|--|

AMPACITY DERATING OF CABLES DUE TO THERMO-LAG

		TITLE	
96-ENG-01528E2	00		
CALCULATION #	REV#		Vendor Calc#
System MSC/2391 Structu	re N/A	Component	CABLES

Executive Summary

This calculation addresses the cables in cable trays and conduit encased in Thermo-Lag fire wrap at MP2. For cable tray, a model was developed using standard heat transfer equations. The validity of this model was verified by comparing the calculated surface temperature of the wrap and its associated ACF (ampacity correction factor) produced by the model to actual test results on wrapped cable tray tested by Texas Utilities. The model was then used to determine an ACF for the various cable tray installations at MP2, the worse case value determined was then utilized. For the conduit installations a model using the same heat transfer type equations was employed and its associated ACF determined.

The ampacity allowed of cables in tray were determined by the simultaneous solution of the heat transfer equations (Stolpe equations). For cables in conduit, the IPCEA values were taken directly from Standard P54-426 and derated based upon directions provided in the standard to adjust for temperature and the number of conductors contained within the conduit. The resultant ampacities were then multiplied by the ACF factor and an Imax ampacity determined. This value was finally compared to the load current on the cable (appropriate multiplication factor used to ensure conservatism) and evaluated against the acceptance criteria of the calculation.

Does t	his calculation:		
1.	Support a DCR, MMOD, an independent review method for a DCR, or confirm test in an installed DCR? If yes, indicate the DCR, MMOD number and/or Test Procedure in		Yes □No ⊠
2.	Support independent analysis? If yes, indicate the procedure, work control or other reit supports.	eference	Yes □No ⊠
3.	Revise, supersede, or void existing calculations? If yes, indicate the calculation number revisions.	per and	Yes No 🖄
4.	Involve QA or QA-related systems, components or structures?		Yes No
5.	Impact the Unit licensing basis, including technical specifications, FSAR, procedures licensing commitments? If yes, identify appropriate change documents.	or	Yes □No ⊠
Appr	ovals (Print/Signature)	A ST MAN PLANTED IN STREET, MAN PARK	Accordances to the second second
Prepa	rer Dan Hundley / DR Hundley	Date:	12/13/96
Indep	endent Reviewer MICHAEL H. CHAMPAGNE / Mechaelos Champag na	-	12-13-96
Supe	rvisor RG Ewing Duing	Date	12-13-96
1-	his calculation originally prepared 11/29/04 . de in	r-n=+	

(This calculation originally prepared 11/29/96 under incorrect culculation No. 96-ENG-01288EZ) post 12/13/56

Page 2 of 44

CTP DATA BASE INPUTS [CT Unit Only]

ation Number:	96 (pref	THE RESERVE OF THE PERSON NAMED IN	(sequence number)	01528E2	evision 00	Date12/
r Calculation Nu	mber/Other					
	Supersede	d By:		QA Xes No	Supercedes Calc	
Uni	t	E	WR Number	Component Id	Computer Code	Rev.
2			N/A	N/A	N/A	00
					THERMAN MANAGEMENT ON THE MEASURE AT THE WARRANT OF THE PARTY OF THE P	
	PMMS C	and the same of th				
Structure	System	m	Component	Reference Calculation	Reference Drawings	s Sheet
Structure N/A	en quantità commerciale	m	Component N/A	Reference Calculation N/A	Reference Drawings	s Sheet
The street was processed and the street of t	System	m		THE RESIDENCE OF THE PROPERTY		s Sheet
The street was processed and the street of t	System	m		THE RESIDENCE OF THE PROPERTY		s Sheet
The street with a transmission of the contract	System	m		THE RESIDENCE OF THE PROPERTY		s Sheet
N/A	System	m		THE RESIDENCE OF THE PROPERTY		s Sheet
The street was processed and the street of t	System	m		THE RESIDENCE OF THE PROPERTY		s Sheet

Calc. No. 96-ENG -01528E2 Rev. 00

Page 3 of 44

TABLE OF CONTENTS

ITEM#	DESCRIPTION	PAGE#
********	Cover Sheet	1
	CTP Data Base Inputs	2
	Table of Contents	3
1.0	Purpose	4
2.0	Summary of Results	4
3.0	References/Design Inputs	6
4.0	Assumptions	13
5.0	Method of Calculation	16
6.0	Body of Calculation	19
7.0	Reviewers Comments and Resolutions	41
8.0	Attachments	43

1.0 Purpose

The objective of this calculation is to determine if the cables covered with Thermo-Lag fire barrier material at Millstone Nuclear Power Station Unit 2 are within their ampacity design limitations. This will be accomplished by determining the load on each affected conductor and comparing this value to the maximum allowed derated current due to the presence of Thermo-Lag.

Acceptance Criteria: The maximum derated ampacity (Imax) must be greater than the actual (load) current in each conductor.

2.6 Summary of Results

4160 Volts

The 4160 volt cables used to backfeed from Unit 1 between the Z5 bus and the Z1 and Z2 diesel buses were found to be of insufficient size to carry 3MVA as allowed by OP - 2343 (Ref. 3.1.11).

CABLE	DESCRIPTION	Charles
Z5A501A/A	Z5 SAFETY BUS TIE	
Z5A505A/B	Z5 SAFTEY BUS TIE	

Cable tray Z52FA10 was wrapped with conduit 5T540 for approximately an eight foot (8) section. This was beyond the model's limits. From the 120/125v section that follows, it is obvious that no appreciable heat is contributed by the cables in the conduit. Cable Z5A505A/B after reducing its ampacity by the derate specified by the model still has a 75 amp spare capacity and when powering the Z5 (24E) bus would by inspection be acceptable. This cable, if used as a backfeed from Unit 1 as identified above, is not capable of picking up the load of a diesel and has been identified as failing.

2.0 Summary of Results Continued:

480 Volt Continued:

480 Volts

The cables tabulated and identified below could not meet ampacity requirements

CABLE	DESCRIPTION
Z1B5103/A	Charging Pump MP18A (No. 1)
Z1B5105/A	Charging Pump MP18B (No. 2)
Z2B6102/H	Charging Pump MP18C (No. 3)
Z2B6105/F	Charging Pump MP18B (No.2)

120/125 Volt

All the 120/125 volt cables passed with an acceptable margin.

Conduit 5T540 which contains a 3/C #6 cable (5A602/C) has been boxed in with cable tray Z52FA10 and is considered beyond the model's limits. The continuous load on this cable is less than 1 amp. After using the projected model derate, the cable still has a capacity of 47 amps. By inspection this installation is acceptable.

An ACR has been generated (ACR M2-96-0757)(Ref. 3.1.84) to identify the cables that did not pass the calculations acceptance criteria.

3.0 References/Design Inputs:

- 3.1 References:
- 3.1.1 Standard Handbook for Electrical Engineers, Tenth Edition.
- 3.1.2 Drawing 25203-32020, Sheet 49, Revision 5.
- 3.1.3 Drawing 25203-34077, Sheet 15, Revision 3.
- 3.1.4 The National Electric Code Handbook, 1993 edition.
- 3.1.5 IPCEA P46-426, Power Cable Ampacities, AIEE S-135-1-62 Volume 1 Copper Conductors and S-135-2-62 Volume II Aluminum conductors.
- 3.1.6 Millstone Nuclear Power Site Unit 2, Final Safety Analysis Report (MNPS-2 FSAR), Section 8.0.
- 3.1.7 Drawing 25203-34077, Sheet 13, Revision 3
- 3.1.8 Tray Schedule Millstone Unit 2 -Volume 1 Pages 1-1045 dated March 27, 1996 and Volume II pages 1046-2011 dated March 27, 1996 (note both volumes contain work in progress to date).
- 3.1.9 Drawing 25203-30022 Sheet 3HA, Revision 1.
- 3.1.10 3M Letter, dated June 17, 1986.
- 3.1.11 Operating Procedure 2343, Revision 17.
- 3.1.12 TU Electric Ampacity Derating Test Report No. 12340-94583-95166, 95246, dated March 19, 1993.
- 3.1.13 Thermo-Lag PDCR 2-57-86.
- 3.1.14 OPAL Load Management System Program, SP-EE-344.
- 3.1.15 Drawing 25203-30011 Sheet 41, Revision 18.
- 3.1.16 Okonite Cable Technical Data Catalog, 1984.
- 3.1.17 Calculation #95-ENG-01327-E2, Revision 0, Millstone Unit 2 -600-1000 volt cable Ampacity review tray Section Z15NA40.

3.0 References/Design Inputs continued:

Referenced continued:

- 3.1.18 Bechtel Calculation #E-204-3, dated February 21, 1972.
- 3.1.19 Drawing 25203-32009 Sheet 43A, Revision 3.
- 3.1.20 Drawing 25203-30001, Revision 11.
- 3.1.21 Bechtel Calculation E-209-1, dated April 5, 1976.
- 3.1.22 Drawing 25203-32021 Sheet 15, Revision 5.
- 3.1.23 Foxboro Catalog cut MI-2A0-130, dated May 1978.
- 3.1.24 Drawing 25203-30011 Sheet 21, Revision 15.
- 3.1.25 Drawing 25203-32009 Sheet 42A, Revision 1.
- 3.1.26 MP2 TSO2 Cable Raceway Schedule (Computerized) 11/23/96
- 3.1.27 ICEA P-54-440, Ampacities Cables in Open-top Cable Trays, Revision 2, 1979 and Revision 3, 1986.
- 3.1.28 Drawing 25203-30011 Sheet 34, Revision 12.
- 3.1.29 Drawing 25203-30022 Sheet 28, Revision 3.
- 3.1.30 Drawing 25203-32020 Sheet 49A, Revision 2.
- 3.1.31 Drawing 25203-39360 Sheet 1, Revision 3.
- 3.1.32 Drawing 25203-32009 Sheet 40, Revision 15.
- 3.1.33 Drawing 25203-32009 Sheet 42, Revision 9.
- 3.1.34 Drawing 252003-34001 Sheet 11, Revision 5.
- 3.1.35 Drawing 25203-30022 Sheet 3 Revision 10.
- 3.1.36 Drawing 25203-32009 Sheet 43, Revision 14.

3.0 References/Design Inputs continued: References continued:

- 3.1.37 Drawing 25203-30022 Sheet 10, Revision 2.
- 3.1.38 Drawing 25203-30011 Sheet 40, Revision 21.
- 3.1.39 Drawing 25203-30011 Sheet 39, Revision 16.
- 3.1.40 Drawing 25203-30022 Sheet 12, Revision 23.
- 3.1.41 Drawing 25203-30012 Sheet 12, Revision 4.
- 3.1.42 Kerite Engineering Memorandum No. 178A, May 1, 1979.
- 3.1.43 Cable Description Report, Dated April 9, 1996 (computer generated)
- 3.1.44 EPRI Volume 4.
- 3.1.45 EWR M2-96-024
- 3.1.46 Drawing 25203-32021 Sheet 12, Revision 5.
- 3.1.47 Drawing 25203-32009 Sheet 46, Revision 5.
- 3.1.48 Drawing 25203-32031 Sheet 41, Revision 1.
- 3.1.49 Drawing 25203-32009 Sheet 38, Revision 8.
- 3.1.50 Drawing 25203-32009 Sheet 35, Revision 4.
- 3.1.51 Drawing 25203-32009 Sheet 37, Revision 5.
- 3.1.52 Drawing 25203-32031 Sheet 40, Revision 3.
- 3.1.53 Drawing 25203-32012 Sheet 22, Revision 10.
- 3.1.54 Drawing 25203-32009 Sheet 54, Revision o.
- 3.1.55 Drawing 25203-30011 Sheet 42, Revision 21.
- 3.1.56 Drawing 25203-32033 Sheet 9, Revision 3.

3.0 References/Design Inputs continued:

References continued:

- 3.1.57 Drawing 25203-32033 Sheet 13, Revision 7.
- 3.1.58 Drawing 25203-32009 Sheet 6, Revision 11.
- 3.1.59 Drawing 25203-32009 Sheet 53, Revision 6.
- 3.1.60 Drawing 25203-32009 Sheet 39, Revision 6.
- 3.1.61 Drawing Specification 7604-E-15, "5&8 Kv Power Cable".
- 3.1.62 Conduit Schedule Millstone Unit 2- pages 1-600 dated March 27, 1996. (note volume contains work in progress to date).
- 3.1.63 Drawing 25203-32007 Sheet 56, Revision 1.
- 3.1.64 ASCO Catalog No. NP-1.
- 3.1.65 Drawing 25203-32020 Sheet 42, Revision 10.
- 3.1.66 Drawing 25203-30011 Sheet 43, Revision 17
- 3.1.67 Drawing 25203- 32009 Sheet 44, Revision 4.
- 3.1.68 Drawing 25203-28500 Sheet 604B, Revision 4.
- 3.1.69 Drawing 25203-32025 Sheet 33, Revision 6.
- 3.1.70 Drawing 25203-32025 Sheet 32, Revision 6.
- 3.1.71 Drawing 25203-32009 Sheet 7, Revision 9.
- 3.1.72 Drawing 25203-32009 Sheet 60, Revision 3.
- 3.1.73 Drawing 25203-28500 Sheet 1100, Revision 2.
- 3.1.74 Drawing 25203-39282, Revision 2.
- 3.1.75 Drawing 25203-39284, Revision 2.

3.0 References/Design Inputs continued: References continued:

- 3.1.76 Drawing 25203-34077, Sheet 2, Revision 3.
- 3.1.77 Drawing 25203-34077, Sheet 25, Revision 3.
- 3.1.78 Drawing 25203-34077, Sheet 24, Revision 3.
- 3.1.79 Drawing 25203-34077, Sheet 20, Revision 3.
- 3.1.80 Drawing 25203-34077, Sheet 16, Revision 4.
- 3.1.81 Drawing 25203-34077, Sheet 14, Revision 3.
- 3.1.82 J.H. Neher, M. H. McGrath "Power Apparatus Systems", October 1967.
- 3.1.83 Drawing 25203-30022, Sheet 1WH, Revision 1.
- 3.1.84 ACR M2-96-0757.
- 3.1.85 Drawing 25203-30011, Sheet 29, Revision 17.
- 3.1.86 Drawing 25203-30011, Sheet 24, Revision 35.
- 3.1.87 Specification 7604-E-15A, "5Kv Power Cable".
- 3.1.88 Specification 7604-E-17, "Low Voltage Power Cable".
- 3.1.89 Specification 7604-E-18, "Multiconductor Control Cable".
- 3.1.90 Drawing 25203-30022 Sheet 12DC, Revision 1.
- 3.1.91 Drawing 25203-32021 Sheet 14, Revision 5.
- 3.1.92 Drawing 25203-32021 Sheet 13, Revision 5.
- 3.1.93 Bechtel Calculation E-200-2 dated February 15, 1971.
- 3.1.94 Drawing 25203-30044 Sheet 10, Revision 7.

References/Design Inputs continued: References continued:

- 3.1.95 G.E. Heat Transfer and Fluid Flow Data Book, 1971.
- 3.1.96 NUSCO Calculation 96-ENG-1559E1, Rev. 00.
- 3.1.97 EEQ Walk down Attachemnt B page B1, dated 8/29/90
- 3.2 Design Inputs:
- 3.2.1 Allowable ampacities for cables in conduit and cables in air were taken from IPCEA Power Cable Ampacities P-46-426 copy right 1962.
 Maintained spacing ampacities were taken from Bechtel Calculation E-204-3 (Ref. 3.1.18) unless otherwise noted.
- 3.2.2 Allowable ampacities for cable in cable tray (random fill) were developed in Attachment 2 or taken from NEC Table 310-68 (Ref. 3.1.4) unless otherwise noted.
- 3.2.3 Texas Utilities Thermo-Lag Test ampacity derate values for various sizes of cables covered with Thermo-Lag (Ref. 3.1.12).
- 3.2.4 Ambient Temperature is provide by the FSAR as 50° C (Ref. 3.1.6)
- 3.2.5 The power cable installed at MP2 is rated 90°C (Ref.3.1.6). The control cable installed at MP2 is rated 90°C. (Ref.3.1.42).
- 3.2.6 The copper and aluminum wire properties are taken from Okonite Cable (Ref. 3.1.16)
- 3.2.7 The Unit 2 cables covered by Thermo-Lag are identified in Attachment C. The cables were identified from field walk down. The input was cross verified by using the PDCR that installed the Thermo-Lag (Ref. 3.1.13) and the cable raceway schedule (Ref. 3.1.8) [see Attachment 7].
- 3.2.8 The loading on cables listed in tables in Section 6.0 were obtained from the one lines and motor data obtained from References 3.1.20, 3.1.15, 3.1.38, 3.1.39 3.1.25, 3.1.28, 3.1.29, 3.1.30, 3.1.31, 3.1.32 and 3.1.33 or as specified in various sections of this calculation. In addition the trays and conduits which are fire wrapped are shown on the 25203-34077 series drawings. (Ref. 3.1.76, 3.1.7, 3.1.81, 3.1.3, 3.1.80, 3.1.79, 3.1.78, 3.1.77)

3.0 References/Design Inputs continued:

Design Inputs continued:

3.2.9 Thermo-Lag Thickness Conversion

To convert from the Thermo-Lag thickness values used by TU to the 1" Thermo-Lag thickness used by NU see Attachment A.

3.2.10 Ambient Temperature Conversion

The ampacity of cables taken from various sources are not all based upon an ambient of 50°C. To adjust to 50°C the following formula can be used:

$$I_2 = I_1 \sqrt{\frac{TC - TA_2 - \Delta TD}{TC - TA_1 - \Delta TD}}$$

where:

 I_1 is the current at the existing ambient (A₁)

 I_2 is the current at the desired new ambient (A_2)

TC is the conductor temperature in C

ΔTD is the dielectric loss temperature rise.(see Assumption 4.5)

3.2.11 Load Conversions (3 phase)

Knowing either horse power (HP), Kilowatts (KW) or Kilovolt-amps (KVA) the following formula can be used to determine load ampacity for 3 phase systems.

Where HP is known:

$$I = \frac{HP \times 746}{\sqrt{3} \times E \times \$eff \times pf}$$

Where KW is known:

$$I = \frac{KW \times 1000}{\sqrt{3} \times E \times pf}$$

Where KVA is known:

$$I = \frac{KVA \times 1000}{\sqrt{3} \times E}$$

3.0 References/Design Inputs continued:

Design Inputs continued:

3.2.12 Depth of fill (heat Intensity) to Ampacity

Knowing the depth of fill, the heat intensity can be determined, with the diameter of the conductor, number of conductors and resistance per foot the allowed ampacity for a cable can be determined utilizing the formula below (Attachment D):

$$I = \frac{D}{2} \sqrt{\frac{Q\pi}{nR}}$$

See Attachment B for solutions for Q for various cable trays and for specific cables.

3.1.13 All unincorporated design changes against the referenced drawings have been reviewed to ensure that the latest design was reviewed for impact.

4.0 Assumptions:

- 4.1 All loads are considered balanced, each phase carrying the same current. Justification - Loading of distribution panels, power panels, lighting panels, etc, employ standard engineering practices that optimize phase loading.
- 4.2 Feeder cables load will be determined based upon 1.25 times the largest load with the remaining loads added directly to this value. Justification National Electric Code Article 430-24 allows development of feeder cable loads employing this method (Ref. 3.1.4)
- 4.3 Motor operated valves do not contribute any appreciable heat to the raceways. Justification -cables must be energized continuously to reach their equilibrium temperature. Motor operated valve cables only carry loads for minutes and are off the majority of the time. The cables are not energized long enough to contribute appreciable heat to a raceway.
- 4.4. Spare cables act as heat sinks and will reduce the overall temperature of a raceway. This will be ignored, unless specifically identified within the calculation, and the spare cables included in the depth calculation and ampacity ratings of the raceway (Ref. 3.1.44).

4.0 Assumptions continued:

4.5 The dielectric temperature loss on a cable is very small and will have a negligible impact upon ampacity calculations since it is subtracted from both the numerator and denominator of the Temperature adjustment equation. Justification - as an example using a typical value for ΔTD of 0.19 and a temperature difference of 40 °C to 50°C ambient the differences are:

$$\sqrt{\frac{90-50-0.19}{90-40-0.19}}$$
 vs $\sqrt{\frac{90-50}{90-40}}$ or

0.894000616 vs 0.894427191 or less than .048%

This assumption is valid for lower voltage cables and only becomes of interest at voltages above 15KV (Ref. 3.1.44).

- 4.6 Cables that are wrapped using conduit wrap (not in conduit) in cable tray will have the cable is ampacity determined based upon cable fill. The derate ACF for the cable will use the worse case (tray or conduit ACF) to ensure that the cables are evaluated conservatively. The conduit wrap around cables without the conduit by inspection is bounded by the conduit model (one conduit barrier is eliminated) thus the conduit model ACF will be utilized as it is more conservative than the free air wrapped cable(s).
- 4.7 The 4160 volt cables installed in cable tray were installed using uniform spacing. Justification Standard installation practices employed at MP2 required higher voltage cables to be installed using maintained spacing. (Ref. 3.1.34, Note 17). Random spacing will be used unless cables are specifically identified as being installed with uniform spacing.
- 4.8 Junction Boxes will use the same ampacity as used for conduit. Justification, the box is fully enclosed as is a conduit but has a larger surface area to dissipate heat.

4.0 Assumptions continued:

- 4.9 For 460 volt motors the power factor and efficiency are assumed to be 0.85 and 0.88 respectively. Justification- values are taken from OPAL which is conservative (Ref. 3.1.14).
- 4.10 Cable diameters were taken from Reference 3.1.8 and 3.1.43. For ampacity calculations, a -10% value will be used. Justification the smaller diameter will ensure conservatism.
- 4.11 Load Multipliers will be used to adjust for potential voltage fluctuations. For motors 1.25 will be used, 1.2 for transformers and for all other loads a 1.1 multiplier will be used. Justification -Ref. 3.1.44.
- 4.12 All conduits, unless field verified will be assumed to be in a 6 x 6 grouping and a multiplier of 0.68 will be used against the ampacity. Justification this is a worse case conservative approach based upon IPCEA Table IX (Ref. 3.1.5).
- 4.13 Electronic cards mounted components utilizing transistors and intergrated circuits are limited by heat (5Watts) by design limitations. For transistor and integrated circuits this value will be used. Justification very conservative assumption.
- 4.14 MOV's by their nature are intermittent loads and do not contribute to the steady state temperature of the tray other than by providing diversity. MOV cables will be evaluated under transient conditions. For example, from Referenace 3.1.97, MOV for 2-CH-501 has a rise of 7.5 ° C for a 15 minute duty cycle.

$$Tc(f) = 50 + 7.5 = 57.5 \,^{\circ} C.$$

For other similar valves, the final temperature, the temperature at any time (t) can be determined using the following equation:

$$T_c(t) = T_c(0) + [T_c(f) - T_c(0)](1 - e^{\frac{-t}{k}})$$
 (Ref. 3.1.44)

This confirms that the MOV's do not contribute appreciable heat and actually contribute diversity.

5.0 Method of Calculation:

This calculation will identify all cables in MP2 where Thermo-Lag has been installed. For ease of organization the cables will be grouped by voltage class (4160, 480, 120-125 and instrumentation).

The physical installation of the cable will be determined, i.e. whether it is in tray, conduit, free air, or wire-way and the allowable ampacity determined (Ref. 3.1.76 through 3.1.81).

Conduit:

For cables in conduit, the ampacity will be derated based upon the number of conductors in the conduit (Ref. 3.1.44), the grouping factor (assumption 4.12) and then multiplied by the Thermo-Lag derating factor from Attachment 1. The cable load will be determined and adjusted to reflect voltage fluctuations. These values then will be compared and the cable's installation will be considered acceptable if the load current is below the derated maximum value (Imax).

Tray:

For cables in tray the process is slightly more complicated than conduit installations. The allowed ampacity will differ based upon the possible field installation variations.

Uniform Spacing

For cables that have been identified as installed utilizing uniform spacing the allowable ampacity will be determined directly from the ampacity tables in Calculation E204-3 (Ref. 3.1.18). The Thermo-Lag derating from Attachment 1 will be applied to this ampacity and the maximum allowable current (Imax) obtained. This value is then compared to the cable's load current to determine if the installation is acceptable.

Random Fill

Determination of the maximum ampacity a cable can withstand and not exceed its jacket rating when installed in cable tray is dependent upon the cable tray dimensions and depth of fill.

The ampacities of the cables will be determined based upon the ampacities developed using the Stolpe equations and constants provided in the ICEA publication 54-440 (Ref. 3.1.27).

Page 17 of 4-4

5.0 Method of Calculation:

Random Fill continued:

After the maximum permissible ampacity is identified (conductor temperature cannot exceed 90° C), the load ampacity on the cable is determined. Load values that are below the maximum allowable (Imax) will be deemed acceptable.

Free Air Cable

The maximum allowable ampacity for free air cables as required will be obtained from IPCEA (Ref. 3.1.5) or the National Electrical Code (Ref. 3.1.4) for smaller cables not included in IPECA. This value will be multiplied by the appropriate Thermo-Lag derating value from Attachment 1. The cable load current will be compared to the maximum allowable ampacity (Imax) and if it is more than the load current the cable will be considered acceptable as installed.

Load Ampacities:

The loads used for cables will be determined utilizing a conservative sequence approach. This will ensure the calculation is conservative and will reduce the need for excessive load research. The search may be halted once an ampacity is determined not to exceed the maximum allowably ampacity. Should the cable still have an ampacity too high after using all five approaches, depicted below, additional more detailed evaluations will be conducted using other means of evaluation as specified later in this methodology. The order of determining the appropriate value of load is:

- 1. 80% of breaker rating
- 2. 100% fuse rating
- 3. calculation E-209-1
- 4. OPAL
- 5. Drawing/vendor documentation review

To adjust for voltage fluctuations, efficiencies and other conditions which may affect ampacity, a multiplication factor (EPRI recommended, Ref. 3.1.44) will be used to ensure conservatism. Motors -1.25, Transformers- 1.2, other loads - 1.1.

For feeder cables, the load will be determined by multiplying the largest motor load by a 1.25 multiplier. The remaining loads will then be summed with this value (Ref. 3.1.4, Section 430-24).

5.0 Method of Calculation:

Additional Evaluations:

Load ampacities for trays that are not overfilled will be evaluated at its existing fill and the increased ampacity used to evaluate the loads.

It is important to note that a great dea! of conservatism is also included in this method since every cable is assumed to be fully loaded and at 90°C. Should the maximum value as determined by the above method still be insufficient to allow acceptance of the installation, specific cable ampacities will be utilized and diversity will be taken into consideration.

6.0 Body of Calculation

6.1 4160 Volt Cables

A total of four (4) 4160 volt cable trays were identified in the plant that are covered with Thermo-Lag. The cables associated with these trays are tabulated in Table 6.1. From the tray schedule (Ref. 3.1.8) the cables are entire aluminum triplexed 750 MCM cable or triplexed 350 MCM aluminum. (Note that maintained spacing ampacity values were not used for these cables).

Tray Z52EA10

This tray is 38% full (Ref. 3.1.8) which equates to a depth of

Depth =
$$\frac{\% \text{fill x Depth of Tray}}{100\pi/4}$$
 = .38 x 4 x 4 + π = 1.935".

From Attachment B, Appendix B1, the value (I_1) for 750 MCM at an ambient of 40° C and a depth of 1.935" is 609.38 amps.

