermal nuclear reactors. A geometry of up to three space dimensions and neutron energies between 0 and 10 MeV can be handled. MERIT uses cross-sections processed from the ENDF/B-IV library tapes.

A check was made of the results of the PGandE optimum moderation configuration.

The following assumptions and input values were used in this analysis:

- 2.52% enriched fuel (fuel density 10.5 gm/cc, reduced to 10.0422 gm/cc to include gap)
- 2. Fuel pellet radius 0.63373 cm
- 3. Zirconium 2 clad outer radius 0.71501 cm
- 4. Rod pitch 1.995 cm
- 5. Square poison can (outside dimension 12.7 cm) on each bundle
- Channel thickness 0.253 cm (0.10668 cm Al, 0.03965 cm Boral core, 0.10688 cm Al)
- 7. Boral core 35 w/o boron carbide, 65 w/o aluminum
- 8. B-10 areal density 0.005 gm/cm²
- 9. Infinite array of fuel bundles of infinite length
- 10. Water density 1.0 gm/cm3

The MERIT case was run for 35,000 neutron histories and predicted a k-infinity of 0.878767 ± 0.00313 (1 σ). The MERIT code has been benchmarked with numerous criticality experiments and has been shown to underpredict k by 0.005 ± 0.002 (1 σ). Thus, the MERIT-predicted lattice k-infinity for the 5-inch poison can with all uncertainties added would be 0.883767 ± 0.00371 (1 σ).

This is a very conservative upper limit for this case since it assumes the maximum fuel density, the minimum thickness Boral core in the can wall, and that the fuel pins in all cans can expand to the optimum pitch even though they are held in the fuel bundle design pitch by the upper and lower tie plates and the fuel spacers.

A sketch of the MERIT model is shown in Figure 9. A copy of the input file for MERIT is given in the Appendix.

a. MERIT Benchmarking

The qualification of the MERIT program rests upon extensive qualification studies including Cross Section Evaluation Work Group (CSEWG) thermal reactor benchmarks (TRX-1, -2, -3, and -4) and Babcock and Wilcox (B&W) UO2 and PuO2 criticals, Jersey Central experiments, CSEWG fast reactor benchmarks (GODIVA, JEZEBEL), the KRITZ experiments, and comparison with alternate calculational methods. Boron was used as solute in the moderator in the B&W UO2 criticals, and as a solid control curtain in the Jersey Central experiments. The MERIT qualification program has established a bias of 0.005 + 0.002 (1 \mathcal{O}) Δ k with respect to the above critical experiments. Therefore, MERIT underpredicts k-effective by approximately 0.5 percent Δ k.

b. Previous Use of MERIT to Support Licensing Activities

MERIT has been used to license Boral-poisoned high density fuel storage racks at several reactor sites and has then reviewed and checked by the NRC and found to be acceptable. These pites are listed in Table 9.

Plant	Scope of Work	Status
Monticello	13 racks, storage capacity 2,237 spaces	Licensed and in use since April 1978
Browns Ferry 1, 2, and 3	57 racks, storage capacity 10,413 spaces	Licensed and in use since Sept. 1978
Hatch 1 and 2	30 racks, storage capacity 6,026 spaces	Licensed and in use since April 1980
Brunswick 1 and 2	10 racks, storage capacity 3,642	Licensed and in use December 1983
Hartsville Al, A2, Bl, B2	60 racks, storage capacity 11,804 spaces (Plant cancelled)	Approved for installation through GESAR II FDA July 1983
Phipps Bend 1 and 2	30 racks, storage capacity 5,902 spaces (Plant cancelled)	Approved for installation through GESAR II FDA July 1983
Kuosheng 1 and 2	6 racks, storage capacity 1,326 spaces	Scheduled for 1985 installation

Table 9

SUMM ARY OF GENERAL ELECTRIC HIGH DENSITY FUEL STORAGE RACK EXPERIENCE

E. CONCLUSIONS

1

-

-

As demonstrated in the preceeding analyses, the proposed Boral cans will provide a neutron-absorbing material as an integral part of the HBPP fuel assemblies, and will ensure that k-effective will be less than 0.95 for the worst possible rearrangemen of fuel. This analysis was done using conservative assumptions and was independently checked by General Electric.

