COMPANY Houston Lighting & Power P.O. Box 1700 Houston, Texas 77001 (713) 228-9211

October 14, 1985 ST-HL-AE-1389 File No.: G9.17

Mr. George W. Knighton, Chief Licensing Branch No. 3 Division of Licensing U. S. Nuclear Regulatory Commission Washington, DC 20555

> South Texas Project Units 1 and 2 Docket Nos. STN 50-498, STN 50-499 Responses to DSER/FSAR Items Regarding Section 3.6

Dear Mr. Knighton:

The Light

The attachments enclosed provide STP's response to Draft Safety Evaluation Report (DSER) or Final Safety Analysis Report (FSAR) items.

The item numbers listed below correspond to those assigned on STP's internal list of items for completion which includes open and confirmatory DSER items, STP FSAR open items and open NRC questions. This list was given to your Mr. N. Prasad Kadambi on October 8, 1985 by our Mr. M. E. Powell. Note that the item numbers ending with (P) are partial closure only.

The attachments include mark-ups of FSAR pages which will be incorporated in a future FSAR amendment unless otherwise noted below.

The items which are attached to this letter are:

8510180333 851014 PDR ADOCK 05000498

Attachment	Item No.*	Subject
1	F 3.6-1, F 3.6-2 F 3.6-5 (P) F 3.6-7, F 3.6-8 F 3.6-10, F 3.6-22 (P), Q010.018-1	Section 3.6 Fipe Break Analysis Items

* Legend D - DSER Open Item C - DSER Confirmatory Item F - FSAR Open Item

Q - FSAR Question Response Item

PDR

L1/DSER/L

Houston Lighting & Power Company

ST-HL-AE-1389 File No.: G9.17 Page 2

Attachment	Item No.*	Subject
1 (Cont'd)	Q210.020-1(P) Q210.020-2(P) Q231.004-1 Q410.005-1(P)	
	Q231.004-1 Q410.005-1(P)	

If you should have any questions concerning this matter, please contact Mr. Powell at (713) 993-1328.

Very truly yours, INP M. R. Wisenburg Manager, Nuclear Licensing

CAA/bl

Attachments: See above

* Legend D - DSER Open Item C - DSER Confirmatory Item F - FSAR Open Item Q - FSAR Question Response Item L1/DSER/L

ST-HL-AE-1389 File No.: G9.17 Page 3

Hugh L. Thompson, Jr., Director Division of Licensing Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

Robert D. Martin Regional Administrator, Region IV Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 1000 Arlington, TX 76011

*N. Prasad Kadambi, Project Manager U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20814

Claude E. Johnson Senior Resident Inspector/STP c/o U.S. Nuclear Regulatory Commission P.O. Box 910 Bay City, TX 77414

M.D. Schwarz, Jr., Esquire Baker & Botts One Shell Plaza Houston, TX 77002

J.R. Newman, Esquire Newman & Holtzinger, P.C. 1615 L Street, N.W. Washington, DC 20036

Director, Office of Inspection and Enforcement U.S. Nuclear Regulatory Commission Washington, DC 20555

E.R. Brooks/R.L. Range Central Power & Light Company P.O. Box 2121 Corpus Christi, TX 78403

H.L. Peterson/G. Pokorny City of Austin P.O. Box 1088 Austin, TX 78767

J.B. Poston/A. vonRosenberg City Public Service Board P.O. Box 1771 San Antonio, TX 78296 Brian E. Berwick, EsquireAssistant Attorney General for the State of TexasP.O. Box 12548, Capitol StationAustin, TX 78711

Lanny A. Sinkin 3022 Porter Street, N.W. #304 Washington, DC 20008

Oreste R. Pirfo, Esquire Hearing Attorney Office of the Executive Legal Director U.S. Nuclear Regulatory Commission Washington, DC 20555

Charles Bechhoefer, Esquire Chairman, Atomic Safety & Licensing Board U.S. Nuclear Regulatory Commission Washington, DC 20555

Dr. James C. Lamb, III 313 Woodhaven Road Chapel Hill, NC 27514

Judge Frederick J. Shon Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, DC 20555

Mr. Ray Goldstein, Esquire 1001 Vaughn Building 807 Brazos Austin, TX 78701

Citizens for Equitable Utilities, Inc. c/o Ms. Peggy Buchorn Route 1, Box 1684 Brazoria, TX 77422

*Docketing & Service Section Office of the Secretary U.S. Nuclear Regulatory Commission Washington, DC 20555 (3 Copies)

Advisory Committee on Reactor Safeguards U.S. Nuclear Regulatory Commission 1717 H Street Washington, DC 20555

Revised 9/25/85

Note: All copies without drawings except as noted (*). L1/DSER/L

cc:

ATTACHMENT I ST.HL.AE. 1389 PAGE I OF 104

Attachment 1

ATTACHMENT I

OF 124

PAGE 2

3.6 PROTECTION AGAINST THE DYNAMIC EFFECTS ASSOCIATED WITH THE POSTULATED RUPTURE OF PIPING

Pipe failure protection is provided in accordance with the requirements of 10 CFR 50, Appendix A, General Design Criterion (GDC) 4.

In the event of a high- or moderate-energy pipe failure within the plant, adequate protection is provided to ensure that the essential structures, systems, or components are not adversely impacted by the effects of postulated piping failure. Essential systems and components are those required to shut down the reactor and mitigate the consequences of the postulated piping failure. Table 3.6.2-2.

Table 3.6. 2-2 high and gy_ ppendix (LATER) provides several examples of the evaluations made of the effects of postulated pipe failures within the plant. The following sections provide the basis for selection of the pipe failures, the determination of the resultant effects, and details of the protection requirements.

3.6.1 Postulated Piping Failures in Fluid Systems Inside and Outside Containment

Table 3.6.1-1 provides a matrix of plant systems that indicates their classification: high-energy, moderate-energy, essential, or nonessential. Selection of pipe failure locations and evaluation of the consequences on nearby essential systems, components, and structures are presented in Section 3.6.2 and are in accordance with the requirements of 10CFR50, Appendix A, GDC 4. Except for the reactor coolant loop (RCL), selections and evaluations are in accordance with the guidance of Nuclear Regulatory Commission (NRC) Branch Technical Positions (BTP) ASB3-1 and MEB 3-1 (including RG 1.46). For the RCL, Reference 1 provides the basis for the selection and evaluation of pipe breaks.

3.6.1.1 Design Bases. The following design bases relate to the evaluation of the effects of the pipe failures determined in Section 3.6.2.

 The selection of the failure type is based on whether the system is highor moderate-energy during normal operating conditions of the system.

High-energy piping includes those systems or portions of systems in which the maximum normal operating temperature exceeds 200°F or the maximum normal operating pressure exceeds 275 psig.

Piping systems or portions of systems pressurized above atmospheric pressure during normal plant conditions and not identified as high-energy are considered moderate-energy.

Piping systems that exceed 200°F or 275 psig for about 2 percent or less of the time the system is in operation or that experience high-energy pressures or temperatures for less than 1 percent of the plant operation time are considered moderate-energy. 40

In general, whipping ends from a pipe break are restrained so that plastic hinge formation is not allowed to occur. Where a plastic hinge could be formed, the effects are evaluated. Fipe whip restraints are provided wherever postulated pipe breaks could impair the ability of any essential system or component to perform its intended safety functions listed in Section 3.6.1.1.

- The calculation of thrust and jet impingement forces considers any line restrictions (e.g., flow limiter) between the pressure source and break location and the absence of energy reservoirs, as applicable.
- 12. Initial pipe break events were not assumed to occur in pump and valve bodies because of their greater wall thickness and their usual location in the low stress portions of the piping systems.
- 13. Where a system consisting of piping, restraints, and supporting structures is so complex that the assumption of planar motion is neither conservative nor realistic, the zone of whip influence is conservatively enlarged to a region approaching a sphere with a radius equal to the distance between the breakpoint and the first restraint. In lieu of this assumption a more detailed elastoplastic analysis is performed.
- 14. No loss of pressure boundary integrity is assumed from jet impingement, regardless of pressure, when the ruptured pipe has a diameter and wall thickness less than those of the impinged piping. For essential piping, jet impingement loads are evaluated regardless of the ratio of impinged and postulated broken pipe sizes.

3.6.1.2 <u>Description</u>. Systems, components, and equipment required to perform the essential functions are reviewed to ensure conformance with the design bases and to determine their susceptibility to the failure effects. The break and crack locations are determined in accordance with Section 3.6.2. Figure 3.6.1-1 shows the high-energy pipe break locations, break types, and preliminary restraint locations.

A design comparison to NRC BTP ASB 3-1 and MEB 3-1 is provided in Tables 3.6.1-2 and 3.6.1-3.

Pressure response analyses are performed for subcompartments containing high-energy piping. For a detailed discussion of the pipe breaks selected and pressure results, refer to Section 6.2.1 for selected subcompartments inside the Containment and to Appendix (LATER) for selected subcompartments outside the Containment. Effects of both internal reactor pressure vessel asymmetric pressurization loads and asymmetric compartment pressurization loads inside Containment are addressed in Section 6.2.1. The analytical methods used for pressure response analysis are in accordance with Reference 3.6-2.

Appendix (LAILK) provides a typical hazards analysis for the effects of potulated pipe breaks on essential systems, components, and structures.

There are no high-energy lines in the proximity of the control room; therefore, there are no effects upon the habitability of the control room resulting from postulated pipe breaks. Further discussion of the control room habitability systems is provided in Section 6.4. 40

ATTACHMENT

PAGE 3

OFID

50 Q210 23N

ATTACHMENT I ST. HL AE 1389 PAGE 4

OF

- Individual cracks are not required to be postulated at specific locations 4. determined by stress analyses when a review of the piping layout and plant arrangement drawings shows that the effects of through-wall leakage cracks are isolated or physically remote from structures, systems, and components required for safe shutdown.
- Through-wall leakage cracks are postulated in non-seismic Category I 5. piping 'at welded points where the effects might compromise essential equipment or structures.

To simplify analysis, cracks may be postulated to occur everywhere in moderate-energy piping, regardless of the stress analysis results to determine the maximum damage from fluid spraying and flooding, with the consequent hazards or environmental conditions. Flooding effects are determined on the basis of 30-min operator time required to effect corrective actions. Further discussion of flooding effects is provided in Appendix (LATER). 2 internal discussed in FSAR Section 3.4.3 and 3.4.4.

Cracks in moderate energy ASME Code Class 1 piping are not postulated since there are no ASME Class 1 moderate energy systems. All the ASME Class 1 piping systems are inside the Containment Building and are high energy.

3.6.2.1.3 Types of Breaks/Cracks Postulated:

3.6.2.1.3.1 ASME Section III, Class 1 RCL Piping - High-Energy - The types of breaks postulated in the ASME Section III, Class 1 primary RCL are discussed in Ref. 3.6-1.

3.6.2.1.3.2 Piping Other than RCL Piping - High-Energy - The following types of breaks are postulated to occur at the locations determined in accordance with Section 3.6.2.1.1.

- In piping whose nominal diameter is greater than or equal to 4 in., both 1. circumferential and longitudinal breaks are postulated at each selected break location unless eliminated by comparison of longitudinal and axial stresses with the maximum stress as follows:
 - If the maximum stress range exceeds the limits specified in Sections 3.6.2.1.1.1.b.2 and 3.6.2.1.1.2.b but the circumferential stress range is at least 1.5 times the axial stress range, only a longitudinal break is postulated.
 - If the maximum stress range exceeds the limits specified in Sections b . 3.6.2.1.1.1.b.2 and 3.6.2.1.1.2.b but the axial stress is at least 1.5 times the circumferential stress range, only a circumferential break is postulated.

Longitudinal breaks however, are not postulated at the following locations:

- Terminal ends.
- Intermediate points of Class 1 piping systems where the stress range b. as calculated by equations (10) and either (12) or (13) does not exceed 2.4 S_ as described in paragraph NB-3653 of the ASME B&PV

Amendment 50

40

40 Q110.

09

Ind Now

AR CRAC provide St 503,4.3

Q210.36

Q110.10

49

are given in Table 3.6.2-1. The final summary stress analysis results (as-built condition) will be provided upon their completion. Associated stress nodes are shown in Figure 3.6.1-1. High-energy pipe break effects analysis for a selected portion of the plant are discussed <u>room-bu-room</u> in Table 3.6.2-2. Table 3.6.2-2 also references the appropriate sheet of applicable high-energy lines shown in Figure 3.6.1-1.

Moderate-energy piping crack locations are defined in Section 3.6.2.1.2.4. Evaluation of the effects of moderate-energy cracks is discussed in spendtx (LATER) FSAR Sichon 3.4.7 and 3.4.4.

The augmented inservice inspection plan is discussed in Section 6.6.

Pipe whip restraints are designed in accordance with Section 3.6.2.3. Pipe whip restraint location and orientation for each high-energy break are shown in Figure 3.6.1-1. Barriers and shields are designed in accordance with the criteria of Section 3.6.2.4. Jet thrust and impingement forces were determined in accordance with Ref. 3.6-5. Reaction forces for each pipe whip restraint are presented in Figure 3.6.1-1.

3.6.2.5.2 Reactor Coolant Loop:

 Iable 3.6.2-3 and Figure 3.6.2-2 identify the design basis break locations and orientations for the RCLs.