To adjust to 50° C, the plant ambient (Ref. 3.2.10), the formula provided in Section 310-15 of Reference 3.1.4. [shown below] is used (Note that ΔTD is very small and negligible(Assumption 4.5).

$$I_2 = I_1 \sqrt{\frac{TC - TA_2 - \Delta TD}{TC - TA_1 - \Delta TD}}$$

750MCM - 609.38
$$\sqrt{\frac{90-50}{90-40}}$$
 = 609.38 × 0.89 = 542.35 amps

The cable is limited to 80% of the free air value or 418.66 amps.

Derating for the Thermo-Lag installed on the cable tray (Attachment A) provides the maximum ampacity the cable can carry and not go above its 90° C rating.

750MCM - Imax = $418.66 \times 0.60 = 251.2$ amps

6.0 Body of Calculation continued: 6.1 4160 Volt Cables continued:

Tray 52BA10

This tray is also at 38% fill. The allowed ampacity for 750MCM will be the same as for the tray above, Imax = 251.2 amps.

Tray Z52FA10

This tray is also at 38% fill. The allowed ampacity for 750 MCM will be the same as for the tray above, Imax = 251.2 amps.

Tray 722EA10

This tray is at 23% fill. From Attachment B, Appendix B2, 350 MCM at an ambient of 40° C at a 1.1714" depth is 508.46 amps.

To adjust to 50° C, the plant ambient (Ref. 3.2.10), the formula provided in Section 310-15 of Reference 3.1.4. [shown below] is used (Note that Δ TD is very small and negligible Assumption 4.5).

$$I_2 = I_1 \sqrt{\frac{TC - TA_2 - \Delta TD}{TC - TA_1 - \Delta TD}}$$

= 508.46
$$\sqrt{\frac{90-50}{90-40}}$$
 = 508.46 × 0.89 = 452.53 amps

The cable is limited to 80% of the free air value or 262.02 amps.

Derating for the Thermo-Lag installed on the cable tray (Attachment 1) provides the maximum ampacity the cable can carry and not go above its 90°C rating.

350MCM - Imax = 262.02 x 0.60 = 157.21 amps

The four trays and their associated cables are tabulated on the following page along with the Imax determined using the above method. In addition the table includes the cable's load values determined as follows:

Page 21 of 44

6.1 4160 Volt Cables continued:

TABLE 6.1

Tray	Cable	Code	Type	I _{50C}	Imax	Load	P/F
Z52EA10	Z5A501A/A	A14	1-3/C750	418.66	251.2*	174.64	P
38%	Backfeed			418.66	251.2*	416.36	F
52BA10	5A505/A	A14	1-3/C750	418.66	251.2*	87.32	P
38%	5A505/P	A14	1-3/C750	418.66	251.2*	87.32	P
Andrew Committee Committee	Backfeed			418.66	251.2*	208.18	P
Z52FA10	Z5A505A/B	A14	1-3/C750	418.66	251.2*	174.64	P
38%	Backfeed			418.66	251.2*	416.36	F
Z22EA10	Z2A407/A	A16	1-3/C350	262.02	157.21	76.5	P
23%							

^{*} Unit 1 calculation (Ref. 3.1.96) must also be reviewed for worst case Imax value.

Load Determination

Cable Z5A501A/A is the Z5 (24E) swing bus feed from Bus 24C. The load on the Z5 consists of the following (Ref. 3.1.20, 3.1.62, 3.1.93 and 3.1.94):

DEVICE	RATING	FLA	VOLT	MULT	LOAD
P5B	450HP	61.2	4000	1.25	76.5
P11B	350HP	45	4000	1.00	45
P41B	400HP	52.5	4000	1.00	52.5
XFMS	KVA/Ø		4160	1.00	0.64
TOTAL					174.64

(Note that the Unit 1 inter-tie is considered open for this analysis.)

The HP (horse power), E (voltage, motor nameplate), FLA values for the motors identified (P5B, P11B and P41B) are available in the Bechtel Calculation (Ref. 3.1.93). Ampacity for the transformers was calculated from a 5 ohm load at 120v or 600va related to 4160v = 0.144 amps + .5 amp PT = 0.64 amps (Ref. 3.1.94). In accordance with Reference 3.1.4 the largest load on a feeder cable uses a 1.25 load multiplier, all other loads are summed directly to the total.

t. 4160 Volt Cables continued:

Cable Z5A505A/B is a feed to swing bus Z5 from bus 24D and will see the same load identified for cable Z5A501A/A (174.64 amps) (Ref. 3.1.20).

Cables 5A505/A and 5A505/P (parallel feeds from Unit 1) for Unit 2 would carry the Z5 (24E) bus load identified above, 174.64/2 or 87.32 amps) (Ref. 3.1.20).

OP-2343 (Ref. 3.1.11) specifies a load of 3MVA be provided via Unit 1.

$$I = \frac{3,000,000}{4160 \times \sqrt{3}} = 416.36 \, \text{amps}$$

Resolution of the 3MVA backfeed capability will be addressed via ACR M2-96-0757 (Ref. 3.1.84)

Cable Z2A407/A is the power feed to Service Water Pump P5C (Ref.3.1.93). Load current is obtained by multiplying the full load amps (Ref. 3.1.14) by 1.25.

$$61.2 \times 1.25 = 76.5 \text{ amps.}$$

6.2 480 Volt Cables

A total of ten (10) cable trays were identified in the plant that were covered with Thermo-Lag and six (6) conduits. The cables associated with these trays are tabulated on the following pages. From the cable schedule (Ref. 3.1.26) the cables can be identified as power cables. The cables in the tray were installed in accordance with Reference 3.1.18, meeting the requirements of random fill. Note, conduits listed identify all voltage class cables to allow determination of the total number of conductors and any appropriate derating factor.

Imax Evaluations:

The following is an example of how the loads were determined for the cables listed in Table 6.2: For tray Z23HA10 at 10% full, the allowed ampacity for 500MCM triplexed at 50° C ambient is calculated in Attachment B, $I_1 = 412.96$ amps. Imax is obtained by using the Thermo-Lag derating, $412.96 \times 0.6 = 247.78$ amps.

TABLE 6.2	key	follows
-----------	-----	---------

Raceway	Cable	Code	Type	I _{50C}	Made	Imax	Load	P/F
Z23HA10	Z2B0610/A	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
10%	Z2B0610/B	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
Z23HB10	Z2B0610/A	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
19%	Z2B0610/B	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
Z23GE10	Z2B0610/A	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
22%	Z2B0610/B	B14	3-1/C500	412.96	TPLX	247.78	198.69	P
	Z2B0607/A	B10	3-1/C250	230.55	TPLX	138.33	102.3 NOTE 1	P
	Z2B0606/A	B14	3-1/C500	412.96	TPLX	247.78	225.4	P
	Z2B0606/B	B14	3-1/C500	412.96	TPLX	247.78	225.4	P
Z23FA30	Z2B0607/A	B10	3-1/C250	213.06	TPLX	127.84	102.3 NOTE 1	P
25%			-	C SECOND TO SECOND PARTY.		-		+
Z23FA25	Z2B0607/A	B10	3-1/C250	202.54	TPLX	121.52	102.3 NOTE I	P
27%								
27%								arress of the last

Calc. No. 96-ENG -01528E2 Rev. 00

Page 24 of 44

Raceway	Cable	Code	Туре	I _{50C}	Made	Imax	Load	P/I
Z14FM20	Z1B5103/A	B09	3-1/C4/0	238.52	TPLX	143.1	147.5	F
9%	Z1B5105/A	B09	3-1/C4/0	238.52	TPLX	143.1	147.5	F
	Z1B5145/A	B01	3/C#12	22.78		13.67	MOV	P
	1B5158/A	B01	3/C#12	22.78		13.67	MOV	Р
Z24FL20	Z2B6105/A	B09	3-1/C4/0		TPLX		SPARE	P
8%	Z2B6102/H	B29	1/C4/0	166.34	111111	99.80	147.5	F
No. of the same of	Z2B6105/F	B29	1/C4/0	166.34		99.80	147.5	F
Z25BG20	Z2B6105/A	B09	3-1/C4/0	-	TPLX	-	SPARE	P
10%	2B41A16/A	B03	3/C#8	43.85	IFLA	26.31	23.5	P
TO 70	Z2HT007/H	B03	3/C#8	43.03	-	20.51	SPARE	P
	Z2B6102/A	B09	3-1/C4/0		TPLX	-	SPARE	P
	Z2HT032/H	B03	3/C#8		111/2	-	SPARE	P
	2B41A55/A	B01	3/C#12				SPARE	P
Z14FM10	Z1B5103/A	B09	3-1/C4/0	238.52	TPLX	143.11	147.5	F
12%	Z1B5105/A	B09	3-1/C4/0	238.52	TPLX	143.11	147.5	F
12 / 0	Z1B5145/A	B01	3/C#12	19.34	IILA	11.6	MOV	P
TO BE STOLEN AND AND AND AND AND AND AND AND AND AN	1B5158/A	B01	3/C#12	19.34	-	11.6	MOV	P
NOTES STORY OF SHEET, SECTION OF SHE	1B3238/C	B01	3/C#12	19.34	1	11.6	1.57	P
	1B31A08/A	B02	3/C#10		1		SPARE	P
	1B31A08/G	B03	3/C#8	46.54		27.92	23.6	P
Z1A636	Z1B5103/A	B09	3-1/C4/0	247	TPLX	90.53	147.5	F
35%	Z1MCV02/B	C02	2/C #14	20.05	1KV	7.51	0.55	P
	Z1VA1010/A	C62	2/C#10	32.8	1KV	12.02	1.82	P
Z2A209	Z2B6102/H	(3)B29	1/C4/0	227	-	118.86	147.5	P
21%	WASHINGTON AND ADDRESS OF THE PARTY OF THE P	CO LO LO	170470	227	-	110.00	14710	+
Z2A201	Z2B6105/F	(3)B29	1/C4/0	227	1	83.2	147.5	F
30%	Z2B6105/G	C86	7/C #14	20.5	-	7.51	3.52	P
	Z2B6105/K	C86	7/C #14	20.5		7.51	3.52	P
Z2A1074	Z2B6105/F	(3)B29	1/C4/0	227		83.2	147.5	F
53%	Z2B6102/H	(3)B29	1/C4/0	227	1	83.2	147.5	F
2370	Z2MCV04/J	C85	3/C #14	20.5	1	7.51	0.55	P
and the state of t	Z2B6105/G	C86	7/C #14	20.5	1	7.51	3.52	P

Raceway	Cable	Code	Туре	I _{50c}	Make	Imax	Load	P/F
Z2A1074	Z2B6105/K	C86	7/C #14	20.5		7.51	3.52	P
Z24FL10	Z2B6102/H	B29	1/C4/0	241.90	-	145.14	147.5	F
4%	Z2B6105/F	B29	1/C4/0	241.90		145.14	147.5	F
Z2A1070	2B6168/A	B01	3/C#12	24.6	+	9.47*	7.84	P
33%	2B6169/A	B01	3/C#12	24.6		6.44	2.35	P
	Z2HV5279/T	C81	2/C #16	14.76		3.86	0.044	P
COUNTY OF THE PARTY OF THE PART	Z2B6102/K	C86	7/C #14	20.5		5.37	3.52	Р
	Z2B6105/J	C85	3/C #14	20.5	ACTION AND DESCRIPTION OF	5.37	3.52	P
	Z2B6117/F	C86	7/C #14	20.5	1	5.37	4.95	Þ
	2B6168/C	C07	7/C #14	20.5	1	5.37	0.66	P
	2B6169/F	C07	7/C #14	20.5		5.37	0.66	P
NEW YORK AND AND REAL PROPERTY AND	Z2CH517/F	C86	7/C #14	20.5		5.37	0.309	P
	Z2CH519/F	C86	7/C #14	20.5	1	5.37	0.153	P
	Z2HV2525/F	C87	9/C #14	20.5		5.37	0.153	P
PARAMETER AND ACCUMULATION OF THE OWNER.	2K01160/B	C85	3/C #14	20.5		5.37	0.04	P
NOTE THE PERSON NAMED OF THE PARTY.	2K04028/B	C85	3/C #14	20.5		5.37	0.04	P
	Z2NF09/G	C86	7/C #14	20.5		5.37	1.76	P
	2QR006B/H	C85	3/C #14	20.5		5.37	0.093	P
Z2A1073	Z2B6102/H	B29	1/C4/0	227	-	71.3	147.5	F
38%	Z2B6105/F	B29	1/C4/0	227	1	71.3	147.5	F
	Z2B6102/J	C87	9/C #14	20.5		6.44	3.52	P
	Z2B6105/G	C86	7/C #14	20.5		6.44	3.52	P
	Z2B6105/H	C87	9/C #14	20.5	1	6.44	3.52	P
CALCULATION AND AND MAKE	Z2B6117/D	C86	7/C #14	20.5		6.44	4.95	P
	Z2B6117/E	C85	3/C #14	20.5		6.44	4.95	P

Key for Table 6.2

NOTE 1 -Load is taken from OPAL, 81.5 KVA or 102.3 amps.

I for tray is obtained through calculation (solving the simultaneous Stolpe equations in Attachment D). This is the method employed by ICEA in the development of the ampacity tables in Publication P-54-440. For conduits include all voltage classes of cable to ensure of proper derate for the number of conductors. IPCEA P46-426 is used if possible, NEC is used for wire smaller than #8 AWG.

^{*} group factor of 1.0 from field inspection

6.2 480 Volts continued:

Imax Evaluations:

Tray Z23HB10 the 500MCM cable's allowed ampacity at 19% fill (depth = 0.968 in) is obtained from Attachment B, 412.96 amps. Derating for Thermo-Lag, 412.96 x 0.6 = 247.78 amps.

Tray Z23GE10 the 500MCM cable's allowed ampacity at 22% fill is (depth = 1.12 in) obtained from Attachment B, 412.96 amps. Derating for Thermo-Lag, 412.96 x 0.6 = 247.78 amps.

The 250MCM cable's allowed ampacity at 22% fill is also obtained from Attachment B, 230.55 amps. Derating for Thermo-Lag, $230.55 \times 0.6 = 138.33$ amps.

Tray Z14FM20 at 9% fill Depth = 0.458 inches

For 3/C 4/0 Triplex, free air at 40° C is 335 amps, adjusting to 50° C gives 335 x .89 = 298.15 amps and 80% is equal to 238.52 amps. Derating for Thermo-Lag gives 238.52 x 0.6 = 143.1 amps.

The 3/C#12 cable's allowed ampacity at 9% fill is also obtained from Attachment B, 22.78 amps. Derating for Thermo-Lag, 22.78 x 0.6 = 13.67 amps.

Tray Z24FL20 is at 8% fill and a depth of 0.407 in.

The 4/0 Triplexed cable is limited to 80% of its free air value at 50° C. See Tray Z14FM20 for allowed ampacity. For non-triplexed 4/C see Attachment B, 166.34 amps. Derating for Thermo-Lag, $166.34 \times 0.6 = 99.80$ amps.

<u>Tray Z25BG20</u> is at 10% fill and a depth = 0.509 inches. The 3/C #8 allowed ampacity from Attachment B is 43.85 amps. Derating for Thermo-Lag, $43.85 \times 0.6 = 26.31$ amps.

Trav Z14FM10 is at 12% fill and a depth = 0.611 inches.

The 80% of free air values calculated for the 4/0 triplex cables in the tray above will also be applicable for this tray, 238.52 amps. Derating for thermo-lag 238.52 x 0.6 = 143.11 amps.

For the 3/C #12, from Attachment B the ampacity is 19.34 amps. Derating for Thermo-Lag, $19.34 \times 0.6 = 11.6$ amps.

6.2 480 Volts continued:

Z1A636 Conduit This conduit is 35% full, the 3-1/C4/0 TPLX from IPCEA (REF. 3.1.5) is 278 amps at 40° C. Adjusting to 50° C ambient gives 278 x .89 = 247 amps. Derating for the total number of conductors in the conduit (7), requires a 0.7 derate (Ref. 3.1.44). Or 247 x .7 = 172.9 amps, derating for grouping factor, 172.9 x .68 = 117.57 amps, derating for Thermo-Lag 117.57 x 0.77 = 90.53 amps.

From Reference 3.1.4:

For #14 AWG the allowed ampacity is 25 amps at 30° C, adjusted to 50° C gives 25 x 0.82 = 20.5 amps. Adjusting for the number of conductors in the conduit, $20.5 \times .7 = 14.35$ amps derating for grouping factor, $14.35 \times .68 = 9.76$ amps and derating for Thermo-Lag 9.76 x 0.77 = 7.51 amps.

For #10 AWG the allowed ampacity is 40 amps at 30° C, adjusted to 50° C gives 40 x 0.82 = 32.8 amps. Adjusting for the number of conductors in the conduit (7), $32.8 \times .7 = 22.96$ amps, derating for grouping factor, $22.96 \times 0.68 = 15.61$ amps and derating for Thermo-Lag $15.61 \times 0.77 = 12.02$ amps.

Z2A209 Conduit This conduit is 21% full, the 3-1C 4/0 cable from IPCEA (Ref. 3.1.5) is 255 amps at 40° C. Adjusting to an ambient of 50° C, $255 \times 0.89 = 227$ amps. (The total number of current carrying conductors in the conduit is 3). Derating for grouping factor, $227 \times .68 = 154.36$ amps and derating for Thermo-Lag gives $154.36 \times 0.77 = 118.86$ amps.

Z2A201 Conduit This conduit is 30% full, the 3-1C 4/0 cable from IPCEA (Ref. 3.1.5) is 255 amps at 40° C. Adjusting to an ambient of 50° C, 255 x 0.89 = 227 amps. Adjusting for the total number of conductors in the conduit (17), requires a derate of 0.7 (Ref. 3.1.44). 227 x .7 = 158.9 amps, derating for grouping factor, 158.9 x .68 = 108.05 and derating for Thermo-Lag 108.05 x 0.77 = 83.2 amps

For #14 AWG the allowed ampacity is 25 amps at 30° C, adjusted to 50° C gives 25 x 0.82 = 20.5 amps. Adjusting for the number of conductors in the conduit, $20.5 \times .7 = 14.35$ amps, derating for grouping factor, $14.35 \times .68 = 9.76$ amps and derating for Thermo-Lag $9.76 \times 0.77 = 7.51$ amps.

Z2A1073 Conduit This conduit is 38% full, the 3-1/C 4/0 cable from IPCEA (Ref. 3.1.5) is 255 amps at 40° C. Adjusting to an ambient of 50° C, 255 x 0.89 = 227 amps. (The total number of conductors in the conduit is 41, requiring a derate of .6). Adjusting for the number of conductors in the conduit, $227 \times .6 = 136.2$ amps, adjusting for group factor, $136.2 \times .68 = 92.6$ amps and derating for Thermo-Lag $92.6 \times 0.77 = 71.3$ amps.

6.2 480 Volts continued:

Z2A1073 Conduit

The #14 AWG cable from above is rated at 20.5 amperes at 50° C, adjusting for 41 conductors, $20.5 \times 0.6 = 12.3$ amps adjusting for grouping factor, $12.3 \times .68 = 8.36$ amps. Deratng for Thermo-Lag $8.36 \times 0.77 = 6.44$ amps.

Tray Z24FL10 is at a 4% fill Depth = 0.2037 inches.

From Attachment B the 3-1/C 4/0 ampacity is 241.90 amps. Derating for Thermo-Lag gives $241.90 \times 0.6 = 145.14$ amps.

Z2A1074 Conduit This conduit is 53% full, the conduit length is 3 feet. This short distance allows the greater than 40 % fill without doing damage to the cables. The ampacity of the 3-1/C 4/0 from IPCEA (Ref. 3.1.5) is 255 amps at 40° C. Adjusting to an ambient of 50° C, $255 \times 0.89 = 227$ amps. The total number of conductors in the conduit is 23, derating for the conductors, $227 \times 0.7 = 158.9$ amps. Derating for grouping factor, $158.9 \times 0.68 = 108.05$ aamps and derating for Thermo-Lag, $108.05 \times 0.77 = 83.2$ amps.

The #14 AWG cable from above is rated at 20.5 amperes at 50° C, adjusting for 23 conductors, $20.5 \times 0.7 = 14.35$ amps. Derating for grouping factor, $14.35 \times 0.68 = 9.758$ amps and deleting for Thermo-Lag $9.758 \times 0.77 = 7.51$ amps.

Z2A1070 Conduit This conduit is 33% full, the #12 AWG cable is 30 amps at 30° C, adjusting to 50° C, $30 \times 0.82 = 24.6$ amps. Adjusting for 78 conductors, $24.6 \times 0.5 = 12.3$ amps. Derating for group factor $12.3 \times 0.68 = 8.36$ amps and derating for Thermo-Lag $8.36 \times 0.77 = 6.44$ amps.

The #14 cable is rated at 20.5 amperes at 50° C, adjusting for 78 conductors, $20.5 \times 0.5 = 10.25$ amps, adjusting for group factor, $10.25 \times 0.68 = 6.97$ amps and deleting for Thermo-Lag, $6.97 \times 0.77 = 5.37$ amps.

The #16 cable is rated at 18 amperes at 30° C, adjusting to 50° C 18 x .82 = 14.76 amps. The total number of conductor in the conduit is 78, $14.76 \times 0.5 = 7.38$ amps. Derating for grouping factor, $7.38 \times .68 = 5.02$ amps and derating for Thermo-Lag, $5.02 \times 0.77 = 3.86$ amps.

6.2 480 Volts continued:

Load Determination:

Cables Z2B0610/A and Z2B0610/B are parallel feeder cables to MCC B61. Continuous load on MCC B61 is shown on Attachment 5 [397.38 amps].

$$397.38 + 2 = 198.69$$
 amps

Cables Z2B0606/A and Z2B0606/B are parallel feeder cables to MCC B62. Continuous load on MCC B62 is shown on Attachment 6, [450.8 amps]

$$450.8 + 2 = 225.4$$
 amps

Cables Z1B5103/A, Z1B5105/A, Z2B6102/H and Z2B6105/F for Charging Pumps P18A and P18B and P18C are all 100HP motors per (Ref. 3.1.28, 3.1.39). The nameplate full load amps is 118 amps. Adjusting for voltage fluctuations 118 x 1.25 gives 147.5 amps.

Cables Z2B6102/A, 1B31A08/A, Z2B6105/A, 2B41A55/A, Z2HT032/H and Z2HT007/H are spare (Ref. 3.1.26)

Cables Z1B5145/A and 1B5158/A are MOV feeds (see Assumption 4.14, Ref. 3.1.58 and 3.1.71).

Cable 2B41A16/A is the degasifier Pump #2 motor is 15 HP (Ref. 3.1.85)
$$I = \frac{HP \times 746}{\sqrt{3} \times E \times eff \times pf} = 18.8 \times 1.25 = 23.5 \text{ amps}$$

Cable 1B3238/C is RM8997, a 1 hp motor (Ref. 3.1.86)

$$I = \frac{1 \times 746}{\sqrt{3} \times 460 \times .88 \times .89} = 1.25 \times 1.25 = 1.57 \text{ AMPS}$$

Cable 2B6168A is for a 5hr motor MP72B (Ref. 3.1.38)

$$I = \frac{5 \times 746}{\sqrt{3} \times 460 \times .88 \times .89} = 6.27 \times 1.25 = 7.84 \text{ amps}$$

6.2 480 Volts continued:

Load Determination continued:

Cable 2B6169A is for a 1.5 hp motor MP125 (Ref. 3.1.38)

$$I = \frac{1.5 \times 746}{\sqrt{3} \times 460 \times .88 \times .85} = 1.88 \text{ amps } \times 1.25 = 2.35 \text{ amps}$$

Cable 1B31A08/G is for a 15 hp motor, NP16A1. (Ref. 3.1.24)

$$I = \frac{15 \times 746}{\sqrt{3} \times 460 \times .88 \times .85} = 18.88 \text{ amps} \times 1.25 = 23.6 \text{ amps}$$

Cable **Z2B0607/A**, Battery Charger 201B, per OPAL/FSAR Table 8.3-2 maximum load on diesel during LOCA from charger is 81.5KVA (Ref. 3.1.31).

$$I = \frac{81.5 \times 1000}{\sqrt{3} \times 480} = 102.3 \text{ amps}$$

Cable Z1MCV02/B, load is 0.5 amps (Ref. 3.1.67) x 1.1 = 0.55 amps

Cable Z1VA1010/A, load is 1.65 amps (Ref. 3.1.37) x 1.1 = 1.82 amps

Cable **Z2MCV04/J**, load is 0.5 amps (Ref. 3.1.47) x 1.1 = 0.55 amps

Cable **Z2B6105/G**, load is 3.2 amps (Ref. 3.1.25) $\times 1.1 = 3.52$ amps

Cable **Z2B6105/K**, load is 3.2 amps (Ref. 3.1.25). x 1.1 = 3.52 amps

6.2 480 Volts continued:

Load Determination continued:

Cable **Z2HV5279/T**, V = ± 10 vdc, R = 250 Ω , load is 0.04 amps (Ref. 3.1.68 and 3.1.23) x 1.1 = 0.044 amps

Cable **Z2B6102/K**, load is 3.2 amps (Ref. 3.1.36) $\times 1.1 = 3.52$ amps

Cable **Z2B6105/J**, load is 3.2 amps (Ref. 3.1.25) $\times 1.1 = 3.52$ amps

Cable **Z2B6117/F**, load is 4.5 amps (Ref. 3.1.49) x 1.1 = 4.95 amps

Cable 2B6168/C, load is 0.6 amps (Ref. 3.1.56) $\times 1.1 = 0.66$ amps

Cable **2B6169/F**, load is 0.6 amps (Ref. 3.1.57) \times 1.1 = 0.66 amps

Cable **Z2CH517/F**, load is 0.281 amps (Ref. 3.1.64 and 3.1.50)X 1.1 = 0.309 amps

Cable **Z2CH519/F**, load is 0.139 amps (Ref. 3.1.64 and 3.1.51) x 1.1 = 0.153 amps

Cable **Z2HV2525/F**, load is 0.139 amps (Ref. 3.1.64) $\times 1.1 = 0.153$ amps

Cable **2K01160/B**, load is 0.04 amps (Ref. 3.1.52) x 1.1 = 0.04 amps

Cable 2K04028/B, load is 0.04 amps (Ref. 3.1.48) x 1.1 = 0.04 amps

Cable **2QR006B/H**, load is 0.0842 amps (Ref. 3.1.63) x 1.1 = 0.0926 amps

Cable Z2B6102/J load is based on a 3.2 amp fuse (Ref. 3.1.19) \times 1.1 = 3.52 amps.

Cable **Z2B6105/H** load is based on a 3.2 amp fuse (Ref. 3.1.25) $\times 1.1 = 3.52$ amps.

Cable **Z2B6117/D** load is based on a 4.5 amp fuse (Ref. 3.1.49) x 1.1 = 4.95 amps.

Cable **Z2B6117/E** load is based on a 4.5 amp fuse (Ref. 3.1.49) x 1.1 = 4.95 amps.

Cable **Z2NF09/G** load is based upon a 200ohm load at 125VDC (Ref. 3.1.65) $1.6 \text{ amps } \times 1.1 = 1.76 \text{ amps}$.

6.3 120ac/125dc Volts Power

A total of rive cable trays, a wire-way, five conduit and one box were identified in the plant as covered with Thermo-Lag.