04365/0035K

.

FIGURE 1 Humboldt Bay Power Plant Storage Racks

LOWER HALF OF TUBE

FIGURE 3 Fuel Assembly Protective Can (Lower View)

*

4

.

.

.

FIGURE 6 Core II Loading Diagram - Nine Arrays With Zero Pin Pitch Separation

.

6

D Fuel Rod Position

FIGURE 7 Core III Loading Diagram - Nine Arrays Separated by One Pin Pitch

FIGURE 8 Cores XIII, XIV, XV, XVII, and XIX -Nine Unit Assemblies Separated by One Pin Pitch and Boral Plates

4

FIGURE 9 MERIT Model

*

REFERENCES

- M. Edenius, A. Ahlin, H. Haggblom, "CASMO-2 A Fuel Assembly Burnup Program Users Manual," Studsvik/NR-81/3 with Revision 1984-09-01.
- L. E. Strawbridge and R. F. Barry, "Criticality Calculations for Uniform Water - Moderated Lattices", Nuclear Science and Engineering, 23, pp. 58-73 (1965).
- Glenn A. Price, "Uranium Water Lattice Compilation Part 1, BNL Exponential Assemblies," BNL-50035, December 30, 1966.
- Hoovler et al., "Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel," Nuclear Technology, <u>51</u>, pp. 217-237
- S. E. Turner and M. K. Gurley, "Evaluation of AMPX-KENO Benchmark Calculations for High-Density Spent Fuel Storage Racks," Nuclear Science and Engineering, 80, pp. 230-237 (1982).
- Letter from D. B. Vassallo (NRC) to J. B. Sinclair (YAEC), File NVY-82-157, Docket #50-271, September 15, 1982.
- 7. Letter from R. A. Clark (NRC) to B. M. Musolf (NSP), February 17, 1983.
- E. E. Pilat, "Methods for the Analysis of Boiling Water Reactors Lattice Physics," YAEC-1232, December 1980.
- "Qualification of Reactor Physics Methods for Application to Praire Island Units," NSPNAN-8101, December 1982.
- Duke Power Company, "Nuclear Physics Methodology for Reload Design," DPL-NF-2010, April 1984.

APPENDIX

MERIT INPUT LISTING

.

 .

0		C.	
		C;	C · · ·
	X X XXXXX XX XX X X XX X XXXX X XX X XXXX X X X X X X X X XXXXX	XXXXX XXXXX XXXX XXX X X X X X X X X X XXXXX X X X	

MARCH 1. 1979

PG&E Safe Store MERIT (Input File MERITO3) 5.0 inch Poison Can 0.005 gm B-10/cm² Optimum Fuel Rod Pitch 1.9950 cm 11 Fuel Density 10.5 gm/cc

A-2

3)

PG&E SAFSTOR MERIT

. . .

PAGE 1

CARD 2	NPRETP	1234	IDENT. NO. OF PROBLEM TAPE.
	LSTRT	0	0 . INITIAL START . INCTAB
			1 = RESTART, NO CHANGES . INCT=A
			(IF LCOPY = 1, INCT=8)
			2 # RESTART BUT DO INPUT CALCULATIONS INCT-
			3 = RESTART BUT DO INPUT CALCULATIONS EXCEPT FOR HATERTAL INCOMMATION
	LCONT	0	O OR 1 = GO ON TO MONTE CARLO AFTER BACTA
			2 = GO ON TO BUCOUT AFTER MACIN
	LSTOP	0	0 . DO COMPLETE PROBLEM
			1 = DO INPUT ONLY.
			2 . DO INPUT AND MONTE CADLO ONLY
	LCOPY	0	I = COPY TAPE & TO TAPE & AND USE &
			ACTIVE ONLY IF LSTRT = 1.)
	LSKNS	0	0 = FOR NORWAL POSITIONING TO THE LAST DESTADT CASE
			I . START THE TALLIES ANEW.
			N = USE THE NTH BATCH FOR RESTART
	LSKSV	0	MUST # 77 IF LSKNS DOES NOT # 0 OF ISKNS WILL NOT BE DESEGONES
	ICXTSV	0	0 = RESTART TAPE WILL OF SAVED
			56 . RESTART TAPE WILL NOT BE SAVED
	IMPRD	0	55 = READ NEW SET OF WEIGHTING PARAMETERS WITH NORMAL DESTANT
	IDUMP	1	1 = DUMP MONTE CARLO BLANK COMMON
	NERCV	10	NO. OF RECOVERABLE ERRORS REFORE TERMINATING
			(IF EQUAL TO O NERCY WILL BE SET TO 10)
P	NTSPL	1	NUMBER OF GEOMETRY TEST PLOTS
1			

-

2.3

11

19 JULY 1985

4 4

PAGE 2

11

PGBE SAFSTOR MERIT

.)