The primary and secondary stress intensity ranges and the fatigue cumulative usage factors at the design break locations specified in Ref. 3.6-1 are given in Table 3.6.2-4 for a reference fatigue analysis. The reference analysis has been prepared to be applicable for many plants. It uses seismic umbrella moments higher than those used in Ref. 3.6-1: in Ref. 3.6-1, one location was at the limit, but in the Reference analysis the primary stress is equal to the limits of equation (9) in NB-3650 (Section III of the ASME B&PV Code) at many locations in the system. Therefore, the results of the reference analysis may differ slightly from Ref. 3.6-1, but the philosophy and conclusions of Ref. 3.6-6 are valid. Consistent with Ref. 3.6-1, there are no other locations in the model used in reference fatigue analysis where the stress intensity ranges and/or usage factors exceed the criteria of 2.4 S and 0.2, respectively.

Actual plant moments for STP are also given in Table 3.6.2-4 at the design basis break locations so that the reference fatigue analysis can be shown to be applicable for this plant. Since actual plant moments are shown to be no greater than those used in the reference analysis, it follows that the stress intensity ranges and usage factors for STP are less than those for comparable locations in the reference model. Thus, it is shown that there are no locations other than those identified in Ref. 3.6-1 where the stress intensity ranges and/or usage factors for STP exceed the criteria of 2.4 S and 0.2, respectively. Thus, the applicability of Ref. 3.6-1 to STP is verified.

 Pipe whip restraints associate! with the main RCL are described in Section 5.4.14. Loading combinations and stress limits are discussed in Section 3.9.1.

40Q 10. 04

ATTACHMENT ST.HL.AE. 139 PAGE 5 OF

ATTACHMENT I ST.HL AE 138

40 Q10. 04

- 3. The results of evaluating jet impingement loads associated with the supture of the main RCL piping are provided in Appendix (later). As described in item 4 below, these loads are used to determine the adequacy of the primary equipment and supports.
- 4. Design loading combinations and applicable criteria for ASME Class 1 components and supports are provided in Section 3.9. Pipe rupture loads include not only the jet thrust forces acting on the piping but also jet impingement loads on the primary equipment supports.

As discussed in response to Question 210.20N, StP has submitted a request to the NRC for exemption to General series Criterion 4 in order to delete Postilation of RCL Pipe breaks based on the "Leak Before Break analyses. Therefore, set imingement loads associated with the seguet support of the main Rich piping are no longer considered in the plant design. However, primary component supports have been designed to withstead the structural Icals accoriated with non-merhanistic Rector toolsak P. pi bunho at the lorstions deculied in reference. 3.6-1.

Amendment 40

ATTACHMENT ST HL AE 138 PAGE 7 OF PAGE

TABLE 3.6.1-1

STP FSAR

ESSENTIAL, HIGH ENERGY,	AND MODERATE - E	NERGY SYSTEMS	
SYSTEM	ESSENTIAL (a) SYSTEMS	HIGH ^(b) ENERGY	MODERATE (c) ENERGY
Reactor Coolant System	x	x	
Main Steam System	x	x	
Main Feedwater System	x	x	
Auxiliary Feedwater System	х	х	X
Steam Generator Blowdown System	x	х	x
Auxiliary Steam System		х	
Chemical and Volume Control System	x	х	х
Residual Heat Removal System	х		х
Safety"Injection System	x	х	x
Extraction Steam System		х	
Heater Drips System		х	*
Turbine Bypass System		х	
Turbine Gland Sealing System		х	
Compressed Air System for Diesel			х
Generator Starting System			X
Containment Systems including:			
Containment Vessel	x		
Containment Penetrations	X		
Containment Isolation Valves	X		
Containment Sump	X		
Reactor Containment Fan			
. Coolers	x		X
Containment Hydrogen Removal			
System	X		х
Containment Purge System	X		x

- a. Not all essential systems are required for all postulated piping failures; e.g., the containment spray system is essential for loss-of-coolant accident and main steam line break inside containment but is nonessential for piping failure outside containment. Not all portions of essential systems are required for postulated piping failure; e.g., the main steam system is only essential from the steam generator to the main steam isolation valves, including the safety and atmospheric steam relief valves.
- b. Not all portions of high-energy systems contain high-energy fluid.
- c. During the initial phase of cooldown, the residual heat removal system is a high-energy system. For interaction with the redundant train, the residual heat removal system is considered a dual-purpose, moderate-energy system. (See Section 3.6.1.1(7))

40

ATTACHMENT I ST.HL-AE- 1389 PAGE & OF 124

TABLE 3.6.2-1 (Continued)

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Auxiliary Feedwater	Problem No.:	AF-01
	(Inside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 3A)

NODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS (2)
5	13616	0.420	S/G Nozzle	TE/C
125	15469	0.477	Containment Penetration (M94)	TE/C
61	22355	0.690	Elbow	(3)

(1)	Ratio = Total	stress/stress	limit =	Total Stress	=	Total Stress
				.8 (1.2 S h+S A)		32,400 psi
(2)	TE = Terminal	End	C =	Circumferential		
	IM = Intermed	iate	ι.=	Longitudinal		
	and the second state of th					

(3) Highest Relative Stress Point: No break postulated

	ATTACHMENT
1	ST. HI .AF. 1389
1	DACE & OFLOUL
1	PAGE 9 UT INT

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Auxiliary Feedwater	Problem No .:	AF-02
	(Inside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 38)

N MODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
61	17078	0.527	S/G Nozzle	TE/C
3	14387	0.444	Containment Penetration (M-95)	TE/C
59	20014	0.618	Elbow	(3)

(1)	Ratio	= Total	stress/stress	limit = <u>Total Stress</u>	=	Total Stress
				.8 (1.2 S n+S A)		32,400 psi
(2)	TE =	Terminal	End	C = Circumferential		
	IM =	Intermedi	iate	L = Longitudinal		

(3) Highest Relative Stress Point: No break postulated

ATTA	CHA	AFNT	1	
AT LU	AE	12	a	
SIH	- AE	12	5LI	
PAGE	10	OF	124	 -

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Auxiliary Feedwater	Problem No.:	AF-03
	(Inside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 3C)

NICOE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
40	20261	0.625	S/G Nozzle	TE/C
M84	20790	0.642	Containment Penetration (M-84)	TE/C
C58	23384	0.722	Elbow	(3)

(1)	Ratio = Total	stress/stress	limit = <u>lotal Stress</u>	Total Stress
			.8 (1.2 S h+S A)	32,400 psi
(2)	TE = Terminal	End	C = Circumferential	
	IM = Intermed	iate	L = Longitudinal	

(3) Highest Relative Stress Point: No break postulated

ATTACHMENT I ST HLAE 1989 PAGE II OF 124

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Auxiliary Feedwater	
	(Inside Containment)	

Problem No.: AF-04 Revision: 0

FSAR Figure: Figure 3.6.1-1 (Sheet 3D)

NMODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
5	26989	0.833	S/G Nozzle	TE/C
150	10193	0.314	Containment Penetration (M-83)	TE/C
10	26435	0.816	Elbow	(3)

(1)	Ratio = Total	stress/stress	limit = =	lotal Stress
			.8 (1.2 S h+S A)	32,400 psi
(2)	TE = Terminal	End	C = Circumferential	
	IM = Intermed	iate	L = Longitudinal	

*

(3) Highest Relative Stress Point: No break postulated

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Auxiliary Feedwater	
	(Outside Containment)	

Problem No.: AF-11 Revision: 0

ATTACHMENT I ST.HL.AE. 1389 PAGE 12 OF 12

FSAR Figure: Figure 3.6.1-1 (Sheet 4A)

NMODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF (2) POSTULATED BREAKS
10	8716	0.269	Containment Penetration (M-94)	TE/C
115	10762	0.332	Normally closed valve	TE/C
315	14334	0.442	Normally closed valve	TE/C
773	19856	0.613	18" FW Header Nozzle	TE/C
755	13406	0.414	Normally closed valve	TE/C
55	23075	0.712	Elbow	(3)

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

ATTACHMENT I ST.HL.AE. 1389 PAGE 13 OF 184

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

ystem:	Auxiliary Feedwater	Problem No.:	AF-12
	(Outside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 4B)

N MODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
10	7093	0.219	Containment Penetration	TE/C
75	16264	0.502	Normally closed valve	TE/C
315	21219	0.655	Normally closed valve	TE/C
822	18616	0.575	18" FW Header Nozzle	TE/C
795	11462	0.354	Normally closed valve	TE/C
298	24079	0.743	Reducer	(3)

 (1) Ratio = Total stress/stress limit = Total Stress .8 (1.2 S h+S A) = Total Stress 32,400 psi
 (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Auxiliary Feedwater (Outside Containment)

Problem No.: AF-13 Revision: 0

ATTACHMENT I ST HL AE 1389 PAGE 14 OF 12

FSAR Figure: Figure 3.6.1-1 (Sheet 4C)

NNODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS
10	16960	0.523	Containment Penetration (M-84)	TE/C
75	17499	0.5401	Normally closed valve	TE/C
425	28876	0.891	Normally closed valve	TE/C
380	27988	0.864	18" FW Header Nozzle	TE/C
355	14110	0.436	Normally closed valve	TE/C
410	27741	0.856	Elbow	(3)

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})} = \frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

ATTACHMENT I ST.HL.AE 1389 PAGE 15 OF 10+

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Auxiliary Feedwater Problem No.: AF-14 Revision: 0

FSAR Figure: Figure 3.6.1-1 (Sheet 4D)

NMODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS (2)
10	6295	0.194	Containment Penetration (M-83)	TE/C
79	26353	0.813	Normally closed valve	TE/C
315	18993	0.586	Normally closed valve	TE/C
795	13447	0.415	Normally closed valve	TE/C
826	30698	0.948	18" FW Header Nozzle	TE/C
78	28004	0.864	Drain Connection	(3)

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

ATTACHMENT I ST-HL-AE- 1389 PAGE /6 OF 124

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No .:	SB-01
	(Inside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1(Sheet 5A)

NMODE	TOTAL (4) STRESS (psi)	RATIO (1)	LOCATION	TYPE OF (2) POSTULATED BREAKS
4	6691	0.210	Containment Penetration (M-63)	TE/C
Nol	13147	0.413	Steam Generator Nozzle	TE/C
N83	14458	0.454	Steam Generator Nozzle	TE/C
97	25339	0.796	Elbow-Tee	(3)

(1)	Ratio = Total stress/stress	limit = lotal Stress	=	Total Stress
		.8 (1.2 S h+3 A)		31,820 psi
(2)	TE = Terminal End	C = Circumferential		
	IM = Intermediate	L = Longitudinal		
(3)	Highest Relative Stress Poin	t: No break postulated		

(4) Stresses due to steam hammer are not included in the total stresses shown. Adding the peak stream hammer stress of 4618 psi to the above, the total stresses are still within the break threshold stress limit, i.e. 4618 + 25339 = 29947 psi < 31820 psi.</p>

.

ATTACHMENT I ST-HL-AE- 1389 PAGE 17 OF 124

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:	SB-02
	(Inside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 5B)

NMODE	STRESS (psi)	RATIO (1)	LOCATION	TYPE OF (2) POSTULATED BREAKS
2	6043	0.190	Containment Penetration (M-64)	TE/C
110	8485	0.267	Steam Generator Nozzle	TE/C
142	10711	0.337	Steam Generator Nozzle	TE/C
34	18918	0.595	Elbow	(3)

(1)) Ratio = Total stress/stress limit =	Total Stress =	Total Stress
		.0 (1.2 5 h+5 A)	31,820 ps1
(2)) TE = Terminal End C = (Circumferential	
	IM = Intermediate L = L	ongitudinal	
(3)) Highest Relative Stress Point: No b	preak postulated	
(4)) Stresses due to steam hammer are not shown. Adding the peak stream hamme	included in the tot er stress of 4618 psi	al stresses to the above,

the total stresses are still within the break threshold stress limit, i.e. 4618 + 18918 = 23536 psi < 31820 psi.

ATTACHMENT I ST. HL. AE . 1389 PAGE 18 OF 124

SB-03

TABLE 3.6.2-1 (Continued)

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:
	(Inside Containment)	Revision:

FSAR Figure: Figure 3.6.1-1 (Sheet 5C)

NYODE	STRESS (psi)	RATIO (1)	LOCATION	TYPE OF (2) POSTULATED BREAKS
3	4784	0.150	Containment Penetration (M-65)	TE/C
99	10869	0.342	Steam Generator Nozzle	TE/C
162	5430	0.171	Steam Generator Nozzle	TE/C
83	18031	0.567	Elbow Tee	(3)

(1) Ratio = lotal	stress/stress	limit = Iocal Stress	= lotal Stre	SS
		.8 (1.2 S h+S A)	31,820 ps	i
(2) TE = Terminal	End	C = Circumferential		

(-/		renaria cha	c = circumferential
	IM =	Intermediate	L = Longitudinal

- (3) Highest Relative Stress Point: No break postulated
- (4) Stresses due to steam hammer are not included in the total stresses shown. Adding the peak stream hammer stress of 4618 psi to the above, the total stresses are still within the break threshold stress limit, i.e. 18031 + 4618 = 22649 psi < 31820 psi.</p>

6122N:0252N/15

(1) Dette

ATTACHMENT I ST.HL.AE. 1389 PAGE 19 OF 184

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.: SB		
	(Inside Containment)	Revision:	0	

FSAR Figure: Figure 3.6.1-1 (Sheet 5D)

NNODE	TOTAL(4) STRESS (psi)	RATIO (1)	LOCATION	TYPE OF (2) POSTULATED BREAKS
2	5321	0.167	Containment Penetration (M-62)	TE/C
86	11921	0.375	Steam Generator	TE/C
150	7576	0.238	Steam Generator Nozzle	TE/C
126	23236	0.730	Elbows Tee	(3)

(1)	Ratio = Total stress/stress li	mit =	$\frac{10tal Stress}{.8 (1.2 S h+S A)}$	= Total Stress 31,820 psi	
(2)	TE = Terminal End	C =	Circumferential		
	IM = Intermediate	L =	Longitudinal		
(3)	Highest Relative Stress Point:	No	break postulated		
(4)	Stresses due to steam hammer a shown. Adding the peak stream	re no hamn	ot included in the interstress of 4618	total stresses psi to the above,	

shown. Adding the peak stream hammer stress of 4618 psi to the above, the total stresses are still within the break threshold stress limit, i.e. 4618 + 23236 = 27854 psi < 31820 psi.