TABLE 6.3

THE RESERVE AND A SECURE OF THE PARTY OF THE	THE RESERVE THE PROPERTY OF TH	groter accompanies	TABLE	0.3	INDEX PROPERTY AND A SECOND PROPERTY AND A S		OF SHAPE PARTY OF
Tray/ Conduit	Cable	Code	Туре	I _{50c}	Imax	Load	P/F
5T540	5A602/C	B04	3/C#6	61.5	32.2	1	P
10%							T
Z2A1078	Z2DV2008/A	B46	2/C#10	32.8	13.74	0.91	P
	Z2VA2004/A	B46	2/C#10	32.8	13.74	1.76	P
J603	see Z25XA10		-		-		+
***************************************		-	1	-	1	-	+
Z25XA10	Z2DV2008/A	B46	2/C#10	32.8	12.63	0.91	P
THE RESIDENCE OF THE RE	Z2VA2004/A	B46	2/C#10	32.8	12.63	1.76	Р
	Z25V4188/K	C90	7/C#12	24.6	9.47	0.91	P
Maria de la companya	Z2SV4188/M	C94	2/C#10	32.8	12.63	0.91	P
	Z2SV4188/L	C90	7/C#12	24.6	9.47	0.185	P
	Z2SV4188/J	C94	2/C#10	32.8	12.63	0.185	P
	Z2HV5279/P	C89	3/C#12	24.6	9.47	0.39	P
AND DESCRIPTION OF THE PARTY AND DESCRIPTION	Z2HV5279/R	C89	3/C#12	24.6	9.47	0.434	P
	Z2HV5279/T	C81	2/C#16	14.76	5.68	0.92*	P
	Z2HV5279/U	C81	2/C#16	14.76	5.68	0.55	P
	Z2B6102/J	C87	9/C#14	20.5	7.89	3.52*	P
	Z2B6102/K	C86	7/C#14	20.5	7.89	3.52*	P
	Z2B6105/H	C87	9/C#14	20.5	7.89	3.52*	P
	Z2B6105/J	C85	3/C#14	20.5	7.89	3.52	P
	Z2B6105/K	C86	7/C#14	20.5	7.89	0.13	P
	Z2B6117/D	C86	7/C#14	20.5	7.89	4.95*	P
	Z2B6117/E	C85	3/C#14	20.5	7.89	4.95*	P
	Z2B6117/F	C86	7/C#14	20.5	7.89	4.95	P
	Z2CH517/E	C86	7/C#14	20.5	7.89	0.168	P
	Z2CH517/F	C86	7/C#14	20.5	7.89	0.168	P
	Z2CH519/E	C87	9/C#14	20.5	7.89	0.168	P
	Z2CH519/F	C86	7/C#14	20.5	7.89	0.168	P

^{*}LOAD IDENTIFIED FOR 480 V SECTION

6.3 120ac/125dc Volts Power

Tray/ Conduit	Cable	Code	Type	I ₅₀	Imax	Load	P/F
Z25XA10	Z2HV2525/F	C87	9/C#14	20.5	7.89	0.213	P
	Z2HV2525/G	C86	7/C#14	20.5	7.89	0.213	P
	Z2HV2525/H	C85	3/C#14	20.5	7.89	0.085	P
	Z2NF09/F	C86	7/C#14	20.5	7.89	1.73	P
ARREST MANAGEMENT OF THE	Z2NF09/G	C86	7/C#14	20.5	7.89	1 7/3	P
	2K01160/B	C85	3/C#14	20.5	7.89	5.055	P
	Z2MCV04/J	C85	3/C#14	20.5	7.89	0.55*	P
	Z2HV5279/S	C76	9/C#12	24.6	9.47	0.37	P
Z2T871	Z2SV4188/C	C91	9/C#12	24.6	9.02	0.91	P
	Z2SV4188/D	C96	4/C#10	32.8	12.02	0.91	P
	Z2NF09/F	C86	7/C #14	20.5	7.51	1.73	P
Z25BG20	Z2HT007/C	C62	2/C#10			SP	P
10%	Z2HT028/C	C62	2/C#10			SP	P
	Z2HT032/C	C62	2/C#10			SP	P
	2B6102/F	B01	3/C#12	9.984	5.99	2.3	P
TO STREET THE THE STREET WAS AND THE THE	2HTC07/F	C02	2/C #14			SP	P
CONTRACTOR OF THE STATE OF THE	2HT028/F	C02	2/C #14			SP	P
The part of the Advisor of the Control of the	2HT032/F	C02	2/C #14			SP	P
COLUMN SERVICE CONTRACTOR CONTRAC	2K02049/B	C02	2/C #14	7.68	4.61	0.04	P
NAME OF TAXABLE PARTY.	2K02051/B	C02	2/C #14	7.68	4.61	0.04	P
	2K02053/B	C02	2/C #14	7.68	4.61	0.04	P
	2K02055/B	C02	2/C #14	7.68	4.61	0.04	P
	2CH910/B	C03	3/C #14	6.153	3.68	1.65	P
	2CH910/C	C03	3/C #14	6.153	3.68	1.65	P
	2FT9860/A	C03	3/C #14	6.153	3.68	0.04	P
SP COLUMN SERVICE SERVICES PROPERTY AND ADDRESS.	2HC2152/B	C03	3/C #14			SP	P
	Z2HT028/H	C62	2/C#10		1	SP	P

6.3 120ac/125dc Volts Power

Tray / Conduit	Cable	Code	Туре	I _{150c}	Imax	Load	P/F
Z24FL20	2B41A16/F	C07	7/C#14	4.96	2.97	0.334	P
TO SECURE AND ASSESSMENT OF THE PROPERTY OF THE PERSONS	Z2B6105/G	C86	7/C#14	4.96	2.97	2.5	P
	Z2B6105/K	C86	7/C#14	4.96	2.97	0.146	P
	Z2HV8133/C	C02	2/C#14	7.68	5.10	0.153	P
Z24FL20	Z2HV8133/D	C07	7/C#14	4.96	2.97	0.301	P
	Z2HV8248/C	C02	2/C#14	7.68	4.61	0.301	P
	Z2HV8248/D	C07	7/C#14	4.96	2.97	0.301	P
NAMES OF THE PERSON OF THE PER	Z2MCV04/B	C02	2/C#14	7.68	4.61	0.55	P
CHEMICAL STATES OF STREET, WHILE SEVEN STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,	Z2VA2010/A	C02	2/C#14	7.68	4.61	1.82	P
	Z2MCV04/J	C85	3/C#14	6.153	3.69	0.55*	P
Z14FM10	1B5103/F	B01	3/C#12	9.984	6.3	1.01	P
12%	1B5105/C	B01	3/C#12	9.984	6.3	1.01	P
*****************	Z1VA1010/A	C62	2/C#10	13.358	8.87	1.82*	P
P WAREHOUSE IN SECURE AND WARE	1B31A08/F	C07	7/C#14	4.96	2.97	0.34	P
THE RESIDENCE OF THE PARTY OF T	Z1B5145/C	C07	7/C#14	4.96	2.97	1.29	P
AND	1B5158/B	C07	7/C#14	4.96	2.97	0.66	P
THE STREET, SHE	Z1CH192/B	C07	7/C#14	4.96	2.97	0.853	P
AL VIOLENCE DESIGNATION PROMISE À À	Z1HV8247/C	C07	7/C#14	4.96	2.97	0.153	P
	Z1HV8247/D	C07	7/C#14	4.96	2.97	0.153	P
	Z1HV8249/C	C02	2/C#14	4.96	2.97	0.153	P
	Z1HV8249/D	C07	7/C#14	4.96	2.97	0.153	P
	1K96001/B	C02	2/C#14	7.68	4.61	0.04	P
	1K96002/B	C02	2/C#14	7.68	4.61	0.04	P
	Z1MCV02/B	C02	2/C#14	7.68	4.61	0.123	P
	1RM8997/D	C02	2/C#14	7.68	4.61	0.83	P
	1VAAS/E	C02	2/C#14	7.68	4.61	SP	P
	1VAAS/EE	C02	2/C#14	7.68	4.61	SP	P
	Z1CH196/B	C07	7/C#14	4.96	2.97	0.254	P

6.3 120ac/125dc Volts Power continued:

TABLE 6.3

Tray / Conduit	Cable	Code	Туре	I _{soc}	Imax	Load	P/F
Z14FM20	Z1VA1010/A	C62	2/C#10	13.358	8.02	1.82*	P
9%	1B5103/F	B01	3/C#12	9.984	5.99	3.2	P
	1B5105/C	B01	3/C#12	9.984	5.99	2.31	P
	Z1B5145/C	C07	7/C #14	4.96	2.97	1.29	P
	1B5158/B	C07	7/C #14	4.96	2.97	0.66	P
	Z1CH192/B	C07	7/C #14	4.96	2.97	0.854	P
	Z1HV8247/C	C02	2/C#14	7.68	4.61	0.153	P
	Z1HV8247/D	C07	7/C #14	4.96	2.97	0.153	P
	Z1HV8249/C	C02	2/C#14	7.68	4.61	0.153	P
	Z1HV8249/D	C07	7/C #14	4.96	2.97	0.153	P
	Z1MCV02/B	C02	2/C#14	7.68	4.61	0.124*	P
	Z1CH196/B	C07	7/C #14	4.96	2.97	0.28	P
Z2A201	Z2B6105/G	C86	7/C #14	20.5	7.51	2.52*	P
	Z2B6105/K	C86	7/C #14	20.5	7.51	0.134*	P
Z.24FL10	Z2MCV04/J	C85	3/C #14	6.153	3.69	0.55*	P
4%	Z2B6105/G	C86	7/C #14	17.57	10.54	3.52*	P
	Z2B6105/K	C86	7/C #14	17.57	10.54	3.52*	P
Z1A636	Z1VA1010/A	C62	2/C#10	32.8	12.02	0.55*	P
	Z1MCV02/B	C02	2/C #14	20.5	7.51	1.82*	P

^{*} load identified for 480 volt section.

6.3 120ac/125dc Volts Power continued:

Imax Evaluation

5T540 Conduit, the ampacity of 5A602/C : 3/C #6 cable in conduit is 75 amps (Ref. 3.1.4) at 30° C. Adjusting to 50° C, 75 x 0.82 = 61.5 amps. This is the only cable in the conduit. Derating due to grouping factor, $61.5 \times .68 = 41.82$ amps and derating for Thermo-Lag, $41.82 \times 0.77 = 32.20$ amps.

Z2A1078 Conduit, the ampacity of #10 AWG cable in conduit is 40 amps at 30° C.(Ref.3.1.4) Adjusting for 50° C, 40 x .82 = 32.8. Derating for 4 conductors in a conduit (Ref.3.1.44), 32.8 x 0.8 = 26.24 amps. Derating for group factor, 26.24 x .68 = 17.84 amps and derating for Thermo-Lag, 17.84 x 0.77 = 13.74 amps.

Z25XA10 Wire-Way, will be treated as a conduit. For #12 AWG (Ref. 3.1.4) cable is rated 30 amps at 30° C. Adjusting for 50° C, $30 \times 0.82 = 24.6$. Adjusting for the number of conductors (REF. 3.1.44), 146 gives $24.6 \times 0.5 = 12.3$ amps. Derating for the Thermo-Lag, $12.3 \times 0.77 = 9.47$ amps.

For # 10 AWG (Ref. 3.1.4) cable is rated at 40 amps at 30° C, adjusting for 50° C., $40 \times 0.82 = 32.8$. Adjusting for the number of conductors 146, $32.8 \times 0.5 = 16.4$ amps. Derating for Thermo-Lag, $16.4 \times 0.77 = 12.63$ amps.

For # 14 (Ref. 3.1.4) is good for 25 amps at 30° C.. Adjusting to a 50° C ambient, 25 \times 0.82 = 20.5 amps. Adjusting for 146 conductors, 20.5 \times 0.5 = 10.25 amps. Derating for Thermo-Lag, 10.25 \times 0.77 = 7.89 amps.

For #16 (Ref. ?.1.4) cable is rated at 18 amps in a 30° C ambient, adjusting for a 50° C ambient $18 \times 0.82 = 14.76$, adjusting for 146 conductors, $14.76 \times 0.5 = 7.38$ amps. Derating for Thermo-Lag, $7.38 \times 0.77 = 5.68$ amps.

Z25BG20 TRAY the ampacities for the control cables will use the 35% fill values for conservatism (actual 10% fill). From Attachment 2, Appendix AD, 2/C #10 in tray can carry 13.358 amps, at 50° C. Derating for Thermo-Lag, 13.358 x 0.6 = 8.02 amps.

The 3/C #12 can be obtained from Attachment 2, Appendix AC, using the 35% fill value, provides 9.984 amps at 50° C. Derating for Thermo-Lag, 9.984 x 0.6 = 5.99 amps.

6.3 120ac/125dc Volts Power continued:

Imax Evaluation continued:

Z25BG20 TRAY continued:

The 3/C #14 at a fill of 35 % (1.78") per Attachment 2, Appendix AA provides an allowed ampacity of 6.153 amps at 50° C. Derating for Thermo-Lag, 6.153 x 0.6 = 3.69 amps.

For 2/C #14, Attachment 2, Appendix AB allowed ampacity is 7.68 amps at 50° C. Derating for Thermo-Lag 7.68 x 0.6 = 4.61 amps.

For <u>Tray Z14FM20</u>, <u>Z24FL20</u>, and <u>Tray Z14FM10</u>, the fill and the values developed for cables in Z25BG20 above are also applicable. For 7/C #14 (C86) adjusting for the diameter difference:

$$I_2 = \frac{d_2}{d_1} I_1 = \frac{0.64}{0.52} 6.163 = 7.57$$
amps adjusting for number of

conductor difference, $I = 7.57\sqrt{\frac{3}{7}} = 4.96$ amps Derating for Thermo-Lag, 4.96 x 0.6 = 2.97 amps.

Z2T871 Conduit. From Reference 3.1.4, 3/C #12 in conduit can carry 30 amps. at 30° C, adjusting to 50° C, $30 \times .82 = 24.6$. Adjusting for the number of conductors (20), $24.6 \times 0.7 = 17.22$ amps. Derating for group factor, $17.22 \times .68 = 11.71$ amps and derating for Thermo-Lag, $11.71 \times 0.77 = 9.02$ amps.

For 4/C #10 the allowed ampacity is 40 amps (Ref. 3.1.4) at 30° C, for a 50° C ambient, 40 x .82 = 32.8. Adjusting for the number of conductors (20), 32.8 x 0.7 = 22.96 amps. Derating for grouping factor, 22.96 x 0.68 = 15.61 and derating for Thermo-Lag, 15.61 x 0.77 = 12.02 amps.

The #14 cable is rated at 20.5 amperes at 50° C (Ref. 3.1.4), adjusting for 17 conductors, $20.5 \times 0.7 = 14.35$ amps. Derating for grouping factor, $14.35 \times .68 = 9.76$ amps and deleting for Thermo-Lag, $9.76 \times 0.77 = 7.51$ amps.

Z2A201 Conduit. The #14 cable is rated at 20.5 amperes at 50° C (Ref. 3.1.4), adjusting for 17 conductors, $20.5 \times 0.7 = 14.35$ amps. Derating for grouping factor, $14.35 \times .68 = 9.76$ amps and deleting for Thermo-Lag, $9.76 \times 0.77 = 7.51$ amps.

Z24FL10 Tray From Attachment 2, Appendix X, the cable is rated at 17.57 amps at 50° C. Derating for Thermo-Lag 17.57 x .6 = 10.54 amps.

6.3 120ac/125dc Volts Power continued:

Load Determination:

Cable <u>5A602/C</u> provides 125 vdc to the 4160v switch gear from MP1 4160v switchgear bus 14H cubicle A610 Unit 105A. The breaker trip requirement is approximately 12 amps but is only momentary. The circuit breaker closing is less than 7 amps and is also only momentary. The indicating lights constitute the only continuous load and are less than 1 amp (Ref. 3.1.3 and 3.1.83).

Cable Z2VA2004/A powers C09 control room panel. The cable is the power supply to a Foxboro power supply (N-2ARPS 05) which transforms the 120 to 24 volts, this breaks down into two circuits one requiring 5 amps in a dc loop and one 3 amps ac. These ampacities are combined as a conservative measure and the total load is taken as 8 amps at 24 ac. The VA rating of the transformer is thus $24 \times 8 = 192 \text{ va}$. The cable would see 192 / 120 = 1.6 amps (Ref. 3.1.90).

Cable Z2DV2008/A powers C10 control room panel. The cable is fed from DV20 circuit 8 which is a 30 amp 250 volt dc breaker. From DM2-5-1213-95 Sheet 6 (Ref. 3.1.35) the starting load on the panel is 17.5 amps. The normal load seen by the cable is 0.8268 amps and will be used as the load (Ref. 3.1.60, 3.1.9, 3.1.53)

Cables Z2SV4188/K, Z2SV4188/M, Z2SV4188/C and Z2SV4188/D are all associated with the controls of C10 and see part or all of the 0.8268 amps identified above. For conservatism all will use a load of 0.8268 amps (Ref. 3.1.9, 3.1.2).

Cable 2B6102/F per Drawing 25230-32009 Sheet 43 (Ref. 3.1.36) the motor heater is 110 watts at 120, the current is 110/120 = 0.9167 amps (rounded up to 0.92).

For Tray Z14FM20 the 1/C#12 cables (1B5103/F and 1B5105/C) feed 110 watt heaters (Ref. 3.1.32 and 3.1.33). The load is 110 watts, 110/120 = 0.9167 amps (rounded up to 0.92). Cable Z1VA1010/A is on breaker 10 of Panel VA10 (Ref. 3.1.37) and is loaded to 1.6472 amps (rounded up to 1.65)

For Tray **Z14FM10** see the above tray for common cables.

Cable Z2MCV04/B (Ref. 3.1.47) uses a 0.5 amp fuse in the circuit.

Cable Z2VA2010/A (Ref. 3.1.37) has a total load of 1.648 amps on this cable.

6.3 120ac/125dc Volts Power continued:

Load Determination continued:

Cable **Z2B6105/H** has a 3.2 amp fuse in the circuit, current value used will be the fuse value (Ref. 3.1.25 and 3.1.30).

Cable **Z2HV5279/U** (Ref. 3.1.68) has a 250 ohm resister in series with the load. Using the highest DC voltage (125 v) as its source, I = V/R or 125/250 = 0.5 amps.

Cable 1B31A08/F (Ref. 3.1.70) has a 6 amp fuse, the worse case conductor for this cable has 4 relays (0.1² amps each). This worse case value will be used as the load (0.52 amps).

Cable 2CH910B and 2CH910C (Ref. 3.1.72) has a 1.5 amp load.

Cable 2FT9860/A (Ref. 3.1.73) has a 0.04 amp load.

Cables starting with K after the facility indicator are connected to alarm circuitry cards which directly interface with transistors and other electronic components. A conservative 5Watts will be used (Assumption 4.13) 5w + 120v = 0.04 amps.

Control circuits where multi-conductors are used have been evaluated on a conductor by conductor basis. The largest load on any conductor is used as the load for all remaining conductors. See Attachment 8 for the appropriate ampacities.

Cable Z2SV4188/L (Ref. 3.1.2) identifies a 0.1684 amp load.

Cable Z2SV4188/J (Ref. 3.1.2) identifies a 0.1684 amp load.

Cable Z2B6105/J (Ref. 3.1.25) identifies a 3.2 amp fuse in the circuit.

Cable Z2B6117/F (Ref. 3.1.49) identifies a 4.5 amp fuse in the circuit.

Cable 2HC2152/B (Cable is not installed)

6.4 Instrumentation Cable

From Attachment 3 a total of 3 cable trays 4 conduits one wire-way and one box were identified in the plant that were covered with Thermo-Lag. Although the instrumentation cable will not be impacted by Thermo-Lag since it only carries minimal current this section is included to document all cables covered by Thermo-Lag in MP2. See Table 6.4.

6.0 Body of Calculation continued: TABLE 6.4

Tray / Conduit	Cable	Code	Туре
wire way		MALE	
Z26TA10	2P9934/B	134	2/C#16
	2QR011/C	134	2/C#16
	2QR011/D	134	2/C#16
	2PT102B/D	134	2/C#16
44.00	2PT102B/E	134	2/C#16
	Z2QR032/K	134	2/C#16
	Z2QR032/L	134	2/C#16
	Z2QR033/S	134	2/C#16
	Z2QR033/R	I34	2/C#16
	Z2LT5282/D	134	2/C#16
	Z2LT5282/E	134	2/C#16
	2QR035B/D	134	2/C#16
	Z2QR003B/BB	134	2/C#16
	Z2QR003B/AA	136	4/C#16
	Z2QR003B/R	136	4/C#16
	Z2QR003B/Z	134	2/C#16
	Z2QR003B/CC	134	2/C#16
	2QR035B/D	134	2/C#16
	Z2PT4224/H	134	2/C#16
RECEIPE ST	Z2PT4224/K	134	2/C#16
	Z2PT4224/G	134	2/C#16
	Z2FT5278B/D	I34	2/C#16
	Z2FT5278B/E	134	2/C#16
ALTERNATION OF THE PARTY OF THE	2LT208/B	134	2/C#16
TO BOOK ST	2LT208/C	134	2/C#16
	2LT206/C	134	2/C#16
	2LT206/B	134	2/C#16

7.0 Reviewers Comments and Resolutions

7.1 Additional references were identified as needed to document loads.

Resolution: References were added.

7.2 Revision levels of several drawings were updated.

Resolution: Latest revisions were reviewed and confirmed that no impact resulted due to the changes implemented on the new revision.

7.3 Several 120 volt loads were revised.

Resolution: All 120 volt loads revised except 1 (one) were revised downward, one load was erroneous. All changes were evaluated and agreed to.

7.4 Two cables were identified as entered in a table under an incorrect tray.

Resolution: Cables were entered in their proper location.

7.5 Additional loads were identified on the MCC's (Attachments E and F).

Resolution: The loads were checked and entered

7.6 Spare cables were identified that were not shown as spare in the calculation.

Resolution: Cables were confirmed as spare and identified as such in the calculation.

7.7 Tray width dimensions were identified as incorrect.

Resolution: All trays were rechecked and the appropriate dimensions on three (3) trays corrected.

7.8 Discrepancy with raceway fill was identified.

Resolution: Comment was rejected, fills were correct, wording was revised for clarity.

7.0 Reviewers Comments and Resolutions continued:

7.9 Uniformity of Ampacity (I) values in the tables for each voltage section were identified.

Resolution: Tables were made uniform to eliminate confusion.

7.10 Review of TS02 computerized raceway schedule identified two discrepancies in the schedule pertaining to fire wrap.

Resolution: The schedule was determined to be incorrect. DCN DM2-00-1439-96 was initiated to correct.

The independent reviews were completed by 6 personnel, (Bob Blodgett, Mike Champagne, Jose Gomez, Khwaja Haque, Jack Padden and Mike Relyea).

- B. Blodgett: was responsible for reviewing the reference design drawings / documents and for reviewing the electrical loads on these documents. In addition, Bob also reviewed the design documents to verify that the cables that are wrapped with thermo-lag were identified, this was accomplished by review of drawings, field walk downs and review of photographs of the installations.
- J. Gomez: was responsible for reviewing the cable in conduit deratings and for verifying that the applicable information was transferred into the main body of the calculation.
- K. Haque: was responsible for reviewing Attachments A(excluding thermal models) and B (excluding thermal models) for data inputs, the cable in tray deratings and for verifying that the applicable information was transferred into the main body of the calculation.
- M. Champagne: was responsible for reviewing the engineering references, design inputs, assumptions, Attachments E and F, the method of calculation, the thermal model was reviewed (Attachment's A and B) and the independent overall review of the calculation.
- J. Padden: was responsible for reviewing the reference design drawings / documents and for reviewing the electrical loads on these documents.

Mike Relyea: was responsible for reviewing the reference design drawings / documents and for reviewing the electrical loads on these documents.

8.0 Attachments

INDEX

Attachment AThermo-	Lag Derating Model.
Attachment B Ampaci	ties for specific cable tray cables
Z23HA10	Appendix A
Z23HB10	
Z23GE10	
	Appendix D
Z14FM20	
	Appendix H
Z24FL20	
	Appendix
Z.25BG20	**
	Appendix AA
	Appendix AB
	Appendix AC
	Appendix AD
Z14FM10	Appendix E
	Appendix M
	Appendix N
Z24FL10	Appendix G
Z23FA30	Appendix V
Z23FA25	Appendix W
Z52EA10	Appendix B1
Z22EA10	Appendix B2
TESTING VERIFICATION	
Test #1 3/C #8	1.5"depthAppendix P and PP
Test #2 3/C #8	2.0" depthAppendix Q and QQ
Test #3 500MCM	1.5" depthAppendix T and TT
	3.0" depth Appendix U and UU
Test #5 4/0	3.0" depth Appendix R and RR
Test #6 4/0	2.5" depthAppendix S and SS

8.0 Attachments

INDEX continued:

Attachment C...... Selected 120/125v Control Circuit Ampacities

Attachment D...... Stolpe IEEE Paper

Attachment E..... MCCB61 Continuous Load Tabulation

Attachment F..... MCCB62 Continuous Load Tabulation

Attachment G.....Independent Reviewer Evaluation

This attachment provides the thermal models for the TSI covered cable tray and conduits at MP2 and the development of the ACF (ampacity correction factor) for each.

The model was developed using standard heat transfer equations.

The model developed predicts a given surface temperature for a specific material and installation. The model was then compared to existing test results performed on TSI wrap at Texas Utilities. The comparison shows that the model conservatively predicts the surface temperature [0.675 vs 0.68].

The only difference between the TU and MP2 model is the thickness of the TSI material. With only one variable changing, i.e. thickness, the model is re-run to address the maximum and minimum possibilities of TSI installation at MP2 for all wrapped tray and the worse case determined (see the following page). Note that the change in thickness of the TSI wrap has a minimal affect upon the resultant temperature. This is to be expected as the TSI has a relatively low resistance to heat transfer.

The tray model was also run increasing the dimensions of the cable tray to much larger installation [48" width]. As expected the surface are becomes the governing factor and the temperature of the surface reduces as expected [62.3° C down to 60.7° C]. This indicates that the model behaves as expected when the size of the installation becomes large.

The conduit model, uses the same methodology as the cable tray model and is based upon the heat transfer through a cylinder. The Ampacity Correction Factor (ACF) for the two different models is tabulated below.

A	CF
Cable Tray	0.60*
Conduit	0.77

^{*} This conservative value is utilized for ease of calculation unless noted.

ATTAC HMENT A SUMMARY

The values in the table are a summary of the values obtained from the following pages of Attachment A and from Attachment B.

Appendix	Tray	depth	Q	Min ACF	Max ACF
A	Z23HA10	0.509	13.137	0.693	0.609
В	Z23HB10	0.968	10.157	0.735	0.623
C	Z23GE10	1.12	5.161	0.685	0.614
D	Z23GE10	1.12	5.161	0.685	0.614
E	Z14FM10	0.611	10.661	0.691	0.61
F	Z14FM20	0.458	14.747	0.694	0.609
G	Z24FL10	0.2037	35.701	0.698	0.606
Н	Z14FM20	0.458	14.797	0.694	0.609
I	Z14FL20	0.407	16.88	0.694	0.608
K	Z25BG20	0.509	13.137	0.693	0.609
M	Z14FM10	0.611	10.661	0.691	0.61
N	Z14FM10	0.611	10.661	υ.691	0.61
B1	Z52EA10	1.935	5.07	0.792	0.689
B2	Z22EA10	1.1741	11.313	0.864	0.689
V	Z23FA30	0.2037	4.407	0.617	0.608
W	Z23FA25	0.2037	3.983	0.615	0.607
X	Z24FL10	0.2037	35.701	0.698	0.606

For conservatism 0.6 will be used as the ACF for cable tray.