.

· · · · ·	-		WEIRER OF RESOLUTION
CARD 3	NOTOR	1000	 NUMBER OF BATTHES.
	RTHRT	0.	THE BATIO DE WEIGHT I EAVEN THE THE THEN AND AND AND AND AND AND AND AND AND AN
		•.	THE OF HEIGHT LEAVING THE THERMAL TALLY RANGE TO THAT OF ENTERING.
	ETHRT	0.	THE FUELD TO WHITCH WILL BE SIDNED TO THE FOLLOWED.)
			THERMAL TALLY DANCE
	ETHRTX	0.	THE MAXIMUM ENERGY NEUTOONS MAY ACUTEVE MULTIE CONTACTINITION TO THE STATE
			THE MALE CONTRIBUTION TO THE THERMAL FLUX TALLY.
CARD 4	LPRB		0 . FISSION DESCENDENT CALCULATION
		-	1 = DIRECT SOURCE CALCULATION
	MODTH	293	MODERATOR TEMPERATURE IN DECREES WELVEN
			(USED TO INTERPOLATE THEPAAL HYDOCEN CONTENTING MEDICE)
	NBGPX	0	NUMBER OF BROAD ENERGY GROUPS
			(IF ONLY ONE, USE NPGPX = 0.)
	JMAXX	4	NLABER OF MACRO ENERGY GROUPS.
	NHMAX	4	NUMBER OF REGIONS.
	MMAX	5	NUMBER OF MATERIALS.
	NSPRG		NUMBER OF SPECIAL REGIONS.
	NFMAX	5	NUMBER OF TALLY REGIONS.
	NLKTLY	0	NUMBER OF LEAKAGE TALLY SETS.
Þ	LTALY	0	NUMBER OF SETS TO BE TALLIED.
2	NBNDX	6	NUMBER OF BOUNDARIES.
	NOMGX	0	NUMBER OF ALBEDO SETS.
CARD 4A	NRX, NRY	3, 3	MAX NUMBER OF RODS IN X AND Y IN LATTICES
	NWTZX	0	NUMBER OF WEIGHTING ZONES
	NERGX	0	MAX NUMBER OF ENERGY WEIGHTING RANGES
	NBR	15	SUM OF BOUNDARIES FOR REGION SPECIFICATION

.)

MINIMUM ENERGY OF EACH MACRO ENERGY GROUP.

 GROUP
 ENERGY
 GROUP
 ENERGY

 1
 1.000000E+06
 3
 6.250000E-01

 2
 5.530800E+03
 4
 0.

19 JULY 1985

. . .

PG&E SAFSTOR MERIT

.

1	SOTOPE		ENDF/8				SIGMA	
1	ID.NO.	NAME	10.NO.		DATE	D	POTENTIAL	
		HI	1269	21	JUNE	1978	2.04476+01	
	10	810	1273	05	MAY	1978	2.1080E+00	
	11	811	1160	05	MAY	1976	5.0350E+00	
	12	C12	1274	05	MAY	1976	4.7300E+00	
	16	016	1276	04	MAY	1976	3.7040E+00	
	131	AL	1193	23	APR	1976	1.3480E+00	
	401	ZIRC-2	1284	23	APR	1976	6.1580E+00	
	2351	U235	1261	21	APR	1976	1.1500E+01	
	2381	U238	1262	12	APR	1976	1.0599E+01	

THE FOLLOWING ISOTOPES HAVE BEEN LOADED FROM CCT TAPE NO. 1234

:)