ATTACHMENT	
ST.HL.AE. 1389	
PAGE 20 OF 124	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:	SB-11
	(Outside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 6A)

NAODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
E45	12428	0.384	Containment Penetration (M-63)	TE/C
D84	8889	0.274	Normally Closed Valve	TE/C
F31	4195	0.130	Normally Closed Anchor	TE/C
E68	26516	0.818	Valve	Note 3

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated 6122N:0252N/12

ATTAC	HMEN	I	
ST-HL	AE-13	NOL.	
PAGE	21 01	197	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:	SB-12
	(Outside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 6B)

NMODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF POSTULATED BREAKS
E45	23862	0.736	Containment Penetration (M-64)	TE/C
F31	3519	0.109	Anchor	TE/C
D84	1382	0.043	Normally Closed Valve	TE/C
E36	22328	0.689	Normally Closed Valve	Hote 3

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

ATTACHMENT	
PAGE 22 OF 184	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:	SB-13
	(Outside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 6C)

NMODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS
M51	10487	0.324	Containment Penetration (M-65)	TE/C
N58	4250	0.131	Anchor	TE/C
L94	8115	0.251	Normally Closed Valve	TE/C
M88	22015	0.679	Reducer	Note 30

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{.32,400 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Stress Point: No break postulated

TACHMENT ST HL AE 1389 PAGE 23 OF 10

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Steam Generator Blowdown	Problem No.:	SB-14
	(Outside Containment)	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 6D)

NYODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS
M51	12660	0.391	Containment Penetration (M-62)	TE/C
N55	6699	0.207	Anchor	TE/C
L94	9219	0.285	Normally Closed Valve	TE/C
H84	15947	0.623 (4)	Elpow	Hote 3

(1) Ratio = Total stress/stress limit = Total Stress = Total Stress = Total Stress = Total Stress = 32,400 psi
(2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal
(3) Highest Relative Stress Point: No break postulated
(4) 0.8 (1.25_h + S_A) = 25,596 psi

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Reactor Coolant	Surge Line	Problem No .:	RC-01
			Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 7A)

NODE	EQ. 10 STRESS	eo. 12 stress (s _m)	¹⁾ EQ 13 STRI (S _m)	ESS S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED(Z)
10	5.928	1.59	2.04	16582	0.91	Pres. Nozzle	TE/C
70	5.086	1.320	1.175	16582	0.539	Elbow	IM/C/L
60	5.081	1.638	1.120	16582	0.764	Elbow	IM/C/L
50	5.0851	1.613	1.131	16582	0.776	Elbow	IM/C/L
40	4.782	1.317	1.007	16582	0.557	Elbow	IM/C/L
20	4.300	1.039	0.849	16582	0.217	L.R. Elbo	w IM/C/L
25	4.259	0.631	0.858	16582	0.164	L.R. Elbo	w IM/C/L
30	3.928	0.320	0.841	16582	0.142	L.R. Elbo	w IM/C/L
130	3.602	0.026	0.939	16582	0.046	RC Nozzle	TE/C

(1) Ratio of actual stress to Sm

(2)	TE =	Terminal End	C = Circumferential
	IM =	Intermediate	L = Longitudinal

-(2) Highest Relative Usage Factor Point: No preak postulated

ATTACHM	ENTI	
PAGE 25	OF 12+	a management of

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Pressurizer Spray Li	ne
------------------------------	----

Problem No.: RC-02 Revision: 0

FSAR Figure: Figure 3.6.1-1 (Sheet 78)

NODE	EQ. 10 STRESS (S _m)	(S) EO. 12 STRESS (Sm)	¹⁾ EQ 13 STRE (S _m)	ESS S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED (2)
200	6.135	0.313	2.243	16,600	0.319	Pres. Nozzle	TE/C
301	9.084	0.594	2.803		0.213	Reducer	1M/C
302	8.905	0.557	2.732		0.206	Reducer	IM/C
223	8.449	0.457	2.517		0.299	Tee	IM/C/L
223B	5.206	0.166	1.810		0.129	Tee	IM/C/L
205	6.429	0.383	1.107		0.282	Elbow	IM/C/L
206	6.361	0.358	1.082		0.273	Elbow	IM/C/L
210	5.137	0.242	1.006		0.224	Elbow	IM/C/L
3	1.513	N/A	N/A		0.000	Elbow	TE/C
294	1.809	N/A	N/A	\checkmark	0.000	RC Nozzle	TE/C

(1) Ratio of actual stress to S_m

(2)	TE =	Terminal End	C = Circumferential
	IM =	Intermediate	L = Longitudinal

(3) Highest Relative Usage Factor Point: No break postulate

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	RC	Loop	2	Drain	to	RCDT
---------	----	------	---	-------	----	------

Problem No.: RC-20 Revision: 0

FSAR Figure: Figure 3.6.1-1 (Sheet 7C)

NODE	EQ. 10 STRESS (S _m)	(¹⁾ EO. 12 STRESS (S _m)	(Sm)	ESS ⁽¹⁾ S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED 2)
2	4.124	0.79	1.709	16,420	0.052	RC Nozzle	E TE/C
5	3.771	0.783	1.651		0.043	Elbow	IM/C
13	3.754	0.478	1.899	V	0.030	Normally closed valve	TE/C

(1) Ratio of actual stress to S_m

(2) TE = Terminal End C = Circumferential
IM = Intermediate L = Longitudinal

(3) Highest Relative Usage Factor Puint: No break postulated

*

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	RC	Loop	2	Drain to	0	RCDT	Problem No .:	RC-19
							Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 7C)

NODE	EQ. 10 STRESS (S _m)	EQ. 12 STRESS (S _m)	(¹⁾ EO 13 STRE (S _m)	ESS S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATEDZ
7	4.065	0.848	1.727	16,420	0.060	RC Nozzle	e TE/C
10	3.845	0.813	1.673		0.049	Elbow	IM/C
18	3.828	0.572	1.847	V	0.042	Normally closed valve	TE/C

(1) Ratio of actual stress to Sm

(2)	TE =	Terminal End	C = Circumferential
	IM =	Intermediate	L = Longitudinal

(3) Highest Relative Usage Factor Point: No break postulated

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System	: Residual He (Pump A Suc	at Removal tion: Inside Co	ontainment)	Problem Revision	No.: RHR : O	/SI-01	
FSAR F	igure: Figure EQ. 10 STRESS (S _m)	3.6.1-1 (Shee EQ. 12 STRESS (S _m)	t 8A) D _{EQ 13 STRE} (S _m)	(1) SS (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED(2)
135	1.669	N/A	N/A	16440	0.0001	RC Nozzle	TE/C
86	3.436	0.071	2.697	19650	0.310	Normally closed valve	TE/C
120	1.754	N/A	N/A	16440	0.0246	Elbow	- (3)

(1) Ratio of actual stress to Sm

(2) TE = Terminal End C = Circumferential 6 stit IM = Intermediate L = Longitudinal

postulated (3) Highest Relative Usage Factor Point: No break

ATTACHMENT	
ST. HLAE 1981	
PAGE CT UT IGT	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Residual He (Pump A Suc	at Removal tion: Inside Cor	ntainment)	Problem Revision	No.: RHR : 0	/SI-09	
FSAR Fi NODE E	gure: Figure 0. 10 STRESS (Sm)	3.6.1-1 (Sheet EQ. 12 STRESS (Sm)	8B)) E0 13 STRE (S _m)	(1) SS S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED(2)
18 86 2	3.712	0.030	2.777	19650	0.0747	Normally closed valve	TE/C
135	2.164	N/A	N/A	16440	0.0001	RC Nozzle	TE/C
120	2.41	0.693	1.503	16440	0.0276	Elbow	- (3)

(1) Ratio of actual stress to S_m

(2)	TE	=	Terminal End	C = Circumferential
	IM	=	Intermediate	L = Longitudinal

(3) Highest Relative Usage Factor Point: No break postulated

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System	n: Residual He (Pump C Suc	eat Removal tion: Inside Co	ntainment)	Problem Revision	No.: RHR : O	/SI-16	
FSAR F	igure: Figure EQ. 10 STRESS ⁽⁾ (S _m)	2.6.1-1 (Sheet 2.0. 12 STRESS (Sm)	8C) EQ 13 STRE (S _m)	(1) SS S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK
498	1.605	N/A	N/A	16825	0.0001	RC nozzle	TE/C
471C	3.766	0.128	2.958	19650	0.6982	Normally closed valve	TE/C
495	1.452	N/A	N/A	16825	0.0318	Elbow	- (3)

(1) Ratio of actual stress to S_m

(2)	TE	=	Terminal End	C =	Circumferential
	IM	=	Intermediate	L =	Longitudinal

(3) Highest Relative Usage Factor Point: No break postulated

ATTACHMENT I ST.HL AE 1389 PAGE 31 OF 194

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Safety Inje Hot Leg Loo	ction to p 1 (Ins	Hot ide Cont	tainmen	t)		Problem N Revision:	o.: RHR/S O	51-05
FSAR Fig	ure: Figure	3.6.1-1	(Sheet	8D)					
NODE EO	. 10 STRESS	EQ. 12 (Sm	STRESS()	EQ 13 5 (Sm	STRESS	(psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED(2)

PSSG to Provide

(1) Ratio of actual stress to S_m

- (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

÷

ATTAC	HMENT	1	
ST-HL-	AE 131	39.	
PAGE	32 OF	194	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Safety Injection to Hot Hot Leg Loop 2 (Inside Containment)	Problem No.: Revision:	RHR/SI-13 O	
FSAR Fig	ure: Figure 3.6.1-1 (Sheet 8E)			
NODE EO	. 10 STRESS EQ. 12 STRESS EQ 13 STRESS S_m (S_m) (S_m) (psi)	USAGE LOC FACTOR	ATION TYPE OF BREAK POSTULATED(2)	

PSSG to Provide

(To HEAR by 11/8/85)

- (1) Ratio of actual stress to S_m
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATT	ACH	MENT		
ST.	HI.AS	. 13	89	
31.	LIF.WI	0.0	101	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System	: S H	afe	ety Inje Leg Loo	ction to p 3 (In	o side Con	tainment)		Problem N Revision:	10.: 1	RHR/SI O	-20
FSAR F	igur	e:	Figure	3.6.1-	1 (Sheet	8F)					
NODE	E0.	10 S _m	STRESS'	eo. 12 (sm	STRESS	EQ 13 STRESS) (psi)	USAGE FACTOR	LOCA	TION	TYPE OF BREAK POSTULATEQ2)

PSSG to Provide

"Loter"

(To HEAR by 118/85)

(1) Ratio of actual stress to Sm

(2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Usage Factor Point: No break postulated
ATTAC	HME	NT	T	
ST-HL	AE I	38	9.	
PAGE .	34 ()F 18	24	_

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Acci Leg	umulator to Cold A	đ	Problem N Revision:	o.: RHR/SI O	-02
FSAR Figure:	Figure 3.6.1-	(Sheet 8G))		
NODE EO. 10 (Sm	STRESS EQ. 12) (Sm	STRESS EQ 13 STRESS) (Sm)	Sm USAGE (psi) FACTOR	LOCATION	TYPE OF BREAK POSTULATED(2)

PSSG to Provide C

" Later" (to HLAP Ly 11/8/85)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

Syste	em:	A.cci Leg	umulator B	to Cold	d				Problem N Revision:	0.:	RHR/SI 0	- 10	
FSAR	Figu	ire:	Figure	3.6.1-	1 (Sheet	8H)							
NODE	EO	10 S _m	STRESS ()	EQ. 12 (S _m	STRESS)	EQ (13 STRESS	(psi)	USAGE FACTOR	LOCA	ATION	TYPE OF BR POSTULATED	EAK

-PSSG to Provide

"Later"

(To HESP by 11/5/55)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATTACHMENT	
ST-HL-AE-1389,	
PAGE 36 OF 104	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

Syste	em :	Acc Leg	umulator C	to Cold				1	Problem N Revision:	0.:	RHR/SI 0	-17	
FSAR	Fia	ure:	Figure	3.6.1-1	(Sheet	81)							
NODE	EQ	. 10 (S _m	STRESS !!	EQ. 12 S (S _m)	TRESS	EQ 13 STRI	ESS ⁽¹⁾ Sm (ps	n s 1)	USAGE FACTOR	LOC	ATION	TYPE	OF BREAK