Page A3 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 13.137	Allowable heat generated for a ladder tray Z23HA10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft 24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A4 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 13.137

d := 0.509 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncovered! tray, Watts/ft (adjusted to circular area of cable)

Quntray = 160.482

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 55.864 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·
$$(Ts - Ta)^{\frac{5}{4}}$$
 + $\sigma \cdot A \cdot \epsilon \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$

Ts := Find(Ts)

Ts = 90.997 cable tray cover surface temperatre

$$R := \frac{T_C - T_C}{Q_{COVET}}$$

R = -0.018 degC-ft/watts

Attachment A

Page A5 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI, inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.308

Page A6 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Curvection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.236 Wrapped tray surface temperature degC.

Attachment A

Page A7 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 20.716$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.261$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 77.061$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.693$$

Z23HA10 MAX

ATTACHMENT A

Page A% of Al40

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Allowable heat generated for a ladder tray Z23i-1.410 (Attachment 2)
Allowable heat generated for a ladder tray Z23i-1.410 (Attachment 2)
Ampient temperature MP2)
Conductor maximum allowed temperature
Surface area of tray, sqft/ft 24"wide x 1'long x top and bottom) (Ref. 3.1.8)
Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
Emissivity of galvanized steel tray cover (Ref. 3.1.1)
Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
Emissivity of TSI surface (Attachment 1)
Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Thickness of TSI (maximum)
Tray inner height, inches
Tray inner width, inches

Page A9 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 13.137

d = 0.509 d is adjusted by pi over 4.

Quntray := Qt·24·d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 160.482

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 55.864 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402 (Ts - Ta)
$$^{\frac{5}{4}}$$
 + $\sigma \cdot A \cdot \epsilon \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$

Ts := Find(Ts)

Ts = 90.997 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.018 degC-ft/watts

Attachment A

Page Alo of Alto

Model for the TSI Encased Cable Tray

bl := Ttsi

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSI, inches

b3 := Ttsi

Bottom thickness of TSI,inches

b4 := Ttsi

Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48

degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

Rws = 0.463

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.44 Wrapped tray surface temperature degC.

Attachment A

Page AIL of AI40

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 15.739$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.871$$

$$QTSI := \frac{90 - Ts}{Rw_o}$$

$$QTSI = 59.578$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

Page A13 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 10.157	Allowable heat generated for a ladder tray Z23HB10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 2	Surface area of tray, sqft/ft (12"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
Etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 12	Tray inner width, inches

ATTACHMENT A Page AI4 of AI40

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

$$Qt = 10.157$$

d = 0.968 d is adjusted by pi over 4

Quntray := Qt·12·d Allowed heat generation of a 24"wide by d i nches deep uncovered tray, Watts/ft (adjusted to circular area of cable)

Quntray = 117.984

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 41.07 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.24·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 100.164 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.247 degC-ft/watts

Attachment A

Page AL S of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 != Ttsi Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.555 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.308

Page Alb of Al40

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.185

Convection coefficient for the top surface of the wrapper I tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b^2}{12} \cdot 0.527$$

A2 = 0.082 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.577$$

A3 = 0.21' Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.479$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Tr})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{stsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 70.346 Wrapped tray surface temperature degC.

Page A17 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 20.645$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.797$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 63.82$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.735$$

Z23HB10 MAX

ATTACHMENT A

Page Alto of Alto

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 10.157	Allowable heat generated for a ladder tray Z23HB10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 2	Surface area of tray, sqft/ft 12"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
e1 := 4	Tray inner height, inches
e2 := 12	Tray inner width, inches

Page Al4 of Al40

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 10.157

d := 0.968 d is adjusted by pi over 4.

Quntray := Qt·12·d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 117.984

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 41.07 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=
$$0.24 \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + \sigma \cdot \text{A} \cdot \epsilon \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 100.164 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.247 degC-ft/watts

Page A20 of A140

Attachment A

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.808 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Rws = 0.56

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.195

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b^2}{12} \cdot 0.527$$

A2 = 0.087 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.518$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 64.362 Wrapped tray surface temperature degC.

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 14.475$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((T_S + 273.16)^4 - (T_A + 273.16)^4)$$

$$Qrc = -3.477$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 45.771$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.623$$

Page #13 of ____

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 5.161	Allowable heat generated for a ladder tray Z23GE10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
εtsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A24 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 5.161

d := 1.12 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncovered! tray, Watts/ft (adjusted to circular area of cable)

Quntray = 138.728

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 48.291 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 86.422 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = 0.074 degC-ft/watts

Attachment A

Page A25 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI, inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
 (Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Rws = 0.4

Page A26 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 63.954 Wrapped tray surface temperature degC.

Attachment A Page A27 of Atte

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 17.143$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -5.324$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 65.063$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.685$$

Z23GE10 MAX

ATTACHMENT A

Page A25 of A44

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 5.161	Allowable heat generated for a ladder tray Z23GE10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A29 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 5.161

d := 1.12 d is adjusted by pi over 4.

Quntray := Qt-24-d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 138.728

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 48.291 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402 (Ts - Ta)
$$^{\frac{5}{4}}$$
 + $\sigma \cdot A \cdot \varepsilon \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$

Ts := Find(Ts)

Ts = 86.422 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = 0.074 degC-ft/watts

Attachment A Page A50 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref.3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.555

Page #31 of #140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref.3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 61.042 Wrapped tray surface temperature degC.

Page #32 of #140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 13.56$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.296$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 52.221$$

Calculate Derating Factor of tray covered with TSI fire wrap

ACFtsi :=
$$\sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.614$$

Page A33 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 10.561	Allowable heat generated for a ladder tray Z14FM10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A34 of A140

This section of the model is for connred tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 10.661

d := 0.611 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncoveredl tray, Watts/ft (adjusted to circular area of cable)

Quntray = 156.333

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 54.419 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 90.136 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.002 degC-ft/watts

Page A35 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI, inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 9.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.324

Page A36 of A146

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{Etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 65.8 Wrapped tray surface temperature degC.

Attachment 1A Page A37 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 20.025$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 \div b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.081$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 74.75$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.691$$

Z14FM10 MAX

ATTACHMENT A

Page A3/8 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 10.661	Allowable heat generated for a ladder tray Z14FM10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A39 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Ot = 10.561

d = 0.611 d is adjusted by pi over 4.

Quntray := Qt 24 d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 156.333

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 54.419 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 90.136 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.002 degC-ft/watts

Attachment A

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
 (Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.478

Page AH of Atto

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.181 Wrapped tray surface temperature degC.

Page A42 of A140

Calculate Qc' and Qr'

Qcc :=
$$(AI + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 15.331$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{ei + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.764$$

QTSI :=
$$\frac{90 - Ts}{Rws}$$

$$QTSI = 58.206$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.61$$

Page A 43 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 14.797	Allowable heat generated for a ladder tray Z14FM20 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

$$Qt = 14.797$$

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncoveredl tray, Watts/ft (adjusted to circular area of cable)

$$Quntray = 162.649$$

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Calculate the termal resistance at the tray surface

Given

Qcover=0.402·
$$(T_s - T_e)^{\frac{5}{4}} + \sigma \cdot A \cdot \epsilon \cdot ((T_s + 273.16)^4 - (T_a + 273.16)^4)$$

$$R := \frac{Tc - Ts}{Qcover}$$

$$R = -0.026$$
 degC-ft/watts

Page A45 of A140

Model for the TSI Encased Cable Tray

bl := Ttsi

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSI, inches

b3 := Ttsi

Bottom thickness of TSI,inches

b4 := Ttsi

Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref.3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

Rws = 0.301

Page A46 of A46

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{Etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.463 Wrapped tray surface temperature degC.

Page A47 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 21.079$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.355$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 78.273$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.694$$

Z14FM20 MAX

ATTACHMENT A

Page A44 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 14.797	Allowable heat generated for a ladder tray Z14FM20-1 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A44 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Ot = 14.797

d := 0.458 d is adjusted by pi over 4.

Quntray := Qt·24·d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 162.649

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 56.618 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=
$$0.402 \cdot (T_s - T_a)^4 + \sigma \cdot A \cdot \epsilon \cdot ((T_s + 273.16)^4 - (T_a + 273.16)^4)$$

Ts := Find(Ts)

Ts = 91.445 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.026 degC-ft/watts

Attachment A Page A50 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI, inches

b3 := Ttsi Bottom thickness of TSI, inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Rws = 0.455

Page A51 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref.3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.574 Wrapped tray surface temperature degC.

Page AS2 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

Qcc = 15.951

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((T_S + 273.16)^4 - (T_A + 273.16)^4)$$

$$Qrc = -4.926$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 60.289$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.609$$

Page A53 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 35.701	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A54 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 35.701

d := 0.2037 d is adjusted by pi over 4

Quntray := Qt-24-d Allowed heat generation of a 24"wide by d i nches deep uncovered! tray, Watts/ft (adjusted to circular area of cable)

Quntray = 174.535

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 60.756 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=
$$0.402 \cdot (T_s - T_a)^{\frac{5}{4}} + \sigma \cdot A \cdot \epsilon \cdot ((T_s + 273.16)^4 - (T_a + 273.16)^4)$$

Ts := Find(Ts)

Ts = 93.88 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.064 degC-ft/watts

Page ASS of ALVO

Model for the TSI Encased Cable Tray

bl := Ttsi

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSI, inches

b3 := Ttsi

Bottom thickness of TSI, inches

b4 := Ttsi

Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

Rws = 0.262

ATTACHMENT A Page AS of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 67.708 Wrapped tray surface temperature degC.

Page A57 of ANO

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 23.091$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.875$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 84.963$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.698$$

Page 45% of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 35.701	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
εtsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (minimum)
el = 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page AS9 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qi = 35.701

d := 0.2037 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncovered tray, Watts/ft (adjusted to circular area of cable)

Quntray = 174.535

Qcover := ACFcov². Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 60.756 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
4
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 93.88 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = -0.064 degC-ft/watts

Page A60 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI, inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 0.417

ATTACHMENT A Page 44 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 63.291 Wrapped tray surface temperature degC.

Page 462 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 17.096$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -5.225$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 64.117$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.606$$

Z14FL20 min

ATTACHMENT A

Page A63 of A146

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 16.88	Allowable heat generated for a ladder tray Z14FL20 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (maximum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page Att of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 16.88

d = 0.407 d is adjusted by pi over 4.

Quntray := Qt-24-d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 164.884

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 57.396 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402 ·
$$(T_s - T_a)^{\frac{5}{4}} + \sigma \cdot A \cdot \epsilon \cdot ((T_s + 273.16)^4 - (T_a + 273.16)^4)$$

Ts := Find(Ts)

Ts = 91.906 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.033 degC-ft/watts

Page 465 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 = Tisi Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Page Att of Airto

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficients for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.697 Wrapped tray surface temperature degC.

Page A67 of Alwo

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 21.455$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.452$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 79.525$$

Calculate Derating Factor of tray covered with TSI fire wrap

ACFtsi :=
$$\sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.694$$

Z14FL20 MAX

ATTACHMENT A

Page A64 of Areo

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 16.88	Allowable heat generated for a ladder tray Z14FL20 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of ralvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A69 of Aito

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 16.88

d = 0.407 d is adjusted by pi over 4.

Quntray := Qt·24·d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 164.884

Ocover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 57.396 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qc...er=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 91.906 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = -0.033 degC-ft/watts

Page A70 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Page A7/ of A146

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{Etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.711 Wrapped tray surface temperature degC.

Page A72 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 16.169$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.983$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 61.019$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.608$$

Page A73 of Alvo

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 13.137	Allowable heat generated for a ladder tray Z25BG20 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A74 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

$$Qt = 13.137$$

Quntray := Qt-24-d Allowed heat generation of a 24"wide by d i nches deep uncoveredl tray, Watts/ft (adjusted to circular area of cable)

Quntray
$$= 160.482$$

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Calculate the termal resistance at the tray surface

Given

Qcover=
$$0.402 \cdot (T_s - T_a)^{\frac{5}{4}} + \sigma \cdot A \cdot \epsilon \cdot ((T_s + 273.16)^4 - (T_a + 273.16)^4)$$

$$R := \frac{T_C - T_S}{Q_{COVET}}$$

$$R = -0.018$$
 degC-ft/watts

Page A75 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Page 476 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.236 Wrapped tray surface temperature degC.

Page # 77 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 20.716$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -6.261$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 77.061$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.693$$

Z25BG20 MAX

ATTACHMENT A Page A78 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 13.137	Allowable heat generated for a ladder tray Z25GB20 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'iong x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
Etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A79 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

$$Qt = 13.137$$

d = 0.509 d is adjusted by pi over 4.

Quntray := Qt-24-d Allowed heat generation oof 24"wide and 3" deep uncovered fill tray, Watts/ft (adjusted to circular area of cable)

Quntray = 160.482

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 55.864 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts = 90.997 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.018 degC-ft/watts

Page A80 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Page A6/ of Ai40

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.44 Wrapped tray surface temperature degC.

Page A82 of A140

Calculate Qc' and Qr'

$$Qcc := (A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 15.739$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((T_S + 273.16)^4 - (T_A + 273.16)^4)$$

$$Qrc = -4.871$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 59.578$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.609$$

Z52EA10 min

ATTACHMENT A

Page A43 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Data Input.	Allowable heat generated for a ladder tray Z52EA10 (Attachment 2)
Q := 5.07	Allowable fleat generated for a ladder tray 2022A to (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 1	Surface area of tray, sqft/ft (6"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (maximum)
el :=4	Tray inner height, inches
e2 := 6	Tray inner width, inches

Page A84 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

$$Qt = 5.07$$

Quntray =
$$58.863$$

Calculate the termal resistance at the tray surface

Given

Qcover=0.143·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

$$Ts := Find(Ts)$$

$$R := \frac{Tc - Ts}{Qcover}$$

$$R = -0.233$$
 uegC-ft/watts

Attachment A Page 1995 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) \cdot \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
 (Ref. 3.1.95)

Rk = 0.856 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

ATTACHMENT A Page 456 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.122

Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.054 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.386$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.968 Wrapped tray surface temperature degC.

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 13.298$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -2.626$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 36.931$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.792$$

752EA10 MAX

ATTACHMENT A

Page A66 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 5.07	Allowable heat generated for a ladder tray Z52EA10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 1	Surface area of tray, sqft/ft (6"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
el :=4	Tray inner height, inches
e2 := 6	Tray inner width, inches

Page Ass of Ar40

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 5.07

d = 1.935 d is adjusted by pi over 4.

Quntray := Qt 6 d Allowed heat generation oof 6"wide and 3" deep uncovered fill

tray, Watts/ft (adjusted to circular area of cable)

Quntray = 58.863

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 20.49 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.143 (Ts - Ta)
$$^{\frac{5}{4}}$$
 + $\sigma \cdot A \cdot \epsilon \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$

Ts := Find(Ts)

Ts = 94.765 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = -0.233 degC-ft/watts

Attachment A Page A40 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI, inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 1.225 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

ATTACHMENT A Page A91 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.133 Convection coefficient for the toop surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.059 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.428$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 62.27 Wrapped tray surface temperature degC.

Page A92 of Arto Attachment A

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 9.833$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -2.013$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 27.951$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.689$$

Z22EA10 MIN

ATTACHMENT A

Page A43 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 11.313	Allowable heat generated for a ladder tray Z22EA10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 1	Surface area of tray, sqft/ft (6"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
F := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (maximum)
el := 4	Tray inner height, inches
e2 := 6	Tray inner width, inches

Page A94 of Ar40

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 11.313

d := 1.1714 d is adjusted by pi over 4.

Quntray := Qt·6·d Allowed heat generation of 6"wide and 3" deep uncovered fill

tray, Watts/ft (adjusted to circular area of cable)

Quntray = 79.512

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 27.678 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.143·
$$(Ts - Ta)^4 + \sigma \cdot A \cdot \varepsilon \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

Ts := Find(Ts)

Ts = 106.987 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = -0.614 degC-ft/watts

Page A95 of A140

Model for the TSI Encased Cable Tray

bl := Ttsi Tor

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSI inches

b3 := Ttsi

Bottom thickness of TSI,inches

b4 := Ttsi

Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.856 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

Page A96 of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface ([Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.122 Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.054 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.386$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 75.607 Wrapped tray surface temperature degC.

Page A 97 of A140 Attachment A

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 22.244$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -4.123$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 59.354$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.864$$

Z22EA10 MAX

ATTACHMENT A

Page 496 of Alvo

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 11.313	Allowable heat generated for a ladder tray Z22EA10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 1	Surface area of tray, sqft/ft (6"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-k^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
εtsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (maximum)
e1 := 4	Tray inner height, inches
e2 := 6	Tray inner width, inches

Page A99 of A146

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Ot = 11.313

d := 1.1714 d is adjusted by pi over 4.

Quntray := Qt·6·d Allowed heat generation of 6"wide and 3" deep uncovered fill

tray, Watts/ft (adjusted to circular area of cable)

Quntray = 79.512

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 27.678 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.143·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 106.987 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = -0.614 degC-ft/watts

Page Aloo of Al40

Model for the TSI Encased Cable Tray

bl := Ttsi

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSI, inches

b3 := Ttsi

Bottom thickness of TSI,inches

b4 := Ttsi

Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref.3.1.95)

Rk = 1.225 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

ATTACHMENT A Page Atol of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.133

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.059 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.428$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 66.358 Wrapped tray surface temperature degC.

Page 4102 of A140

Calculate Oc' and Or'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

Qcc = 14.086

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

Qrc = -2.735

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 38.7$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.698$$

Page A103 of A140

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 4.407	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page Alor of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 4.407

d := 0.2037 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncoveredl tray, Watts/ft (adjusted to circular area of cable)

Quntray = 21.545

Qcover := ACFcov² · Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 7.5 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402 · (Ts - Ta)
4
 + σ · A· ε · ((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 57.752 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = 4.3 degC-ft/watts

Page A105 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form

conductor to outer surface of TSI

Rws = 4.626

ATTACHMENT A Page Alob of A140

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 52.046 Wrapped tray surface temperature degC.

Page 407 of Atto

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 1.555$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -0.739$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 8.204$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.617$$

Page AIN of AIN

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 4.407	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (minimum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page A.19 of A140

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 4.407

d = 0.2037 d is adjusted by pi over 4

Quntray := Qt·24·d Allowed heat generation of a 24"wide by d i nches deep uncoveredl tray, Watts/ft (adjusted to circular area of cable)

Quntray = 21.545

Qcover := ACFcov² Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Qcover = 7.5 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402 (Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ · A· ϵ · ((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 57.752 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = 4.3 degC-ft/watts

Page Allo of Arto

Model for the TSI Encased Cable Tray

bl := Ttsi

Top thickness of TSI, inches

b2 := Ttsi

Side thickness of TSi,inches

b3 := Ttsi

Bottom thickness of TSI,inches

b4 := Ttsi

Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48

degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk

Total thermal resistance form conductor to outer surface of TSI

Rws = 4.78

ATTACHMENT A Page All of Al40

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{\text{el} + 2 \cdot \text{bl}}\right)^{0.25} \cdot \frac{\text{el} + 2 \cdot \text{bl}}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 51.92 Wrapped tray surface temperature degC.

Page All of Al 46

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 1.522$$

Qrc :=
$$-0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{\text{el} + \text{e2} + \text{b1} + \text{b2}}{12} \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

$$Qrc = -0.716$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 7.966$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.608$$

Page Aus of Alto

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 3.983	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1"long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.0	Thickness of TSI (minimum)
el := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page AHY of AHO

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 3.983

d := 0.2037 d is adjusted by pi over 4

Quntray := Qt-24-d Allowed heat generation of a 24"wide by d i nches deep uncovered! tray, Watts/ft (adjusted to circular area of cable)

Quntray = 19.472

Qcover := ACFcov²· Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 6.778 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·(Ts - Ta)
$$^{\frac{5}{4}}$$
 + σ ·A·ε·((Ts + 273.16) 4 - (Ta + 273.16) 4)

Ts := Find(Ts)

Ts = 57.117 cable tray cover surface temperatre

$$R := \frac{Tc - Ts}{Qcover}$$

R = 4.851 degC-ft/watts

Page A115 of A140

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI, inches

b4 := Ttsi Side thickness of TSI, inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.326 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Rws = 5.177

ATTACHMENT A Page All of Allo

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.294

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.131 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.211 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.636$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 51.848 Wrapped tray surface temperature degC.

Page A117 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 1.369$$

$$Q_{TC} := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -0.667$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 7.369$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi = 0.615$$

Page All of Also

AMPACITY MODELING OF APPENDIX R WRAPPED TRAY

Data Input:	
Q := 3.983	Allowable heat generated for a ladder tray Z24FL10 (Attachment 2)
Ta := 50	Ampient temperature MP2)
Tc := 90	Conductor maximum allowed temperature
A := 4	Surface area of tray, sqft/ft (24"wide x 1'long x top and bottom) (Ref. 3.1.8)
$\sigma := 5.3 \cdot 10^{-9}$	Stefan- Boltzmann constant, Wats/sqft-K^4 (Ref. 3.1.27)
ε := 0.1	Emissivity of galvanized steel tray cover (Ref. 3.1.1)
ACFcov := 0.59	Ampacity correction factor for tight cover cable tray (Ref. 3.1.10)
etsi := 0.9	Emissivity of TSI surface (Attachment 1)
k := 0.1	Thermal conductivity of TSI, BTU/hr-ft-degF (Attachment 1)
Ttsi := 1.5	Thickness of TSI (minimum)
e1 := 4	Tray inner height, inches
e2 := 24	Tray inner width, inches

Page All of AL40

This section of the model is for covered tray

Calculation for the allowable heat generation in a covred tray

Qt := Q Allowable heat generation for a ladder type tray

Qt = 3.983

d = 0.2037 d is adjusted by pi over 4

Quntray := Qt-24-d Allowed heat generation of a 24"wide by d i nches deep uncovered! tray, Watts/ft (adjusted to circular area of cable)

Quntray = 19.472

Qcover := ACFcov² · Quntray Allowable heat generation for a covered, unwrapped tray, watts/ft

Ocover = 6.778 Watts / ft

Calculate the termal resistance at the tray surface

Ts := 50 Initial guess

Given

Qcover=0.402·
$$(T_s - T_a)^{\frac{5}{4}}$$
 + σ ·A·ε· $((T_s + 273.16)^4 - (T_a + 273.16)^4)$

Ts := Find(Ts)

Ts = 57.117 cable tray cover surface temperatre

 $R := \frac{Tc - Ts}{Qcover}$

R = 4.851 degC-ft/watts

Page Also of Alvo

Model for the TSI Encased Cable Tray

b1 := Ttsi Top thickness of TSI, inches

b2 := Ttsi Side thickness of TSI,inches

b3 := Ttsi Bottom thickness of TSI,inches

b4 := Ttsi Side thickness of TSI,inches

Calculate Thermal Resistance of TSI

$$Rk := \frac{\frac{1}{k \cdot 1.8 \cdot .2928}}{\left(\frac{e1}{b1} + 0.54\right) + \left(\frac{e2}{b2} + 0.54\right) + \left(\frac{e1}{b3} + 0.54\right) + \left(\frac{e2}{b4} + 0.54\right)}$$
(Ref. 3.1.95)

Rk = 0.48 degC-ft/watts

Calculate the Thermal resistance between the conductor and outer Surface of TSI

Rws := R + Rk Total thermal resistance form conductor to outer surface of TSI

Rws = 5.332

ATTACHMENT A Page A124 of A146

Solve Heat Balance Equation, to determine outer Surface Temperature of TSI

Calculate the convection and radiation coefficents for the TSI surface (Ref. 3.1.96)

A1 := 0.27
$$\left[\left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1} \right)^{0.25} \right] \cdot \left(\frac{e^2 + 2 \cdot b1}{12} \right) \cdot 0.527$$

A1 = 0.303

Convection coefficient for the top surface of the wrapped tray

A2 :=
$$\left[0.12 \cdot \left(12 \cdot \frac{1.8}{e^2 + 2 \cdot b1}\right)^{0.25}\right] \cdot \frac{e^2 + 2 \cdot b1}{12} \cdot 0.527$$

A2 = 0.135 Convection coefficient for the bottom surface of the wrapped tray.

A3 := 0.29
$$\left(12 \cdot \frac{1.8}{e1 + 2 \cdot b1}\right)^{0.25} \cdot \frac{e1 + 2 \cdot b1}{(12)} \cdot 2 \cdot 0.527$$

A3 = 0.236 Convection coefficient for the side surfaces of the wrapped tray

$$A1 + A2 + A3 = 0.674$$

Given

$$\frac{\text{Tc} - \text{Ts}}{\text{Rws}} = (\text{A1} + \text{A2} + \text{A3}) \cdot (\text{Ts} - \text{Ta})^{\frac{5}{4}} + 5.3 \cdot 10^{-9} \cdot \text{Etsi} \cdot 2 \cdot \left(\frac{\text{e1} + \text{e2} + \text{b1} + \text{b2}}{12}\right) \cdot ((\text{Ts} + 273.16)^4 - (\text{Ta} + 273.16)^4)$$

Ts := Find(Ts)

Ts = 51.739 Wrapped tray surface temperature degC.

Page #122 of A140

Calculate Qc' and Qr'

Qcc :=
$$(A1 + A2 + A3) \cdot (Ts - Ta)^{\frac{5}{4}}$$

Heat transmission from surface of TSI to ambient air due to convection, Watts/ft

$$Qcc = 1.345$$

$$Qrc := -0.53 \cdot 10^{-8} \cdot \epsilon \cdot 2 \cdot \frac{e1 + e2 + b1 + b2}{12} \cdot ((Ts + 273.16)^4 - (Ta + 273.16)^4)$$

$$Qrc = -0.648$$

$$QTSI := \frac{90 - Ts}{Rws}$$

$$QTSI = 7.176$$

Calculate Derating Factor of tray covered with TSI fire wrap

$$ACFtsi := \sqrt{\frac{QTSI}{Quntray}}$$

$$ACFtsi = 0.607$$

1.25 in thick TSI

CONDUIT MODEL

The following is a model of Thermo-Lag on Conduit using the TU Test Results .

The thermal resistance model of a cable in conduit consists of the following thermal resistance components.

Ri	thermal resistance of the insulation/jacket
Rsd	thermal resistance between the outer cable jacket to the inside conduit wall
Rd	thermal resistance of the conduit
Rag	thermal resistance between the outer surface of the conduit and the inside surface of thermal Lag shell product.
Rthl	thermal resistance of the thermal lag shell
Re	thermal resistance between the outer surface of the thermal Lag and ambient air
Rtot	is the sum of the above thermal resistnace terms/ thermal resistance between the conductor and ambient air.

Methodology to develop an ampacity Model of a power calbe in Thermal Lagged conduit using TU test:

- Calculate the heat generated by one conductor during both the base line condition (Q) and thermal lagged conduit conditions(Qp).
- Using a known value of Qp, calculate Rtot, thermal resistance between conductor and ambient air, during test of thermal Lag conduit.
- Calculate thermal resistance of thermal Lag (Rhtl) using accepted equation for calculating the thermal resistance of a cylinder. Equation 38 from Neher-McGrath technical paper is used to calculate Rthl.
- 4. Using equation for Re, thermal resistance between thermal Lag and ambient air, calculate Ts, surface temperature of thermal lag. Ts is solved using MathCad givene/find function. Once Ts is solved, Re is then calculated.
- With Re, Rtot, and Rthl known, the thermal resistance between conductor and inside surface
 of thermal Lag (Ri_thl) can be calculated. Ri_thl is considered to be constant regardless of
 the Thermal Lag.
- 6. A new Rthl is calculated for a new theraml Lag thickness, for MS2 the thickness is 1.25 inch.
- Two equations are defined with respect to Qpp, heat generated for new thickness of thermal Lag. These equations are set equal to each and solved for TS. Qpp is then solved using the value of Ts.
- The ampacity correction factor (ACF) for the thermal lag conduit is then solved.

