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Purpose

The purpose of this analysis is to calculate the aerosol decay (removal) rates in the
drywell due to natural removal mechanisms that remove fission and non-fission
product aerosols from the drywell atmosphere.

Methodology

The problem to be solved can be described as follows:

During a design base accident (DBA), fission product aerosols are released from the
damaged core into the drywell, together with significant amounts of steam and
non-condensable gases. The steam and gases, as well as the heat transfer to the gases
in the drywell, will cause an increase in drywell pressure and result in a significant
sweeping flow into the wetwell through the vent/downcomers that connect the
drywell and wetwell. Leakage flows into the main steam lines through the MSIVs
and directly to the reactor building are also expected. All these flows will dilute or
remove the aerosols in the drywell and, at the same time, the aerosols will
experience other removal processes, such as sedimentation, diffusiophoresis,
thermophoresis, etc., the rates of which are to be determined in this analysis.
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Based on the mass conservation law, the suspended aerosol mass in the drywell is
governed by the following equation:

Suspended mass = Injected mass - Leaked mass - Removed mass

The injected mass of aerosols include both fission and non-fission product aerosols
from the primary system. The leaked mass accounts for the aerosols entrained in the
leak flows through several leakage pathways, such as the vent and bypass that
connect the drywell and wetwell, the MSIV leakage, and the drywell leakage, and
the removed mass represents the aerosols deposited on the surfaces in the drywell
due to sedimentation, diffusiophoresis, thermophoresis, and other aerosol removal
processes. All of the quantities in the equation can be functions of time.

The above equation is solved by the STARNAUA code [reference 1] in which the
aerosol removal processes mentioned above are modeled, and the suspended
aerosol concentration is calculated for the specified timing and rates of injected
aerosols and the specified aerosol leakage rates through different pathways.

Assumptions
Assumption 1: The drywell is well-mixed during the entire time period of the
accident.
Justification: Given the fact that steam, non-condensable gases (e.g., hydrogen)

and fission product gases and aerosols are blowing into the
drywell atmosphere, while significant heat and mass transfers
are going on in the drywell, this assumption is reasonable.

Assumption 2: Condensation and sensible heat transfer onto the drywell walls
are neglected.

Justification: Since the drywell walls are insulated, the initial blowdown
before any release of fission product aerosols is expected to heat
up the walls very quickly so that further heat transfers (both
condensational and sensible) to the wall during and after the
release of fission product aerosols will not be significant.
Nevertheless, this assumption is conservative in the sense that
't will result in a smaller aerosol decay rate. '

Assumption 3 Hygroscopicity of aerosols is ignored and relative humidity in
the drywell is assumed to be 98% through-out the accident.

Justification: The cesium and iodine species (mostly Csl and CsOH) released
into the drywell are likely to be soluble and the hygroscopic effect
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on the growth of the soluble aerosols is significant, which
enhances the removal of such aerosols bv increasing
sedimentation. The assumption to ignore the hygroscopicity will
then be conservative. A relative humidity of 98%, on the other
hand, has no impact on this analysis since both the hygroscopic
effect on aerosol growth and diffusiophoresis (that is indirectly
affected by the relative humidity) are not considered. Neglecting
diffusiophoresis is also conservative.

The amount and timings of the fission product releases are
obtained from NRC documents. The release fractions are
obtained from NUUREG-1465 [reference 2] (see Tables 3.8 and 3.12)
and the core inventories are from Table 4.6 NUREG/CR-4624
[reference 3], all of which are summarized in Table 1 below. The
timings are also obtained from NUREG-1465. Two phases of the
fission product release are assumed. First, the gap release starts at
30 seconds after the initiation of the accident and lasts 1800
seconds. It is then followed by the early in-vessel release that
lasts 1.5 hours.

According to NUREG-1465, the iodine specie released to the
containment is in the forms of particulate and gases (organic and
elemental). 95% of the iodine released to the containment is
aerosol, while 5% 1s gases. Of the iodine gases, 97% are elemental
and 3% are organic. Organic iodine behaves like a noble gas, so it
is assumed to be r on-removable. Elemental iodine, on the other
hand, tends to deposit on aerosols or other surfaces, and is
assumed to be removed similarly to the aerosols.

The core inventories in NUREG/CR-4624 were actually from
NUREG/CR-2181 done in 1982. Since then, the total burn-up of
the fuel assemblies in a fuel cycle in Browns Ferry has increased,
which will result in an increase in the fission product core
inventories. However, as far as the calculation of the aerosol
decay rates is concerned, it is conservative to use smaller core
inventories, since the only possible impact from an increased
core inventory is to get a higher aerosol concentration and,
consequently, a larger aerosol decay rate. On the other hand, the
assumption of smaller core inventories is not overly
conservative in this analysis since the aerosol removal processes
are less significant than the removal due to the sweeping flow
from the drywell to the wetwell.

The amount of non-fission product aerosols released to the
containment is the same as that of fission product aerosols (i.e.,
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about 77 kg). They are released uniformly during the in-vessel
release period, similar to the fission product aerosol release. The
average density of the non-fission product aerosols is assumed to
be 5.6 g/cm3.