PSS6 to Provide

"Later" (To 17287 by 11/8/85)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential iM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATTAC	HMEN	ITI
ST-HL	AE 1	389
PAGE	37 OF	124

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Accumulator Drain to the
	Reactor Coolant Drain Tank

Problem No.: RHR/SI-06, 14, 22 Revision: 0

FSAR Figure: Figure 3.6.1-1 (Sheet 8J)

NODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS
140	12784	0.318	Acc. Inj. A Line Nozzle	TE/C
139	10993	0.274	Normally Closed Valve	TE/C
11	11229	0.280	Acc. Inj. B Line Nozzle	TE/C
12	10149	0.253	Normally Closed Valve	TE/C
89	15532	0.387	Acc. Inj. C Line Nozzle	TE/C
70	10112	0.252	Normally Closed Valve	TE/C

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{40,144 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

ATTACHMENT I ST. HL AE 1389 PAGE 38 OF 184

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Chemical Volume and Control Problem No.: CV-O1 System Letdown from Cross Over Leg Revision: O to Regenerative Heat Exchanger

FSAR Figure: Figure 3.6.1-1 (Sheet 9A)

NODE	EQ. 10 STRESS I	EO. 12 STRESS	EQ 13 STRE (S _m)	SS ⁽¹⁾ S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED(2)
101	3.571	0.219	2.958	17400	0.0531	Normally open valv	IM/C/L
106	3.498	0.211	2.868	17400	0.0530	Normally open valv	IM/C/L
110	3.477	0.216	2.82	17400	0.0529	Normally open valv	IM/C/L
115	3.532	0.221	2.868	17400	0.0466	Normally open valv	IM/C/L
127	3.477	0.258	2.778	17400	0.0476	Normally open valv	IM/C/L
133	3.475	0.29	2.761	17400	0.0487	Normally open valv	IM/C/L
142	0.986	N/A	N/A	17400	0.0183	RCS Nozz1	e TE/C
151	3.518	0.945	2.132	13860	0.4360	Normally closed valve	TE/C
5A	See Note 4			N/A	N/A	Regenera- tive Heat Exchanger	TE/C
15	See Note 5			N/A	N/A	Elbow	(3)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal

		ATTACHMENT I ST-HL-AE-1389 PAGE 39 OF 84	ł
	TABLE 3.6.2-1 (Continued)		
	HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMM	ARY RESULTS	
System: FSAR Fig	Chemical Volume and Control Problem System Letdown from Cross Over Leg Revision to Regenerative Heat Exchanger (CON'T) ure: Figure 3.6.1-1 (Sheet 9AP)	No.: CV-01 : 0	6
NODE EO	. 10 STRESS EO. 12 STRESS EQ 13 STRESS Sm (Sm) (Sm) (Sm) (Sm) (psi)	USAGE LOCATION FACTOR	TYPE OF BREAK POSTULATED
(3)	Highest Relative Usage Factor Point: No break	postulated	
(4)	Total Stress = Equation 9 + Equation 10 Stress Stress/.8(1.2 S_h + S_A) = 10224/32840 = 0.311	= 10224 psi; Ratio	= Total
(5)	Total Stress = 8177 psi; Ratio = 8172/32840 =	0.249	

ATTACHMENT I ST.HL.AE 1389 PAGE 40 OF 104

TABLE 3.6.2-1 (Continued)

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Chemical	Volume and Control	
	(Letdown	Outside Containment)	

Problem No.: CV-11L Revision: O

FSAR Figure: Figure 3.6.1-1 (Sheet 9B)

NMODE	STRESS (psi)	RATIO ⁽¹⁾	LOCATION	POSTULATED BREAKS (2)
815	6570	.200	Containment Penetration (M-46)	TE/C
315	12653	.385	Reheat Heat Exchanger Nozzle	YE/C
604	6976	.206 ⁽⁴⁾	Normally closed valve	TE/C
581	10894	.331	Normally closed valve	TE/C
50	4634	.141	Reheat Heat Exchanger Nozzle	TE/C
500	4793	.146	Letdown Heat Exchanger Nozzle	TE/C
556	14668	.446	Elbow Valve	(3)

(1) Ratio = Total stress/stress limit = $\frac{\text{Total Stress}}{.8 (1.2 \text{ S}_{h}+\text{S}_{A})}$ = $\frac{\text{Total Stress}}{31,891 \text{ psi}}$ (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal (3) Highest Relative Stress Point: No break postulated (4) Ratio = $\frac{\text{Total Stress}}{.8 (1.2_{h}\text{S}_{}+\text{S}_{h})}$ = $\frac{\text{Total Stress}}{33912 \text{ psi}}$

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System	n:	Cher	mical Vo mal Char	lume an aing In	d Contro side Con	1 tainmer	nt		Problem N Revision:	0.:	CV-05 0		
FSAR F	iqu	re:	Figure	3.6.1-	1 (Sheet	9C)							
NODE	E0.	10 S	STRESS	E0. 12	STRESS	EQ 13	STRESS	Sm (psi)	USAGE FACTOR	LOC	ATION	TYPE OF BE	REA

PSSG to Provide

"Later"

(to HLSP ly 1/8/85)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

Provide and the second s	
ATTACHMENT	
CT HI AF. 1389	
SI-HLAC 1901	
PAGE 42 UF 184	-

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Chemical Volume and Control Auxiliary Pressurizer Spray								Problem N Revision:	0.: CV-0	7
FSAR	Figu	re:	Figure	3.6.1-	1 (Sheet	90)				
NODE	EQ.	10 S _m	STRESS	EQ. 12 (S _m	STRESS)	EQ 13 STRESS (Sm)	S _m (psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED

PSSG to Provide

"Later" (To M287 by 11/8/85)

- (1) Ratio of actual stress to $\rm S_{m}$
- (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATTACHMENT	
ST. HL AE 1389	
PAGE 43 OF 124	

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Chemical Volume and Control Alternate Charging Line to Loop 3							Problem N Revision:	o.: CV-06 0		
FSAR	Figu	re:	Figure	3.6.1-	1 (Sheet	9E)				
NODE	EQ.	10 S_m	STRESS)	EQ. 12 (S _m	STRESS)	EQ 13 STRESS (Sm)	(psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED

-PSSG to Provide

"Later" (To HUSP by 11/5/55)

- (1) Ratio of actual stress to Sm
- (2) TE = Terminal End C = Circumferential
 IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATTACHMENT	and the second se
ST HL AE 1389	
PAGE 44 OF GH	-

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System: Chemica Excess L			mical Vo ess Letd	lume and own from	d Contro m Loop 4	1		Problem No Revision:	0.: CV-17	
FSAR	Figu	re:	Figure	3.6.1-	1 (Sheet	9F)				
NODE	E0.	10 S _m	STRESS)	EQ. 12 (S _m	STRESS)	EQ 13 STRESS (S _m)	(psi)	USAGE FACTOR	LOCATION	TYPE OF BREAK POSTULATED

PSSG to Provide

"Later" (To HESS tay 11/8/85)

- (1) Ratio of actual stress to S_m
- (2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal
- (3) Highest Relative Usage Factor Point: No break postulated

ATTA	HMENT	
ST-HL	AE. 13	89.1
PAGE	45 OF	184

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:Chemical Volume and ControlProblem No.:CV-19Excess Letdown to Heat ExchangerRevision:0

FSAR Figure: Figure 3.6.1-1 (Sheet 9G)

NODE	EQ.	EQ. 10	STRESS	EQ.	EQ. 12 STRESS		EQ 13 STRESS		Sm	USAGE	LOCATION	TYPE OF BREAK	
	(Sm)	(;	m)	(S	n)	(psi)	FACTOR		POSTULATED

11

PSSG to Provide

(# HISP / 1/5/85)

(1) Ratio of actual stress to Sm

(2) TE = Terminal End C = Circumferential IM = Intermediate L = Longitudinal

(3) Highest Relative Usage Factor Point: No break postulated

ATTACHMENT I ST. HL. AE. 1389 PAGE 46 OF 104

HIGH-ENERGY PIPE BREAK INITIAL STRESS SUMMARY RESULTS

System:	Chemical Volume and Control	Problem No .:	CV-02
	Excess Letdown to Containment Penetration	Revision:	0

FSAR Figure: Figure 3.6.1-1 (Sheet 9H)

NHODE	TOTAL STRESS (psi)	RATIO ⁽¹⁾	LOCATION	TYPE OF (2) POSTULATED BREAKS
6	6051	0.152	Containment Penetration (M-46)	TE/C
169	7500	0.198	Regenerative Ht. Exchanger Outlet	TE/C
543	11775	0.318	Normally Closed valve	TE/C
713	8194	0.222	Normally Closed Valve	TE/C

(1)	Ratio = Total stress/stress 1	limit =	Total Stress	 Total Stress
			.8 (1.2 S h+S A)	39,810 psi
(2)	TE = Terminal End	C =	Circumferential	
	IM = Intermediate	L =	Longitudinal	
(3)	Highest Relative Stress Point	+ No.	break postulated	

ŝ.

STP FSAR

A	TTA	CHN	MEN	TI	
S	T-HI	-AE	.13	89	10
P	AGE	47	OF	12.	1

40

TABLE 3.6.2-2

油

Insert 3.6.2-2

ATTACHMENT ST. HL. AE. 1389 PAGE 48 OF 124

ISOLATION VALVE CUBICLE (IVC)

- I. Break Locations
 - A. Breaks were conservatively postulated in the Main Steam and Feedwater system branch piping at terminal ends and each intermediate fitting (e.g. short- and long-radius elbows, tees and reducers, welded attachments and valves).
 - B. Breaks were postulated in accordance with FSAR Section 3.6.2.1.1(2) criteria for the Steam Generator Blowdown System Piping (Figure 3.6.1-1 Sheets 6A-6D). Since the auxiliary feedwater pumps are not used for normal plant operational modes, the criteria of FSAR Section 3.6.1.1(1) was used to determine the high energy piping and postulated break locations between the isolation check valve and the containment penetration, as shown on FSAR Figures 3.6.1-1 Sheets 4A-4D.

II. Effects Analysis

A. Pipe Whip/Jet

An evaluation was performed to identify those systems, structures and components necessary for safe shutdown following the jet and whip effects of the breaks postulated above.

Due to the complete separation design concept of the IVC structure (see FSAR Figure 1.2-21 through 1.2-25) and the multiple (4) train systems (AFW, MS, MFW, SB) enclosed by the structure, all mechanical equipment (piping, pumps, HVAC, etc.), control (MSIV, MFWIV, containment isolation valves) and electrical (power and control circuits) devices within an effected compartment do not require additional protection for the direct jet or whip interaction from the postulated break locations. However, in order to prevent cross communication between cubicles and to maintain the complete separation concept, the IVC walls, slabs and floors were analyzed to withstand the direct pipe whip and jet effects. Therefore, no additional protective devices are necessary.

B. Flooding

A review of the high energy lines within the IVC showed that a non-mechanistic break of the main feedwater line in each cubicle determined the maximum flood level in that cubicle. Blowdown was conservatively calculated from both the S/G and the feedwater pumps as well as consideration of auxiliary feedwater flow into the S/G subsequent to a low level signal in the affected S/G.

In the auxiliary feedwater compartments (see Figures 1.2-21 through 1.2-25), the maximum flood level calculated is 28 feet above the cubicle floor. Although the affected train of auxiliary feedwater train could be damaged and a second auxiliary feedwater train could

6259N:0254N/1

be inoperable due to a limiting single failure, the remaining the auxiliary feedwater trains would be sufficient for safe shutdown following the postulated MFW line break. The maximum calculated flood level for the North stairwell (or common) compartment of the IVC is 9.08 feet above the floor. Since the penetration openings between the pump rooms and the North stairwell are designed to be watertight, this flood level does not affect essential systems and components within the IVC.

ATTACHMENT I ST HL AF 1389 PAGE 49 OF 12

Therefore, safe shutdown is assured following the flooding effects from postulated high energy line breaks within the IVC.

C. Pressure/Temperature Effects

See appendix 3.6A for a discussion of the pressure and temperature parameters for postulated High Energy Line breaks within the IVC. These parameters are used for structural design and environmental qualification of enclosed safety related equipment. (See Section 3.11 for the environmental qualification of safety related equipment.) MECHANICAL AUXILIARY BUILDING (MAB)

ATTACHMENT PAGE SO OF 124

- Ι. Break Locations
 - A. Breaks are conservatively postulated in the non-nuclear Auxiliary Steam piping at terminal ends and each intermediate fitting (e.g. short- and long-radius elbows, tees and reducers, welded attachments and valves).
 - In accordance with the criteria described in FSAR Section 3.6.2.1.1(2) breaks were postulated in the Chemical Volume and Control System letdown line located within the MAB (see FSAR Figure 3.6.1-1 Sheet 9B). In addition, breaks were initially postulated in the CVCS centrifugal charging pump discharge piping per FSAR Section 3.6.2.1.1(2).

II. Effects Analysis

A. Pipe Whip/Jet

, and angiliary steam line Safety related systems, components and structures impacted by the jet and whip from the above postulated letdown line breaks are either analyzed to withstand the jet/whip effects (e.g. impacted protective walls and slabs) or determined not essential for each postulated break (e.g. safe shutdown could be obtained with loss of the impacted safety related components). Subsequent to the initial postulated break locations in the CVCS centrifugal charging pump discharge piping, an evaluation demonstrated an insufficient level of stored energy exists to impair the safety function of any structure, system or component to an unacceptable level.