1. Calculate Parameters Associated with Test Conditions

INPUT:

εTSI := 0.9 emissivity of thermal Lag

TSI := 0.5 thickness of thermal Lag in test, inches

pTSI := 577.7 thermal resistivity of thermal lag, C-cm/watt (calculated from a value of thermal conductivity of 1.0BTU/hr-ft-F.

Dend := 5.5 outer diameter of conduit, inch.

Rac := 0.023·10⁻³ ac resistance of 750 kcmil Cu

Ib := 571 base current in TU test for the thermo-lagged 5 in conduit, amps

Ip := 510 base current in Tu test, amps

np := 4 number of conductors in conduit

Tc := 90 conductor termperature, C

Ta := 40 ambient temperature, C

Q, heat generated in Test Base Line Conditions

Q := Ib². Rac heat generated by single conduitro, in base condition (watts/ft).

Q = 7.499 watts /ft

Qp, heat generated in test conditions of 1/2 inch thermal lag conduit

Qp := Ip². Rac heat generated by single conductor, in derated conditions of test.

Qp = 5.982 watts/ft

Rtot, Total Thermal resistance betweeen conductor and ambient during Test

Rtot := $\frac{Tc - Ta}{Qp}$ thermal resistance between conductor and ambient air

Rtot = 8.358 C-ft/watt

Re, thermal resistance between Thermal Lag surface and ambient during test

Dsp := Dcnd + 2 TSI Ts := 50 Initial guess surface temperature

Re :=
$$\frac{15.6 \cdot \text{np}}{\text{Dsp} \cdot \left(\frac{\text{Ts} - \text{Ts}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}$$

Calculate Ts, Ri-thl

Dsp := Dend + 2 TSI

Outer diameter of thermal lagged conduit, where the outer diameter of the conduit is 5.5 inch.

Dsp = 6.5 inch

Qp= (Ts-Ta)/Re

Equation relating Re and Qp

Ts = 50 Initial guess

Given

$$Qp = \frac{Ts - Ta}{\left[\frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \varepsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}\right]}$$

Ts := Find(Ts)

Ts = 70.306 degree C

Confirmation of Given/Find calculation:

$$\frac{Ts - Ta}{15.6 \cdot np} = 5.982$$

$$\frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \varepsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]} = 5.982$$
watts/ft-/in^2

5.982 is equal to Qp thus conferming the value of Ts.

Calculate Re, thermal resistance between Thermal Lag surface and ambient air

Re :=
$$\frac{15.6 \text{ np}}{\text{Dsp} \left(\frac{\text{Ts} - \text{Ta}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}$$

Re = 5.066 C-ft/watt

Calculate Rthl, thermal resistance of thermal lag, based on thickness used in TU Test

Rthl :=
$$0.012 \cdot \text{np} \cdot \rho \text{TSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dcnd}} \right)$$

RthI := $0.012 \cdot \text{np} \cdot \text{pTSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dend}} \right)$ thermal resistance of thermal lag ,equation adapted from Equation 38 of Neher/McGrath

Rthl = 2.012 C-ft/watt

Calculate Ri_thi, thermal resistance between conductor and thermal Lag

Ri_thl := Rtot - Re - Rthl thermal resistance between conductor and inside wall of thermal lag

Ri thl = 1.28 C-ft/watt

2. Calculate New Conditions

TSI := 1.25

new thickness of TSI, inch

Dsp := Dcnd + 2 TSI outer diameter of thermal lagged conduit, inch

Dsp = 8 inch

Rthl := $0.012 \cdot \text{np} \cdot \text{pTSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dend}} \right)$ thermal resistance of thermal lag, equation adapted from Equation 36 of Neher-McGrath (Ref. 3.1.82).

Rthl = 4.512

The new Qpp can be defined as follows:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp := \frac{Ts - Ta}{15.6 \cdot np}$$

$$Qpp := \frac{Ts - Ta}{Dsp \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}$$

Combining these two equations we can solve for Ts

Ts := 50

Initial guess of surface temperature

Given

$$\frac{\text{Tc - Ts}}{\text{Ri_thl + Rthl}} = \frac{\text{Ts - Ta}}{\left[\frac{15.6 \cdot \text{np}}{\text{Dsp} \cdot \left(\frac{\text{Ts - Ta}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}\right]$$

Ts := Find(Ts)

Ts = 62.613 new surface temperature of thermal lag for new thermal lag thickness

Using the Ts and Qpp values determined above:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp = 4.728$$

ACFtsi :=
$$\sqrt{\frac{Qpp}{Q}}$$

Ampacity correction factor for 1.25 in TSI conduit wrap

$$ACFTU := \sqrt{\frac{Qp}{Q}}$$

$$ACFTU = 0.893$$

Ampacity correction factor for 1/2 in TS! determined by TU

1.0 in thick TSI

CONDUIT MODEL

The following is a model of Thermo-Lag on Conduit using the TU Test Results .

The thermal resistance model of a cable in conduit consists of the following thermal resistance components.

Ri	thermal resistance of the insulation/jacket
Rsd	thermal resistance between the outer cable jacket to the inside conduit wall
Rd	thermal resistance of the conduit
Rag	thermal resistance between the outer surface of the conduit and the inside surface of thermal Lag shell product.
Rthl	thermal resistance of the termal lag shell
Re	thermal resistance between the outer surface of the thermal Lag and ambient air
Rtot Ri_thl	is the sum of the above thermal resistance terms/ thermal resistance between the conductor and ambient air.

Methodology to develop an ampacity Model of a power cable in Thermal Lagged conduit using TU test:

- Calculate the heat generated by one conductor during both the base line condition (Q) and thermal lagged conduit conditions(Qp).
- Using a known value of Qp, calculate Rtot, thermal resistance between conductor and ambient air, during test of thermal Lag conduit.
- Calculate thermal resistance of thermal Lag (Rhtl) using accepted equation for calculating the thermal resistance of a cylinder. Equation 38 from Neher-McGrath technical paper is used to calculate Rthl.
- Using equation for Re, thermal resistance between thermal Lag and ambient air, calculate
 Ts, surface temperature of thermal lag. Ts is solved using MathCad given/find function.
 Once Ts is solved, Re is then calculated.
- With Re, Rtot, and Rthl known, the thermal resistance between conductor and inside surface
 of thermal Lagf (Ri_thl) can be calculated. Ri_thl is considered to be constant regardless of
 the Thermal Lag.
- 6. A new Rthl is calculated for a new theraml Lag thickness, for MS2 the thickness is 1.25 inch.
- Two equations are defined with respect to Q", heat generated for new thickness of thermal Lag. These equations are set equal to each and solved for TS. Q" is then solved using the value of Ts.
- 8. The ampacity correction factor (ACF) for the thermal lag conduit is then solved.

1. Calculate Parameters Associated with Test Conditions

INPUT: εTSI := 0.9 emissivity of thermal Lag TSI := 0.5 thickness of thermal Lag in test, inches

pTSI := 577.7 thermal resistivity of thermal lag, C-cm/watt (calculated from a value of thermal conductivity of 1.0BTU/hr-ft-F.

Dend := 5.5 outer diameter of conduit, inch.

Rac $:= 0.023 \cdot 10^{-3}$ ac resistance of 750 kcmil Cu, page 13 of ETP104.1-0

Ib := 571 base current in Tu test, amps

Ip := 510 base current in Tu test, amps

number of conductors in conduit np := 4 Tc := 90 conducctor termperature, C

Ta := 40 ambient temperature, C

Q, heat generated in Test Base Line Conditions

O := Ib2 Rac heat generated by single conduitro, in base condition (I^2R).

Q = 7.499watts /ft

Qp, heat generated in test conditions of 1/2 inch thermal lag conduit

Op := Ip2 Rac heat generated by single conductor, in derated conditions of test.

Qp = 5.982watts/ft

Rtot, Total Thermal resistance betweeen conductor and ambient during Test

 $Rtot := \frac{Tc - Ta}{Qp}$ thermal resistance between conductor and ambient air

Rtot = 8.358C-ft/watt

Re, thermal resistance between Thermal Lag surface and ambient during test

Re :=
$$\frac{15.6 \text{ np}}{Dsp \cdot \left(\frac{Ts - Ts}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}$$

Calculate Ts, Ri-thl

Outer diameter of thermal lagged conduit, where the outer diameter of the conduit is 5.5 inch.

$$Dsp = 6.5$$
 inch

Equation relating Re and Qp

Given

$$Qp = \frac{Ts - Ta}{\left[\frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}\right]}$$

$$Ts = 70.306$$

Confirmation of Given/Find calculation:

$$\frac{\text{Ts - Ta}}{\left[\frac{15.6 \cdot \text{np}}{\text{Dsp} \cdot \left(\frac{\text{Ts - Ta}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}\right]} = 5.982$$

5.982 is equal to Qp thus conferming the value of Ts.

Calculate Re, thermal resistance between Thermal Lag surface and ambient air

$$Re := \frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}$$

Re = 5.066 C-ft/watt

Calculate Rthl, thermal resistance of thermal lag, based on thickness used in TU Test

Rth1 :=
$$0.012 \cdot \text{np} \cdot \rho TSI \cdot \log \left(\frac{Dsp}{Dcnd} \right)$$

Rthl := $0.012 \cdot \text{np} \cdot \text{pTSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dcnd}} \right)$ thermal resistance of thermal lag ,equation adapted from Equation 38 of Neher/McGrath

Rthl = 2.012 C-ft/watt

Calculate Ri_thl, thermal resistance between conductor and thermal Lag

Ri_thl := Rtot - Re - Rthl

thermal resistance between conductor and inside wall of thermal lag

Ri thl = 1.28 C-ft/watt

2. Calculate New Conditions

TSI := 1.0

new thickness of TSI, inch Minimum

Dsp := Dcnd + 2 TSI outer diameter of thermal lagged conduit, inch

Dsp = 7.5 inch

Rthl := $0.012 \cdot \text{np} \cdot \rho \text{TSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dcnd}} \right)$ thermal resistance of thermal lag, equation adupted from Equation 38 of Neher-McGrath

Rthl = 3.735

The new Qpp can be defined as follows:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp := \frac{Ts - Ta}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}$$

Combining these two equations we can solve for Ts

Ts := 50

Initial guess of surface temperature

Given

Ts := Find(Ts)

Ts = 64.648 new surface temperature of thermal lag for new thermal lag thickness

Using the Ts and Qpp values determined above:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp = 5.055$$

ACFtsi :=
$$\sqrt{\frac{Qpp}{Q}}$$

$$ACFtsi = 0.821$$

Ampacity correction factor for 1.0 in TSI conduit wrap

1.5 in thick TSI

CONDUIT MODEL

The following is a model of Thermo-Lag on Conduit using the TU Test Results .

The thermal resistance model of a cable in conduit consists of the following thermal resistance components.

Ri	thermal resistance of the insulation/jacket
Rsd	thermal resistance between the outer cable jacket to the inside conduit wall
Rd	thermal resistance of the conduit
Rag	thermal resistance between the outer surface of the conduit and the inside surface of thermal Lag shell product.
Rthl	thermal resistance of the termal lag shell
Re	thermal resistance between the outer surface of the thermal Lag and ambient air
Rtot Ri_thl	is the sum of the above thermal resistance terms/ thermal resistance between the conductor and ambient air.

Methodology to develop an ampacity Model of a power cable in Thermal Lagged conduit using TU test:

- Calculate the heat generated by one conductor during both the base line condition (Q) and thermal lagged conduit conditions(Qp).
- Using a known value of Qp, calculate Rtot, thermal resistance between conductor and ambient air, during test of thermal Lag conduit.
- Calculate thermal resistance of thermal Lag (Rhtl) using accepted equation for calculating the thermal resistance of a cylinder. Equation 38 from Neher-McGrath technical paper is used to calculate Rthl.
- Using equation for Re, thermal resistance between thermal Lag and ambient air, calculate
 Ts, surface temperature of thermal lag. Ts is solved using MathCad given/find function.
 Once Ts is solved, Re is then calculated.
- With Re, Rtot, and Rthl known, the thermal resistance between conductor and inside surface
 of thermal Lagf (Ri_thl) can be calculated. Ri_thl is considered to be constant regardless of
 the Thermal Lag.
- 6. A new Rthl is calculated for a new theraml Lag thickness, for MS2 the thickness is 1,25 inch.
- Two equations are defined with respect to Q", heat generated for new thickness of thermal Lag. These equations are set equal to each and solved for TS. Q" is then solved using the value of Ts.
- 8. The ampacity correction factor (ACF) for the thermal lag conduit is then solved.

1. Calculate Parameters Associated with Test Conditions

INPUT: ETSI := 0.9 emissivity of thermal Lag TSI := 0.5 thickness of thermal Lag in test, inches pTSI := 577.7 thermal resistivity of thermal lag, C-cm/watt (calculated from a value of thermal conductivity of 1.0BTU/hr-ft-F. Dend := 5.5 outer diameter of conduit, inch. Rac := 0.023 · 10 3 ac resistance of 750 kcmil Cu, page 13 of ETP104.1-0 Ib := 571 base current in Tu test, amps Ip := 510 base current in Tu test, amps np := 4 number of conductors in conduit Tc := 90 conductor termperature, C

Q, heat generated in Test Base Line Conditions

 $Q := Ib^2 \cdot Rac$ heat generated by single conduitro, in base condition (I^2R).

Q = 7.499 watts /ft

Ta := 40

Qp, heat generated in test conditions of 1/2 inch thermal lag conduit

ambient temperature, C

Qp := Ip². Rac heat generated by single conductor, in derated conditions of test.

Qp = 5.982 watts/ft

Rtot, Total Thermal resistance betweeen conductor and ambient during Test

Rtot := $\frac{T_c - T_a}{Op}$ thermal resistance between conductor and ambient air

Rtot = 8.358 C-ft/watt

Re, thermal resistance between Thermal Lag surface and ambient during test

Dsp := Dcnd + 2 TSI

Ts := 50 Initial guess surface temperature

Re :=
$$\frac{15.6 \cdot \text{np}}{\text{Dsp} \cdot \left(\frac{\text{Ts} - \text{Ts}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}$$

Calculate Ts, Ri-thi

Dsp := Dend + 2 TSI

Outer diameter of thermal lagged conduit, where the outer diameter of the conduit is 5.5 inch.

Dsp = 6.5 inch

Qp= (Ts-Ta)/Re

Equation relating Re and Qp

Ts = 50 Initial guess

Given

$$Qp = \frac{Ts - Ta}{\left[\frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}\right]}$$

Ts := Find(Ts)

Ts = 70.306

Confirmation of Given/Find calculation:

$$\frac{Ts - Ta}{\left[\frac{15.6 \cdot np}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]\right]} = 5.982$$

5.982 is equal to Qp thus conferming the value of Ts.

Calculate Re, thermal resistance between Thermal Lag surface and ambient air

Re :=
$$\frac{15.6 \cdot \text{np}}{\text{Dsp} \left(\frac{\text{Ts} - \text{Ta}}{\text{Dsp}}\right)^{0.25} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]}$$

Re = 5.066 C-ft/watt

Calculate Rthl, thermal resistance of thermal lag, based on thickness used in TU Test

Rthl :=
$$0.012 \cdot \text{np} \cdot \text{pTSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dend}} \right)$$

Rthl := 0.012 np pTSI log (Dsp) thermal resistance of thermal lag ,equation adapted from Equation 38 of Neher/McGrath

Rthl = 2.012 C-ft/watt

Calculate Ri_thl, thermal resistance between conductor and thermal Lag

Ri_thl := Rtot - Re - Rthl

thermal resistance between conductor and inside wall of thermal lag

Ri thl = 1.28 C-ft/watt

2. Calculate New Conditions

TSI := 1.5

new thickness of TSI, inch Minimum

Dsp := Dcnd + 2-TSI outer diameter of thermal lagged conduit, inch

Dsp = 8.5 inch

Rthl := $0.012 \cdot \text{np} \cdot \text{pTSI} \cdot \log \left(\frac{\text{Dsp}}{\text{Dend}} \right)$ thermal resistance of thermal lag, equation adapted from Equation 38 of Neher-McGrath

Rthl = 5.242

The new Qpp can be defined as follows:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp := \frac{Ts - Ta}{Dsp \cdot \left(\frac{Ts - Ta}{Dsp}\right)^{0.25} + 1.6 \cdot \epsilon TSI \cdot \left[1 + 0.0167 \cdot \left(\frac{Ta}{2} + \frac{Ts}{2}\right)\right]}$$

Combining these two equations we can solve for Ts

Ts := 50

Initial guess of surface temperature

Given

$$\frac{\text{Tc - Ts}}{\text{Ri_thl} + \text{Rthl}} = \frac{\text{Ts - Ta}}{\left[\frac{15.6 \cdot \text{np}}{\text{Dsp} \cdot \left(\frac{\text{Ts - Ta}}{\text{Dsp}}\right)^{0.25}} + 1.6 \cdot \epsilon \text{TSI} \cdot \left[1 + 0.0167 \cdot \left(\frac{\text{Ta}}{2} + \frac{\text{Ts}}{2}\right)\right]\right]}$$

Ts := Find(Ts)

Ts = 60.918 new surface temperature of thermal lag for new thermal lag thickness

Using the Ts and Qpp values determined above:

$$Qpp := \frac{Tc - Ts}{Ri_thl + Rthl}$$

$$Qpp = 4.458$$

ACFtsi :=
$$\sqrt{\frac{Qpp}{Q}}$$

$$ACFtsi = 0.771$$

Ampacity correction factor for 1.5 in TSI conduit wrap

ATTACHMENT B TABLE OF CONTENTS

	TABLE OF CONTENTS		
APPENDIX	TRAY	CABLE	
A	Z23HA10	500 MCM CU TPLX	
В	Z23HB10	500 MCM CU TPLX	
C	Z23GE10	500 MCM CU TPLX	
D	Z23GE10	250 MCM CU TPLX	
E	Z14FM10	3/C #8 AWG CU	
F	Z14FM20	3/C #12 AWG CU	
G	Z24FL10	4/0 AWG CU	
Н	Z14FM20	4/0 AWG CU TPLX	
I	Z24FL20	4/0 AWG CU	
K	Z25BG20	3/C #8 AWG CU	
M	Z14FM10	3/C #12 AWG CU	
N	Z14FM10	4/0 AWG CU TPLX	
V	Z23FA30	250MCM CU TPLX	
W	Z23FA25	250MCM CU TPLX	
X	Z24FL10	7/C #14 AWG CU	
AA	Z25BG20	3/C #14 AWG CU	
AB	Z25BG20	2/C #14 AWG CU	
AC	Z25BG20	3/C #12 AWG CU	
AD	Z25BG20	2/C #10 AWG CU	
B1	Z52EA10	750MCM AL TPLX	
B2	Z22EA10	350M CM AL TPLX	

TEST RUNS SUMMARY SHEET

TEST	APPENDIX (ICEA-1986)	APPENDIX (ICEA-1979)
1	P	PP
2	Q	QQ
3	T	TT
4	U	UU
5	R	RR
6	S	SS

This attachment contains the calculations for the allowed ampacity in each of the above listed trays and the type of cable installed in the tray. Each appendix is a separate calculation performed in MathCad on a Macintosh Centris 650 computer. Verification that the calculations are correct are based upon the results of the 6 test runs included herein. The test runs were ran at a fill and wire diameter taken from the ICEA P-54-440 and the values compared against the values presented in the two years identified above of the standard. The results indicate that the calculations are being performed correctly.

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX A PAGE 1

ATTACHMENT B

PAGE 82 OF BIOS

THERMAL MODEL Z23HA10

Values 10% fill on 4"

10% till on 4° 0.509 in/B14

R=0.03135?5/1000/ft

CaD=2.178 500MCMTPLX

1.0 Tray Thermal Data

Width in Tray

Ta := (273.16 + 40)· K Tc := unknown· K

Ampient Temperature Surface Temperature

$$Tm := (273.16 + 90) \cdot K$$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

ε := 0.8

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 357.577 \cdot K$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 160.481 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot p}{8 \cdot w} \cdot \frac{d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

Tm = 363.16

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 5.583 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc = 5.583 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 44.417 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\circ}\text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 13.137 \cdot \frac{watt}{ft}$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX A PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 2.1781 in

Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 721.338 *amp

Tray Z23HA10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 641.991 *amp

Ampacity at 50C

From IPCEA 80% of the ampacity of 500MCM at 40C is 464 amps (580 x .8) Adjusting to 50C gives:

Tair80 := 464-0.89- amp

Iair80 = 412.96 'amp

maximum ampacity allowed at 50C

CALC. NO. 96-ENG-01528E2 REV.0

ATTACHMENT B

PAGE BS OF BIOZ

H=0.0313575/1000ft

Values 19% fill on 4" 0.968 in/B14

CaD=2.178

500MCMTPLX

APPENDIX B PAGE 1

THERMAL MODEL Z23HB10

1.0 Tray Thermal Data

w := 12 in

Width in Tray

d := 0.968 in

Depth of cables in Tray

Ampient Temperature

 $Ta := (273.16 + 40) \cdot K$ Tc := unknown K

Surface Temperature

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$$

Overall Convective Heat transfer Coefficient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

E := 0.8

Effective thermal emmisivity of cable mass and tray surface.

p := 400- K- cm

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 347.548 \, {}^{\bullet}K$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 117.978 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tra := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta \text{Tc} := \text{Tm} - \text{Tc}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \rho \cdot d}{8 \cdot \text{w}}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \rho \cdot d}{8 \cdot \text{w}}$$

$$\Delta \text{Tc} := 15.612 \cdot \text{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 34.388 *K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\bullet}\text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 10.157 \cdot \frac{watt}{ft}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 2.178 in Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 634.226 *amp

Tray Z23HB10 Ampacity at 40C

150 := 140 0.89

Correction factor to get to 50C

I50 = 564.462 *amp

Ampacity at 50C

From IPCEA 80% of the ampacity of 500MCM at 40C is 464 amps. Adjusting to 50C gives:

Tair80 := 464-0.89-amp

lair80 = 412.96 *amp

maximum ampacity allowed at 50C

7CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX C. PAGE 1

ATTACHMENT B

PAGE BY OF BIDZ

THERMAL MODEL Z23GE10

1.0 Tray Thermal Data

w := 24 in

Width in Tray

d := 1.12 in

width in 1 ray

Depth of cables in Tray

22% fill 4" tray" 1.12 in/ B14 R=0.0313575/1000ft CaD=2.178 500MCMTPLX

Values

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

 $Tm := (273.16 + 90) \cdot K$

Ampient Temperature Surface Temperature

Max Cable Temperature

 $h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$

Overall Convective Heat transfer Coeffic ient

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

 $\varepsilon := 0.8$

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As $:= 4 \cdot \frac{R^2}{R}$

Surface area of cable mass per unit length sides excluded

 $T_C := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\bullet}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX C PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 138.718 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 10.619 \, {}^{\circ}K$$

$$\Delta \text{Tc} := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta \text{Tc} = 10.619 \cdot \mathbf{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 39.381 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\bullet}K$$

$$Q := \frac{W}{d w}$$

$$Q = 5.161 \cdot \frac{wat}{in^2}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 2.1781 in

Cable outer diameter

$$R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 452.109 *amp

Ampacity at 40C

150 := 140-0.89

I50 = 402.377 *amp

Ampacity at 50C

rom IPCEA 80% of the ampacity of 500MCM at 40C is 464 amps. Adjusting to 50C gives:

Iair80 := 464-0.89 amp

lair80 = 412.96 *amp

Maximum ampacity allowed at 50C.

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX D PAGE 1

ATTACHMENT B

PAGE BIT OF BIOZ

THERMAL MODEL Z23GE10

Values 22% fill on 4"

22% fill on 4" 1.12 in/ B10

R=0.0594925/1000ft

CaD=1.719 250MCMTPLX

1.0 Tray Thermal Data

w := 24 in d := 1.12 in Width in Tray

Depth of cables in Tray

Ta := (273.16 + 40) · K Tc := unknown · K Ampient Temperature Surface Temperature

Tm := (273.16 + 90) K

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

h := (0.101)
$$\frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

ε := 0.8

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 352.541 \, {}^{\circ}K$$

APPENDIX D PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 138.718 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot (A_{S} \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot A_{S} \cdot p \cdot d \cdot T_{a}}{8 \cdot w} + \frac{\sigma \cdot A_{S} \cdot \epsilon \cdot p \cdot d \cdot T_{c}^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot A_{S} \cdot \epsilon \cdot p \cdot d \cdot T_{a}^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 10.619 \, {}^{\circ}K$$

$$\Delta Tc := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$
 $\Delta Tc = 10.619 \cdot \mathbf{K}$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 39.381 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

 $\Delta T = 50 \text{ }^{\bullet}\text{K}$

$$Q := \frac{W}{d w}$$

$$Q = 5.161 \cdot \frac{watt}{ft}$$

$$in^{2}$$

APPENDIX D PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 1.719 in

Cable outer diameter

 $R := 0.0594925 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 259.049 *amp

Tray Z23GE10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 230.553 *amp

Ampacity at 50C

180 := 374 · .8 · amp

From IPCEA the 80% of the free air value 299, I80 > I40 thus the I50 value is the correct value to use.

180 = 299.2 *amp

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX E PAGE 1

ATTACHMENT B

PAGE BIA OF BOY

THERMAL MODEL Z14FM10

1.0 Tray Thermal Data

d := 0.611-in

Width in Tray

Depth of cables in Tray

VALUE

12% FILL in 4" Tray 0.611 in/ B03

R=0.84875/1000ft

CaD=0.774" 3/C#8 AWG

$$Ta := (273.16 + 40) \cdot K$$

Tc := unknown K

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot K \cdot \frac{cm}{watt}$$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

APPENDIX E PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 156.331 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \varepsilon \cdot p \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \varepsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 6.529 *K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$
 $\Delta Tc = 6.529 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 43.471 *K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \, {}^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 10.661 \cdot \frac{watt}{ft}$$

$$in^{2}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 0.774 in

Cable outer diameter

$$R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 44.385 *amp

Tray Z14FM10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 39.502 *amp

Ampacity at 50C

Since I50 is less than 80% of the free air value at 50C I50 is the correct value.

THERMAL MODEL Z14FM20

Values 9% fill on 4" 0.458 in R=2.15/1000ft CaD=0.603

3/C#12AWG

1.0 Tray Thermal Data

Width in Tray Depth of cables in Tray

 $Ta := (273.16 + 40) \cdot K$ Tc := unknown K

$$Tm := (273.16 + 90) \cdot K$$

Ampient Temperature Surface Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

E := 0.8

$$\rho := 492.496 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

Overall Convective Heat transfer Coeffic ient

As $:= 4 \cdot \frac{R^2}{I}$

Surface area of cable mass per unit length sides excluded

 $T_C := \frac{T_m + T_a}{2}$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$T_{C} := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{C}^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{C} - T_{m} - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot T_{a} - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{a}^{4}, T_{C} \right]$$

$$Tc = 357.062 \, {}^{\bullet}K$$

APPENDIX F PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 158.217 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 6.098 \text{ }^{\circ}\text{K}$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w} \qquad \Delta Tc = 6.098 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 43.902 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, ^{\circ} \text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 14.394 * \frac{watt}{ft}$$

APPENDIX F PAGE J

Ampacity Calculation

n := 3

number of conductors

CaD := 0.603 in

Cable outer diameter

$$R := 2.15 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 25.245 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 22.468 *amp

Ampacity at 50C

Since 80% of the free air value is 26.24 amps 150 above is less than this value, 150 is the correct value to use.