1 -

MATERIAL DESCRIPTION

MATERIAL NO. 1 FUEL ONE

NO. ISOTOPES 3. TEMP. 293, FIS SPEC. 1, RF 6.3373E-01, DG 1.0000E+00, HEAVY AWT. 236.0

ISOTOPE	CONCENTRATION	SIG M EFF.	ETHRM	IHAAM	LTHRMM	LANMM	LINMM
2351	5.7190008-04	8.94302+02	0.	0	0	0	0
2381	2.183800E-02	7.8847E+00	0.	0	0	0	o
16	4.471100E-02	0.	1.275E+00	0	1	Ö	ñ

MATERIAL NO. 2 ZIRC

NO. ISOTOPES 1, TEMP. 293, FIS SPEC. 1, "RF 0. , DG 0. , HEAVY AWT. 236.0

SOTOPE	CONCENTRATION	SIG M EFF.	ETHRM	IHVYM	LTHRMM	LINMM
401	A 111100E-02	•				

A-5

PAGE 3

11

.

PG&E SAFSTOR MERIT

3

19 JULY 1985 PAGE 4

. . .

		MATE	RIAL NO. 3	MODERATO	R				
₩0.	ISOTOPES 2.	TEMP. 293, F15	SPEC. 1.	RF O.	. DG	0.	. HE	AVY AWT.	236.0
	ISOTOPE	CONCENTRATION	SIG # EFF.	ETHRM	THAN	LTHRMM		LINMM	
	16	3.344400E-02 6.688800E-02	0. 0.	1.275E+00 2.102E+00	0	12	0	0	
		MATE	RIAL NO. 4	BORAL					
₩0.	ISOTOPES 4.	TEMP. 293, FIS	SPEC. 1.	RF 0.	, DG	0.	. HE		236.0
	ISOTOPE	CONCENTRATION	SIG # EFF.	ETHRM	THVYN	LTHRMM	LANMM		
	12	9.5803208-03	0.	2.0005+00					
	11	3.071440E-02	0.	2.000F+00	ő		0	0	
	10	7.587600E-03	0.	2.000F+00	ő		0	0.	
	131	3.637750E-02	0.	0.	õ	ò	õ	ő	
		MATE	RIAL NO. 5	ALUMINUN					
MU.	15010925 1.	TEMP. 293, F15	SPEC. 1.	RF G.	. DG	0.	. HE	WY AWT.	236.0

27

......

.

ISOTOPE	CONCENTRATION	SIG M EFF.	ETHRM	IHVYM	LTHRMM	LANMM	LINMM	
131	6.026610E-02	0.	0.	0	0			

11

1

.

. .

. .

11

5

PGRE SAFSTOR MERIT

GEOMETRY INPUT

.)

..

DIMENSIONS ARE IN CM.

BOUNDARY DATA

BOUNDARY	TYPE	ALBEDO	DESCRIPTION						
1	4	3	PLANE.	۷		0.		1.000000E+00 . X	
2	1	3	PLANE.	×		8.35000CE+00			
3	2	3	PLANE.	۷		0.			
4	2	0	PLANE.	۷		1.0668002-01			
5	2	0	PLANE.	۷		1.463300E-01			
6	2	0	PLANE.	۷		2.530100E-01			

٠

REGION DATA

REGION	BOUNDARY	SPECIAL BOUNDARY	MATERIAL	TALLY SET	G.D	BH	01	02
1	3	1	3	3	1		1	0
					1	2	1	0
					-1	6	4	0
2	4	0	5	5	1	1	2	0
					1	4	3	0
					1	2	2	0
					-1	3	2	0
3	4	0	4	4	1	1	3	o
					1	5	4	0
					1	2	3	0
					-1	4	2	Ő
4	4	0	5	5	1	1	4	0
					1	6	1	0
					1	2	4	0
					-1	5	3	0

PG&E SAFSTOR MERIT

-2)

. .