B. Flooding

"Later"

C. Pressure/Temperature

Subcompartment Pressure and Temperature analysis for the high energy breaks postulated for the CVCS letdown and the auxiliary steam piping using conservative non-mechanistic or "break everywhere" criteria. The methodology used is similar to the methodology used in the IVC subcompartment evaluation described in Appendix 3.6A. The analysis for the MAB took credit for the safety related high temperature detectors and associated isolation valve interlocks in the affected areas that limit the mass and energy release.

Pressure and temperature profiles for the letdown heat exchanger room (FSALL Figure 1.2-23) are presented in Tables 3.6.1-XX and Figures 3.6.1 XX 3-6.2-5 and 6.

> The result of the subcompartment analysis is used as the basis for the environmental qualification of mechanical and electrical equipment (FSAR Section 3.11) as well as factored into the design of affected structures.

6259N:0254N/3

REACTOR CONTAINMENT BUILDING (RCB)

ATTACHMENT I ST.HL.AE. 1389 PAGE 51 OF 124

- I. Break Locations
 - A. Partial Stress Summaries and break types for the containment high energy piping systems are presented in FSAR Table 3.6.2-1.
 - B. Break locations and types are shown for the containment high energy piping systems in FSAR Figure 3.6.1-1.

II. Effects Analysis

A. Pipe Whip/Jet

Safety related systems, structures and components impacted by the jet/whip from the above postulated breaks are analyzed to withstand the jet/whip effects (e.g. impacted protective walls and slabs), determined not to be essential for each postulated break (e.g. safe shutdown could be obtained with loss of the impacted safety related components) or determined to be essential and the appropriate protective devices (pipe whip restraint, jet barrier, etc.) are incorporated into the plant design.

The pipe whip restraint (pwr) devices that have been incorporated into the STP design are shown in FSAR Figures 3.6.1-1 along with the applicable break location and restraint load summary.

FSAR Figures 3.6.1-1 will be updated to incorporate necessary additional devices (e.g. jet barriers) subsequent the review of available field routed safety related components (i.e. electrical components).

B. Flooding

The containment flooding analysis has shown that the maximum volume of water discharged to the RCB occurs as a result of a Loss of Coolant Accident (LOCA), and water from the RCS and the accumulators are assumed to spill into the RCB floor. This analysis has been performed in accordance with the criteria and methodology described in FSAR Section 3.4.3 and 4.

FSAR Table 3.6.1-XX provides a listing of safety related components within the calculated flood level. An evaluation will be performed to confirm safe shutdown capability assuming these components are inoperable.

C. Pressure/Temperature Effects

FSAR Section 6.2.1 describes the pressure and temperature effects for selected subcompartments inside the containment.

6259N:0254N/4

RESTRAINT LOAD SUMMARY

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

NOR

RESTRAINT

NUMBER

ist)

See Initial Stress Summary Results Table 3.6.2-1, SH 3 A

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

TI APERTURE CARD

Also Available Op Aperture Card

SOUTH TEXAS PROJECT **UNITS 1 & 2**

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

(Ouside Containment)

8510180333-01

Figure 3.6.1.1 Sh 3A

RESTRAINT LOAD SUMMARY

RESTRAINT

DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

None

RESTRAINT

NUMBER

EL 31'-9"

TI APERTURE CARD

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 3B

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Autorities of Federater Log2 (Instic Containment)

8510180333-02

Figure 3.6.1.1 Ch 3 B

1

1.5

Restraint Load Summary Restraint Restraint Design Load (Kips) Number Description Break Location NONE 55 See Initial Stress Summary table 3.6.2-1 Sh. 44-LEGEND POSTULATED BREAK POINT ENERGY ABSORBING RESTRAINT -D RIGID GUIDE APERTURE SOUTH TEXAS PROJECT **UNITS 1 & 2** CARD 8510180333-05 POSTULATED BREAK POINTS AND Abo Available Ob RESTRAINT LOCATIONS -d parture " Auxiliary Freedwer: Loop 1 putsile 1 Figure 3.6.1.1 Shut 4A

ATTACHMENT I ST-HL-AE- 1389 PAGE 56 OF 194

		Restraint Load Summary				
Res Num	traint ber	Restraint Description		Design Load (Kips) Break Location		
	1	t o n	E			
	See Initial Stre	ess Summary t	able 3.6.2-	ULITED BREAK	POINT	
			- ENER	GY ABSORBING	RESTFAN	
CRATION	TI	TURE	SOUTH TEXAS PROJECT UNITS 1 & 2			
5	CARD Also Available Go		8510180333-C FOSTULATED BREAK POINTS AND RESTRAINT LOCATIONS			

+2

ú

ATTACHMENT I ST.HL.AE. 1389 PAGE 58 OF 104

-		Restraint Load Summary				
	Restraint Number	Restraint Description		Design Load (Kips) Break Location		
		NONE				
	See Initial S	tress Summary tabl	е 3.6.2-1 Sh. цо			
A1-84			GEND POSTULATEI ENERGY ABS RIGID GUII	D BREAK POINT SORBING RESTRAINT		
2			SOUTH TEX	OUTH TEXAS PROJECT UNITS 1 & 2		
	APE C Also A Aper	RTURE ARD vallable Os more Card	851019 POSTULATED B RESTRAIN Auxilia Loop	80333-0 REAK POINTS AND IT LOCATIONS MY Freedwater , Outside Contain		

RESTRAINT LOAD SUMMARY

RE STRAINT NUMBER

59.14

N83

2"SB-11-1-122

IN31

2"SB-11.3-142

41-13

12

-W, P. EL 47 - 7 3

8510180333-09

RESTRAINT DESCRIPTION DESIGN LOAD (KIPS) BREAK LOCATION

NoNe

TI APERTURE CARD

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 5+

LEGEND

POSTULATED BREAK POINT

ENERGY ABSORBING RESTRAINT
RIGID GUIDE

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Steam Generator Blowdown

Lovg 1, Inside Containment Figure 3.6.1.1 Sheet SA

RE STRAINT NUMBER

16'30'

POINT A

-258-12-1-342

512-1203-712

2

RESTRAINT DESCRIPTION

hore

DESIGN LOAD (KIPS) BREAK LOCATION

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 58

LEGEND

POSTULATED BREAK POINT

---- ENERGY ABSORBING RESTRAINT

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Steam Generator Blowdown Lup 2. Inside Contrinment 8510180333-10 Figure 3.6.1.1 Sheet 5B

RE STRAINT NUMBER

8510180333-11

RESTRAINT

hore

DESIGN LOAD (KIPS) BREAK LOCATION .

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT
 RIGID GUIDE

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** steam Generation Blowdown Loop 3, Inside Containment Figure 3.6.1.1 shut Sc

*

6

RE STRAINT NUMBER RESTRAINT DESCRIPTION

None

DESIGN LOAD (KIPS) BREAK LOCATION

14.01-55A Z

Alao Available On Aperime Card

See Initial Stress Summary Results Table 3.6.2-1, SH 5D

LEGEND

POSTULATED BREAK POINT

- ENERGY ABSORBING RESTRAINT

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** Stern Generator Blowdown Loop 4, Fraide Contrinment Figure 3.6.1.1 Sheet 5D

8510180333-12

RE STRAINT NUMBER

E45

5-1101-Sh2

-Penetration M.63

£ =1 38'-6"

8510180333-13

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

None

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH (A

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

SOUTH U	TEXAS PROJECT NITS 1 & 2
POSTULA	TED BREAK POINTS AND
Steam Ga Loup 1,	Obtside Containmat
Figure 3.6.1-1	Sheet 6A

1 1

RE STRAINT NUMBER RESTRAINT DESCRIPTION

hone

DESIGN LOAD (KIPS) BREAK LOCATION

Aparitane (Gari)

See Initial Stress Summary Results Table 3.6.2-1, SH 6 B

RESTRAINT NUMBER

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

none

Also Available Os Aperture Card

ncher HL5009

See Initial Stress Summary Results Table 3.6.2-1, SH (6C-

LEGEND POSTULATED BREAK POINT ENERGY ABSORBING RESTRAINT M51 > RIGID GUIDE ~ x 2 (x 2) SOUTH TEXAS PROJECT -Penetration **UNITS 1 & 2** M-65 4"58-1304-5H73- 4"58-1301-JA2 POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** Steen Generator Blondown Loop 3, Outside Containment 8510780333-15 Figure 3.6.1.1 Sheet 6 C

RE STRAINT NUMBER RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

pore

Aleo Available On Apartare Card

	RESTRAINT	LOAD	SUMMARY
--	-----------	------	---------

BER	DESCRIPTION	130 70 60
412-R1 412 R1115	EAM	- 270 300 250 250 200 200 250
412-R.5	EAM	300 300 300
42-R6 R14A R14B R15A R15B R15B R15B R15B R15B R15B R15B R14A R14B	EAM RIGID RIGID RIGID EAGID EAGID	250 250 34 34 34 34 350 350 34 34 250 34 34 250 34 34 350 34 34 250 34 34 350 34 34 250 400 230 400 230 400 230 400

See Initial Stress Summary Results Table 3.6.2-1, SH 701

LEGEND

POSTULATED BREAK POINT

Figure 3.6.1.1

ENERGY ABSORBING RESTRAINT
RIGID GUIDE

APERTURE CARD

Also Available On Aperture Card

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Res Surge fine

Sheet 7A

85/0180333-17

RE STRAINT NUMBER

LEG

1

B1

18

RESTRAINT DESCRIPTION DESIGN LOAD (KIPS) BPEAK LOCATION

NONE

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH70 \$7D

LEGEND

POSTULATED BREAK POINT

ENERGY ABSORBING RESTRAINT

@"RC-057A SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** Reason coolant Loop and 2 Drain Lines 8510180333-19 Figure 3.6.1.1 Sh7C

Sth

RESTRAINT LOAD SUMMARY RESTRAINT RESTRAINT DESIGN LOAD (KIPS) NUMBER DESCRIPTION BREAK LOCATION -> 86 RIGID RC-1221-R5A 21 RIGID RSB 110 RAB RIGID 140 EAM R22 224 RIGID 23 22B RIGID 170 EAM 175 R23 RIGID RTA 21 RIB RIGID 2 TI APERTURE CARD Also Available On Aperture Card See Initial Stress Summary Results Table 3.6.2-1, SH %8 LEGEND POSTULATED BREAK POINT ENERGY ABSORBING RESTRAINT > RIGID GUIDE SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** Residual Heat Removal Pump B. Suchai : Preide Contamment 8510180333-21 Figure 3.6.1.1 Sheet 8B

XRHO60B

RE STRAINT NUMBER	RE STRAINT DESCRIPTION	DESIGN LOAD (KIPS) BREAK LOCATION	
		4710	
RC-1312-R21	51.11	675	

RC-1312-1221 EAM

> 11 APERTURE CARD

Also Aveilable On Aperture Card

See Initial Stress Summary Pesults Table 3.6.2-1, SH 85

LEGEND

POSTULATED BREAK POINT

ENERGY ABSORBING RESTRAINT

> RIGID GUIDE

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Residual Heat Romova Pumpe Suction: Aroide Containment 8510180333-22 sheet &c Figure 3.6.1.1

060C

RE STRAINT NUMBER

RESTRAINT DESCRIPTION DESIGN LOAD (KIPS) BREAK LOCATION

None

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 8D

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

RHR/SI Loop 1 Hot Leg Injection

8510180333-23

Figure 3.6.1.1 Sheet 80

RE STRAINT NUMBER

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

None

Also Available Ou Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH PE

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT
 RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POS	TULATED BREAK POINTS AND	1
	RESTRAINT LOCATIONS	
RHR	SI LOOPZ	
Hot	Leg Injection	

8510180333-24

Figure 3.6.1.1 Sheet 8F

2910 RC 1201 NSS

RE STRAINT NUMBER

RESTRAINT

DESIGN LOAD (KIPS) BREAK LOCATION

None

Also Available Ou Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 3F

LEGEND

POSTULATED BREAK POINT

--- ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH	TEXAS PROJECT
L	JNITS 1 & 2
POSTULI	ATED BREAK POINTS AND
RES	STRAINT LOCATIONS
RHR/SJ	Loop 3 Hot
Leg Dy	retion
Figure 3.6.1.1	olid OF

8510180333-25

8'×6" . TEE

	RESTRAINT LOAD SUMMARY		
	RE STRAINT NUMBER	RESTRAINT DESCRIPTION	DESIGN LOAD (KIPS) BREAK LOCATION
			102
12 C-112	5- RI	CrushPad- EAM	200
1	RIA	Rigid Guida	80
1	RIB	Rigid Guide	20
	R3	Erush Pad- EA M	200
	R3A	Rigid Guide	90
U	Rag	Rigid Guide	20

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH &G-

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT
 RIGID GUIDE

	SOUTH TEXAS PROJECT UNITS 1 & 2
	POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Accumulator & to Oble Lig A (Jusi de Containment)
8510180333-26	Figure 3.6.1.1 Sheet &G

RESTRAINT LOAD SUMMARY RESTRAINT RESTRAINT DESIGN LOAD (KIPS) NUMBER DESCRIPTION BREAK LOCATION 342 RC-1221 - R, Constrat EAM 200 Rigid RIA 6020 PIB 20 Cruch prof MM Ra 200 Rigid RZA R35 Rigid TI APERTURE 15°H CARD Also Available On Aperture Card RIA See Initial Stress Summary Results Table 3.6.2-1, SH 8 H R1 13.775 RIBA LEGEND POSTULATED BREAK POINT 342 ENERGY ABSORBING RESTRAINT 12 RC-1203:NSS > RIGID GUIDE SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Rung/52 - Accompletor Injection Loop 2, Inside Cateinment 8510180333-27 Figure 3.6.1.1 (stud 8H) +++++ 2 = 10

î

1

.