APPENDIX G Page 1

1.0 Tray Thermal Data

Width in Tray

VALUE

R=0.06890625/1000ft CaD=0.738"

$$h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

$$\varepsilon := 0.8 \qquad \frac{\mathrm{ft}^2 \cdot \mathrm{K}}{\mathrm{ft}^2 \cdot \mathrm{K}}$$

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 174.535 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.159$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 2.43 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc = 2.43 \, {}^{\bullet}K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 47.569 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 49.999 \, {}^{\bullet}K$$

$$Q := \frac{W}{d w}$$

$$Q = 35.701 \cdot \frac{\text{watt}}{\text{ft}}$$

CALC. NO. 96-ENG-01528E2 REV.0

ATTACHMENT B

PAGEBIZ OF BIDZ

APPENDIX G Page 3

Ampacity Calculation

n := 3

number of conductors

CaD := 0.738 in

Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 271.802 *amp

Tray Z24FL10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 241.903 *amp

Ampacity at 50C

180 (80% of the free air value) is 320 amps (400 amp x 0.8). This is greater than the 271.802 amps thus the 150 value is the correct value to use.

APPENDIX H

THERMAL MODEL Z14FM20 VALUE

9% FILL in 4" Tray 0.458 in/B09

R=0.06890625/1000ft

CaD=1.485"

Width in Tray

d := 0.458 in

Depth of cables in Tray

4/0MCMTPLX

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

1.0 Tray Thermal Data

w := 24 in

Ampient Temperature Surface Temperature

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

E := 0.8

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As :=
$$4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

CALC. NO.95-ENG-01528E2 REV. 0 ATTACHMENT B

PAGE BYOF BIEZ

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 162.65 \cdot \frac{watt}{fc}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

APPENDIX H PAGE 2

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 5.092 \, {}^{\bullet}K$$

$$\Delta Tc := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta Tc = 5.092 \, {}^{\bullet}K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 44.908 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \text{ }^{\circ}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 14.797 \cdot \frac{wa}{in}$$

APPENDIX H PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 1.485-in

Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 352.104 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 313.372 *amp

Ampacity at 50C

180 is 268 amps (335 x 0.8) at 40C. Since 180<140 the 180 value adjusted to 50C is used

Tair80 := 268-0.89-amp

Iair80 = 238.52 *amp

This is the maximum allowable ampacity.

CALC. NO. 96-ENG-01528E2	REV. 0
APPENDIY I PAGE 1	

ATTACHMENT B
THERMAL MODEL Z24FL20

PAGE 826 OF BIOL

1.0 Tray Thermal Data

w := 24·in d := 0.407·in Width in Tray

Depth of cables in Tray

VALUE 8% FILL in 4" Tray 0.407 in/B29 R=0.06890625/1000ft CaD=0.738"

4/0MCM

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown- K

Tm := (273.16 + 90) · K

Ampient Temperature Surface Temperature

Max Cable Temperature

 $h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

Overall Convective Heat transfer Coeffic ient

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $s := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

 $\epsilon := 0.8$

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

 $As := 4 \cdot \frac{ft^2}{ft}$

Surface area of cable mass per unit length sides excluded

 $T_C := \frac{T_m + T_a}{2}$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot Ta^{4} \cdot Tc \right] \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4} \cdot Tc \right]$$

APPENDIX I PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 164.887 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc := \frac{4.587 \cdot K}{4.587 \cdot K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 45.413 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\circ}\text{K}$$

$$Q := \frac{W}{d \cdot w} \qquad \frac{watt}{ft}$$

$$Q = 16.88 \cdot \frac{watt}{in^2}$$

CALC. NO. 96-ENG-01528E2 REV. 0 ATTACHMENT B APPENDIX I PAGE 3

Ampacity Calculation

n 1= 3

number of conductors

CaD := 0.738 in

Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

 $140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$

I40 = 186.897 *amp

Tray Z24FL20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 166.338 *amp

Ampacity at 50C

180 is 320 amps (400 x .8). Since this is > than 140, the 150 value is the value to use.

1.0 Tray Thermal Data

w := 24 in

Width in Tray

 $d := 0.509 \cdot in$

Depth of cables in Tray

VALUE 10% FILL in 4" Tray 0.509 in/ B03 R=0.84875/1000ft CaD=0.774" 3/C#8

 $Ta := (273.16 + 40) \cdot K$

To := unknown K

Ampient Temperature Surface Temperature

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{K} - \frac{\text{Ta}}{K}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot K}$$

Overall Convective Heat transfer Coeffic ient

Z25BG20

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

E := 0.8

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

CALC. NO. 96-ENG-01528E2 REV. 0 ATTACHMENT B APPENDIX K PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 160.481 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{a}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 44.417 \, {}^{\circ}K$$

 $\Delta Tc = 5.583 \, {}^{\circ}K$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \text{ }^{\circ}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 13.137 \cdot \frac{watt}{in^2}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 0.774 in

Cable outer diameter

 $R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 49.27 *amp

Tray Z25BG20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 43.85 *amp

Ampacity at 50C

Since I50 is less than 80% of the free air value at 50C [52.48 amps] I50 is the correct value to use.

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX M PAGE 1

ATTACHMENT B

PAGE BAR OF BIO

THERMAL MODEL Z14FM10

1.0 Tray Thermal Data

w := 24 in

d := 0.611 in

Width in Tray

Depth of cables in Tray

Values 12% fill on 4" 0.611 in/ B01 R=2.15/1000ft CaD=0.603 3/C#12AWG

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

Tm := (273.16 + 90) K

Ampient Temperature Surface Temperature

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

E := 0.8

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

Effective thermal emmisivit; of cable mass and tray surface.

effective thermal resistivity of cable mass

Overall Convective Heat transfer Coeffic ient

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides exclluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4} \cdot Tc \right]$$

$$Tc = 356.631 \text{ }^{\circ}\text{K}$$

APPENDIX M PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

W := h
$$\left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}}$$
 As $\left(\text{Tc} - \text{Ta}\right) + \sigma \cdot \text{As} \cdot \epsilon \cdot \left(\text{Tc}^4 - \text{Ta}^4\right)$

$$W = 156.331 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 6.529 \, ^{\circ}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$
 $\Delta Tc = 6.529 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 43.471 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 10.661 \cdot \frac{watt}{ft}$$

$$in^{2}$$

APPENDIX M PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 0.603 in

Cable outer diameter

$$R := 2.15 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 21.726 *amp

Tray Z14FM10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 19.336 *amp

Ampacity at 50C

Since 80% of the free air value is greater than 150 above is less than this value, 150 is the correct value to use.

CALC. NO. 96-ENG-01528E2 REV. 0 APPENDIX N PAGE 1

ATTACHMENT B

PAGE 885 OF BIOZ

THERMAL MODEL Z14FM10

1.0 Tray Thermal Data

d := 0.611-in

Width in Tray

12% FILL in 4" Tray 0.611 in/ B09 R=0.06890625/1000ft Depth of cables in Tray CaD=1.485" 4/0MCMTPLX

VALUE

 $Ta := (273.16 + 40) \cdot K$

Tc := unknow K

Ampient Temperature Surface Temperature

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

£ := 0.8

Effective thermal emmisivity of cable mass and tray surface.

p := 400 K - cm

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \text{ }^{\circ}\text{K}$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 356.631 \, {}^{\circ}K$$

CALC. NO. 96-ENG-01528E2 REV. 0 ATTACHMENT B APPENDIX N PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 156.331 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

Tm = 363.16

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta \text{Tc} := \text{Tm} - \text{Tc}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \text{p-d}}{8 \cdot \text{W}}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \text{p-d}}{8 \cdot \text{W}}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$
 $\Delta Ta = 43.471 *K$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

 $\Delta T = 50 \text{ }^{\star}\text{K}$

$$Q := \frac{W}{d w}$$

$$Q = 10.661 \cdot \frac{watt}{ft}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 1.485 in

Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 298.867 *amp

Tray Z14FM10 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 265.991 *amp

Ampacity at 50C

The ampacity in air at 40C is 335, 80% is equal to 268 amps. Since 268 amps is < 140 the free air value (80%) adjusted to 50C is the correct value to use.

180 := 268 amp 0.89

180 = 238.52 *amp

adjusted to 50C

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX V PAGE 1

ATTACHMENT B

Width in Tray

PAGE 834 OF BIO

THERMAL MODEL Z23FA30

Values

25% fill on 4"

1.27 in/ B10 R=0.0594925/1000ft

Depth of cables in Tray

CaD=1.719 250MCMTPLX

$$Ta := (273.16 + 40) \cdot K$$

Tc := unknown K

1.0 Tray Thermal Data

w := 24 in

d := 1.27-in

Ampient Temperature Surface Temperature

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coefficient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$T_C := \frac{T_m + T_a}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 351.5 \, {}^{\circ}K$$

APPENDIX V PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^4 - Ta^4)$$

$$W = 134.325 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 11.66 \, {}^{\bullet}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$
 $\Delta Tc = 11.66 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 38.34 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

 $\Delta T = 50 \text{ }^{\bullet}\text{K}$

$$Q := \frac{W}{d w}$$

$$Q = 4.407 \cdot \frac{watt}{ft}$$

$$in^2$$

APPENDIX V PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 1.719-in

Cable outer diameter

 $R := 0.0594925 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 239.387 *amp

Tray Z23FA30 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 213.055 *amp

Ampacity at 50C

180 := 374 . 8 · amp

Since 80% of the free air value is 299 amps, 150 is the correct value to use.

I80 = 299.2 *amp

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX W PAGE 1

ATTACHMENT B

PAGE BH OF BION

THERMAL MODEL Z23FA25

1.0 Tray Thermal Data

d := 1.375-in

Width in Tray

Depth of cables in Tray

Values 27% fill on 4" 1.375 in/ B10 B=0.0594925/1000ft

CaD=1.719 250MCMTPLX

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

 $Tm := (273.16 + 90) \cdot K$

Ampient Temperature Surface Temperature

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic lent

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-3} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

E := 0.8

surface.

 $\rho := 400 \cdot K \cdot \frac{cm}{watt}$

effective thermal resistivity of cable mass

Effective thermal emmisivity of cable mass and tray

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 350.808 \, {}^{\bullet}K$$

APPENDIX W PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^4 - Ta^4)$$

$$W = 131.427 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 12.352 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w} \qquad \Delta Tc = 12.352 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 37.648 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

 $\Delta T = 50 \text{ }^{\circ}\text{K}$

$$Q := \frac{W}{d w}$$

$$Q = 3.983 \cdot \frac{watt}{ft}$$

$$in^2$$

APPENDIX W PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 1.719 in

Cable outer diameter

$$R := 0.0594925 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 227.569 *amp

Tray Z23FA25 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 202.537 *amp

Ampacity at 50C

180 := 374 · .8 · amp

I80 = 299.2 *amp

Since the 80% of free air value is > 140 use 150 as correct

value.

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX X PAGE 1

ATTACHMENT 2

PAGE 8#OF 802

THERMAL MODEL Z24FL10

Values

1.0 Tray Thermal Data

w := 24 in

Width in Tray

4% fill on 4" 0.2037 in/C86 R=3.41/1000ft

d := 0.2037 in

Depth of cables in Tray

CaD=0.576 7/C#14AWG

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

Ampient Temperature Surface Temperature

Tm := (273.16 + 90) K

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

 $\epsilon := 0.8$

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$T_{C} := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{C}^{4} + \left[\frac{\left(\frac{T_{C}}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{C} - T_{m} - \left[\frac{\left(\frac{T_{C}}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot T_{a} - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{a}^{4}, T_{C} \right]$$

$$Tc = 360.729 \, {}^{\circ}K$$

APPENDIX X PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 174.535 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot (A_{s} \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot A_{s} \cdot \rho \cdot d \cdot T_{a}}{8 \cdot w} + \frac{\sigma \cdot A_{s} \cdot \epsilon \cdot \rho \cdot d \cdot T_{c}^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot A_{s} \cdot \epsilon \cdot \rho \cdot d \cdot T_{a}^{4}}{8 \cdot w}$$

$$Tm = 363.159$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 2.43 \, {}^{\bullet}K$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w}$$
 $\Delta Tc = 2.43 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 47.569 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

 $\Delta T = 49.999 \text{ K}$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 35.701 \cdot \frac{watt}{ft}$$

$$in^2$$

APPENDIX X PAGE 3

Ampacity Calculation

n := 7

number of conductors

CaD := 0.576 in

Cable outer diameter

$$R := 3.41 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 19.742 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140 v.89

Correction factor to get to 50C

150 = 17.57 *amp

Ampacity at 50C

80% of free air value is 22.96 amps at 50 C.

150 is correct value to use.

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX AA PAGE 1

ATTACHMENT 2

PAGE 847 OF BIOZ

THERMAL MODEL Z25BG20

1.0 Tray Thermal Data

d := 1.78 in

Width in Tray

Depth of cables in Tray

Values 35% fill on 4" 1.78 in R=3.41/1000ft CaD=0.468 3/C#14AWG

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

 $Tm := (273.16 + 90) \cdot K$

Ampient Temperature Surface Temperature

Max Cable Temperature

 $h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{R^2 \cdot K}$

Overall Convective Heat transfer Coeffic ient

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

E := 0.8

 $\rho := 400 \cdot K \cdot \frac{cm}{watt}$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

 $As := 4 \cdot \frac{ft^2}{ft}$

 $T_C := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\circ}K$

Surface area of cable mass per unit length sides excluded

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 348.389 \, {}^{\bullet}K$$

APPENDIX AA PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 121.411 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 14.771 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w} \qquad \Delta Tc = 14.771 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 2.842 \cdot \frac{watt}{ft}$$

$$Q = \frac{watt}{m^2}$$

APPENDIX AA PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 9.468-in

Cable outer diameter

 $R := 3.41 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

 $140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$

140 = 6.913 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 6.153 *amp

Ampacity at 50C

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX AB PAGE 1

ATTACHMENT 2

Width in Tray

PAGE BO OF BUT

THERMAL MODEL Z25BG20

Value₃

35% fill on 4"

1.78 in/C02

R=3.41/1000ft

CaD=0.45 2/C#14AWG

Depth of cables in Tray

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

1.0 Tray Thermal Data

w := 24 in

d := 1.78 in

Ampient Temperature Surface Temperature

Tm := (273.16 + 90) K

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

Overall Convective Heat transfer Coeffic ient

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

E := 0.8

 $\rho := 400 \cdot K \cdot \frac{cm}{watt}$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

APPENDIX AB PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

W:= h
$$\left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \text{As} \cdot (\text{Tc} - \text{Ta}) + \sigma \cdot \text{As} \cdot \varepsilon \cdot (\text{Tc}^4 - \text{Ta}^4)$$

$$W = 121.411 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot p \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot p \cdot d \cdot Ta}{8 \cdot w} + \frac{c \cdot As \cdot \epsilon \cdot p \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot p \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 14.771 \, {}^{\bullet}K$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w} \qquad \Delta Tc = 14.771 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 35.229 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

 $\Delta T = 50 \text{ }^{\circ}\text{K}$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 2.842 \cdot \frac{watt}{ft}$$

APPENDIX AB PAGE 3

Ampacity Calculation

n := 2

number of conductors

CaD := 0.45 in

Cable outer diameter

 $R := 3.41 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

 $140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$

I40 = 8.141 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 7.246 *amp

Ampacity at 50C

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX AC PAGE 1

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown- K

ATTACHMENT 2

PAGE 853 OF BOX

THERMAL MODEL Z25BG20

1.0	Trav	Therma	al Data

w := 24 in

d := 1.78 in

Width in Tray

Depth of cables in Tray

Values 35% fill on 4" 1.78 in/B01 R=2.15/1000ft CaD=0.603 3/C#12AWG

Surface Temperature

Tm := (273.16 + 90) K Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{K} - \frac{\text{Ta}}{K}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot K}$$

 $h := (0.101) \cdot \frac{\text{watt}}{6^2 \cdot \text{K}}$

Overall Convective Heat transfer Coeffic ient

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 348.389 \, {}^{\bullet}K$$

APPENDIX AC PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 121.411 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta T_{c} = 14.771 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w} \qquad \Delta Tc = 14.771 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 35.229 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T c + \Delta T a$$

$$\Delta T = 50 \, {}^{\circ}\text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 2.842 \cdot \frac{watt}{ft}$$

$$in^2$$

APPENDIX AC PAGE 3

Ampacity Calculation

n:=3

number of conductors

CaD := 0.603 in

Cable outer diameter

 $R := 2.15 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 11.217 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 9.984 *amp

Ampacity at 50C

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX AD PAGE 1

ATTACHMENT 2

PAGE 856 OF BUDZ

THERMAL MODEL Z25BG20

1.0	Tray	Then	mal	Dat	a
2 - 50	1.164.9	2.2.2002.	11.1541	~~	w

Width in Tray

Values 35% fill on 4" 1.78 in/C62 R=1.35/1000ft CaD=0.522 2/C#10AWG

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$h := (0.101) \cdot \frac{\text{watt}}{\text{fr}^2 \cdot \text{K}}$$

$$ft^2 \cdot K$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{watt}{6t^2 \cdot K^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

Overall Convective Heat transfer Coeffic ient

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \text{ }^{\circ}\text{K}$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 348.389 \, {}^{\bullet}K$$

APPENDIX AD PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 121.411 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 14.771 \, {}^{\circ}K$$

$$\Delta \text{Te} := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}} \qquad \Delta \text{Te} = 14.771 \cdot \mathbf{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 35.229 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

 $\Delta T = 50 \text{ }^{\star}\text{K}$

$$Q := \frac{W}{d w}$$

$$Q = 2.842 \cdot \frac{watt}{ft}$$

$$in^2$$

APPENDIX AD PAGE 3

Ampacity Calculation

n := 2

number of conductors

CaD := 0.522 in

Cable outer diameter

 $R := 1.35 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

 $140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$

140 = 15.009 *amp

Tray Z14FM20 Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 13.358 *amp

Ampacity at 50C

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX B1 PAGE 1

ATTACHMENT 2

PAGE BS9 OF BIOL

1.0 Tray Thermal Data

THERMAL MODEL Z52EA10 Values

38% fill on 4° 1.935 in/B14

 $w := 6 \cdot in$ $d := 1.935 \cdot in$ Width in Tray

R=0.033251456/1kft CaD=3.05

Depth of cables in Tray

750MCMTPLX

Ta := (273.16 + 40)· K Tc := unknown· K

Ampient Temperature Surface Temperature

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

 $\epsilon := 0.8$

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As
$$:= 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides excluded

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT 2 APPENDIX B1 PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 58.864 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab ie Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 31.141 \, {}^{\circ}K$$

$$\Delta Te := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta Te = 31.141 \cdot \mathbf{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 18.859 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 5.07 \cdot \frac{watt}{ft}$$

$$in^2$$

Ampacity Calculation

n := 3

number of conductors

CaD := 3.05 in

Cable outer diameter

R := 0.033251456 - ohm | Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 609.377 *amp

Tray Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

150 = 542.346 *amp

Ampacity at 50C

l air =588 amps at 40 C

180 := 588 . 8 . 89

180 = 418.656

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX B2PAGE 1

ATTACHMENT 2

Depth of cables in Tray

PAGE BALOF BADE

THERMAL MODEL Z22EA10

Values 23% fill on 4" 1.1714 in/B14

R=0.06543487/1000ft

CaD=2.39

350MCMTPLX AL

 $Ta := (273.16 + 40) \cdot K$

1.0 Tray Thermal Data

d := 1.1714-in

w := 6 in

Ampient Temperature Surface Temperature Tc := unknown K

Max Cable Temperature $Tm := (273.16 + 90) \cdot K$

Overall Convective Heat transfer Coeffic ient

Width in Tray

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$ Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray E := 0.8 surface.

p := 400 K - cm effective thermal resistivity of cable mass

As $:= 4 \cdot \frac{ft^2}{1}$ Surface area of cable mass per unit length sides excluded

 $Tc := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\circ}K$ Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

2.1 calculated Value for Surface Temperature(Tc)

$$T_{C} := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{C}^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{C} - T_{m} - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot T_{a} - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot T_{a}^{4} \cdot T_{C} \right]$$

 $Tc = 337.696 \, {}^{\circ}K$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT 2 APPENDIX B2 PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^4 - Ta^4)$$

$$W = 79.509 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot (A_{s} \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}} \cdot A_{s} \cdot \rho \cdot d \cdot T_{a}}{8 \cdot w} + \frac{\sigma \cdot A_{s} \cdot \epsilon \cdot \rho \cdot d \cdot T_{c}^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot A_{s} \cdot \epsilon \cdot \rho \cdot d \cdot T_{a}^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 25.464 \, {}^{\circ}K$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \text{p} \cdot \text{d}}{8 \cdot \text{w}}$$

$$\Delta \text{Tc} = 25.464 \cdot \text{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 24.536 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \, {}^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 11.313 \cdot \frac{watt}{ft}$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT 2 APPENDIX B2 PAGE 3

PAGE 844 OF MOV

Ampacity Calculation

n := 3

number of conductors

CaD := 2.39 in

Cable outer diameter

 $R := 0.06543487 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 508.461 *amp

Tray Ampacity at 40C

150 := 140-0.89

Correction factor to get to 50C

I50 = 452.531 *amp

Ampacity at 50C

!air = 368 amps at 40C.

180 := 368 . 8 . 89

180 = 262.016

ATTACHMENT B

TESTS FOR MATHCAD VERIFICATION

To prove the validity of the MathCad ampacity several tests were run using the depth and cable diameters provided in the ICEA tables. The ampacities presented in the ICEA table for each test made was then compared to the calculated value to ensure the calculation was providing conservative values. The results are tabulated below:

TEST	Appendix	Cable	Depth	ICEA	MATHCAD	Variance
1	PP	3/C #8	1.5	38	36.766	3.249%
2	QQ	3/C #8	2.0	31	30.137	2.784%
3	TT	500MCM	1.5	438	397.554	9.234%
4	UU	500MCM	3.0	272	242.456	10.863%
5	RR	4/0	3.0	135	124.212	7.991%
6	SS	4/0	2.5	153	142.199	7.059%

From the above it is apparent that the values calculated in all cases are conservative.

ATTACHMENT B

TESTS FOR MATHCAD VERIFICATION

To prove the validity of the MathCad ampacity several tests were run using the depth and cable diameters provided in the ICEA tables. The ampacities presented in the ICEA table for each test made was then compared to the calculated value to ensure the calculation was properly functioning. The results are tabulated below:

TEST	Appendix	Cable	Depth	ICEA	MATHCAD	Variance
1	P	3/C #8	1.5	- 38	33.799	11.056%
2	Q	3/C #8	2.0	31	27.924	9.922%
3	T	500MCM	1.5	438	365.473	16.559%
4	U	500MCM	3.0	272	227.309	16.431%
- 5	R	4/0	3.0	135	116.425	13.739%
6	S	4/0	2.5	153	132.606	13.329%

From the above it is apparent that the values calculated in all cases are conservative.

CALC. NO. 96-ENG-01528E2 REV.0	ATTACHMENT B	PAGE 867 OF BYOT		
Appendix P PAGE 1	THERMAL MODEL			
1.0 Tray Thermal Data		TEST 1		
w := 24 in	Width in Tray	1.5 in/ B03 R=0.84875/1000ft		
d := 1.5·in	Depth of cables in Tray	CaD=1.02" 3/C#8 AWG		
Ta := (273.16 + 40) · K Tc := unknown · K	Ampient Temperature Surface Temperature	TABLE 3-16 (ICEA) P-54-440, 1986		
$Tm := (273.16 + 90) \cdot K$	Max Cable Temperature	1 3 4 10, 1000		
$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$	Overall Convective Heat	transfer Coeffic ient		
$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$				
$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$	Stephan-Boltzman Constant			
$\epsilon \coloneqq 0.8$ Effective thermal emmisivity of cable mass and tray surface.				
$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$ effect	tive thermal resistivity of cabl	e mass		
	urface area of cable mass per eglecting tray sides	r unit length		

As
$$:= 4 \cdot \frac{ft^2}{ft}$$
 Surface area of cable mass per unit length neglecting tray sides

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 350.021 \, {}^{\circ}K$$

APPENDIX P PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 128.148 * \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \varepsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \varepsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 13.139 \, {}^{\bullet}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc = 13.139 \, {}^{\circ}K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 36.861 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, ^{\circ} \text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 3.56 \cdot \frac{watt}{ft}$$

PAGE 869 OF 5102

Ampacity Calculation

number of conductors

Cable outer diameter

$$R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

Ampacity at 40C

ICEA TABLE 16 VALUE IS 38 AMPS. RESULTS ARE CONSERVATIVE.

$$V := \left[\left(\frac{140}{38 \cdot \text{amp}} \right) - 1 \right] - 100$$

$$V = 11.056$$

V = 11.056 % VARIATION

CALC. NO.	96-E	NG-01528E2	REV.0
Appendix	PP	PAGE 1	

- TACHMENT B

PAGE 870 OF BOX

THERMAL MODEL

TEST 1

1.0 Tray Thermal Data

Width in Tray

Depth of cables in Tray

1.5 in/ B03 R=0.84875/1000ft

CaD=1.02" 3/C#8 AWG

$$Ta := (273.16 + 40) \cdot K$$

Ampient Temperature Surface Temperature

Max Cable Temperature

TABLE 16 (ICEA) P-54-440, 1979

$$h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$$
 Overall Convective Heat transfer Coefficient

$$h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot K \cdot \frac{cm}{watt}$$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length neglecting tray sides

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \text{ }^{\circ}\text{K}$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 347.614 \text{ }^{\circ}\text{K}$$

APPENDIX PPPAGE 2GE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 151.633 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 15.546 \, {}^{\bullet}K$$

$$\Delta \text{Te} := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta Tc = 15.546 \, {}^{\circ}K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 34.454 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, ^{\circ} \text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 4.212 \cdot \frac{wat}{ft}$$

$$in^2$$

CALC. NO.695-ENG-01528E2 REV.0 ATTACHMENT B **APPENDIX PPPAGE 3**

PAGE B12 OF BOZ

Ampacity Calculation

n := 3

number of conductors

CaD := 1.02 in

Cable outer diameter

$$R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 36.766 *amp

Ampacity at 40C

ICEA TABLE 16 VALUE IS 38 AMPS. RESULTS ARE CONSERVATIVE.

$$V := \left[\left(\frac{140}{38 \cdot \text{amp}} \right) - 1 \right] - 100$$

V = 3.249 % VARIATION

CALC.	NO.	96-	ENG-01528E2	REV.0
APPEN	VDIX	Q	PAGE 1	

ATTACHMENT B
THERMAL MODEL

PAGE 619 OF B10 2

TEST 2

1.0 Tray Thermal Data

$$h := 0.101 \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot \frac{watt}{ft^2 \cdot K}$$
 Overall Convective Heat transfer Coefficient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $Tm := (273.16 + 90) \cdot K$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$
 Stephan-Boltzman Constant

$$\epsilon \coloneqq 0.8$$
 Effective thermal emmisivity of cable mass and tray surface.

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$
 surface. effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$
 Surface area of cable mass per unit length sides of tray not included.