PAGE

SPECIAL INPUT FOR A SQUARE LATTICE

FOR REGION 1

	LTS NRX NRY MAT IFT IFT XC VC DYC RDF RDC	PS CL SL FL	1 3322111111111111111111111111111111111	3615 3615 9950 9950 6337 7150	TYPE OF SPECIAL REGION (1 = SQUARE LATTICE OF (NUMBER OF ROWS OF RODS I NUMBER OF ROWS OF RODS I MATERIAL NUMBER OF CLADDING TALLY REGION OF CLADDING MATERIAL NUMBER OF FUEL TALLY REGION OF FUEL X COORDINATE OF LOWER LU Y COORDINATE OF LOWER LU LATTICE SPACING IN THE Y RADIUS OF THE FUEL ROD RADIUS OF THE OUTER EDG	CLAD FUEL RODS) IN THE X DIRECTION IN THE Y DIRECTION DING G EFT CORNER EFT CORNER K DIRECTION Y DIRECTION E OF CLADDING	•		
				MATXYS	MATERIAL P	NUMBERS OF ALL THE	RODS IN REGION 1		
	¥/X	1	2	3					
	3	1							1
P	2	;	1	1					
8									
			127	111113	TALLY HEG	IONS OF ALL THE ROD	S IN REGION 1		
	/	÷.	2	3					
	3	1	1						
	2	:	;	1					
		16	163	89.0					
					IMPORTANCE WEIGH	TING, SPLITTING AND	RUSSIAN ROULETTE PARA	METERS.	
					MO	INPORTANCE WEIGHTIN	G OR SPLITTING.		
					WEIGHTING 20	NE PARAMETERS FOR W	EIGHTING ENERGY RANGE	1.	
	2	ONE		INIMUM EIGHT	SURVIVAL WEIGHT	SPLITTING WEIGHT	MINIMUM BEAM STRENGTH	SURVIVAL BEAM STRENGTH	IMPORTANCE WEIGHT
		1	2.5	000E-01	7.5000E-01	0.	2.0000E-01	5.0000E-01	0.
INT	FROM	ATED	-		-1				

POLATED VALUES FOT H-1 SCATTER AT 293.0 REQUIRED O SECONDS

.

THE RANDOM NO. USED TO START THIS CASE WAS 17171274321477413155

٤.,

1

¢

		1	k		
		1	r		
		2	2		
		4		1	
		,	2	1	
		1	u	L	1
		1	i	1	
		1			
		٩	٩		
		ł			
		1			
			Ľ		
		2	2		
		Ľ	s	,	
			2		
		5	3	ľ	ļ
		÷	2		
		١		k	
		1	2		
		ę	2		
			1	i	
	3	e	5	ľ	1
	1				
	3	5	1	ł	
	4			1	
	1	ł		ŝ	
	ŝ	é	8	i	í
	1	ş	٠	,	
	1	ł	ń		

0

SAFSTOR WERIT

CELL REACTION RATE

0000 021 1.08566+04 .021 1.020386+04 .012 3.721265+02 .013 6.622046+02 .025 2.900776+02 .059 7.016416+02 0.000 0.00 GROUP 4 020 9.64946+03 020 9.54946+03 020 9.371726+03 000 2.355766+02 014 3.664896+01 033 8.864896+01 033 8.864896+01 048 0.00 GROUP 3 .014 7.957216+03 .013 7.844686+03 .081 2.228276+01 .029 2.57872401 .022 3.50446+00 .013 8.674186+01 .013 8.674186+01 GROUP 2 1.96827E+03 1.75583E+03 6.95692E+00 3.30537E+01 2.60967E+01 7.35453E+01 1.48065E+00 GROUP 1 000 3.04364E+04 2.91760E+04 6.37941E+02 9.94759E+02 3.56327E+02 8.72429E+02 2.64653E+02 1.48065E+00 TOTAL REACTION VYPE ABSORP110N F15510N N.F15510N SCATTER INELASTIC CAPTURE N2N

= 0.00313 (Fourt 13 0 mo) 6 l C160. K-INFINITE= 8.787676-01

K-EFFECTIVE=8.78767E-01 .0313

K EFF. FOR EACH BATCH USED.

8.7890E-0 8.8340E-0 8.8340E-0
8.8568E-01 8.8568E-01
9.1079E-01 8.8469E-01 8.8927E-01
8.7113E-01 8.4323E-01 8.7108E-01
8.8148E-01 8.7346E-01 9.0602E-01
9.1854E-01 8.8181E-01 8.8121E-01
8.5324E-01 8.5324E-01 8.4042E-01
8.9046E-01 8.8646E-01 8.5400E-01
8.6257E-01 8.7674E-01 8.7112E-01
B 8.93166-01

-

.....

PAGE

**

.

•

18 JULY 1985