-

RESTRAINT LOAD SUMMARY

	RE STRAINT NUMBER
RC-1322-	- R,
	RIA
	RIB
- (R2
	RZA
0LE1322	- R2B
51-1315-	- R+
L	R.A
SI-1315	- R4B
RH-1305	8-R6

EL. (-) 7-7

SCH140

SCH. 40

CCUMULATOR RAIN IC 1121NRC101C

1313-KB2

12"SI-1313-KB2

70

45c

NOZ EL (-16'-7"

RESTRAINT DESIGN LOAD (KIPS) DESCRIPTION BREAK LOCATION 200 769 Crushpad EAM Rigid Guids 60 Rigid Guide 20 (746) Crushpad CAM (192 200 Rigid Guide (196) 80 Rigid Guida 20 (1796) -Crushpad EAM 162 (777 Rigid Guide 11 (7/5) Rigid Guide 11 (775) 166 U-Bar 760

> APERTURE CARD

Also Available On Aperters Card

See Initial Stress Summary Results Table 3.6.2-1, SH 81

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT
 RIGID GUIDE

SOUTH TEXAS PROJECT **UNITS 1 & 2** POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS** Accumulator to cold Leg C (Qniede containment) 8510180333-28 Shut 8I Figure 3.6.1-1

TOR 1C

See Initial Stress Summary Results Table 3.6.2-1, SH 81

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

2" SI-1313-KB2

8510180333-29

SOUTH TEXAS PROJECT **UNITS 1 & 2**

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

Accumulators brain to the RCDT

Figure 3.6.1.1 Sheet 8 J

RESTRAINT LOAD SUMMARY

RE STRAINT NUMBER

85/0/80333-30

RESTRAINT

DESIGN LOAD (KIPS) BREAK LOCATION

NONE

APERTURE CARD

Also Available On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 9 A1 \$2

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

Chemical Volume and Control System Letdown from crossover leg to Regenerative Heat Exchanger

Figure 3.6.1.1 (Sheet 9A'

See Initial Stress Summary Results Table 3.6.2-1, SH 998

14-KB3

LEGEND

POSTULATED BREAK POINT

ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

Chemical Volume and Control system Letdown Dutside Containment

8510180333-31

Figure 3.6.1.1 Sheet 9B

RESTRAINT LOAD SUMMARY RESTRAINT RESTRAINT DESIGN LOAD (KIPS) NUMBER DESCRIPTION BREAK LOCATION 14 10,12 7,8 5,6 EPAM PAD RIJA 4 2 44-3" 40 CV-1118- R134 40 RISC 4. 40 CV-1118- FISD 50 50 (U-11210R17C 45 R170 45 R18C 45 45 RISD. 55 55

See initial Stress Summary Results Table 3.6.2-1, SH 9C.

LEGEND

POSTULATED BREAK POINT ENERGY ABSORBING RESTRAINT > RIGID GUIDE

Figure 3.6.1-1

SOUTH TEXAS PROJECT **UNITS 1 & 2**

POSTULATED BREAK POINTS AND **RESTRAINT LOCATIONS**

shut

CUCS - NORMAL CHARGING

8510180333-32

APERT

CARI

Aretholds Us

on Card

XSH . 1 Pa xevoo6 EL 38-42" 23 75 - 4 cu-1117-BB2 CONTINUE TO CV-05 NORMOL CHARGING 283- PIII-42" ATTACHMENT I ST-HL-AE- 1389 PAGE 85 OF 124 45% ASA - t EL 32'- 3" 2 1

RESTRAINT LOAD SUMMARY

RESTRAINT

NUMBER

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

hore

TI APERTURE CARD

Also Available On Aporture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 9E

LEGEND

POSTULATED BREAK POINT

--- ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Was alternate danging

8510/80333-34

Acutus-BB2

1 RC -1323-8B1

D 27 = RC - 1303-NSS

Figure 3.6.1.1 (sheet 90)

RESTRAINT LOAD SUMMARY

RESTRAINT NUMBER

RESTRAINT DESCRIPTION

DESIGN LOAD (KIPS) BREAK LOCATION

None

8510180333-35

6.11

Also Aveilable On Aperture Card

See Initial Stress Summary Results Table 3.6.2-1, SH 9F

LEGEND

POSTULATED BREAK POINT
 ENERGY ABSORBING RESTRAINT
 RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2 POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS Cheminal Versus and Control Prays arthory Fimbridgen hoat exchanger (Onside -Containment) Figure 3.6.1.1 Shigh

RE STRAINT NUMBER

RESTRAINT DESCRIPTION

RESTRAINT LOAD SUMMARY

DESIGN LOAD (KIPS) BREAK LOCATION

hone

Also Available On Apariane Card

See Initial Stress Summary Results Table 3.6.2-1, SH 9F

LEGEND

POSTULATED BREAK POINT

ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

SOUTH TEXAS PROJECT UNITS 1 & 2

POSTULATED BREAK POINTS AND RESTRAINT LOCATIONS

tron Loop 4 (Paside (origination)

8510180333-36

2 "20-1192-882

Q.31 RC-1402-NSS

10

Figure 3.6.1.1 (shut 9 6) ------

RESTRAINT LOAD SUMMARY

RESTRAINT DESCRIPTION DESIGN LOAD (KIPS) BREAK LOCATION

.TI APERTURE CARD

Also Available O

PEN.M-46

See Initial Stress Summary Results Table 3.6.2-1, SH 9H

LEGEND

POSTULATED BREAK POINT

-> ENERGY ABSORBING RESTRAINT

-> RIGID GUIDE

8510180333-37

Letsown Heat Sxchanger, Dava Brosswie Profile Compartment

Fig. 3.6.2-5

Letdown heat exchanger tomperturent Temperature Profile

ATTACHMENT / ST. HL AE . 13 PT PAGE 91 OF 1

APPENDIX 3.6.A

ISOLATION VALVE CUBICLE SUBCOMPARTMENT ANALYSIS

3.6.A.1 Design Features

The Isolation Valve Cubicle (IVC) is located between the Containment and Turbine Generator buildings on the north side of the containment. Figure 1.2-21 through 1.2-25 provides the plan and elevation views of this area. The IVC consists of four cubicles with each cubicle designed to accommodate equipment and piping pertaining to each of the four trains of the steam-feedwater system, thus meeting the train separation criteria.

At lower levels (between El. 10'0" and 34'0") each train has an AFW pump. Three of them are motor driven while the fourth is turbine-driven. Water-tight doors assures the separability of the auxiliary pump cubicles from one another in the event of flooding of any one of the cubicles due to a pipe break. Main Steam and Main Feedwater pipes run through the IVC above El. 34'0" extending from the containment penetrations to the five-way

bending-torsional restraints mounted between two walls on the north end of the IVC. The MSIV, main steam safety valves, MFIV, etc. are located in this compartment. A sloped metal roof covers the top of the IVC. The roof will inft off in the event of a pressure build-up due to a pipe break in one of the cubicles. The auxiliary pump cubicles relieve their pressure build-up in the event of a AFW pipe break through the grated opening at Elevation 34'0" from whence it is eventually vented to the the atmosphere via the roof in the IVC.

3.6.A.2 Design Evaluation

The subcompartment pressure transients were determined using the COPDA Computer Code. Details of the code are given in Section 6.2.1.2.4. The piping in this compartment is designed to the break exclusion criteria stated in paragraph 3.6.2.1 for those portions of the piping passing through the primary containment and extending to the first pipe Whip restraint past the first outside isolation valve. Accordingly mechanistic pipe breaks are not postulated in te MSIV/MFIV piping. However, to provide an additional level of assurance of operability of safety related equipment in this compartment, the building structures and safety related equipment are designed to environmental conditions (pressure temperature and flooding) that would result from a break, equal to one cross-sectional area of the main steam and main feedwater main piping. Adequate venting is provided to limit the pressurization of the cubicles to below the design pressures of the wall.

The following cases were analyzed to determine the worst environmental conditions for the IVC.

 Blowdown from a main steam line break (MSLB) equivalent to the area of a single area ripture.

2) Blowdown from a main feedwater line break due to a two-area (double-ended) break.*

ATTACHMENT ST. HL-AE . 1387 PAGE 92 OF 124

Auxiliary feedwater line double-ended break in the auxiliary 3) feedwater cubicle.

The MSLB results in maximum pressure conditions enveloping the results due to other cases and hence it is used for the design of IVC. Results of the MSLB analysis are presented below.

The RELAPS Code (Ref. 6.2.1.2-6) has been used to calculate the short term blowdown of the main steam line and is presented on Table 3.6.A-1.

The modal zation scheme selected for the model is shown in Fig. 3.6.A-1. The nodal boundaries have been selected wherever there has been flow restrictions (such as grating platforms). As mentioned, the roof of the IVC is covered by built-up metal panels. The differential pressures at which these panels lift is 0.8 psig. The weight of these panels is 3 pounds/square foot. The panel is assumed to move parallel to its original position (note the panel has a small slope away from the containment building) till it clears the sidewalls of the IVC. Once the panels clear the walls, it is assumed to lift away from the path of the flow of the steam-air mixture to the atmosphere. Thus, this movement of the panels above its nominal position creates movable nodes 10 and -11 shown on the sectional diagrams. The node volume and junction parameters of the IVC are given on Table 3.6.A-2. Node 10 and 11 have variable properties as the panel moves above its nominal position. The vent area and the volume of these nodes are given in Table 3.6.A-3 and Table 3.6.A-4.

ed Out of the cases consider for the main steam line break in the IVC, results of two cases which yields maximum pressures in the various nodes are presented. In Case 1, the blowdown is distributed to node 6 while in Case 2, all the blowdown due to MSLB goes to node 7. The limiting pressure resulting from the two cases is presented in Fig. 3.6.A-3. The peak pressures for each of these nodes are listed in Table 3.6.A-2.

For generating the equipment qualification temperatures of the IVC a simpler 3-node model of the IVC has been used and the volume and junction properties were inputted into a modified COPDA code named FLUD (see 3.6.A.3 for discussion of FLUD). The simplified model consists of 3-nodes with node 1 being

*Although a one area break, in accordance with FSAR Section 3.6.2.1, could have been justifiably used for the main feedwater line, a conservative double-ended break yields lower pressures and temperatures when compared to the one area break for the main steam line.

ST.HL-AE-1389 PAGE 93 DF 124 the auxiliary pump room between El. 10' and 32', node 2 is between El. 34' and 55.5' and lastly node 3 occupying space above 55.5". Out of the various cases STET considered, MSLB produced the limiting temperatures in the IVC. The longterm blowdown used in the analysis is presented in Table 3.6.A-5 and the temperature profiles are given in Fig. 3.6.A-4. Blowdown has been obtained using Westinghouse LOFTRRAN code (Ref. 3.6.A.4.5).

3.6.A.3 FLUD, A Compartment Differential Pressure Analysis Code

This describes the computational procedure and the analytical techniques used in FLUD. The analytical basis for COPDA is described in Reference 6.2.1.2-2. The set-up of initial conditions, the determination of the thermodynamic state point at subsequent time increments, and computation of energy and mass transport between one time step is discussed in Sections 3.6.A.3.1, 3.6.A.3.2 and 3.6.A.3.3 for FLUD. Selection was made of the control volume and flow pain configuration that resulted in the best representation of the pressure transients in the compartments along the flow paths from the break. The major differences between FLUD and COPDA (Ref. 3.6.A.6) are the use of steam table and the curve fits (Section 3.6.A.3) instead of table look-ups, and the equation of 1 apabilite state which is a first-order virial expansion (discussed in 3.6.A.3.1). The fluid flow equations (compressible equations, HEM model and integrated Wall his momentum equation) used in COPDA have been reproduced in the FLUD code. It transfe may be observed from the FLUD flowchart in Fig. 3.6.A.2 that the calculational Calculot procedures for FLUD and COPDA are very similar.

3.6.A.3.1 Equation of State

In This section we describeshow FLUD determines the thermodynamic state for each compartments in a system of interconnected compartments.