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 347.217 \cdot K$$

APPENDIX Q PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 116.63 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 15.943 \, {}^{\circ}K$$

$$\Delta T_c := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta Tc = 15.943 \, {}^{\bullet}K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 34.057 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\bullet}K$$

$$Q := \frac{W}{d w}$$

$$Q = 2.43 \cdot \frac{wat}{in^2}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 1.02 in

Cable outer diameter

 $R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 27.924 °amp

Ampacity at 40C

ICEA TABLE 16 VALUE IS 31 AMPS. RESULTS ARE CONSERVATIVE.

$$V := \left[\left(\frac{140}{31 \cdot \text{amp}} \right) - 1 \right] - 100$$

V = 9.922 % VARIATION

CALC. NO.	96-EI	NG-01528E2	REV.0
APPENDIX	QQ	PAGE 1	

ATTACHMENT B THERMAL MODEL PAGE 876 OF BIOZ

1.0 Tray Thermal Data

d := 2 0-in

$$Ta := (273.16 + 40) \cdot K$$

Tc := unknown K

$$Tm := (273.16 + 90) \cdot K$$

Width in Tray

Depth of cables in Tray

Ampient Temperature

TEST 2

2.0 in/ B03

R=0.84875/1000ft

CaD=1.02" 3/C#8 AWG

TABLE 16 (ICEA)

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.536 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

$$\epsilon := 0.8$$

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides of tray not included.

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 344.589 \, {}^{\bullet}K$$

APPENDIX QQ PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 135.847 \cdot \frac{\text{watt}}{\text{ft}}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$
 $\Delta Tc = 18.571 \text{ K}$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w}$$
 $\Delta Tc = 18.571 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 31.429 \text{ }^{\bullet}\text{K}$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T c + \Delta T a$$

$$\Delta T = 50 \text{ K}$$

$$Q := \frac{W}{d w}$$

$$Q = 2.83 \cdot \frac{wat}{ft}$$

CALC. NO.695-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX QQ PAGE 3

PAGE 8% OF BASE

Ampacity Calculation

n := 3

number of conductors

CaD := 1.02 in

Cable outer diameter

 $R := 0.84875 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$

Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 30.137 *amp

Ampacity at 40C

ICEA TABLE 16 VALUE IS 31 AMPS. RESULTS ARE CONSERVATIVE.

$$V := \left[\left(\frac{140}{31 \cdot \text{amp}} \right) - 1 \right] - 100$$

V = 2.784

% VARIATION

CALC.	NO.	96-EN	G-01	528E2	REV.0
APPEN	VDIX	T		PAG	E1

ATTACHMENT B
THERMAL MODEL

PAGE 879 OF 802

R=0.0313575/1000ft

(ICEA.P54-440, 1986)

TEST 3

CaD=2.12

TABLE 3-8

500MCMTPLX

1.0 Tray Thermal Data

w := 24 in

d := 1.5 in

 $Ta := (273.16 + 40) \cdot K$

I'c := unknown K

 $Tm := (273.16 + 90) \cdot K$

Width in Tray

Depth of cables in Tray

Ampient Temperature

Surface Temperature

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

£ := 0.8

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

Overall Convective Heat transfer Coeffic ient

$$\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides not included

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

2.1 calculated Value for Surface Temperature(Tc)

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

 $Tc = 350.021 \, {}^{\circ}K$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX T PAGE 2

PAGE 800 OF BOX

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 128.148 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{T_{c}}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \varepsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \varepsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - T$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$
 $\Delta Tc = 13.139 \cdot K$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 36.861 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\bullet}\text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 3.56 \cdot \frac{watt}{ft}$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX T PAGE 3

Ampacity Calculation

n := 3 number of conductors

CaD := 2.12 in Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 365.473 *amp Ampacity at 40C

ICEA VALUE AT 40 C IS 438 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{438 \cdot amp} - 1\right) - 100$$

V = 16.559 % VARIATION

CALC. NO.	96-ENG	G-01528E2	REV.0
APPENDIX	TT	PAG	E1

ATTACHMENT B
THERMAL MODEL

PAGE BO OF BIS2

R=0.0313575/1000ft

TEST 3

CaD=2.12

500MCMTPLX

TABLE 8 (ICEA)

(P-54-440 1979)

1.0 Tray Thermal Data

Wit

$$Ta := (273.16 + 40) \cdot K$$

$$Tm := (273.16 + 90) \cdot K$$

Width in Tray

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{K} - \frac{\text{Ta}}{K}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot K}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

$$\rho := 400 \cdot K \cdot \frac{cm}{watt}$$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides not included

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 347.614 \, {}^{\circ}K$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \epsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 151.633 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

Tm = 363.16

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta \text{Tc} := \text{Tm} - \text{Tc}$$

$$\Delta Tc = 15.546 \, {}^{\circ}K$$

$$\Delta \text{Te} := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta \text{Te} = 15.546 \cdot \mathbf{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 34.454 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, {}^{\bullet}\text{K}$$

$$Q := \frac{W}{d w}$$

$$Q = 4.212 \cdot \frac{watt}{ft}$$

$$In^{2}$$

Ampacity Calculation

n := 3

number of conductors

CaD := 2.12 in Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 397.554 *amp

Ampacity at 40C

ICEA VALUE AT 40 C IS 438 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{438 \cdot amp} - 1\right) - 100$$

V = 9.234 % VARIATION

CALC. NO. 96-ENG-01528E2 REV.0 APPENDIX U PAGE 1

ATTACHMENT B THERMAL MODEL

PAGES OF BIOL

1.0 Tray Thermal Data

TEST 4 3.0 in

w := 24 in

Width in Tray

R=0.0313575/1000ft CaD=2.12

d := 3.0 in

Depth of cables in Tray

TABLE3-8 (ICEA)

 $Ta := (273.16 + 40) \cdot K$ Tc := unknown K

Ampient Temperature Surface Temperature

(P54-440, 1986)

500MCMTPLX

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

 $h := 0.101 \cdot \left(\frac{\text{Tc}}{K} - \frac{\text{Ta}}{K}\right)^4 \cdot \frac{\text{watt}}{\theta^2 \cdot K}$

Overall Convective Heat transfer Coeffic ient

 $h := (0.101) \cdot \frac{\text{watt}}{6^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

E := 0.8

Effective thermal emmisivity of cable mass and tray surface.

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

effective thermal resistivity of cable mass

As $:=4\cdot\frac{ft^2}{ft}$

Surface area of cable mass per unit length sides not included

 $Tc := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX U PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 99.144 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.159$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta \text{Tc} := \text{Tm} - \text{Tc}$$

$$\Delta Tc = 20.33 \, {}^{\bullet}K$$

$$\Delta \text{Tc} := \frac{\mathbf{W} \cdot \mathbf{p} \cdot \mathbf{d}}{8 \cdot \mathbf{w}}$$

$$\Delta \text{Tc} = 20.33 \cdot \mathbf{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 29.67 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 49.999 \, {}^{\bullet} K$$

$$Q := \frac{W}{d w}$$

$$Q = 1.377 \cdot \frac{watt}{ft}$$

Ampacity Calculation

n := 3 number of conductors

CaD := 2.12 in Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 227.309 *amp Ampacity at 40C

ICEA VALUE AT 40 C IS 272 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{272 \cdot \text{amp}} - 1\right) - 100$$

V = 16.431 % VARIATION

CALC. NO.	96-ENG-01528E2	REV.0
APPENDIX	LILIPAGE 1	

ATTACHMENT B

PAGE BATOF BIOL

THERMAL MODEL

TEST 4 3.0 in

R=0.0313575/1000ft

1.0 Tray Thermal Data w := 24 in

Width in Trav

CaD=2.12 500" ACMTPLX

d := 3.0 in

Depth of cables in Tray

TABLE 8 (ICEA)

 $Ta := (273.16 + 40) \cdot K$ Tc := unknown K

Ampient Temperature Surface Temperature

P-54-440, 1979

 $Tm := (273.16 + 90) \cdot K$

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat transfer Coeffic ient

$$h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

Stephan-Boltzman Constant

E := 0.8

Effective thermal emmisivity of cable mass and tray surface.

ρ := 400· K· cm

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides not included

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 340.031 \, {}^{\circ}K$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX UU PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 112.797 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc = 23.129 \, {}^{\circ}K$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc = 23.129 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 26.871 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta T_c + \Delta T_a$$

$$\Delta T = 50 \, ^{\circ} \text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 1.567 \cdot \frac{watt}{ft}$$

CALC. NO. 96-ENG-01528E2 REV.0 ATTACHMENT B APPENDIX UU PAGE 3

Ampacity Calculation

n := 3 number of conductors

CaD := 2.12 in Cable outer diameter

 $R := 0.0313575 \cdot \frac{\text{ohm}}{1000 \cdot \text{fi}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 242.456 *amp Ampacity at 40C

ICEA VALUE AT 40 C IS 272 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{272 \cdot amp} - 1\right) - 100$$

V = 10.862 % VARIATION

CALC. NO. 96-ENG-01528E2 REV. 0 APPENDIX R Page 1

ATTACHMENT B
THERMAL MODEL

PAGE MI OF BIO 2

R=0.06890625/1000ft

TABLE 3- 9 ICEA P-54-440, 1986

TEST 5 3.0 in

CaD=1.61"

4/0MCM

1.0 Tray Thermal Data

Width in Tray

Depth of cables in Tray

$$Ta := (273.16 + 40) \cdot K$$

Tc := unknown K

$$Tm := (273.16 + 90) \cdot K$$

Ampient Temperature Surface Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

Overall Convective Heat 'ransfer Coeffic ient

$$h := (0.101) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

$$p := 400 \cdot K \cdot \frac{cm}{watt}$$

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides not in cluded.

$$Tc := \frac{Tm + Ta}{2}$$

$$Tc = 338.16 \, {}^{\circ}K$$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 99.144 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$Tm := \left[\left[\frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.159$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta \text{Tc} := \text{Tm} - \text{Tc}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \rho \cdot d}{8 \cdot \text{w}}$$

$$\Delta \text{Tc} := \frac{\text{W} \cdot \rho \cdot d}{8 \cdot \text{w}}$$

$$\Delta \text{Tc} := 20.33 \cdot \text{K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 29.67 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

 $\Delta T = 49.999 *K$

$$Q := \frac{W}{d w}$$

$$Q = 1.377 \cdot \frac{watt}{ft}$$

CALC. NO. 96-ENG-01528E2 REV. 0 ATTACHMENT B APPENDIX R PAGE 3

Ampacity Calculation

n := 3

number of conductors

CaD := 1.61 in

Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 116.452 amp Tray Z24FL20 Ampacity at 40C

ICEA TABLE 9 VALUE IS 135 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{135 \cdot amp} - 1\right) - 100$$

V = 13.739 % VARIANCE

CALC.	NO.	96	-ENG	-01528E2	REV. 0	
APF	PENE	XIC	RR	Page 1		

ATTACHMENT B THERMAL MODEL

PAGE 894 OF BIG 2

TABLE 9 ICEA P-54-440, 1979

R=0.06890625/1000ft

TEST 5 3.0 in

CaD=1.61"

4/0MCM

1.0 Tray Thermal Data

Width in Tray

Depth of cables in Tray

 $Ta := (273.16 + 40) \cdot K$

 $Tm := (273.16 + 90) \cdot K$

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{K} - \frac{\text{Ta}}{K}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{6^2 \cdot K}$$

 $h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

$$\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$$

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

 $\varepsilon := 0.8$

Ampient Temperature Surface Temperature

Max Cable Temperature

Overall Convective Heat transfer Coeffic ient

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

$$As := 4 \cdot \frac{ft^2}{ft}$$

Surface area of cable mass per unit length sides not in cluded.

$$Tc := \frac{Tm + Ta}{2}$$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermai Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot Ta^{4} \cdot Tc \right] \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4} \cdot Tc \right]$$

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 112.797 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{3 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w}$$

$$\Delta Tc := 23.129 \cdot K$$

$$\Delta Tc := 23.129 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 26.871 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\circ}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 1.567 \cdot \frac{watt}{ft}$$

$$in^2$$

Ampacity Calculation

n := 3

number of conductors

CaD := 1.61 in Cable outer diameter

R := 0.06890625 ohm | Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

ICEA TABLE 9 VALUE IS 135 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{135 \cdot \text{amp}} - 1\right) - 100$$

V = 7.991 % VARIANCE

CALC.	NO.	96-1	ENG-01	1528E2	REV.	0
APF	PENE	XIC	SP	AGE 1		

ATTACHMENT B
THERMAL MODEL

PAGE 897 OF 810 2

R=0.0658875/1000ft

TEST 6

CaD=1.61"

TABLE 3-9 ICEA

P-54-440, 1986

4/0MCM

w := 24·in

d = 2.5 in

Ta := (273.16 + 40) · K

Tc := unknown K

Tm := (273.16 + 90) K

 $h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

ε := 0.8

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

1.0 Tray Thermal Data

Width in Tray

Depth of cables in Tray

Ampient Temperature

Surface Temperature

Max Cable Temperature

Overall Convective Heat transfer Coeffic ient

Stephan-Boltzman Constant

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

As $:= 4 \cdot \frac{ft^2}{ft}$

 $Tc := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\circ}K$

Surface area of cable mass per unit length sides not included

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

$$Tc = 342.109 *K$$

APPENDIX S PAGE 2

2.2 Calculated value of total heat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 123.192 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{T_{c}}{K} - \frac{T_{a}}{K} \right)^{\frac{1}{4}}}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot T_{c}^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot T_{a}^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

2.4 Temperature Rises

2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc := \frac{W \cdot p \cdot d}{8 \cdot w}$$

$$\Delta Tc := 21.051 \cdot K$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 28.949 \, {}^{\bullet}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ °K}$$

$$Q := \frac{W}{d \cdot w} \qquad \frac{watt}{ft}$$

$$Q = 2.053 \cdot \frac{matt}{ft}$$

Ampacity Calculation

n := 3 number of conductors

CaD := 1.61 in Cable outer diameter

 $R := 0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

140 = 142.199 'amp Tray Z24FL20 Ampacity at 40C

ICEA TABLE 9 VALUE IS 153 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{153 \cdot \text{amp}} - 1\right) - 100$$

V = 7.059 % VARIATION

į	CALC. NO.	96	ENG	G-01528E2	RE
	APPEN	DIX	22	PAGE 1	

ATTACHMENT B THERMAL MODEL

PAGE 8/90 OF 810 1

R=0.06890625/1000ft

TEST 6 2.5 in

CaD=1.61"

TABLE 9 ICEA

P 54-440 1986

4/0MCM

1.0 Tray Thermal Data

w := 24 in

d := 2.5 in

 $Ta := (273.16 + 40) \cdot K$

Tc := unknown K

 $Tm := (273.16 + 90) \cdot K$

Width in Tray

Depth of cables in Tray

Ampient Temperature

Max Cable Temperature

$$h := 0.101 \cdot \left(\frac{\text{Tc}}{\text{K}} - \frac{\text{Ta}}{\text{K}}\right)^{\frac{1}{4}} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$$

 $h := (0.201) \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}}$

 $\sigma := 0.530 \cdot 10^{-8} \cdot \frac{\text{watt}}{\text{ft}^2 \cdot \text{K}^4}$

 $\epsilon := 0.8$

 $\rho := 400 \cdot \text{K} \cdot \frac{\text{cm}}{\text{watt}}$

Surface Temperature

Overall Convective Heat transfer Coeffic ient

Effective thermal emmisivity of cable mass and tray surface.

effective thermal resistivity of cable mass

As $:= 4 \cdot \frac{R^2}{R}$

Surface area of cable mass per unit length sides not included

 $T_C := \frac{Tm + Ta}{2}$

 $Tc = 338.16 \, {}^{\circ}K$

Initial assumed value for Surface Temp. (Tc)

2.0 Thermal Calculation

$$Tc := root \left[\frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Tc^{4} + \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot Tc - Tm - \left[\frac{\left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}}}{8 \cdot w} \cdot h \cdot (As \cdot \rho \cdot d)}{8 \cdot w} \right] \cdot Ta - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d}{8 \cdot w} \cdot Ta^{4}, Tc \right]$$

2.2 Calculated value of total neat(W) per unit length generated in cable tray

$$W := h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K}\right)^{\frac{1}{4}} \cdot As \cdot (Tc - Ta) + \sigma \cdot As \cdot \varepsilon \cdot (Tc^{4} - Ta^{4})$$

$$W = 123.192 \cdot \frac{watt}{ft}$$

2.3 Recalculated Max Cable Temperature(Tm)

$$T_{m} := \left[\left[\frac{h \cdot \left(\frac{T_{c}}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot (As \cdot \rho \cdot d)}{8 \cdot w} + 1 \right] \cdot T_{c} - \frac{h \cdot \left(\frac{Tc}{K} - \frac{Ta}{K} \right)^{\frac{1}{4}} \cdot As \cdot \rho \cdot d \cdot Ta}{8 \cdot w} + \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Tc^{4}}{8 \cdot w} \right] - \frac{\sigma \cdot As \cdot \epsilon \cdot \rho \cdot d \cdot Ta^{4}}{8 \cdot w}$$

$$Tm = 363.16$$

- 2.4 Temperature Rises
- 2.4.1 Cab le Mass temperature Rise

$$\Delta Tc := Tm - Tc$$

$$\Delta Tc := \frac{W \cdot \rho \cdot d}{8 \cdot w}$$

$$\Delta Tc := \frac{21.051 \cdot K}{21.051 \cdot K}$$

2.4.2 Air Temperature Drop

$$\Delta Ta := Tc - Ta$$

$$\Delta Ta = 28.949 \, {}^{\circ}K$$

2.4.2 Total temperature Drop

$$\Delta T := \Delta Tc + \Delta Ta$$

$$\Delta T = 50 \text{ }^{\bullet}\text{K}$$

$$Q := \frac{W}{d \cdot w}$$

$$Q = 2.053 \cdot \frac{watt}{ft}$$

$$Q = 2.053 \cdot \frac{watt}{ft}$$

Ampacity Calculation

APPENDIX SS PAGE 3

n := 3

number of conductors

CaD := 1.61 in Cable outer diameter

R := $0.06890625 \cdot \frac{\text{ohm}}{1000 \cdot \text{ft}}$ Resistance taken from Okonite book

$$140 := \frac{\text{CaD}}{2} \cdot \sqrt{\frac{Q \cdot \pi}{n \cdot R}}$$

I40 = 142.199 amp Tray Z24FL20 Ampacity at 40C

ICEA TABLE 9 VALUE IS 153 AMPS. THIS VALUE IS CONSERVATIVE.

$$V := \left(\frac{140}{153 \cdot \text{amp}} - 1\right) - 100$$

V = 7.059 % VARIATION

ATTACHMENT C.1

CALC. N 96-	ENG-01528E2	R00		PAGE CI OF	45
CONTROL CAB	LE LOADING				
TRAY Z14FM10)				
Z1B5145/C	LIST	LOAD	1B5158/B	LIST	LOAD
management of the second secon	33X+BGR+		Annual an	420+42C+RG	0.6
	420+42C	1.17	11		Commence of the last of the la
CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	42C	0.5	The state of the s	The second secon	0.5
THE AND PERSONS ASSESSED.	420	0.5	The state of the s	The second secon	0.045
3R	R	0.045	The state of the s	The state of the s	0.045
3G	G	0.045			
51	B,33X	0.0775	CONTROL OF SOME SERVICE AND ADDRESS OF THE PARTY OF THE PARTY.		
32009 6 R11			32009 7 R9		
Z1CH192/B	LIST	LOAD	Z1HV8247/C	LIST	LOAD
P1	FG	0.09	Annie neren nach er anneren er	HY8247	0.1392
1	FY192	0.776	A COLUMN TO THE REAL PROPERTY AND ADDRESS OF THE PARTY OF	HY8247	0.1392
N1	FY192	0.776	The state of the s		
3R	R	0.045	The second secon		
3G	G	0.045			
32009 53 R6			32021 12 R5		
Z1HV8247/D	LIST	LOAD	Z2HV8249/C	LIST	LOAD
12	HY8247	0.1392	2	HY8249	0.1392
22	HY8247	0.1392	N1	HY8249	0.1392
3FI	R	0.045			
3G	G	0.045			
N1	ROB	0.135			
3B	В	0.045			
32021 12 R5			32021 14 R5		
Z1HV8249/D	LIST	LOAD	Z1MCV02/B	LIST	LOAD
12	HY8249	0.1392	1	42X +R	0.112
22	HY8249	0.1392	11	42X +R	0.112
3R	R	0.045			
3G	G	0.045			
N1	RGB	0.135			
3B	В	0.045		Activity of Table	
32021 14 R5			32009 44 R4		

ATTACHMENT C.1

CALC. NO. 96-	ENG-01528E2	R00	PAGE CZ OF CS
CONTROL CAB	LE LOADING		
Z1CH196/B	LIST	LOAD	
P1	RGB+74	0.1535	
1	FY196	0.0776	
N1	RGB+74+	0.2311	
	FY196	0.0776	
3R	R	0.045	
3G	G	0.045	
3B	В	0.045	
32009 54 R6			

ATTACHMENT C.2

CALC. NO. 96-	ENG-01528E2	R00		PAGE C3 OF	45
CONTROL CAB	LE LOADING				
Z25XA10					
Z2CH517/E	LIST	LOAD	Z2CH517F	LIST	LOAD
HY517	11	0.0776	Augusting Control Strategies of Philipping Strategies	11	0.0776
R	33R	0.045	R	33R	0.045
G	33G	0.045	Property and the second second second	33G	The second secon
RTN	N11	0.1676		N11	0.1676
32009 35 R4.			32009 35 R4.		0.107
Z2CH519/E	LIST	LOAD	Z2CH519/F	LIST	LOAD
HY519	11	0.0776	"Assessment of the control of a season of the control of the contr	11	0.0776
R	33R	0.045		N1	0.1676
G	33G	0.045	Provide the second seco	3R	THE RESERVE AND ADDRESS OF THE PARTY OF THE
RTN	N11	0.1676	The state of the s	3G	0.045
32009 37 R5			32009 37 R5		0.04
Z2HV2525/F	LIST	LOAD	Z2HV2525/G	LIST	LOAD
RTN	P1	0.2126	HY2525	41	0.0776
HY2525	21	0.0776	HY2525	51	0.0776
HY2525	11	0.0776	The second secon	P11	0.2126
HY2525	1	0.0776	G	33G	0.045
HY2525	N1	0.0776	R	33R	THE RESIDENCE OF THE PARTY OF T
R	3R	0.045	В	33B	0.045
G	3G	0.045			
В	3B	0.045			
32009 39 R6			32009 39 R6		
Z2HV2525/H	LIST	LOAD	Z2NF09/F	LIST	LOAD
HY2525	61	0.0776	H21 ARM	11	1.5
HY2525	N11	0.0776	H21 FLD	12	0.80
32009 39 R6			ARM H21	13	1.57
			FLD H21	N11	0.852
			32020 42 R10)	
Z2NF09/G	LIST	LOAD	Z2HV5279/P	LIST	LOAD
H21FLD	1	1.57	HY5279	21	0.28
H21FLD	2	0.807	HY5279,74-1,B	N	
H21 ARM	3	1.57			
H21 FLD,W	N1	0.852	Hills Hills		
32020 42 R10)		32012 22 R10)	

ATTACHMENT C.2

CALC. NO. 96-	ENG-01528E2	R00		PAGE C4 OF	45
CONTROL CAB	BLE LOADING				
Tolly cozors					
Z2HV5279/R	LIST	LOAD	Z2HV5279S	LIST	LOAD
74-1.B,G,R,HY5279	P	0.4343	74-1,B	N11	0.281
R	33R	0.045	74-1,B	N21	0.0635
G	33G	0.045	HY5279	51	0.281
			74-1	P	0.0185
			74-1,B	31	0.0635
			74-1,B	41	0.0635
			RTN	P11	0.3335
			3LT	3R	0.135
			3LT	3G	0.135
32012 22 R10)		32012 22 R1	Ò	

ATTACHMENT C.3

CALC. NO. 96-	ENG-01528E2	R00		PAGE 25 OF	45
ATTACHMENT 8					
CONTROL CAB	LE LOADING				
TRAY Z24FL20)				
Z2B6105/G	LIST	LOAD	Z2B6105/K	LIST	LOAD
X31	42X+42X+42X		Assessment of the contract of the contract of	42X-6	0.0667
	42	2.2831	A THE RESIDENCE OF THE PARTY OF	42X-6+42X-7	
4	42	2.083	13	42X-8	0.0667
191	NONE		1	42X-6	0.0667
U	42X+42X+42X	0.2001		42X-7	0.0667
				42X-8	0.0667
32009 42A R1			32009 42A R1		0.0007
Z2HV8133/C	LIST	LOAD	70UV6128/D	LICT	1040
NAME AND ADDRESS OF THE PARTY O	HY8133	0.1392	Z2HV8133/D	HY8133	LOAD
The second discount of the second second	HY8133	0.1392	A CONTRACTOR OF THE PARTY OF TH	The same development of the same of the same	0.1392
INI	1110133	0.1392	3R	HY8133	0.1392
			3G	Frank Control of the	0.045
			The state of the s	HY8133+RGB	0.045
			3B		0.2742
32021 13 R5			32021 13 R5	D	0.045
32021 13 NS			32021 13 NO		
Z2HV8248/C	LIST	LOAD	Z2HV8248/D	LIST	LOAD
2	HY8248	0.1392	12	HY8248	0.1392
N1	HY8248	0.1392	22	HY8248	0.1392
			31	R	0.045
			3G	G	0.045
			N1	RGB,74-1	0.154
			3B	В	0.045
32021 15 R5			32021 15 R5		
2B41A16/F	LIST	LOAD	Z2MCV04/J	LIST	LOAD
MANAGEMENT AND ADMINISTRATION OF THE PARTY O	FX+F+CR+63	0.304	The second of the second secon	42X	0.0667
THE RESERVE OF THE PARTY OF THE PARTY.	FX+F+CR	0.174	The state of the s	42X	0.0667
THE RESIDENCE OF THE RE	63(HGA)	0.0325			0.0007
	G R	0.09	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAME		
3R	A STATE OF THE PARTY OF THE PAR	0.045	The second secon		
3G		0.045			
32025 33 R6					
			32009 46 R5		

Page DI of D4

ATTACHMENT D

It is seen that the ampactry of a cable is directly ironomional to its everall diameter (D). Thus, increasing the insulation thickness on a given conducted increases its diameter and thus increases its ampactry when installed in a cable tray, for a given percent tray till and the same temperature innits.

Here it must be pointed out that the ampacities of the bulky rubber insulated cables in trays are not at all the mme as ampacities for the small crossinized polyethylene insulated cables with very thin insulations. For example, a number 12 AWG rubber insulated cable with a diameter of 24 inches may have an allowable heat intensity ifrom Figure 4-30 give an ampacity of 24 amps; the same conductor insulated with crossinized polyethylene would have a diameter of only about 16 inches and therefore, from equation (9), an ampacity of 16 amps, it thus becomes necessary to distinguish between thin wall and thick wall insulated cables; throughout this paper, reference to polyethylene cable implies thin wall insulation and rubber implies thick wall insulation.

The above difference in ampacity coites from the fact that for a given percent tray fill, more crosslinked polyethylene (than wall) insulated conductors can be packed into the tray than rubber (thick wall) insulated conductors. Since the total amount of heat which may be generated in the tray most remain constant, the heat per conductor must be less for the small diameter cables than for the large ones.