The assumption that the ratio of fission to non-fission in-vessel
releases is 1:1 is obtained from reference 4. It should be pointed
out that it was mentioned in NUREG-1465 that about 780 kg of
in-vessel non-fission masses was calculated in NUREG-0956 for
one Peach Bottom sequence. Since the Peach Bottom reactor is
almost identical to the Browns Ferry reactor that is analyzed
here, the same order of magnitude of non-fission product release
is expected. But, the non-fission product release that we assume
is only 10% of what was calculated in NUREG-0956. Our
assumption should then be conservative, since a larger amount
of non-fission product release will enhance overall aerosol
agglomeration and, therefore, increase aerosol sedimentation.
As for the density, most of the non-fission product aerosols are
Zr, Fe203 and UO2 species whose densities are 6.4, 5.24 and 10.09
g/cm3, respectively. So, a density of 5.6 g/cm3 for the non-fission
product aerosols represents a conservative value, considering

that the Zr inventory in the core is almost three times higher
than that of the iron (table 4.5, reference 3).

Table 1. Fission Product Releases Into Containment

Group Title

Gap Early Core
Elements in group releasel in-vessel inventory
releasel (kg)

;M o W D =

~3] O

Noble Gases
Halogens

Xe, Kr 0.05 0.95 413
I, Br 0.05 0.25 16.6

Alkali Metals Cs,Rb 0.05 0.20 230
Tellurium Group  Te, Sb, Se 0 0.05 349

Barium, Strontium Ba, Sr

0.02 167.7

0
Noble Metals Ru, Rh, Rd, Mo, T¢, Co 0 0.0025 584
0

Lantharudes

La, Zr, Nd, Eu, Nb

; 0.0002 837
Pm, Pr,Sm,Y,Cm, Am

Cerium Group Ce, Pu, Np 0 0.0005 992

1 Fractions of core inventories.
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The flow exchange between the drywell and the wetwell is
ignored after containment heat removal (or reflood) is over.

According to PSAT 04000U.03 [reference 5] (Items 3.10 and 3.11),
before 7890 seconds the flow exchange between the drywell and
the wetwell is only in one direction, i.e., from the drywell to the
wetwell. So, the flow can be considered as a leakage flow out of
the drywell. After 7890 seconds the flow from the drywell to the
wetwell is balanced by the flow from the wetwell to the drywell.
To fully model the two-way flow exchange, the calculation of
aerosol behavior in both the drywell and the wetwell needs to be
conducted in parallel, which will be very difficult. This
assumption, evidently, simplifies the problem. The implication
of the effect on the drywell aerosol decay rate calculation needs
to be discussed when the result is used. Nevertheless, it should
be pointed out that the aerosol decay rate in the wetwell is
almost always higher than that in the drywell, since

. the aerosols entering the wetwell from the drywell are
more or less scrubbed, especially if the suppression pool is
sub-cooled.

. the wetwell has a smaller airspace volume than the

drywell (1:1.28), and a larger sedimentation area than the
drywell (1.67:1). Thus the wetwell is more favorable for
aerosol sedimentation.

Aerosol size distribution is log normal, with a geometric mean
radius of 0.22 micron and a geometric standard deviation of 1.81.

As discussed in Reference 6 (page 12-13), the overwhelming
majority of aerosols are observed to have a lognormal size
distribution. It is also a common practice to assume such a
distribution for the fission product aerosols in nuclear safety
studies. A lognormal distribution is defined by the geometric
mean radius and the geometric standard deviation. The values
for them to be used in this calculation are based on an analysis of
data from several degraded fuel experiments [reference 7). It
should be pointed out that the aerosols size distribution specified
here yields a mass mean diameter of about 1.3 microns. For
comparison, the mass mean diameters used in NUREG/CR-5966
[reference 8] range from 1.5 to 5.5 microns and the geometric
standard deviations range from 1.6 to 3.7 (see page 84). Thus, our
assumption is evidently at the lower end of what were used in
reference 8, and is thus conservative compared with reference 8.
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Table 4. Sedimentation Lambda as A Function of Time

Time! Sed. Lambda Tot. Lambda Time!l Sed. Lambda Tot. Lambda
(second) (1/hour) (1/hour) (second) (1/hour) (1/hour)

48 0.30 0.30 8627 0.90 0.90
550 0.29 0.29 9868 0.80 0.80
1115 0.30 0.30 11786 0.70 0.70
2426 0.40 141 14615 0.60 0.60
3229 0.50 1.51 18774 0.50 0.50
4016 0.60 1.61 25011 0.40 0.40
4916 0.70 171 35598 0.30 0.30
6321 0.80 1.81 57247 0.20 0.20
7393 0.90 8.45 99807 0.12 0.13
7902 0.99 0.99

The STARNAUA output files are given in Appendices C and D. The headings are
added to the plot file in Appendix C to make it understandable. The STARNAUA
output file, on the other hand, has been shortened to avoid an unnecessarily long
printout. The time in those output files is the STARNAUA time that starts at core
uncovery, 30 seconds after the initiation of the accident.

1 Accident time, which is STARNAUA time + 30 seconds.
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