Dur thermodynamic system (compartment) is assumed to be in equilibrium. The states assumed by the air-steam-water mixture can be described in terms of thermodynamic coordinates P, V, and T referring to the mixture as a whole. The equation of state is derived from a first order virial expansion as presented in Ref. 3.6.A.4.1. Using the molecular theory of gases, the following equation of state for an air-steam mixture is obtained assuming negligible air-steam molecular interaction:

$$P = (M_a R_a + M_s R_s) \frac{T}{T} + (\frac{M_s}{T})^2 R_s T B_s(T), (1bf/ft^2) \quad (E0. 3.6.A.1)$$

$$V V$$

where the temperature dependence of the second virial coefficient for steam $R_s(T)$ is given by (Reference 3.6.A.4.2)

$$B_{s}(T) = 0.0330 - \frac{75.3137}{T} 10^{-5} + 1.1308)$$

(EQ. 3.6.A.2)

ATTACHMENT /

EQ. 3.6.A.1 can be rewritten as the sum of the partial pressure of air P_a and the partial pressure of steam P_c where

$$P_a = \frac{M_a}{V} P_a T$$
, (lbf/ft²) = 0.37043 T, (psia) (EQ. 3.6.A.3)

and

$$P_{s} = \frac{M_{s}}{V} \frac{R_{s}T}{V} [1 + \frac{M_{s}}{V} B_{s} (T)], (1bf/ft^{2})$$
(3.6.A.4)

EQ. 3.6.A.4 compares well with the steam tables (Ref. 3.6.A.4.2). For example, the relative error in EQ. 3.6.A.4 is less than 1% for saturated steam at temperatures less than 570°F.

3.6.A.3.2 Compartment Thermodynamic State

At any time, the total internal energy E, the air mass M_a , and the vapor mass M_v have known values for each compartment. Vapor is defined as a homogeneous mixture of steam and water in unknown proportions.

The internal energy is a function of as many thermodynamic coordinates as are necessary to specify the state of the system. Therefore, for known air and vapor masses and because the compartment volume is originally specified, the compartment internal energy can be expressed as a function of temperature only:

P = P(T)

(EQ. 3.6.A.5)

At the saturation temperature T_0 , there is a discontinuous change in the slope of B(T) due to a phase change in the compartment atmosphere. Associated with T_0 is the compartment saturation energy $E_0 = E(T_0)$. Equation 3.6.A.5 has two branches: (1) a two-phase branch were $E \neq E_0$ and $T \ll T_0$ and (2) a superheat branch where $E \geq E_0$ and $T \gg T_0$. Along the two-phase branch the vapor portion of the atmosphere has a non-zero water mass component, while along the superheat branch the vapor contains no water.

15 SOLVED

Having examined the behavior of E(T), we now proceed to solve EQ. 3.6.A.5, for the compartment temperature, E being known. v_{sat} , e_{sat} and v_m , e_w represent the specific volumes and specific internal energies of saturated steam and water respectigely. The dependence of these quantities on temperature is determined empirically from steam table curve fits described in Section 3.6.A.8. E_0 is calculated to determine on which branch of E(T) the compartment temperature lies. At compartment saturation, the steam mass M_s is identical to M_v and the specific volume of the steam is just v_{sat} (T_0). Thus,

 $V = M_V v_{sat} (T_0)$

(EQ. 3.6.A.6)

AT	TACH	MENT	1	-
ST.	HL-AL	1389	·	
PA	GE 95	OF /2	4	

The above equation is easily solved to T_0 by utilizing the inverse of the function $V_{sat}(T_0)$, which is also a steam table curve fit where $T_0 = T_{sat} (V/M_v)$. The saturation internal energy for the compartment is then given by

$$E_{o} = M_{a}c_{va}T_{o} + M_{v}e_{sat}(T_{o})$$
 (E0. 3.6.A.7)

where $c_{Va} = 0.1725 \text{ Vtu/lbm}^{\circ}\text{R}$ is the specific heat at constant volume for air averaged over the temperature range -109.7 to 440.3°F. For the case E> E₀ (the two-phase branch), the explicit dependence of E on M_a, M_s, M_w and T is

 $E = M_{a}c_{va}T + M_{s}(T) e_{sat}(T) + M_{w}(T) e_{w}(T)$ (EQ. 3.6.A.8)

The functions $e_s(P_s, T)$ and $e_w(T)$ are the specific internal energies of steam and water respectively and are also discussed in Section 3.6.A.5. The steam and water masses are functions of temperature only and are given by

$$M_{s}(T) = x(T)M_{v} = \frac{V - M_{v}v_{w}(T)}{\frac{V - W_{v}v_{w}(T)}{V_{sat}(T) - V_{w}(T)}}$$
(EQ.3.6.A.9)

and

$$M_{u}(T) = M_{u} - M_{e}(T)$$
 (EQ.3.6.A.9)

where the steam quality x(T) is defined by the following:

$$x(T) = \frac{M_{s}(T)}{M_{v}} = \frac{V/M_{v} - v_{w}(T)}{v_{sat}(T) - v_{w}(T)}$$
(EQ. 3.6.A.10)

For the case $E > E_0$ (the superheat branch), the explicit dependence of E is given by

 $E = M_a c_{va} T + M_s e_s (P_s, T)$ (EQ. 3.6.A.11)

The steam mass M_s is not a function of temperature since it is equal to the vapor mass M_v , and of course the water mass is zero.

Because E is a complex function of T as seen by the above, EQ. 3.6.A.5 does not readily lend itself to a strictly analytical solution. Instead, FLUD employs a one-pass iterative technique to solve for the temperature.

3.6.A.3.3 Compartment Initial Conditions

The initial thermodynamic state is specified for each compartment by the total compartment pressure P, the compartment volume V, temperature T, relative humidity \emptyset , and vapor quality x.

If $\emptyset \leq 1.0$, the compartment is superheated, the vapor consists entirely of steam, and the steam mass is given by definition as

 $M_{s} = \emptyset = \frac{V}{\chi_{at} (T)}$

and the

(EQ. 3.6.A.12)

ATTACHMENT / ST. HL. AE- 1381 PAGE 96 OF 124

The steam partial pressure is obtained from EQ. 3.6.A.4, and thus the air mass is given by EQ. 3.6.A.3. The internal energy is calculated using EQ. 3.6.A.11. If $\emptyset = 1.0$ and x = 1.0, the compartment is saturated. The steam partial pressure is given by the saturation pressure $P_s = P_{sat}(T)$. The saturation pressure of steam Psat is obtained empirically from a curve fit to the steam tables. The steam mass is given by EQ. 3.6.A.12 with Ø = 1.0. The vapor mass is identically equal to the steam mass, and the internal energy is computed from EQ. 3.6.A.7. For $\emptyset = 1.0$ and x = 1.0, the compartment is two-phase. The vapor and steam masses are given by EQ. 3.6.A.9 and the water mass by EQ. 3.6.A.9. The steam <u>potential</u> pressure is equal to the saturation pressure $P = P_{sat}(T)$. Therefore, the air mass car be n calculated from EQ. 3.6.A.3. However, because the compartment now contains water, the volume accessible to the air and steam V_q is just

 $V_g = V - M_w v_{sat} (T)$

Partial (EQ. 3.6.A.13)

This gas volume Vo must be used in place of V in EQ.3.6.A.3 determining the air mass. The internal energy is obtained from EQ. 3.6.A.8.

3.6.A.3.4 Air and Vapor Component Flow Rates

The time-dependent partial pressure of steam is given by EQ. 3.6.A.4 where $v_{\rm S}$ replaces V/Ms. The time-dependent air specific volume $v_{\rm a}$ is then obtained from EQ. 3.6.A.3. Time-dependent air and steam mass fractions are then calculated as follows:

> $f_a = v (v_s + v_a)$ (EQ. 3.6.A.14) $f_{\mathbf{v}} = v_a / (v_s + v_a)$ (EQ. 3.6.A.14)

The flow rates of the air and vapor components that comprise the gas are calculated from the total flow rate M by using the mass fractions of air and vapor in the upstream compartment:

> $M_{aij} = f_a M_{ij}$ (EQ. 3.6.A.15)

M_{vij} = f_vM_{ij}

(EQ. 3.6.A.16)

3.6.A.4 Energy Transfer Mechanisms

There are several mechanisms by which FLUD transfers energy to and from the various compartments and the atmosphere. These mechanisms are:

- 1) Blowdown energy
- 2) Flow of energy between compartments
- 3) Compartment heat loads
- 3) Compartment unit coolers

All of these mechanisms add or subtract energy from the system. A continuous accounting of all energy contributors is kept by FLUD in the form of an overall energy balance to ensure energy conservation. The various energy transfer mechanisms are discussed and the energy balance are discussed below.

3.6.A.4.1 Blowdown Energy

Blowdown energy is added to the system of compartments when FLUD is used to analyze a high-energy pipe break problem. The blowdown flow rate M_B specific enthalpy h_B and the split among compartments are assumed to be given at input data. The rate of energy addition to the system by blowdown H_B is usually a time-varying quantity given by

$$H_{B} = M_{B} h_{B}$$
 (EQ. 3.6.A.17)

This variable energy rate is used to calculate the amount of energy that is placed in one or in the various break compartments during each time step. The total amount of blowdown energy added to the system is the integral of H_B

 $H_{B}(t) = \int_{0}^{t} \dot{H}_{B} dt$ (EQ. 3.6.A.18)

The blowdown energy rate added to the ith compartment is calculated by multiplying the user-supplied split fraction for the ith compartment times the total blowdown energy rate in EQ. 3.6.A.17.

3.6.A.4.2 Enthalpy Flow

Whenever mass is consferred between compartments or between a compartment and the atmosphere, there is an associated transfer of energy based upon the enthalpy of the upstream compartment. The general relation used to calculate enthalpy flow between compartments is

$$\dot{H}_{i} = \sum_{j} \dot{M}_{ij}h_{ij}^{*}$$

(EQ. 3.6.A.19)

where h_{ij}^* represents the total specific enthalpy of the gas in the upstream compartment and M_{ij} is the flow rate between compartments i and j as discussed in 260.1.4. The total enthalpy flow rate for the system is 3.6.4.4

20

When energy transfer occurs between a compartment and the atmosphere, the relation used to calculate this flow is

H = 2 H,

(EQ. 3.6.A.21)

Here Mii represents the total flow from or to the atmosphere from compartment i and h^{*}_{1i} is the specific enthalpy of the upstream compartment (which may be either compartment i or the atmosphere depending upon the sign Mii). The total enthalpy flow rate to the atmosphere is

H_{atm} = S H_{atm,i}

(EQ. 3.6.A.22)

and the total amount of energy transferred to the atmosphere is

$$H_{atm}(t) = \int_{0}^{t} H_{atm} dt$$

3.6.A.4.3 Compartment Heat Loads

(EQ. 3.6.A.23)

Heat is generated within a compartment in the case where pumps or equipment are operating in that compartment. These heat loads are given with the input data as a constant heat rate (Btu/sec) for each compartment Qload. These heat loads are assumed to be applicable throughout the problem under consideration.

3.6.A.4.4 Unit Coolers

Unit coolers or room coolers are present in many situations, especially in compartments that have equipment capable of generating large heat loads. Room coolers can have a variable start temperature which is specified in the input data. The coolers are usually set to begin operating when the compartment temperature exceeds some prescribed limit.

The cooling heat transfer rate is given by

 $Q_{cool} = \alpha (T - T_{cool})$

(EQ. 3.6.A.24)

66

Where T_{cool} is the cooler cold where inlet temperature, T is the temperature of the compartment, and a in the constant (Btu/sec-°R). The cooler constant can be calculated in the cooler specifications and is assumed to be constant throughout the comperature ranges of the room atmosphere and the cooling water temperature.

3.6.A.4.5 Energy Balance

The energy balance given by the following equations is used to ensure that energy conservation is achieved.

$$E_{bal} = E_i + 0 dt + H_{atm} dt + H_B dt - E_i (0)$$
 (EQ. 3.6.A.25)

ATTACHMENT / ST.HL-AE-1389

PAGE

OF 1.24

where E_i is the total energy in the ith compartment, E_i (0) is the initial compartment energy, and

$$0 = 0_{c} + 0_{10ad} + 0_{cool}$$
 (E0. 3.6.A.26)

If an energy balance is achieved, then Ebal should be zero.

3.6.A.4.6 Blowout Panel Activation

Blowout panels are treated as instantaneous one-way switches. Once a blowout panel set pressure is exceeded, the flowpath is open for the duration of the calculation. The actual activation of a blowout panel is made by setting the forward and reverse set pressures equal to zero once the forward set pressure has been exceeded.

3.6.A.4.7 Energy and Mass Conservation

Energy and mass conservation is then checked by calculating the following quantities:

$$E_{bal} = \sum E_i + \int \dot{O} dt + \int \dot{H}_{atm} dt - \int \dot{H}_{B} dt - E_{init} \quad (EQ. 3.6.A.27)$$

$$M_{bal} = \sum M_i + \int \dot{M}_{Q} dt + \int \dot{M}_{atm} dt - \int \dot{M}_{B} dt - M_{init} \quad (EQ. 3.6.A.28)$$

If all mass and energy transfer has been accounted for, then E_{bal} and M_{bal} should be zero (or a very small percentage of the total energy and mass due to computer round-off error).

3.5.A.4.8 Eulerian Integration

The time-dependent quantities listed below are integrated accfording to the following general scheme:

$$X(T + \Delta t) = X(t) + \dot{X}(t)\Delta t$$
 (EQ. 3.6.A.29)

where X is any time dependent variable and X is its time rate of change. The variables integrated by FLUD are:

 $H_{\rm R}$ - blowdown enthalpy flow rate

M_B - blowdown mass flow rate E - energy rate of change H_{atm} - atmospheric enthalpy flow rate M_a - air mass flow rate J - Heat Transfer lete M_v - vapor mass flow rate M_{atm} - atmospheric mass flow rate M_{atm} - atmospheric mass flow rate M_{atm} - mass Condensation ite 3.6.A.5 Thermodynamic Properties of Steam, Water, and Air

FLUD uses steam, air, and water properties for various thermodynamic calculations which are performed during each time step. The thermodynamic variables needed in FLUD calculations are:

ATTACHMENT /

- e_a(T) Specific internal energy of air
- P_{sat}(T) saturation pressure of steam
- v_{sat}(T) saturation specific volume of steam
- es(T,P) specific internal energy of steam
- v_w(T) specific volume of water
- ew(T) specific internal energy of water
- T_{sat}(P) saturation temperature of steam
- T_{sat}(v) saturation temperature of steam
- esat(T) saturation specific internal energy of steam
- h_{sat}(T) saturation specific enthalpy of steam
- hf (P) enthalpy of vaporization of steam

The "unknown" quantities that can be used to calculate the above nine variables are the macroscopic compartment thermodynamic variables pressure, specific volume, and temperature, P, v, and T respectively.