With the allowable heat intensities from Figure 4 and using them in adulation (4), the ampacities of several coble sizes and percent tray tills can be obtained. The results are shown in Figure 5, which is a grantical ampacity table for typical single conductor tubber insoluted ampacity table for typical single conductor tubber insoluted ampacity table for typical single conductor tubber insoluted ampacities for tubber insoluted ampacities for the ampacities for the ampacities for the ampacities are for the assumed case of maximum derating which is for 43 or more conductors in the tray, and thus are 50° of the ampacity of a three conductor cable in air.

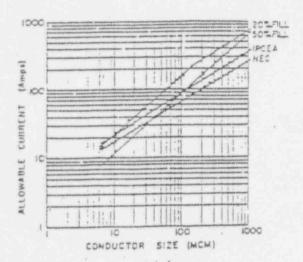


Fig. 5. Ampacines of in pirol rubber insulated copper cables in 3" x 24" trans at determined by this study and compared with IPCEA and NFC values for trans containing more than 43 conductors, with Comparing temperature in a 44° Combient.

This graphical comparison, along with test results presented later, makes it quite clear that the present ampacities for trays with high percent fills are too high for small conductor sizes, while being two low for the large conductor uses. Note that for the thin wall XLP insulated cables, the ampacties are even lower than for the thick wall rubber cables, and the safety of the present ampacities would be even more questionable.

This point is made to supplement one of the favorable; errors of the small diameter XLP cables. Specifically, more Acables can be installed in a cable tray than other kinds of insulated cables, and thus there is economy in using fewer cable trays. Along with being able to install more cables in a tray it is essential that the this wall cables carry less current than the heavier insulated cables. If this is not done, there will be overheating of the XLP cables and the accelerated loss of cable life resulting in premature cable failures.

The best observation to be made from the theory is related to heat generation in cable trays being in proportion to the crossectional area of each cable. A somewhat evident justification for this requirement can be seen from the following reasoning.

The most elementary equation describing convection heat flow

where h is the convection heat transfer coefficient, A_3 is the surface area convecting heat to the air, and ΔT is temperature difference between the cable surface and the ambient air. The basic equation for conduction heat transfer is

where is the thermal conductivity of the heat conducting medium. Ac is the cross-sectional area through which heat flows, and ΔT is the temperature drop over a distance ΔT in the direction of heat flow. Note that convection heat flow is proportional to surface area will conduction heat flow is proportional to cross-sectional area. Sit is conduction is the governing method of heat flow within a tightly packed cable mass, we should be concerned with cross-sectional areas of cables rather than peripheral or surface areas.

TEST PROCEDURE

Fire different cable tray arrangements have been thoroughly tested in order to determine the heat transfer properties of each arrangement. Two of the tests involved randomly arranged cables of virious sizes in 24-inch wide trays and three tests were performed on 12-inch wide trays with only one cable size in the tray. Table 1 summarizes the various tests which were performed and Figure 6 shows the overall test setup.

TABLE 1 - Summary of Tests Conducted to Support Analytical Results

TRAY SIZE	PERCENT	CABLE SIZES TESTED	INSULATION TYPE
3"x24"	20	#12 to 4/0	Rubber thick Rubber wall Rubber TLP thin wall
3"x24"	55	#12 to 4/0	
3"x12"	40	3/C-#12	
3"x12"	40	3/C-#12	
3"x12"	50	1/C-500	

Some details of the testing which were common to all tests can be seen from Figure 6, 500 volt rated copper conductor cables were laid in a 24-foot long cable tray and termperatures were measured three different tray cross sections; one was in the mid-length of the tray and two others at the quarter lengths. In many cases cables

Page D2 of D4

ATTACHMENT D

AND STREET

The system temperature drog is the sum of the drop through the packed cubic mass (ATc) and the drop through the zir (ATc) around the cable tray.

$$\Delta T = \Delta T_c + \Delta T_2$$
 (4)

The drop through the cible mass (ATc) can be obtained from internal heat generation. They from the first with his

where p = effective thermal resistivity of cable mass

- d' depth of cable mass
- - . W = the total heat generated in the tray per unit length

Equation (5) is specifically for one dimensional heat flow out the top and bostom of the tray and it ignores any heat flow out the sides of the tray. This is a realistic simplification which is accurate for 6-inch we get * 1 1 1 1 1 1 1 and wider cable trays.

The temperature drop through the sir (AT,) is obtained from a heat balance between convection and radiation heat flow. Using basic equations from McAdams we find

$$W = hA_{s}\Delta T_{s} - \sigma A_{s} r [T_{c} 4 - T_{s}^{-1}]$$
 (6)

- * the heat loss from the tray due to convertion
- eAge(Te Ta) = the heat loss from the tray due to
- radiation . overall convection heat transfer coefficient
- for tray
- A3 . * surface area of cable mass per unit tray length
- * Stefan-Baltzmann constant
- = effective thermal emissionty of cubic mass and tray surface
- Te average cable mass surface temperature

* The three equations (4), (5), and (6) have three unknowns and they can be solved to get the total allowable heat which can be generated in a cable tray (W). Since equation (6) is quite non-linear, the solution to the three equations must be obtained by iteration; thus, for general application the solution for W is done most easily on a computer.

Having the total heat generated in the cable tray, the heat generation per unit area is simply

The ampacity of each coble in the tray is finally determined with equations (1) & (2).

The solution to equations (4), (5), and (6) for W and several degrees of cable tray fill will result in curves similar to those shown in Figure 4. It is seen that as the cable tray percent fill increases, the allowable heat intensity decreases due to greater temperature drop in the tightly packed cable mass. Figure 4 was made for an effective thermal resistivity of the cubic mass being 400 (sm watt, and the

test results to be presented later show this value to be valid for either rubber or polyethylene insulated cables which are tightly packed.

At this point we must define cable tray percent fill as the sum of the cross-sectional areas of all cables in the tray (including conductor, insulation, and incket) divided by the total available cross-sectional area in the cable tray (width times height). It can be seen that a cable tray which is packed as tight as possible and level acress the top is filled to arout 75 ', because about 25' of the tray The drop through the most man to the state with uniform area is void area between the circular cannot deep tray with 207 fill the equation given by Holmon for a rectangular slab with uniform area is void area between the circular cannot deep tray with 207 fill definition it is apparent that a banch deep tray with 407 fill definition it is a banch deep tray with 407 fill definition it is a banch deep tray with 407 fill definition it is a banch deep tray with 407 fill area is void area between the circular cables. From the above percent internal heat generation.

That the mme depth of packed cable as a 3-inch deep tray with 407.

That the mme depth of packed cable as a 3-inch deep tray with 407.

That the mme depth of packed cable as a 3-inch deep tray with 407.

That the mme depth of packed cable as a 3-inch deep tray with 407.

In applying equations (1) and (2) to get the ampacity of specific ennductor ages in a given cable tray, an interesting observation can be made. The cable impacity ill in given by

$$1 = \sqrt{\frac{OA}{nR}}$$
(8)

and substituting for the circular cross-sectional area of each cable (A)

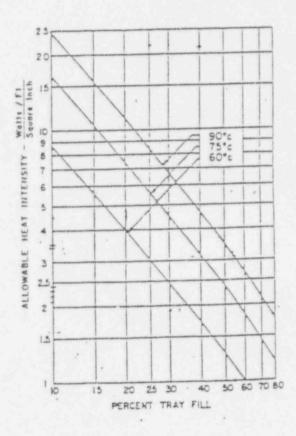


Fig. 4. Allowable heat traction (2) to maintain nebber-like or polvethrane robles at the specimed temperature in Januhes deep by 24-netwo wide train operating in a 400 (amount

Page D3 of D4

ATTACHMENT D

by knowing the cross-ectional area of each composite cable. Thus, the problem new termains to establish the allowable heat intensity for various various rathe tray continuous

The regarding presented thus far is significantly different from that used for cable tray ratings we now use. To show this, consider a large cable tray randomly filled with, my 300 tightly packed 600 voit cables of assorted meet. According to the rating published so far, every cable in this tray must be derated to 50% of the ampairty for a 3-conductor cable in air. S.b.: Figure 2 shows that seven ansie conductor \$12 cables can occupy about the same area in the tray as one 4%0 cable. Comparing the heat which is generated within the equal areas of cables it can be seen that three to four times more heat is produced in the bundle of seven \$12 cables as in a ungle \$40 cable, even though the two continuations occupy the same area in the filled tray. This effect is exactly what we want to eliminate in a cable tray installation because it is possible to get bundles of small cables which produce locally intense heat sources and result in hot spots within the cable tray cross-section.

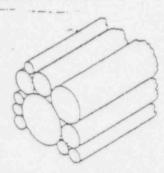


Fig. 1. Consecution three from a randomly arranged, thresh packed early tray

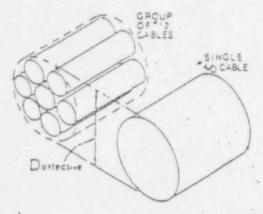


Fig. 2. Physical size comparison at typical rabber marked cables

This comparison can be made over and over with the present ampainties for cables in trays. The result is that small conductor size cables are allowed to "work" harder than the large size cables when they are all placed in a common random tray. Actually, all cables should be worked uniformly by coming to the same operating temperature in the tray.

ANALYTICAL MODEL

Whenever cable ampactities can be established with calculations, instead of an empirical approach, a better understanding of the

overall heat transfer mechanism is possible. A simple analytical solution to the heat transfer from the general, hypothetical cable tray in Figure 3 has been made, and some rather subtle findings from the analysis will be pointed out.

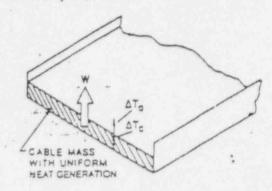


Fig. 3. Sumplified analytical model for heat transfer from a tightly packed cable may containing all power cubic.

Before proceeding with the analysis, two additional conditions must be specified. The first condition is cables in any tray must be installed at a constant, or uniform, depth. This is to prevent cables from being heaped on one side of a tray with a resulting vacual space on the other side. The second condition is to assume, at first, that all the cables in the tray are power cables which will uniformly generate first throughout the tray. These conditions allow the Lindon mixture of cable to be freated as a homogeneous rectangular mass with uniform heat generation.

The task now is to simply and the allowable heat intensity (O) for trays containing variable amounts of cable. Once we find the heat intensity, the heat which can be generated by each indifferent conductor (q) can be intensited from

$$d = \frac{u}{CV}$$
 (1)

where n * number of conductors in cable

A = cross-ectional area of the n-conductor cable.

O's allowable heat per unit area generated in the tray

and, of course,

where

I * maximum allowable current for a conductor

R * a.c. resistance of conductor to the maximum operating temperature of the insulation material in the cable tray.

Heat generated in any tightly packed cable tray must pass through two media: 1) the cable mass, and 2) the air immediately around the tray. Since heat flows through the media there is a resulting temperature drop in each, as shown in Figure 3. ΔT_c through the cables and ΔT_a through the cables and ΔT_a through the cables.

To determine the initial amount of heat (W) which can be disappated by a cable tray in an ambient temperature (Γ_2), and maintain its highest temperature at or below the operating temperature (Γ_m) of the cable insulation in the tray, we must limit system temperature drop (ΔT) to

Page DA of DA

ATTACHMENT D

AMPACITIES FOR CABLES IN RANDOMLY FILLED TRAYS

1. Stoire Southern California Edison Company Los Angeles, California

MISTRACT

The allowable current which may be carried by a given conducfor size cubie has been thoroughly investigated in almost every concenshir type of wable installation. One area which has not had ... much attention up to now is the allowable current which can be carried by cables in cable traya, or troughs. This paper presents a ! completely general method for calculating the ampacities of cables in ... through the pack is gradually restricted. Taking this to the point cable trays: it has been derived from elementary heat transfer theory "- where adiacent cables are touching each other on all sides, the and amply verified with many full-scale tests. The method shows that currently published ampacities for small cables in highly filled trays must be reduced, but the large cable ampueities can be safely increased.

THE NAME OF THE PRODUCTION

in the studies which have been made on the cerrent carrying ability of electric power cubics, the must simple cost of one cobic operating in air has been expanded to multiple cubies in a conduit.1 multiple cables or cundults in stacked banks," and several cables nulled into steel ruceways. The results of thew studies are incorpomird to ratious extents in both the AIEL-HCLA Power Cubic . Ampacities and the National Electric Code.

The ampacities, or derating factors, which have been determined so far are for cables which are in some form of an orderly acrangement: a further simplification which has been easily justified in the past is all the conductors considered were the same time Unfortunately, this simplifying treatment cunnot be justified when considering ampacities of randomly arranged cables in travs. f

A typical cable tray installation which is found in the electric nower concretion and distribution industry can be visualized as a 3-inch deep 24-inch wide metal trough containing anywhere from 20 to 400 randomly arranged single or multi-conductor power and control cables ranging in size from #12 ANO to 750 MCM. This array of cables is usually secured along the cable truy with some ties to present the cables already in the tray from shifting if additional cables should be pulled into the tray. During construction as cables are secured in the 110y, proup by group, they can become packed together light enough that air is unable to circulate through the mass of cables. With the physical ties and the normal vibration which is present in most plants, even many of the initially look cable arrays can be expected to settle and thus become more or less restricting to

Several other variables tend to complicate the determination of ampacities of cables in trava. Some of the more apparent ones are the fullness of a tray, diversity of loading of cables in a tray, determining the location of the hottest spot over the tray gross-section, and the amount of power cable (which generates heat) in proportion to the amount of control cable (which generates negligible heat) in a tray. All the above variables can be, and are accounted for in the method described herein.

Paper 70 TP 557-PWR recommended and approved by the Insulated Conductors Committee of the IFEL Power Group for presentation at the IEEE Summer Power Meeting and EIIV Conference, Los seets. Calif., July 12-17, 1970. Manuscript submitted September, 1969; made available for printing April 28, 1970.

PROBLEM DEFINITION

The first of many variables to be examined is the extent to which the cables in any tray are packed, it is apparent that cables in a very loose arrangement are essentially immersed in air which can , freely flow through the vacant apace in a tray; As the space between cubies is reduced, by packing cubies closer tocether, free flow of air continuous free space between cables becomes practically nonexistent and only small air pockets remain between the cables.

Applying this reasoning to heat flow from cables in a cable tray we see that a loose packing is desirable since air can naturally flow around each cable. The heat will then rew out of the pack and be replaced with cooler air from the bottom. When males become tightly packed, there is no air flow through the bundle, and this heat cannot be carried out of the bundle by natural air flow. In fact, the unly way for heat to flow out of the tight bundle is by heat conduction through the conglomeration of cable conductors, insulation, and air pockets.

Cable ampacities in randomly filled trays must be based on the assumption that cobies are tightly packed and that we cannot depend on hear being corned out of the bundle by air flowing through it. Without question, this tightly packed condition does not exist in even cable tray, but it does randomly occur often enough that, for safety, each cable truy mind by designed as though it was going to be tightly pucked. It is not even necessary that the entire cable tray be takity packed, since a packed width of only about three inches is sufficient to produce a hot spot in an otherwise end' tray.

With the enterior of tight cable packing established, it is then required to determine how the heat generation is distributed in the trus cross-section. The many cubic sizes possible, both single and multi-conductor, and each earrying a different current apparently makes it quite difficult to place allowable currents on such a heteropeneous mixture. However, looking at the problem from the standpoint that we do not want any hot spots in the cable tray, the problem can be solved.

Hot spots in a thermal system are produced by locally intense heat sources; thus, in every area of the rable was we must rimmone such conditions. In other words, the heat generated in every area of a cable tray cross-section must be uniform. The is the key to the entire problem of ampacities for randomly arranged capies in cable trays. and the concept of uniform heat generation cannot be overemphasized.

Consider Figure 1 showing a hypothetical shor of area from a typial tightly packed able tray. The heat intensity within each unit area, expressed in watts/ft, per square such of cross sectional area. must be constant all the way down to the smallest unit area inside the tray, which is the amallest cable in the tray. We therefore place ampacities of cubies, such as shown in Figure 1, in proportion to the overall cross-actional area of the individual gables, including the conductor and insulation.

If we know the allowable heat intensity for a given cable tray, we can immediately place ampacities on every cable in the tray Page El of E2

ATTACHMENT E

B61 MCC Bus Loading

Reference:

Drawing 25203 30011 Sheet 39 Rev. 16 (Ref. 3.1.39)

Drawing 25203 30011 Sheet 40 Rev. 21 (Ref. 3.1.38)

Drawing 25203 30011 Sheet 41 Rev. 18 (Ref. 3.1.15)

EWR M296024 (Ref. 3.1.45)

Only the continuous loads specified on these drawings are considered. MOV loads are not continuous and do not contribute to heat loading of cable in tray. (Assumption 4.3) (Note the feeder cable load is determined in accordance with Assumption 4.2)

ER4B	30KVA	36.08	1.00	36.08
HR4	40HP	50.07	1.00	50.07
GR4	15HP	18.78	1.00	18.78
GR1	5.8KW	8.21	1.00	8.21
FR1	1.93KW	2.73	1.00	2.73
ER3	0.75HP	0.94	1.00	0.94
ER2	4.5KW	6.37	1.00	6.37
DR4	15KVA	3.15*	1.00	3.15*
DR2	5HP	6.26	1.00	6.26
CR5	15KVA	18.04	1.00	18.04
CR4	15KVA	18.04	1.00	18.04
CR3	15KVA	18.04	1.00	18.04
BR4	6.75KW	0	1.00	0
BR3	6.75KW	0	1.00	0
HF3	0.75HP	0.94	1.00	0.94
HF1	45KVA	17.90*	1.0	17.90*
CF1	25HP	31.29	1.00	31.29
BF1	.25HP	.31	1.00	.31
AF4	100HP	125.18	1.25	156.47
BREAKER	RATING	AMPS	MULT.	LOAD

^{*} See following page for details.

$$FLA = \frac{HP \times 746}{\sqrt{3} \times E \times EFF \times PF}$$

$$AMPS = \frac{KW \times 1000}{E \times PF \times \sqrt{3}}$$

$$AMPS - \frac{KVA \times 1000}{E \times \sqrt{3}}$$

Calc. No. 96-ENG-01528E2 Rev. 00

Page E2 of E2

ATTACHMENT E

Note 1 - per Drawing 25203-30012 Sheet 12 (Ref. 3.1.41) the connected load is 2220 watts.

$$I = \frac{2220}{480 \times \sqrt{3} \times 0.85} = 3.15 \text{ amps } [DR4]$$

Note 2 - The Boric Acid Tank Heaters are no longer required since the concentration of boric acid has been reduced. The load for these heaters is thus 0 amps. [BR3, BR4]

Note 3 - UAC2 per Drawing 25203-30022 Sheet 12 Revision 23 (Ref. 3.1.40) has a connected load of 12648 watts.

$$I = 12648 = 17.90 \text{ amps} [HF1]$$

 $480 \times \sqrt{3} \times 0.85$

Page Fl of Fl

ATTACHMENT F

B62 MCC Bus Loading

Reference:

Drawing 25203 30011 Sheet 42 Rev. 21(Ref. 3.1.55)

Drawing 25203 30011 Sheet 43 Ref. 17 (Ref. 3.1.66)

Only the continuous loads identified on the drawing(s) are considered. MOV loads are not continuous and do not contribute to heat loading of cable in tray. (Assumption 4.3) (Note the feeder cable load is determined in accordance with Assumption 4.2)

BREAKER	RATING	AMPS	MULT.	LOAD
DF4	30KVA	32*	1.00	32*
EF2	UPS	81**	1.00	81**
BR2	3HP	3.76	1.00	3.76
CR2	5HP	6.26	1.00	6.26
CR3	15KVA	18.04	1.00	18.04
CR4	15KVA	18.04	1.00	18.04
CR5	15KVA	18.04	1.00	18.04
DR1	25HP	31.29	1.00	31.29
DR2	7.5HP	9.39	1.00	9.39
DR3	15KVA	18.04	1.00	18.04
FR1	20HP	25.04	1.00	25.04
FR4	59KW	83.49	1.00	83.49
CR1	15HP	18.78	1.00	18.78
ER2B	40HP	50.07	1.25	62.59
FR2	20HP	25.04	1.00	25.04
TOTAL				450.8

^{* = 80%} of breaker value used.

FLA =
$$\frac{HP \times 746}{\sqrt{3} \times E \times EFF \times PF}$$
 (EFF = .88, PF = .85)

$$AMPS = \frac{KW \times 1000}{E \times PF \times \sqrt{3}}$$

$$AMPS = \frac{KVA \times 1000}{E \times \sqrt{3}}$$

^{**=}References 3.1.74 and 3.1.75 identify the battery charger and inverter loads as 31 and 50 amps respecitively.

Calc. No. 96-ENG-01528E2 REV. 00 ATTACHMENT G

Page G1 OF G4

INDEPENDENT REVIEWER EVALUATION

(Enter "X" or "NA" to indicate applicability to review)

1.	Are the commitments provided in the Safety Analysis Report (SAR) and the Design Inputs documents correctly incorporated into the design documents?	<u>x</u>
2.	Does the proposed design affect or modify a Unit Safety Technical Specification in any way? If yes, will the initiation of a Technical Specification Change Request (TSCR) be required? (Re: NGP 4.02/NARC)	N/A
3.	Will the implementation of the proposed design require the initiation of a Final Safety Analysis Report (FSAR) change? (Re: NGP 4.03/NARC)	N/A
4.	Are assumptions necessary to perform the design activity adequately described and reasonable? Are the assumptions identified for subsequent reverification when the detailed design activities are complete?	<u>X</u>
5.	Does the design meet the requirements of applicable codes, standards, and regulatory requirements?	<u>X</u>
6.	Has applicable construction and operating experience been considered?	X
7.	Have the design interface requirements been satisfied?	_X_
8.	Was an appropriate design method used?	X
9.	Are the specified parts, equipment and processes suitable for the required application and have all conditions been considered?	_X_
10.	Are accessibility and other design provisions adequate for performance of needed in-service inspections, maintenance, and repair? Are adequate maintenance features included and requirements satisfied? Is adequate accessibility provided for performance of the expected inservice inspection required during plant life?	N/A
11.	Has the design properly considered radiation exposure to the public and Unit personnel? (ALARA, Reg Guide 8.8, NGP 5.16)	N/A
12.	Have adequate preoperational and subsequent periodic test requirements been appropriately incorporated into the design?	N/A
13.	Are appropriate Quality Assurance and ANS Safety Classification requirements specified such as inspections to be performed, acceptance criteria, specialized training/skills needed, personnel qualifications, material procurement, and material handling requirements?	N/A
14.	Are the applicable codes, standards, and regulatory requirements, including issue and addenda properly identified?	_X_
15.	Are the inputs correctly stated and incorporated into the design package and the output reasonable compared to inputs?	<u>X</u>

INDEPENDENT REVIEWER EVALUATION

16.	Are the specified materials compatible with each other and with the design environmental conditions to which the material will be exposed? (Nonmetallic materials require an evaluation of their suitability relative to temperature and radiation environments - Normal and Post-Accident.) Are non-metallic components or parts relied upon structurally, where there integrity under varied conditions is not assured by engineering analysis?	N/A
17.	Have adequate maintenance features and requirements been specified?	N/A
18.	Are the acceptance criteria incorporated in the design documents sufficient to allow verification that the design requirements have been satisfactorily accomplished? Are adequate preoperational and subsequent periodic test requirements appropriately specified?	<u>X</u>
19.	Are adequate handling, storage, cleaning, and shipping requirements specified?	N/A
20.	Are adequate identification requirements specified?	_X_
21.	Are requirements for record preparation, review, approval, retention, etc., adequately specified?	_X_
22.	Is the design such that potentia? crud traps are not built into radioactive fluid lines (long-radius elbows, quantity of valves minimized, ball valves used to extent possible)?	N/A
23.	Have new equipment tag numbers been identified?	N/A
24.	Are equipment failure effects on existing critical components addressed?	N/A
25.	Has the affect on seismic structures been addressed?	N/A
26.	Are all welds identified (allow for use of piping being removed)?	N/A
27.	Are installation fire safeguards identified?	N/A
28.	Will the authorized inspector be contacted and a repair package submitted?	N/A
29.	Are necessary spare parts identified?	N/A
30.	Are any barriers (i.e., fire, C02, halon, ventilation, water, flood, tornado, high energy line break, and radiation) being altered or penetrated and are the barrier design basis requirements being met?	N/A
31.	Have human factors requirements been considered (workplace design, accessibility, lighting and noise, human computer interaction, man machine interface, labeling, layout, etc.)?	N/A
32.	Is the design consistent with Station Spill Prevention Control and Countermeasure Plan(SPCC)?	N/A
33.	Would the design change increase the potential for flooding, reduce the capability to isolate or cope with local compartment flooding, or locate essential equipment where it would be susceptible to flooding?	N/A

INDEPENDENT REVIEWER EVALUATION

34.	Have the failure modes and affects with adjacent high energy piping systems been considered for pipe whip, jet impingement, and/or environmental effects (Stress Analysis Engineering should be contacted if a review is required).	N/A
35.	Has consideration been given in the design process for power supply surge withstand capability and minimizing the probability, affect and/or generation of electromagnetic noise interference on the design modification or adjacent systems?	N/A
36.	Has NPRDS component failure history been considered?	N/A
37.	Has the design change properly considered all operational aspects; i.e., has the design change taken challenges to the operator into consideration?	<u>X</u>
38.	Are appropriate measures specified to prevent debris/foreign material from entering Unit systems, and is the potential impact of debris/ foreign material on relevant Unit systems assessed? Has the design considered the non-use of materials which could plug containment sumps (Re: NRC Bulletin 93-02)?	N/A
39.	Have all Quality Software requirements been considered?	X
40.	Have applicable vendor manuals been checked, to ensure designs incorporate appropriate installation guidelines?	N/A
41.	Has the use of low Cobalt material been specified for systems which communicate with the reactor coolant system (e.g., valve seats)?	N/A
42.	Has the Design incorporated ALARA principles to reduce occupational exposure?(Re: NGP 5.27/Engineering Design Standard 37120)	N/A
43.	Is Structural Integrity assured (including Fatigue and Corrosion)?	N/A
44.	Have weep holes for drainage been installed in non-safety related components (lighting panels, termination boxes, and motor connection boxes) which are located in harsh environments? (Re: ISEG Report E91 -006)?	N/A
45.	Have all SBOQA(Station Blackout) requirements been considered?	X
46.	Has Relay Selection (electrical contact rating and life cycles) been analyzed, and documented?	N/A
47.	Have pressure locking and thermal binding of gate valves been considered?	N/A
48.	Have additions/deletions to the containment inventories of Zinc, Aluminum and Steel been recorded and the Containment Inventory Tracking Program updated?	N/A
49.	Are conclusions drawn in the 10 CFR 50.59 Evaluation fully supported by adequate discussion in the text or the 10 CFR 50.59 Evaluation itself?	<u>x</u>

Calc. No. 96-ENG-01528E2 REV. 00 ATTACHMENT G

Page G4 OF G4

INDEPENDENT REVIEWER EVALUATION

50.	Has the integrated design package considered appropriate supplemental reviews by other engineering disciplines (seismic, electrical, etc.) and affected departments (Operations, Maintenance, etc.)?	<u>X</u>
51.	Are drawings, sketches, calculations, references, etc. included in the design package appropriately?	<u>x</u>
52.	Are calculations included or referenced in the design package that requires revision, reviewed and approved with appropriate changes?	<u>x</u>
53.	Has the design considered the elimination of possible obstructions to ladders (OSHA 1910.27)?	N/A
54.	Has the design ensured that adjacent unit(s) interfaces were addressed?	X

I have completed my Independent Review of this package by utilizing the "Design Review" method. All concerns were addressed satisfactorily

Mychaette Champagne 12-13-96
Preparer(s) Signature(s)

Date