PAGE /01 OF 124 The air and water properties $e_a(T)$, $v_w(T)$, and $e_w(T)$ are calculated by plime fitting polynomials to data in the steam and gas tables (References 3.6.A.4.2 and 3.6.A.4.3). The air property $e_a(T)$ was found to be adequately represented by a linear fit. This is no doubt due to the good "ideal gas" behavior of air. Thus,

$$e_a(T) = a_1 T$$
 (EQ. 3.6.A.30)

ATTACHMENT / ST. HL-AE- 1389

The water properties $v_w(T)$ and $e_w(T)$ and the steam properties $h_{sat}(T)$, $e_0(T)$, and

esat(1) are very nearly straight line functions, but small variations were acco modated by using third order spline polynomial fits of the general form:

> property (T) = $a_0 + a_1T + a_2T^2 = a_3T^3$ (EQ. 6.3.A.31) For example, for hfg(P);

$$h_{fg}(P) = a_0 + a_q P + a_2 p^2 + a_3 P_3^3$$
 (EQ. 3.6.A.33)

The accuracy of the curve fits range between 0.01% and 4% for the various properties.

3.6.A.6 References

- 3.6.A.4.1 Reif, F. J. Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Co., p. 183.
- 3.6.A.4.2 Kennan, J. H. et al, Steam Tables, John Wiley & Sons, Inc., New York, 1969.
- 3.5.A.4.3 Keepan, J. H., and J. Kaye, Gas Tables, John Wiley & Sons, Inc., New York, 1948.
- 3.6.A.4.4 Bechtel Topical Report BN-TOP-4 Rev. 1, October 1977, "Subconmartment Pressure and Temperature Transient Analysis". This report was approved by the NRC in February, 1979.

ATTACHMENT /
ST.HL.AE. 1384
PAGE/02 OF 124

Table 3.6.A-1

MAIN STEAM LINE BREAK BLOWDOWN

(an enthalpy of 1200 Btu/1bm is conservatively assumed thomughout)

Time	Steam Generator		
(Secs.)	A or B		
	(lb/sec.)		
0.0	0.0		
0.0066	8700.0		
0.01	6090.89		
0.013	5763.63		
0.025	5531.81		
0.05	5227.25		
0.10	4890.86		
0.125	4972.72		
0.15	5190.87		
0.20	5036.35		
0.25	4899.95		
0.30	4809.05		
0.35	4763.60		
0.40	4718.15		
0.45	4718.15		
0.50	4672.70		

Table 3.6.A-2

Volume	Volume	In	itial Conditi	ons	Flow	Flow Flow	L/A	Calculatred	
Number	Cu ft.	Temp. °F	Pressure psia	Humidity %	Path	Area Ft ²	Coeffi- cient	ft ⁻¹	Peak Press. psia
1,	3588.5	105.0	14.7	90					21.35
2.	1977.5	105.0	14.7	90	2 + 1	75.45	0.78	0.05	21.08
3.	5530.95	105.0	14.7	90	3+2	54.16	0.82	0.18	20.33
4.	2558.5	105.0	14.7	90	4 + 3 4 + 5 4 + 6	210.37 64.60 256.84	0.80 0.92 0.82	0.024 0.26 0.02	20.435
5.	1453.0	105.0	14.7	90	5 +3 5 +7	115.72 131.90	0.80 0.817	0.035	23.25
6.	2221.7	105.0	14.7	90	6 + 7 6 + 8	56.52 195.42	0.91 0.80	0.27	22.93
7.	1262.26	105.0	14.7	90	7 + 9	90.29	0.79	0.09	28.79
8.	7957.44	105.0	14.7	90	8 + 9 8+10	80.53 257.94	0.85 0.92	0.07 0.038	19.73
9.	5448.47	105.0	14.7	90	9 + 11	227.24	0.94	0.04	19.15
10.	Please	see	table	3.6.A-3	for de	tails for	this node	e	
11.	Please	see	table	3.6.A-4	for de	tails for	this node	9	
12.	1.0F22	105.0	14.7	90					

נמים

ME

IVC Subcompartment Nodal Description

Table 3.6.A-3

noue iv, variable noue raid	Node	e Parameter	Node	le	iab	, Vari	10.	Node
-----------------------------	------	-------------	------	----	-----	--------	-----	------

Variable height of the panel ft	Variable Vent Area ft ²	Variable Volume ft ³
0.0	0.0	173.92
0.4	5.2	298.71
0.8	10.4	423.50
1.05	14.32	501.50
1.30	19.59	579.50
1.55	26.88	657.49
1.92	42.61	1084.90
2.92	100.98	5772.92
3.92	161.97	1396.88
5.00	227.84	1733.82

ATTACHMENT 1 ST.HLAE. 1384 AGE 104 OF 124
Table 3.6.A-4

Node 11.	Variable Node	Parameters
----------	---------------	------------

Variable height of the panel ft	Variable Vent Area ft ²	Variable Volume ft ³
0.0	18.0	158.38
0.4	23.2	275.37
0.8	28.4	392.37
1.5	37,5	597.11
1.92	42.96	719.95
2.32	51.48	836.95
2.72	66,66	953.94
3.00	81.25	1035.84
4.00	139.24	1328.32
5.00	197.24	1620.87

ATTACHMENT / ST.HL.AE. / 35'/ PAGE 105 OF 124

ATTACHMENT / ST-HL-AE- 13 89 PAGE/06 OF 124

Table 3.6.A-5

Mass/Energy Release Results For a 4.05 ft² Split Steam Line Break at 0% Power

Time	Mass flow Pate (lbm/sec)	Enthalpy Rtu/lbm
	Nace (Tomy see)	bcu/ rbin
0.0	10143.6	1184.98
2.5	9336.6	1189.68
5.0	8550.8	1192.87
1.5	7906.5	1195.46
10.0	2506.3	1197.98
15.0	2084.8	1201.55
20.0	1780.7	1203.46
25.0	1561.5	1204.42
30.0	1397.9	1204.74
35.0	1270.5	1204.80
40.0	1170.3	1204.73
45.0	1091.7	1204.36
50.0	1030.3	1204.16
60.0	942.5	1203.60
80.0	855.7	1202.88
100.0	821.5	1202.43
150.0	786.8	1202.08
200.0	743.6	1201.45
250.0	696.9	1200.88
300.0	628.2	1199.62
310.0	595.1	1198.62
350.0	595.1	1198.62
351.0	141.3	1198.86
1800.0	141.3	1198.86
2802.0	0.0	0.0

FIGURE 3.6.A.T. NODE AND JUNCTION DIAGRAM

ATTACHMENT / ST.HL.AE. 1389 PAGE 107 OF 124

 $(n, n_{\rm c})$

TIME(secs)

ATTACHMENT ST.HL.AE. .389

5

ATTACHMENT / ST.HL.AE. 1389 PAGE//8 OF 124

10 201 10 NC EQ TEMP. NODE 2 MSLB ŧ TIME (SEC) 10 #19.3.6.4 -4 (Sheet 2 = f 3) 10, -3 10. i, (F)2+0.00 00.09E . . 320.00 00 0Z 1. 00.08 00'09Z 200.000 TEMP 00.081

ATTACHMENT / ST-HL-AE-1389 PAGE //9 OF 124

STP FSAR

ATTACHMENT I ST. HL . AE . 1389 PAGE 121 OF 124

Cuestion 010.18

During our review of your Report No. L010RR064A, "Report on Dynamic Effects of Postulated Piping Failures Outside the Containment," you proposed to redesign your main steam and feedwater valve compartment to consider the environmental effects (pressure, temperature, humidity) and potential flooding consequences from an assumed crack, equivalent to the flow are of a single ended pipe rupture in these lines inside the valve compartment. Provide your design modification and the related safety analysis, including the following:

- Describe the location and size of the vent areas in the main steam and feedwater valve compartment.
- 2. We require that essential equipment located within the compartment including the main steam isolation and feedwater valves and their operators be qualified to operate in the environment resulting from the above assumed single ended pipe rupture. State your intent with regard to this position.
- 3. Provide a subcompartment pressure analysis to confirm that the design of the main steam and feedwater valve compartment can withstand the effects of the above assumed single ended pipe rupture. When you submit the subcompartment pressure analysis, identify the computer code used, the assumptions used for mass and energy release rates, the length of time blowdown exists, and sufficient design data so that we may perform independent calculations.

Response

As discussed in revised Section 3.6, an Appendix will be provided that - : describes the evaluations made of the effects of postulated pipe failures within the plant. A discussion of the effects of postulated failures within the Isolation Valv. Cubicle will be included and flow idea in Frin

Table 3.6.2 - 2 and appendix 3.6A.

Amenations -(

40

PIFWS

ATTACHMENT / ST-HL-AE- 1384 PAGE/22 OF 124

Question 210.20N

Response

In order to assure that the pipe break criteria have been properly implemented, the Standard Review Plan requires the review of sketches showing the postulated rupture locations and of summaries of the data developed to select postulated break locations including, for each point, the calculated stress intensity, the calculated cumulative usage factor, and the calculated primary plus secondary stress range. The required sketches and tables for some high energy piping systems have not been provided at this time in the FSAR. Provide a schedule for submission of these data.

are shown in FAR Table 3. le. 2 - 1. Shetches 1/ Initial stress summaries regarding pipe break locations, stress levels, 3.6.1-1 ALL SHARE 3.6.-1. , cumulative usage factors will be provided during the fourth quarter of 1985. Final design information, including as-built reconciliation, will be provided prior to fuel load. A ST T TO BE ALL STREET, BARRIER ·

The South Texas Project (STP) has submitted a request to the NRC for exemption to General Design Criterion 4 in order to delete postulation of Reactor Coolant Loop (RCL) p_pe breaks based upon the "Leak Before Break" analyses. This has been justified in WCAP-10560. (Refer to HL&P to NRC letters ST-HL-AE-1010 dated September 28, 1983, ST-HL-AE-1096, dated July 17, 1984. ed to the request, the project is sefficiently confident such that the current design is proceeding on the assumption that the exemption will be granted. Thus, GCL pipe breaks are not postulated and the information requested is not pertinent to STP for that scope. However, it should be noted that primary component supports have been designed to withstand the structural loads associated with non-mechanistic Reactor Coolant pipe breaks at the locations described in WCAP-8082 __ Dpon NRC approval of the elimination of RCL pip: breaks the STP FSAR will be ravised to reflect this revised design basis.

and ST-HL - AE - 1326, august 19, 1985.)

Vol. 2 Q&R 3.6-8N

ATTACHMENT I

ST-HL-AE 1389 PAGE / 23 OF 124

Question 231.04

In addition to the seismic and hydraulic loads on fuel assemblies, Westinghouse has determined that an asymmetric horizontal load will be imposed on the reactor core in the event of a rupture in the primary system piping. Provide the results of an analysis which shows that the South Texas fuel assemblies can withstand this additional horizontal load. Similar analyses have been submitted on the North Anna, Sequoyah, Farley and Diablo Canyon dockets and these can be referenced for information. This analysis should be performed with the best available methodology and criteria for the South Texas design.

We are currently reviewing a generic analysis method to account for the horizontal asymmetric load (see Task A-2, NUREG-0371, dated November 1978). If the methodology or criteria developed from this task were to result in a need for a reevaluation on South Texas, at that time we would require that you perform such a reevaluation.

Response

Westinghouse has demonstrated on a generic basis that Reactor Coolant System (RCS) primary loop pipe breaks are highly unlikely. By Generic Letter 84-04 the NRC Staff documented their approach of Westinghouse topical reports dealing with the elimination of postulated breaks in PWR primary main coolant loop piping. Generic Letter 84-04 authorizes applicants for operating licenses to request exemptions from the requirements of General Design Criteria 4 with respect to asymmetric blowdown loads requesting from breaks in the primary main coolant loop. STP intends to apply for such an exemption. Should an need for these analyses of our exemption requests still exist after the NRC review, a timely response will be provided.

Afer to the response to NRC Question 210,20 N.

37

QUESTION 410.05 (3.6.1)

Provide the results of a high energy pipe break analysis that addresses the consequences of pipe whip, jet impingement, flooding and environmental effects on safety-related systems and components as indicated on the FSAR Table 3.6.292.

ATTACHMENT I ST.HL.AE. 1389 PAGE /29 OF 124

N' Sex

UNSC.	hand analysis indicated in FSAR I	ab
Results of the high energy pipe	Fourth Quarter of 1985.	
3.6.2 WILL DE DE OFICE CAL	1. mensed in regaine	
FSAR Table 3.6.2 - C has	alert -	
1. dis question -		
to the l		

.